1952e2e1c1
These bits are taken from the FSF anoncvs repo on 1-Feb-2002 08:20 PST.
2975 lines
112 KiB
C++
2975 lines
112 KiB
C++
/* Definitions of target machine for GNU compiler, for IBM RS/6000.
|
||
Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
|
||
2000, 2001, 2002 Free Software Foundation, Inc.
|
||
Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
|
||
/* Note that some other tm.h files include this one and then override
|
||
many of the definitions. */
|
||
|
||
/* Definitions for the object file format. These are set at
|
||
compile-time. */
|
||
|
||
#define OBJECT_XCOFF 1
|
||
#define OBJECT_ELF 2
|
||
#define OBJECT_PEF 3
|
||
#define OBJECT_MACHO 4
|
||
|
||
#define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
|
||
#define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
|
||
#define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
|
||
#define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
|
||
|
||
#ifndef TARGET_AIX
|
||
#define TARGET_AIX 0
|
||
#endif
|
||
|
||
/* Default string to use for cpu if not specified. */
|
||
#ifndef TARGET_CPU_DEFAULT
|
||
#define TARGET_CPU_DEFAULT ((char *)0)
|
||
#endif
|
||
|
||
/* Common CPP definitions used by CPP_SPEC among the various targets
|
||
for handling -mcpu=xxx switches. */
|
||
#define CPP_CPU_SPEC \
|
||
"%{!mcpu*: \
|
||
%{mpower: %{!mpower2: -D_ARCH_PWR}} \
|
||
%{mpower2: -D_ARCH_PWR2} \
|
||
%{mpowerpc*: -D_ARCH_PPC} \
|
||
%{mno-power: %{!mpowerpc*: -D_ARCH_COM}} \
|
||
%{!mno-power: %{!mpower2: %(cpp_default)}}} \
|
||
%{mcpu=common: -D_ARCH_COM} \
|
||
%{mcpu=power: -D_ARCH_PWR} \
|
||
%{mcpu=power2: -D_ARCH_PWR2} \
|
||
%{mcpu=powerpc: -D_ARCH_PPC} \
|
||
%{mcpu=rios: -D_ARCH_PWR} \
|
||
%{mcpu=rios1: -D_ARCH_PWR} \
|
||
%{mcpu=rios2: -D_ARCH_PWR2} \
|
||
%{mcpu=rsc: -D_ARCH_PWR} \
|
||
%{mcpu=rsc1: -D_ARCH_PWR} \
|
||
%{mcpu=401: -D_ARCH_PPC} \
|
||
%{mcpu=403: -D_ARCH_PPC} \
|
||
%{mcpu=405: -D_ARCH_PPC} \
|
||
%{mcpu=505: -D_ARCH_PPC} \
|
||
%{mcpu=601: -D_ARCH_PPC -D_ARCH_PWR} \
|
||
%{mcpu=602: -D_ARCH_PPC} \
|
||
%{mcpu=603: -D_ARCH_PPC} \
|
||
%{mcpu=603e: -D_ARCH_PPC} \
|
||
%{mcpu=ec603e: -D_ARCH_PPC} \
|
||
%{mcpu=604: -D_ARCH_PPC} \
|
||
%{mcpu=604e: -D_ARCH_PPC} \
|
||
%{mcpu=620: -D_ARCH_PPC} \
|
||
%{mcpu=740: -D_ARCH_PPC} \
|
||
%{mcpu=7400: -D_ARCH_PPC} \
|
||
%{mcpu=7450: -D_ARCH_PPC} \
|
||
%{mcpu=750: -D_ARCH_PPC} \
|
||
%{mcpu=801: -D_ARCH_PPC} \
|
||
%{mcpu=821: -D_ARCH_PPC} \
|
||
%{mcpu=823: -D_ARCH_PPC} \
|
||
%{mcpu=860: -D_ARCH_PPC} \
|
||
%{maltivec: -D__ALTIVEC__}"
|
||
|
||
/* Common ASM definitions used by ASM_SPEC among the various targets
|
||
for handling -mcpu=xxx switches. */
|
||
#define ASM_CPU_SPEC \
|
||
"%{!mcpu*: \
|
||
%{mpower: %{!mpower2: -mpwr}} \
|
||
%{mpower2: -mpwrx} \
|
||
%{mpowerpc*: -mppc} \
|
||
%{mno-power: %{!mpowerpc*: -mcom}} \
|
||
%{!mno-power: %{!mpower2: %(asm_default)}}} \
|
||
%{mcpu=common: -mcom} \
|
||
%{mcpu=power: -mpwr} \
|
||
%{mcpu=power2: -mpwrx} \
|
||
%{mcpu=powerpc: -mppc} \
|
||
%{mcpu=rios: -mpwr} \
|
||
%{mcpu=rios1: -mpwr} \
|
||
%{mcpu=rios2: -mpwrx} \
|
||
%{mcpu=rsc: -mpwr} \
|
||
%{mcpu=rsc1: -mpwr} \
|
||
%{mcpu=401: -mppc} \
|
||
%{mcpu=403: -mppc} \
|
||
%{mcpu=405: -mppc} \
|
||
%{mcpu=505: -mppc} \
|
||
%{mcpu=601: -m601} \
|
||
%{mcpu=602: -mppc} \
|
||
%{mcpu=603: -mppc} \
|
||
%{mcpu=603e: -mppc} \
|
||
%{mcpu=ec603e: -mppc} \
|
||
%{mcpu=604: -mppc} \
|
||
%{mcpu=604e: -mppc} \
|
||
%{mcpu=620: -mppc} \
|
||
%{mcpu=740: -mppc} \
|
||
%{mcpu=7400: -mppc} \
|
||
%{mcpu=7450: -mppc} \
|
||
%{mcpu=750: -mppc} \
|
||
%{mcpu=801: -mppc} \
|
||
%{mcpu=821: -mppc} \
|
||
%{mcpu=823: -mppc} \
|
||
%{mcpu=860: -mppc} \
|
||
%{maltivec: -maltivec}"
|
||
|
||
#define CPP_DEFAULT_SPEC ""
|
||
|
||
#define ASM_DEFAULT_SPEC ""
|
||
|
||
/* This macro defines names of additional specifications to put in the specs
|
||
that can be used in various specifications like CC1_SPEC. Its definition
|
||
is an initializer with a subgrouping for each command option.
|
||
|
||
Each subgrouping contains a string constant, that defines the
|
||
specification name, and a string constant that used by the GNU CC driver
|
||
program.
|
||
|
||
Do not define this macro if it does not need to do anything. */
|
||
|
||
#define SUBTARGET_EXTRA_SPECS
|
||
|
||
#define EXTRA_SPECS \
|
||
{ "cpp_cpu", CPP_CPU_SPEC }, \
|
||
{ "cpp_default", CPP_DEFAULT_SPEC }, \
|
||
{ "asm_cpu", ASM_CPU_SPEC }, \
|
||
{ "asm_default", ASM_DEFAULT_SPEC }, \
|
||
SUBTARGET_EXTRA_SPECS
|
||
|
||
/* Architecture type. */
|
||
|
||
extern int target_flags;
|
||
|
||
/* Use POWER architecture instructions and MQ register. */
|
||
#define MASK_POWER 0x00000001
|
||
|
||
/* Use POWER2 extensions to POWER architecture. */
|
||
#define MASK_POWER2 0x00000002
|
||
|
||
/* Use PowerPC architecture instructions. */
|
||
#define MASK_POWERPC 0x00000004
|
||
|
||
/* Use PowerPC General Purpose group optional instructions, e.g. fsqrt. */
|
||
#define MASK_PPC_GPOPT 0x00000008
|
||
|
||
/* Use PowerPC Graphics group optional instructions, e.g. fsel. */
|
||
#define MASK_PPC_GFXOPT 0x00000010
|
||
|
||
/* Use PowerPC-64 architecture instructions. */
|
||
#define MASK_POWERPC64 0x00000020
|
||
|
||
/* Use revised mnemonic names defined for PowerPC architecture. */
|
||
#define MASK_NEW_MNEMONICS 0x00000040
|
||
|
||
/* Disable placing fp constants in the TOC; can be turned on when the
|
||
TOC overflows. */
|
||
#define MASK_NO_FP_IN_TOC 0x00000080
|
||
|
||
/* Disable placing symbol+offset constants in the TOC; can be turned on when
|
||
the TOC overflows. */
|
||
#define MASK_NO_SUM_IN_TOC 0x00000100
|
||
|
||
/* Output only one TOC entry per module. Normally linking fails if
|
||
there are more than 16K unique variables/constants in an executable. With
|
||
this option, linking fails only if there are more than 16K modules, or
|
||
if there are more than 16K unique variables/constant in a single module.
|
||
|
||
This is at the cost of having 2 extra loads and one extra store per
|
||
function, and one less allocable register. */
|
||
#define MASK_MINIMAL_TOC 0x00000200
|
||
|
||
/* Nonzero for the 64bit model: ints, longs, and pointers are 64 bits. */
|
||
#define MASK_64BIT 0x00000400
|
||
|
||
/* Disable use of FPRs. */
|
||
#define MASK_SOFT_FLOAT 0x00000800
|
||
|
||
/* Enable load/store multiple, even on powerpc */
|
||
#define MASK_MULTIPLE 0x00001000
|
||
#define MASK_MULTIPLE_SET 0x00002000
|
||
|
||
/* Use string instructions for block moves */
|
||
#define MASK_STRING 0x00004000
|
||
#define MASK_STRING_SET 0x00008000
|
||
|
||
/* Disable update form of load/store */
|
||
#define MASK_NO_UPDATE 0x00010000
|
||
|
||
/* Disable fused multiply/add operations */
|
||
#define MASK_NO_FUSED_MADD 0x00020000
|
||
|
||
/* Nonzero if we need to schedule the prolog and epilog. */
|
||
#define MASK_SCHED_PROLOG 0x00040000
|
||
|
||
/* Use AltiVec instructions. */
|
||
#define MASK_ALTIVEC 0x00080000
|
||
|
||
/* Return small structures in memory (as the AIX ABI requires). */
|
||
#define MASK_AIX_STRUCT_RET 0x00100000
|
||
#define MASK_AIX_STRUCT_RET_SET 0x00200000
|
||
|
||
/* The only remaining free bit is 0x00400000. sysv4.h uses
|
||
0x00800000 -> 0x40000000, and 0x80000000 is not available
|
||
because target_flags is signed. */
|
||
|
||
#define TARGET_POWER (target_flags & MASK_POWER)
|
||
#define TARGET_POWER2 (target_flags & MASK_POWER2)
|
||
#define TARGET_POWERPC (target_flags & MASK_POWERPC)
|
||
#define TARGET_PPC_GPOPT (target_flags & MASK_PPC_GPOPT)
|
||
#define TARGET_PPC_GFXOPT (target_flags & MASK_PPC_GFXOPT)
|
||
#define TARGET_NEW_MNEMONICS (target_flags & MASK_NEW_MNEMONICS)
|
||
#define TARGET_NO_FP_IN_TOC (target_flags & MASK_NO_FP_IN_TOC)
|
||
#define TARGET_NO_SUM_IN_TOC (target_flags & MASK_NO_SUM_IN_TOC)
|
||
#define TARGET_MINIMAL_TOC (target_flags & MASK_MINIMAL_TOC)
|
||
#define TARGET_64BIT (target_flags & MASK_64BIT)
|
||
#define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
|
||
#define TARGET_MULTIPLE (target_flags & MASK_MULTIPLE)
|
||
#define TARGET_MULTIPLE_SET (target_flags & MASK_MULTIPLE_SET)
|
||
#define TARGET_STRING (target_flags & MASK_STRING)
|
||
#define TARGET_STRING_SET (target_flags & MASK_STRING_SET)
|
||
#define TARGET_NO_UPDATE (target_flags & MASK_NO_UPDATE)
|
||
#define TARGET_NO_FUSED_MADD (target_flags & MASK_NO_FUSED_MADD)
|
||
#define TARGET_SCHED_PROLOG (target_flags & MASK_SCHED_PROLOG)
|
||
#define TARGET_ALTIVEC (target_flags & MASK_ALTIVEC)
|
||
#define TARGET_AIX_STRUCT_RET (target_flags & MASK_AIX_STRUCT_RET)
|
||
|
||
#define TARGET_32BIT (! TARGET_64BIT)
|
||
#define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
|
||
#define TARGET_UPDATE (! TARGET_NO_UPDATE)
|
||
#define TARGET_FUSED_MADD (! TARGET_NO_FUSED_MADD)
|
||
|
||
#ifdef IN_LIBGCC2
|
||
/* For libgcc2 we make sure this is a compile time constant */
|
||
#if defined (__64BIT__) || defined (__powerpc64__)
|
||
#define TARGET_POWERPC64 1
|
||
#else
|
||
#define TARGET_POWERPC64 0
|
||
#endif
|
||
#else
|
||
#define TARGET_POWERPC64 (target_flags & MASK_POWERPC64)
|
||
#endif
|
||
|
||
#define TARGET_XL_CALL 0
|
||
|
||
/* Run-time compilation parameters selecting different hardware subsets.
|
||
|
||
Macro to define tables used to set the flags.
|
||
This is a list in braces of pairs in braces,
|
||
each pair being { "NAME", VALUE }
|
||
where VALUE is the bits to set or minus the bits to clear.
|
||
An empty string NAME is used to identify the default VALUE. */
|
||
|
||
#define TARGET_SWITCHES \
|
||
{{"power", MASK_POWER | MASK_MULTIPLE | MASK_STRING, \
|
||
N_("Use POWER instruction set")}, \
|
||
{"power2", (MASK_POWER | MASK_MULTIPLE | MASK_STRING \
|
||
| MASK_POWER2), \
|
||
N_("Use POWER2 instruction set")}, \
|
||
{"no-power2", - MASK_POWER2, \
|
||
N_("Do not use POWER2 instruction set")}, \
|
||
{"no-power", - (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE \
|
||
| MASK_STRING), \
|
||
N_("Do not use POWER instruction set")}, \
|
||
{"powerpc", MASK_POWERPC, \
|
||
N_("Use PowerPC instruction set")}, \
|
||
{"no-powerpc", - (MASK_POWERPC | MASK_PPC_GPOPT \
|
||
| MASK_PPC_GFXOPT | MASK_POWERPC64), \
|
||
N_("Do not use PowerPC instruction set")}, \
|
||
{"powerpc-gpopt", MASK_POWERPC | MASK_PPC_GPOPT, \
|
||
N_("Use PowerPC General Purpose group optional instructions")},\
|
||
{"no-powerpc-gpopt", - MASK_PPC_GPOPT, \
|
||
N_("Don't use PowerPC General Purpose group optional instructions")},\
|
||
{"powerpc-gfxopt", MASK_POWERPC | MASK_PPC_GFXOPT, \
|
||
N_("Use PowerPC Graphics group optional instructions")},\
|
||
{"no-powerpc-gfxopt", - MASK_PPC_GFXOPT, \
|
||
N_("Don't use PowerPC Graphics group optional instructions")},\
|
||
{"powerpc64", MASK_POWERPC64, \
|
||
N_("Use PowerPC-64 instruction set")}, \
|
||
{"no-powerpc64", - MASK_POWERPC64, \
|
||
N_("Don't use PowerPC-64 instruction set")}, \
|
||
{"altivec", MASK_ALTIVEC , \
|
||
N_("Use AltiVec instructions")}, \
|
||
{"no-altivec", - MASK_ALTIVEC , \
|
||
N_("Don't use AltiVec instructions")}, \
|
||
{"new-mnemonics", MASK_NEW_MNEMONICS, \
|
||
N_("Use new mnemonics for PowerPC architecture")},\
|
||
{"old-mnemonics", -MASK_NEW_MNEMONICS, \
|
||
N_("Use old mnemonics for PowerPC architecture")},\
|
||
{"full-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC \
|
||
| MASK_MINIMAL_TOC), \
|
||
N_("Put everything in the regular TOC")}, \
|
||
{"fp-in-toc", - MASK_NO_FP_IN_TOC, \
|
||
N_("Place floating point constants in TOC")}, \
|
||
{"no-fp-in-toc", MASK_NO_FP_IN_TOC, \
|
||
N_("Don't place floating point constants in TOC")},\
|
||
{"sum-in-toc", - MASK_NO_SUM_IN_TOC, \
|
||
N_("Place symbol+offset constants in TOC")}, \
|
||
{"no-sum-in-toc", MASK_NO_SUM_IN_TOC, \
|
||
N_("Don't place symbol+offset constants in TOC")},\
|
||
{"minimal-toc", MASK_MINIMAL_TOC, \
|
||
"Use only one TOC entry per procedure"}, \
|
||
{"minimal-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC), \
|
||
""}, \
|
||
{"no-minimal-toc", - MASK_MINIMAL_TOC, \
|
||
N_("Place variable addresses in the regular TOC")},\
|
||
{"hard-float", - MASK_SOFT_FLOAT, \
|
||
N_("Use hardware fp")}, \
|
||
{"soft-float", MASK_SOFT_FLOAT, \
|
||
N_("Do not use hardware fp")}, \
|
||
{"multiple", MASK_MULTIPLE | MASK_MULTIPLE_SET, \
|
||
N_("Generate load/store multiple instructions")}, \
|
||
{"no-multiple", - MASK_MULTIPLE, \
|
||
N_("Do not generate load/store multiple instructions")},\
|
||
{"no-multiple", MASK_MULTIPLE_SET, \
|
||
""}, \
|
||
{"string", MASK_STRING | MASK_STRING_SET, \
|
||
N_("Generate string instructions for block moves")},\
|
||
{"no-string", - MASK_STRING, \
|
||
N_("Do not generate string instructions for block moves")},\
|
||
{"no-string", MASK_STRING_SET, \
|
||
""}, \
|
||
{"update", - MASK_NO_UPDATE, \
|
||
N_("Generate load/store with update instructions")},\
|
||
{"no-update", MASK_NO_UPDATE, \
|
||
N_("Do not generate load/store with update instructions")},\
|
||
{"fused-madd", - MASK_NO_FUSED_MADD, \
|
||
N_("Generate fused multiply/add instructions")},\
|
||
{"no-fused-madd", MASK_NO_FUSED_MADD, \
|
||
N_("Don't generate fused multiply/add instructions")},\
|
||
{"sched-prolog", MASK_SCHED_PROLOG, \
|
||
""}, \
|
||
{"no-sched-prolog", -MASK_SCHED_PROLOG, \
|
||
N_("Don't schedule the start and end of the procedure")},\
|
||
{"sched-epilog", MASK_SCHED_PROLOG, \
|
||
""}, \
|
||
{"no-sched-epilog", -MASK_SCHED_PROLOG, \
|
||
""}, \
|
||
{"aix-struct-return", MASK_AIX_STRUCT_RET | MASK_AIX_STRUCT_RET_SET, \
|
||
N_("Return all structures in memory (AIX default)")},\
|
||
{"svr4-struct-return", - MASK_AIX_STRUCT_RET,\
|
||
N_("Return small structures in registers (SVR4 default)")},\
|
||
{"svr4-struct-return",MASK_AIX_STRUCT_RET_SET,\
|
||
""},\
|
||
{"no-aix-struct-return", - MASK_AIX_STRUCT_RET,\
|
||
""},\
|
||
{"no-aix-struct-return", MASK_AIX_STRUCT_RET_SET,\
|
||
""},\
|
||
{"no-svr4-struct-return", MASK_AIX_STRUCT_RET | MASK_AIX_STRUCT_RET_SET,\
|
||
""},\
|
||
SUBTARGET_SWITCHES \
|
||
{"", TARGET_DEFAULT | MASK_SCHED_PROLOG, \
|
||
""}}
|
||
|
||
#define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
|
||
|
||
/* This is meant to be redefined in the host dependent files */
|
||
#define SUBTARGET_SWITCHES
|
||
|
||
/* Processor type. Order must match cpu attribute in MD file. */
|
||
enum processor_type
|
||
{
|
||
PROCESSOR_RIOS1,
|
||
PROCESSOR_RIOS2,
|
||
PROCESSOR_RS64A,
|
||
PROCESSOR_MPCCORE,
|
||
PROCESSOR_PPC403,
|
||
PROCESSOR_PPC405,
|
||
PROCESSOR_PPC601,
|
||
PROCESSOR_PPC603,
|
||
PROCESSOR_PPC604,
|
||
PROCESSOR_PPC604e,
|
||
PROCESSOR_PPC620,
|
||
PROCESSOR_PPC630,
|
||
PROCESSOR_PPC750,
|
||
PROCESSOR_PPC7400,
|
||
PROCESSOR_PPC7450
|
||
};
|
||
|
||
extern enum processor_type rs6000_cpu;
|
||
|
||
/* Recast the processor type to the cpu attribute. */
|
||
#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
|
||
|
||
/* Define generic processor types based upon current deployment. */
|
||
#define PROCESSOR_COMMON PROCESSOR_PPC601
|
||
#define PROCESSOR_POWER PROCESSOR_RIOS1
|
||
#define PROCESSOR_POWERPC PROCESSOR_PPC604
|
||
#define PROCESSOR_POWERPC64 PROCESSOR_RS64A
|
||
|
||
/* Define the default processor. This is overridden by other tm.h files. */
|
||
#define PROCESSOR_DEFAULT PROCESSOR_RIOS1
|
||
#define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
|
||
|
||
/* Specify the dialect of assembler to use. New mnemonics is dialect one
|
||
and the old mnemonics are dialect zero. */
|
||
#define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
|
||
|
||
/* This is meant to be overridden in target specific files. */
|
||
#define SUBTARGET_OPTIONS
|
||
|
||
#define TARGET_OPTIONS \
|
||
{ \
|
||
{"cpu=", &rs6000_select[1].string, \
|
||
N_("Use features of and schedule code for given CPU") }, \
|
||
{"tune=", &rs6000_select[2].string, \
|
||
N_("Schedule code for given CPU") }, \
|
||
{"debug=", &rs6000_debug_name, N_("Enable debug output") }, \
|
||
{"abi=", &rs6000_abi_string, N_("Specify ABI to use") }, \
|
||
{"long-double-", &rs6000_long_double_size_string, \
|
||
N_("Specify size of long double (64 or 128 bits)") }, \
|
||
SUBTARGET_OPTIONS \
|
||
}
|
||
|
||
/* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
|
||
struct rs6000_cpu_select
|
||
{
|
||
const char *string;
|
||
const char *name;
|
||
int set_tune_p;
|
||
int set_arch_p;
|
||
};
|
||
|
||
extern struct rs6000_cpu_select rs6000_select[];
|
||
|
||
/* Debug support */
|
||
extern const char *rs6000_debug_name; /* Name for -mdebug-xxxx option */
|
||
extern const char *rs6000_abi_string; /* for -mabi={sysv,darwin,eabi,aix,altivec} */
|
||
extern int rs6000_debug_stack; /* debug stack applications */
|
||
extern int rs6000_debug_arg; /* debug argument handling */
|
||
|
||
#define TARGET_DEBUG_STACK rs6000_debug_stack
|
||
#define TARGET_DEBUG_ARG rs6000_debug_arg
|
||
|
||
/* These are separate from target_flags because we've run out of bits
|
||
there. */
|
||
extern const char *rs6000_long_double_size_string;
|
||
extern int rs6000_long_double_type_size;
|
||
extern int rs6000_altivec_abi;
|
||
|
||
#define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
|
||
#define TARGET_ALTIVEC_ABI rs6000_altivec_abi
|
||
|
||
/* Sometimes certain combinations of command options do not make sense
|
||
on a particular target machine. You can define a macro
|
||
`OVERRIDE_OPTIONS' to take account of this. This macro, if
|
||
defined, is executed once just after all the command options have
|
||
been parsed.
|
||
|
||
Don't use this macro to turn on various extra optimizations for
|
||
`-O'. That is what `OPTIMIZATION_OPTIONS' is for.
|
||
|
||
On the RS/6000 this is used to define the target cpu type. */
|
||
|
||
#define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
|
||
|
||
/* Define this to change the optimizations performed by default. */
|
||
#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
|
||
|
||
/* Show we can debug even without a frame pointer. */
|
||
#define CAN_DEBUG_WITHOUT_FP
|
||
|
||
/* target machine storage layout */
|
||
|
||
/* Define to support cross compilation to an RS6000 target. */
|
||
#define REAL_ARITHMETIC
|
||
|
||
/* Define this macro if it is advisable to hold scalars in registers
|
||
in a wider mode than that declared by the program. In such cases,
|
||
the value is constrained to be within the bounds of the declared
|
||
type, but kept valid in the wider mode. The signedness of the
|
||
extension may differ from that of the type. */
|
||
|
||
#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
|
||
if (GET_MODE_CLASS (MODE) == MODE_INT \
|
||
&& GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
|
||
(MODE) = word_mode;
|
||
|
||
/* Define this if function arguments should also be promoted using the above
|
||
procedure. */
|
||
|
||
#define PROMOTE_FUNCTION_ARGS
|
||
|
||
/* Likewise, if the function return value is promoted. */
|
||
|
||
#define PROMOTE_FUNCTION_RETURN
|
||
|
||
/* Define this if most significant bit is lowest numbered
|
||
in instructions that operate on numbered bit-fields. */
|
||
/* That is true on RS/6000. */
|
||
#define BITS_BIG_ENDIAN 1
|
||
|
||
/* Define this if most significant byte of a word is the lowest numbered. */
|
||
/* That is true on RS/6000. */
|
||
#define BYTES_BIG_ENDIAN 1
|
||
|
||
/* Define this if most significant word of a multiword number is lowest
|
||
numbered.
|
||
|
||
For RS/6000 we can decide arbitrarily since there are no machine
|
||
instructions for them. Might as well be consistent with bits and bytes. */
|
||
#define WORDS_BIG_ENDIAN 1
|
||
|
||
/* number of bits in an addressable storage unit */
|
||
#define BITS_PER_UNIT 8
|
||
|
||
/* Width in bits of a "word", which is the contents of a machine register.
|
||
Note that this is not necessarily the width of data type `int';
|
||
if using 16-bit ints on a 68000, this would still be 32.
|
||
But on a machine with 16-bit registers, this would be 16. */
|
||
#define BITS_PER_WORD (! TARGET_POWERPC64 ? 32 : 64)
|
||
#define MAX_BITS_PER_WORD 64
|
||
|
||
/* Width of a word, in units (bytes). */
|
||
#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
|
||
#define MIN_UNITS_PER_WORD 4
|
||
#define UNITS_PER_FP_WORD 8
|
||
#define UNITS_PER_ALTIVEC_WORD 16
|
||
|
||
/* Type used for ptrdiff_t, as a string used in a declaration. */
|
||
#define PTRDIFF_TYPE "int"
|
||
|
||
/* Type used for size_t, as a string used in a declaration. */
|
||
#define SIZE_TYPE "long unsigned int"
|
||
|
||
/* Type used for wchar_t, as a string used in a declaration. */
|
||
#define WCHAR_TYPE "short unsigned int"
|
||
|
||
/* Width of wchar_t in bits. */
|
||
#define WCHAR_TYPE_SIZE 16
|
||
|
||
/* A C expression for the size in bits of the type `short' on the
|
||
target machine. If you don't define this, the default is half a
|
||
word. (If this would be less than one storage unit, it is
|
||
rounded up to one unit.) */
|
||
#define SHORT_TYPE_SIZE 16
|
||
|
||
/* A C expression for the size in bits of the type `int' on the
|
||
target machine. If you don't define this, the default is one
|
||
word. */
|
||
#define INT_TYPE_SIZE 32
|
||
|
||
/* A C expression for the size in bits of the type `long' on the
|
||
target machine. If you don't define this, the default is one
|
||
word. */
|
||
#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
|
||
#define MAX_LONG_TYPE_SIZE 64
|
||
|
||
/* A C expression for the size in bits of the type `long long' on the
|
||
target machine. If you don't define this, the default is two
|
||
words. */
|
||
#define LONG_LONG_TYPE_SIZE 64
|
||
|
||
/* A C expression for the size in bits of the type `char' on the
|
||
target machine. If you don't define this, the default is one
|
||
quarter of a word. (If this would be less than one storage unit,
|
||
it is rounded up to one unit.) */
|
||
#define CHAR_TYPE_SIZE BITS_PER_UNIT
|
||
|
||
/* A C expression for the size in bits of the type `float' on the
|
||
target machine. If you don't define this, the default is one
|
||
word. */
|
||
#define FLOAT_TYPE_SIZE 32
|
||
|
||
/* A C expression for the size in bits of the type `double' on the
|
||
target machine. If you don't define this, the default is two
|
||
words. */
|
||
#define DOUBLE_TYPE_SIZE 64
|
||
|
||
/* A C expression for the size in bits of the type `long double' on
|
||
the target machine. If you don't define this, the default is two
|
||
words. */
|
||
#define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
|
||
|
||
/* Constant which presents upper bound of the above value. */
|
||
#define MAX_LONG_DOUBLE_TYPE_SIZE 128
|
||
|
||
/* Define this to set long double type size to use in libgcc2.c, which can
|
||
not depend on target_flags. */
|
||
#ifdef __LONG_DOUBLE_128__
|
||
#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
|
||
#else
|
||
#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
|
||
#endif
|
||
|
||
/* Width in bits of a pointer.
|
||
See also the macro `Pmode' defined below. */
|
||
#define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
|
||
|
||
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
|
||
#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
|
||
|
||
/* Boundary (in *bits*) on which stack pointer should be aligned. */
|
||
#define STACK_BOUNDARY ((TARGET_32BIT && !TARGET_ALTIVEC_ABI) ? 64 : 128)
|
||
|
||
/* Allocation boundary (in *bits*) for the code of a function. */
|
||
#define FUNCTION_BOUNDARY 32
|
||
|
||
/* No data type wants to be aligned rounder than this. */
|
||
#define BIGGEST_ALIGNMENT 128
|
||
|
||
/* A C expression to compute the alignment for a variables in the
|
||
local store. TYPE is the data type, and ALIGN is the alignment
|
||
that the object would ordinarily have. */
|
||
#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
|
||
((TARGET_ALTIVEC && TREE_CODE (TYPE) == VECTOR_TYPE) ? 128 : ALIGN)
|
||
|
||
/* Handle #pragma pack. */
|
||
#define HANDLE_PRAGMA_PACK 1
|
||
|
||
/* Alignment of field after `int : 0' in a structure. */
|
||
#define EMPTY_FIELD_BOUNDARY 32
|
||
|
||
/* Every structure's size must be a multiple of this. */
|
||
#define STRUCTURE_SIZE_BOUNDARY 8
|
||
|
||
/* A bitfield declared as `int' forces `int' alignment for the struct. */
|
||
#define PCC_BITFIELD_TYPE_MATTERS 1
|
||
|
||
/* Make strings word-aligned so strcpy from constants will be faster. */
|
||
#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
|
||
(TREE_CODE (EXP) == STRING_CST \
|
||
&& (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
|
||
|
||
/* Make arrays of chars word-aligned for the same reasons.
|
||
Align vectors to 128 bits. */
|
||
#define DATA_ALIGNMENT(TYPE, ALIGN) \
|
||
(TREE_CODE (TYPE) == VECTOR_TYPE ? 128 \
|
||
: TREE_CODE (TYPE) == ARRAY_TYPE \
|
||
&& TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
|
||
&& (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
|
||
|
||
/* Non-zero if move instructions will actually fail to work
|
||
when given unaligned data. */
|
||
#define STRICT_ALIGNMENT 0
|
||
|
||
/* Define this macro to be the value 1 if unaligned accesses have a cost
|
||
many times greater than aligned accesses, for example if they are
|
||
emulated in a trap handler. */
|
||
#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
|
||
(STRICT_ALIGNMENT \
|
||
|| (((MODE) == SFmode || (MODE) == DFmode || (MODE) == DImode) \
|
||
&& (ALIGN) < 32))
|
||
|
||
/* Standard register usage. */
|
||
|
||
/* Number of actual hardware registers.
|
||
The hardware registers are assigned numbers for the compiler
|
||
from 0 to just below FIRST_PSEUDO_REGISTER.
|
||
All registers that the compiler knows about must be given numbers,
|
||
even those that are not normally considered general registers.
|
||
|
||
RS/6000 has 32 fixed-point registers, 32 floating-point registers,
|
||
an MQ register, a count register, a link register, and 8 condition
|
||
register fields, which we view here as separate registers.
|
||
|
||
In addition, the difference between the frame and argument pointers is
|
||
a function of the number of registers saved, so we need to have a
|
||
register for AP that will later be eliminated in favor of SP or FP.
|
||
This is a normal register, but it is fixed.
|
||
|
||
We also create a pseudo register for float/int conversions, that will
|
||
really represent the memory location used. It is represented here as
|
||
a register, in order to work around problems in allocating stack storage
|
||
in inline functions. */
|
||
|
||
#define FIRST_PSEUDO_REGISTER 110
|
||
|
||
/* This must be included for pre gcc 3.0 glibc compatibility. */
|
||
#define PRE_GCC3_DWARF_FRAME_REGISTERS 77
|
||
|
||
/* 1 for registers that have pervasive standard uses
|
||
and are not available for the register allocator.
|
||
|
||
On RS/6000, r1 is used for the stack. On Darwin, r2 is available
|
||
as a local register; for all other OS's r2 is the TOC pointer.
|
||
|
||
cr5 is not supposed to be used.
|
||
|
||
On System V implementations, r13 is fixed and not available for use. */
|
||
|
||
#define FIXED_REGISTERS \
|
||
{0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \
|
||
/* AltiVec registers. */ \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
1 \
|
||
}
|
||
|
||
/* 1 for registers not available across function calls.
|
||
These must include the FIXED_REGISTERS and also any
|
||
registers that can be used without being saved.
|
||
The latter must include the registers where values are returned
|
||
and the register where structure-value addresses are passed.
|
||
Aside from that, you can include as many other registers as you like. */
|
||
|
||
#define CALL_USED_REGISTERS \
|
||
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
|
||
/* AltiVec registers. */ \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
1 \
|
||
}
|
||
|
||
/* Like `CALL_USED_REGISTERS' except this macro doesn't require that
|
||
the entire set of `FIXED_REGISTERS' be included.
|
||
(`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
|
||
This macro is optional. If not specified, it defaults to the value
|
||
of `CALL_USED_REGISTERS'. */
|
||
|
||
#define CALL_REALLY_USED_REGISTERS \
|
||
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
|
||
/* AltiVec registers. */ \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0 \
|
||
}
|
||
|
||
#define MQ_REGNO 64
|
||
#define CR0_REGNO 68
|
||
#define CR1_REGNO 69
|
||
#define CR2_REGNO 70
|
||
#define CR3_REGNO 71
|
||
#define CR4_REGNO 72
|
||
#define MAX_CR_REGNO 75
|
||
#define XER_REGNO 76
|
||
#define FIRST_ALTIVEC_REGNO 77
|
||
#define LAST_ALTIVEC_REGNO 108
|
||
#define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO)
|
||
#define VRSAVE_REGNO 109
|
||
|
||
/* List the order in which to allocate registers. Each register must be
|
||
listed once, even those in FIXED_REGISTERS.
|
||
|
||
We allocate in the following order:
|
||
fp0 (not saved or used for anything)
|
||
fp13 - fp2 (not saved; incoming fp arg registers)
|
||
fp1 (not saved; return value)
|
||
fp31 - fp14 (saved; order given to save least number)
|
||
cr7, cr6 (not saved or special)
|
||
cr1 (not saved, but used for FP operations)
|
||
cr0 (not saved, but used for arithmetic operations)
|
||
cr4, cr3, cr2 (saved)
|
||
r0 (not saved; cannot be base reg)
|
||
r9 (not saved; best for TImode)
|
||
r11, r10, r8-r4 (not saved; highest used first to make less conflict)
|
||
r3 (not saved; return value register)
|
||
r31 - r13 (saved; order given to save least number)
|
||
r12 (not saved; if used for DImode or DFmode would use r13)
|
||
mq (not saved; best to use it if we can)
|
||
ctr (not saved; when we have the choice ctr is better)
|
||
lr (saved)
|
||
cr5, r1, r2, ap, xer, vrsave (fixed)
|
||
|
||
AltiVec registers:
|
||
v0 - v1 (not saved or used for anything)
|
||
v13 - v3 (not saved; incoming vector arg registers)
|
||
v2 (not saved; incoming vector arg reg; return value)
|
||
v19 - v14 (not saved or used for anything)
|
||
v31 - v20 (saved; order given to save least number)
|
||
*/
|
||
|
||
|
||
#define REG_ALLOC_ORDER \
|
||
{32, \
|
||
45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
|
||
33, \
|
||
63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
|
||
50, 49, 48, 47, 46, \
|
||
75, 74, 69, 68, 72, 71, 70, \
|
||
0, \
|
||
9, 11, 10, 8, 7, 6, 5, 4, \
|
||
3, \
|
||
31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
|
||
18, 17, 16, 15, 14, 13, 12, \
|
||
64, 66, 65, \
|
||
73, 1, 2, 67, 76, \
|
||
/* AltiVec registers. */ \
|
||
77, 78, \
|
||
90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
|
||
79, \
|
||
96, 95, 94, 93, 92, 91, \
|
||
108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, \
|
||
97, 109 \
|
||
}
|
||
|
||
/* True if register is floating-point. */
|
||
#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
|
||
|
||
/* True if register is a condition register. */
|
||
#define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
|
||
|
||
/* True if register is a condition register, but not cr0. */
|
||
#define CR_REGNO_NOT_CR0_P(N) ((N) >= 69 && (N) <= 75)
|
||
|
||
/* True if register is an integer register. */
|
||
#define INT_REGNO_P(N) ((N) <= 31 || (N) == ARG_POINTER_REGNUM)
|
||
|
||
/* True if register is the XER register. */
|
||
#define XER_REGNO_P(N) ((N) == XER_REGNO)
|
||
|
||
/* True if register is an AltiVec register. */
|
||
#define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
|
||
|
||
/* Return number of consecutive hard regs needed starting at reg REGNO
|
||
to hold something of mode MODE.
|
||
This is ordinarily the length in words of a value of mode MODE
|
||
but can be less for certain modes in special long registers.
|
||
|
||
POWER and PowerPC GPRs hold 32 bits worth;
|
||
PowerPC64 GPRs and FPRs point register holds 64 bits worth. */
|
||
|
||
#define HARD_REGNO_NREGS(REGNO, MODE) \
|
||
(FP_REGNO_P (REGNO) \
|
||
? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
|
||
: ALTIVEC_REGNO_P (REGNO) \
|
||
? ((GET_MODE_SIZE (MODE) + UNITS_PER_ALTIVEC_WORD - 1) / UNITS_PER_ALTIVEC_WORD) \
|
||
: ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
|
||
|
||
#define ALTIVEC_VECTOR_MODE(MODE) \
|
||
((MODE) == V16QImode \
|
||
|| (MODE) == V8HImode \
|
||
|| (MODE) == V4SFmode \
|
||
|| (MODE) == V4SImode)
|
||
|
||
/* Define this macro to be nonzero if the port is prepared to handle
|
||
insns involving vector mode MODE. At the very least, it must have
|
||
move patterns for this mode. */
|
||
|
||
#define VECTOR_MODE_SUPPORTED_P(MODE) \
|
||
(TARGET_ALTIVEC && ALTIVEC_VECTOR_MODE (MODE))
|
||
|
||
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
|
||
For POWER and PowerPC, the GPRs can hold any mode, but the float
|
||
registers only can hold floating modes and DImode, and CR register only
|
||
can hold CC modes. We cannot put TImode anywhere except general
|
||
register and it must be able to fit within the register set. */
|
||
|
||
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
|
||
(FP_REGNO_P (REGNO) ? \
|
||
(GET_MODE_CLASS (MODE) == MODE_FLOAT \
|
||
|| (GET_MODE_CLASS (MODE) == MODE_INT \
|
||
&& GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD)) \
|
||
: ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_VECTOR_MODE (MODE) \
|
||
: CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \
|
||
: XER_REGNO_P (REGNO) ? (MODE) == PSImode \
|
||
: ! INT_REGNO_P (REGNO) ? (GET_MODE_CLASS (MODE) == MODE_INT \
|
||
&& GET_MODE_SIZE (MODE) <= UNITS_PER_WORD) \
|
||
: 1)
|
||
|
||
/* Value is 1 if it is a good idea to tie two pseudo registers
|
||
when one has mode MODE1 and one has mode MODE2.
|
||
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
|
||
for any hard reg, then this must be 0 for correct output. */
|
||
#define MODES_TIEABLE_P(MODE1, MODE2) \
|
||
(GET_MODE_CLASS (MODE1) == MODE_FLOAT \
|
||
? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
|
||
: GET_MODE_CLASS (MODE2) == MODE_FLOAT \
|
||
? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
|
||
: GET_MODE_CLASS (MODE1) == MODE_CC \
|
||
? GET_MODE_CLASS (MODE2) == MODE_CC \
|
||
: GET_MODE_CLASS (MODE2) == MODE_CC \
|
||
? GET_MODE_CLASS (MODE1) == MODE_CC \
|
||
: ALTIVEC_VECTOR_MODE (MODE1) \
|
||
? ALTIVEC_VECTOR_MODE (MODE2) \
|
||
: ALTIVEC_VECTOR_MODE (MODE2) \
|
||
? ALTIVEC_VECTOR_MODE (MODE1) \
|
||
: 1)
|
||
|
||
/* A C expression returning the cost of moving data from a register of class
|
||
CLASS1 to one of CLASS2.
|
||
|
||
On the RS/6000, copying between floating-point and fixed-point
|
||
registers is expensive. */
|
||
|
||
#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
|
||
((CLASS1) == FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 2 \
|
||
: (CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS ? 10 \
|
||
: (CLASS1) != FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 10 \
|
||
: (CLASS1) == ALTIVEC_REGS && (CLASS2) != ALTIVEC_REGS ? 20 \
|
||
: (CLASS1) != ALTIVEC_REGS && (CLASS2) == ALTIVEC_REGS ? 20 \
|
||
: (((CLASS1) == SPECIAL_REGS || (CLASS1) == MQ_REGS \
|
||
|| (CLASS1) == LINK_REGS || (CLASS1) == CTR_REGS \
|
||
|| (CLASS1) == LINK_OR_CTR_REGS) \
|
||
&& ((CLASS2) == SPECIAL_REGS || (CLASS2) == MQ_REGS \
|
||
|| (CLASS2) == LINK_REGS || (CLASS2) == CTR_REGS \
|
||
|| (CLASS2) == LINK_OR_CTR_REGS)) ? 10 \
|
||
: 2)
|
||
|
||
/* A C expressions returning the cost of moving data of MODE from a register to
|
||
or from memory.
|
||
|
||
On the RS/6000, bump this up a bit. */
|
||
|
||
#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
|
||
((GET_MODE_CLASS (MODE) == MODE_FLOAT \
|
||
&& (rs6000_cpu == PROCESSOR_RIOS1 || rs6000_cpu == PROCESSOR_PPC601) \
|
||
? 3 : 2) \
|
||
+ 4)
|
||
|
||
/* Specify the cost of a branch insn; roughly the number of extra insns that
|
||
should be added to avoid a branch.
|
||
|
||
Set this to 3 on the RS/6000 since that is roughly the average cost of an
|
||
unscheduled conditional branch. */
|
||
|
||
#define BRANCH_COST 3
|
||
|
||
/* Define this macro to change register usage conditional on target flags.
|
||
Set MQ register fixed (already call_used) if not POWER architecture
|
||
(RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated.
|
||
64-bit AIX reserves GPR13 for thread-private data.
|
||
Conditionally disable FPRs. */
|
||
|
||
#define CONDITIONAL_REGISTER_USAGE \
|
||
{ \
|
||
int i; \
|
||
if (! TARGET_POWER) \
|
||
fixed_regs[64] = 1; \
|
||
if (TARGET_64BIT) \
|
||
fixed_regs[13] = call_used_regs[13] \
|
||
= call_really_used_regs[13] = 1; \
|
||
if (TARGET_SOFT_FLOAT) \
|
||
for (i = 32; i < 64; i++) \
|
||
fixed_regs[i] = call_used_regs[i] \
|
||
= call_really_used_regs[i] = 1; \
|
||
if (DEFAULT_ABI == ABI_V4 && flag_pic == 1) \
|
||
fixed_regs[PIC_OFFSET_TABLE_REGNUM] \
|
||
= call_used_regs[PIC_OFFSET_TABLE_REGNUM] \
|
||
= call_really_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
|
||
if (DEFAULT_ABI == ABI_DARWIN && flag_pic) \
|
||
global_regs[PIC_OFFSET_TABLE_REGNUM] \
|
||
= fixed_regs[PIC_OFFSET_TABLE_REGNUM] \
|
||
= call_used_regs[PIC_OFFSET_TABLE_REGNUM] \
|
||
= call_really_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
|
||
if (! TARGET_ALTIVEC) \
|
||
for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i) \
|
||
fixed_regs[i] = call_used_regs[i] = call_really_used_regs[i] = 1; \
|
||
if (TARGET_ALTIVEC_ABI) \
|
||
for (i = FIRST_ALTIVEC_REGNO; i < FIRST_ALTIVEC_REGNO + 20; ++i) \
|
||
call_used_regs[i] = call_really_used_regs[i] = 1; \
|
||
}
|
||
|
||
/* Specify the registers used for certain standard purposes.
|
||
The values of these macros are register numbers. */
|
||
|
||
/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
|
||
/* #define PC_REGNUM */
|
||
|
||
/* Register to use for pushing function arguments. */
|
||
#define STACK_POINTER_REGNUM 1
|
||
|
||
/* Base register for access to local variables of the function. */
|
||
#define FRAME_POINTER_REGNUM 31
|
||
|
||
/* Value should be nonzero if functions must have frame pointers.
|
||
Zero means the frame pointer need not be set up (and parms
|
||
may be accessed via the stack pointer) in functions that seem suitable.
|
||
This is computed in `reload', in reload1.c. */
|
||
#define FRAME_POINTER_REQUIRED 0
|
||
|
||
/* Base register for access to arguments of the function. */
|
||
#define ARG_POINTER_REGNUM 67
|
||
|
||
/* Place to put static chain when calling a function that requires it. */
|
||
#define STATIC_CHAIN_REGNUM 11
|
||
|
||
/* Link register number. */
|
||
#define LINK_REGISTER_REGNUM 65
|
||
|
||
/* Count register number. */
|
||
#define COUNT_REGISTER_REGNUM 66
|
||
|
||
/* Place that structure value return address is placed.
|
||
|
||
On the RS/6000, it is passed as an extra parameter. */
|
||
#define STRUCT_VALUE 0
|
||
|
||
/* Define the classes of registers for register constraints in the
|
||
machine description. Also define ranges of constants.
|
||
|
||
One of the classes must always be named ALL_REGS and include all hard regs.
|
||
If there is more than one class, another class must be named NO_REGS
|
||
and contain no registers.
|
||
|
||
The name GENERAL_REGS must be the name of a class (or an alias for
|
||
another name such as ALL_REGS). This is the class of registers
|
||
that is allowed by "g" or "r" in a register constraint.
|
||
Also, registers outside this class are allocated only when
|
||
instructions express preferences for them.
|
||
|
||
The classes must be numbered in nondecreasing order; that is,
|
||
a larger-numbered class must never be contained completely
|
||
in a smaller-numbered class.
|
||
|
||
For any two classes, it is very desirable that there be another
|
||
class that represents their union. */
|
||
|
||
/* The RS/6000 has three types of registers, fixed-point, floating-point,
|
||
and condition registers, plus three special registers, MQ, CTR, and the
|
||
link register.
|
||
|
||
However, r0 is special in that it cannot be used as a base register.
|
||
So make a class for registers valid as base registers.
|
||
|
||
Also, cr0 is the only condition code register that can be used in
|
||
arithmetic insns, so make a separate class for it. */
|
||
|
||
enum reg_class
|
||
{
|
||
NO_REGS,
|
||
BASE_REGS,
|
||
GENERAL_REGS,
|
||
FLOAT_REGS,
|
||
ALTIVEC_REGS,
|
||
VRSAVE_REGS,
|
||
NON_SPECIAL_REGS,
|
||
MQ_REGS,
|
||
LINK_REGS,
|
||
CTR_REGS,
|
||
LINK_OR_CTR_REGS,
|
||
SPECIAL_REGS,
|
||
SPEC_OR_GEN_REGS,
|
||
CR0_REGS,
|
||
CR_REGS,
|
||
NON_FLOAT_REGS,
|
||
XER_REGS,
|
||
ALL_REGS,
|
||
LIM_REG_CLASSES
|
||
};
|
||
|
||
#define N_REG_CLASSES (int) LIM_REG_CLASSES
|
||
|
||
/* Give names of register classes as strings for dump file. */
|
||
|
||
#define REG_CLASS_NAMES \
|
||
{ \
|
||
"NO_REGS", \
|
||
"BASE_REGS", \
|
||
"GENERAL_REGS", \
|
||
"FLOAT_REGS", \
|
||
"ALTIVEC_REGS", \
|
||
"VRSAVE_REGS", \
|
||
"NON_SPECIAL_REGS", \
|
||
"MQ_REGS", \
|
||
"LINK_REGS", \
|
||
"CTR_REGS", \
|
||
"LINK_OR_CTR_REGS", \
|
||
"SPECIAL_REGS", \
|
||
"SPEC_OR_GEN_REGS", \
|
||
"CR0_REGS", \
|
||
"CR_REGS", \
|
||
"NON_FLOAT_REGS", \
|
||
"XER_REGS", \
|
||
"ALL_REGS" \
|
||
}
|
||
|
||
/* Define which registers fit in which classes.
|
||
This is an initializer for a vector of HARD_REG_SET
|
||
of length N_REG_CLASSES. */
|
||
|
||
#define REG_CLASS_CONTENTS \
|
||
{ \
|
||
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
|
||
{ 0xfffffffe, 0x00000000, 0x00000008, 0x00000000 }, /* BASE_REGS */ \
|
||
{ 0xffffffff, 0x00000000, 0x00000008, 0x00000000 }, /* GENERAL_REGS */ \
|
||
{ 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \
|
||
{ 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \
|
||
{ 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \
|
||
{ 0xffffffff, 0xffffffff, 0x00000008, 0x00000000 }, /* NON_SPECIAL_REGS */ \
|
||
{ 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */ \
|
||
{ 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \
|
||
{ 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \
|
||
{ 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
|
||
{ 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */ \
|
||
{ 0xffffffff, 0x00000000, 0x0000000f, 0x00000000 }, /* SPEC_OR_GEN_REGS */ \
|
||
{ 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \
|
||
{ 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \
|
||
{ 0xffffffff, 0x00000000, 0x0000efff, 0x00000000 }, /* NON_FLOAT_REGS */ \
|
||
{ 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */ \
|
||
{ 0xffffffff, 0xffffffff, 0xffffffff, 0x00003fff } /* ALL_REGS */ \
|
||
}
|
||
|
||
/* The same information, inverted:
|
||
Return the class number of the smallest class containing
|
||
reg number REGNO. This could be a conditional expression
|
||
or could index an array. */
|
||
|
||
#define REGNO_REG_CLASS(REGNO) \
|
||
((REGNO) == 0 ? GENERAL_REGS \
|
||
: (REGNO) < 32 ? BASE_REGS \
|
||
: FP_REGNO_P (REGNO) ? FLOAT_REGS \
|
||
: ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_REGS \
|
||
: (REGNO) == CR0_REGNO ? CR0_REGS \
|
||
: CR_REGNO_P (REGNO) ? CR_REGS \
|
||
: (REGNO) == MQ_REGNO ? MQ_REGS \
|
||
: (REGNO) == LINK_REGISTER_REGNUM ? LINK_REGS \
|
||
: (REGNO) == COUNT_REGISTER_REGNUM ? CTR_REGS \
|
||
: (REGNO) == ARG_POINTER_REGNUM ? BASE_REGS \
|
||
: (REGNO) == XER_REGNO ? XER_REGS \
|
||
: (REGNO) == VRSAVE_REGNO ? VRSAVE_REGS \
|
||
: NO_REGS)
|
||
|
||
/* The class value for index registers, and the one for base regs. */
|
||
#define INDEX_REG_CLASS GENERAL_REGS
|
||
#define BASE_REG_CLASS BASE_REGS
|
||
|
||
/* Get reg_class from a letter such as appears in the machine description. */
|
||
|
||
#define REG_CLASS_FROM_LETTER(C) \
|
||
((C) == 'f' ? FLOAT_REGS \
|
||
: (C) == 'b' ? BASE_REGS \
|
||
: (C) == 'h' ? SPECIAL_REGS \
|
||
: (C) == 'q' ? MQ_REGS \
|
||
: (C) == 'c' ? CTR_REGS \
|
||
: (C) == 'l' ? LINK_REGS \
|
||
: (C) == 'v' ? ALTIVEC_REGS \
|
||
: (C) == 'x' ? CR0_REGS \
|
||
: (C) == 'y' ? CR_REGS \
|
||
: (C) == 'z' ? XER_REGS \
|
||
: NO_REGS)
|
||
|
||
/* The letters I, J, K, L, M, N, and P in a register constraint string
|
||
can be used to stand for particular ranges of immediate operands.
|
||
This macro defines what the ranges are.
|
||
C is the letter, and VALUE is a constant value.
|
||
Return 1 if VALUE is in the range specified by C.
|
||
|
||
`I' is a signed 16-bit constant
|
||
`J' is a constant with only the high-order 16 bits non-zero
|
||
`K' is a constant with only the low-order 16 bits non-zero
|
||
`L' is a signed 16-bit constant shifted left 16 bits
|
||
`M' is a constant that is greater than 31
|
||
`N' is a positive constant that is an exact power of two
|
||
`O' is the constant zero
|
||
`P' is a constant whose negation is a signed 16-bit constant */
|
||
|
||
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
|
||
( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
|
||
: (C) == 'J' ? ((VALUE) & (~ (unsigned HOST_WIDE_INT) 0xffff0000)) == 0 \
|
||
: (C) == 'K' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff)) == 0 \
|
||
: (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
|
||
&& ((VALUE) >> 31 == -1 || (VALUE) >> 31 == 0)) \
|
||
: (C) == 'M' ? (VALUE) > 31 \
|
||
: (C) == 'N' ? (VALUE) > 0 && exact_log2 (VALUE) >= 0 \
|
||
: (C) == 'O' ? (VALUE) == 0 \
|
||
: (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x10000 \
|
||
: 0)
|
||
|
||
/* Similar, but for floating constants, and defining letters G and H.
|
||
Here VALUE is the CONST_DOUBLE rtx itself.
|
||
|
||
We flag for special constants when we can copy the constant into
|
||
a general register in two insns for DF/DI and one insn for SF.
|
||
|
||
'H' is used for DI/DF constants that take 3 insns. */
|
||
|
||
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
|
||
( (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) \
|
||
== ((GET_MODE (VALUE) == SFmode) ? 1 : 2)) \
|
||
: (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3) \
|
||
: 0)
|
||
|
||
/* Optional extra constraints for this machine.
|
||
|
||
'Q' means that is a memory operand that is just an offset from a reg.
|
||
'R' is for AIX TOC entries.
|
||
'S' is a constant that can be placed into a 64-bit mask operand
|
||
'T' is a consatnt that can be placed into a 32-bit mask operand
|
||
'U' is for V.4 small data references. */
|
||
|
||
#define EXTRA_CONSTRAINT(OP, C) \
|
||
((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
|
||
: (C) == 'R' ? LEGITIMATE_CONSTANT_POOL_ADDRESS_P (OP) \
|
||
: (C) == 'S' ? mask64_operand (OP, VOIDmode) \
|
||
: (C) == 'T' ? mask_operand (OP, VOIDmode) \
|
||
: (C) == 'U' ? (DEFAULT_ABI == ABI_V4 \
|
||
&& small_data_operand (OP, GET_MODE (OP))) \
|
||
: 0)
|
||
|
||
/* Given an rtx X being reloaded into a reg required to be
|
||
in class CLASS, return the class of reg to actually use.
|
||
In general this is just CLASS; but on some machines
|
||
in some cases it is preferable to use a more restrictive class.
|
||
|
||
On the RS/6000, we have to return NO_REGS when we want to reload a
|
||
floating-point CONST_DOUBLE to force it to be copied to memory.
|
||
|
||
We also don't want to reload integer values into floating-point
|
||
registers if we can at all help it. In fact, this can
|
||
cause reload to abort, if it tries to generate a reload of CTR
|
||
into a FP register and discovers it doesn't have the memory location
|
||
required.
|
||
|
||
??? Would it be a good idea to have reload do the converse, that is
|
||
try to reload floating modes into FP registers if possible?
|
||
*/
|
||
|
||
#define PREFERRED_RELOAD_CLASS(X,CLASS) \
|
||
(((GET_CODE (X) == CONST_DOUBLE \
|
||
&& GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
|
||
? NO_REGS \
|
||
: (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
|
||
&& (CLASS) == NON_SPECIAL_REGS) \
|
||
? GENERAL_REGS \
|
||
: (CLASS)))
|
||
|
||
/* Return the register class of a scratch register needed to copy IN into
|
||
or out of a register in CLASS in MODE. If it can be done directly,
|
||
NO_REGS is returned. */
|
||
|
||
#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
|
||
secondary_reload_class (CLASS, MODE, IN)
|
||
|
||
/* If we are copying between FP or AltiVec registers and anything
|
||
else, we need a memory location. */
|
||
|
||
#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
|
||
((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS \
|
||
|| (CLASS2) == FLOAT_REGS \
|
||
|| (CLASS1) == ALTIVEC_REGS \
|
||
|| (CLASS2) == ALTIVEC_REGS))
|
||
|
||
/* Return the maximum number of consecutive registers
|
||
needed to represent mode MODE in a register of class CLASS.
|
||
|
||
On RS/6000, this is the size of MODE in words,
|
||
except in the FP regs, where a single reg is enough for two words. */
|
||
#define CLASS_MAX_NREGS(CLASS, MODE) \
|
||
(((CLASS) == FLOAT_REGS) \
|
||
? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
|
||
: ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
|
||
|
||
/* If defined, gives a class of registers that cannot be used as the
|
||
operand of a SUBREG that changes the mode of the object illegally. */
|
||
|
||
#define CLASS_CANNOT_CHANGE_MODE FLOAT_REGS
|
||
|
||
/* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE. */
|
||
|
||
#define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
|
||
(GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO))
|
||
|
||
/* Stack layout; function entry, exit and calling. */
|
||
|
||
/* Enumeration to give which calling sequence to use. */
|
||
enum rs6000_abi {
|
||
ABI_NONE,
|
||
ABI_AIX, /* IBM's AIX */
|
||
ABI_AIX_NODESC, /* AIX calling sequence minus
|
||
function descriptors */
|
||
ABI_V4, /* System V.4/eabi */
|
||
ABI_DARWIN /* Apple's Darwin (OS X kernel) */
|
||
};
|
||
|
||
extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
|
||
|
||
/* Structure used to define the rs6000 stack */
|
||
typedef struct rs6000_stack {
|
||
int first_gp_reg_save; /* first callee saved GP register used */
|
||
int first_fp_reg_save; /* first callee saved FP register used */
|
||
int first_altivec_reg_save; /* first callee saved AltiVec register used */
|
||
int lr_save_p; /* true if the link reg needs to be saved */
|
||
int cr_save_p; /* true if the CR reg needs to be saved */
|
||
unsigned int vrsave_mask; /* mask of vec registers to save */
|
||
int toc_save_p; /* true if the TOC needs to be saved */
|
||
int push_p; /* true if we need to allocate stack space */
|
||
int calls_p; /* true if the function makes any calls */
|
||
enum rs6000_abi abi; /* which ABI to use */
|
||
int gp_save_offset; /* offset to save GP regs from initial SP */
|
||
int fp_save_offset; /* offset to save FP regs from initial SP */
|
||
int altivec_save_offset; /* offset to save AltiVec regs from inital SP */
|
||
int lr_save_offset; /* offset to save LR from initial SP */
|
||
int cr_save_offset; /* offset to save CR from initial SP */
|
||
int vrsave_save_offset; /* offset to save VRSAVE from initial SP */
|
||
int toc_save_offset; /* offset to save the TOC pointer */
|
||
int varargs_save_offset; /* offset to save the varargs registers */
|
||
int ehrd_offset; /* offset to EH return data */
|
||
int reg_size; /* register size (4 or 8) */
|
||
int varargs_size; /* size to hold V.4 args passed in regs */
|
||
int vars_size; /* variable save area size */
|
||
int parm_size; /* outgoing parameter size */
|
||
int save_size; /* save area size */
|
||
int fixed_size; /* fixed size of stack frame */
|
||
int gp_size; /* size of saved GP registers */
|
||
int fp_size; /* size of saved FP registers */
|
||
int altivec_size; /* size of saved AltiVec registers */
|
||
int cr_size; /* size to hold CR if not in save_size */
|
||
int lr_size; /* size to hold LR if not in save_size */
|
||
int vrsave_size; /* size to hold VRSAVE if not in save_size */
|
||
int altivec_padding_size; /* size of altivec alignment padding if
|
||
not in save_size */
|
||
int toc_size; /* size to hold TOC if not in save_size */
|
||
int total_size; /* total bytes allocated for stack */
|
||
} rs6000_stack_t;
|
||
|
||
/* Define this if pushing a word on the stack
|
||
makes the stack pointer a smaller address. */
|
||
#define STACK_GROWS_DOWNWARD
|
||
|
||
/* Define this if the nominal address of the stack frame
|
||
is at the high-address end of the local variables;
|
||
that is, each additional local variable allocated
|
||
goes at a more negative offset in the frame.
|
||
|
||
On the RS/6000, we grow upwards, from the area after the outgoing
|
||
arguments. */
|
||
/* #define FRAME_GROWS_DOWNWARD */
|
||
|
||
/* Size of the outgoing register save area */
|
||
#define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX \
|
||
|| DEFAULT_ABI == ABI_AIX_NODESC \
|
||
|| DEFAULT_ABI == ABI_DARWIN) \
|
||
? (TARGET_64BIT ? 64 : 32) \
|
||
: 0)
|
||
|
||
/* Size of the fixed area on the stack */
|
||
#define RS6000_SAVE_AREA \
|
||
(((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_AIX_NODESC || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8) \
|
||
<< (TARGET_64BIT ? 1 : 0))
|
||
|
||
/* MEM representing address to save the TOC register */
|
||
#define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
|
||
plus_constant (stack_pointer_rtx, \
|
||
(TARGET_32BIT ? 20 : 40)))
|
||
|
||
/* Size of the V.4 varargs area if needed */
|
||
#define RS6000_VARARGS_AREA 0
|
||
|
||
/* Align an address */
|
||
#define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
|
||
|
||
/* Size of V.4 varargs area in bytes */
|
||
#define RS6000_VARARGS_SIZE \
|
||
((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
|
||
|
||
/* Offset within stack frame to start allocating local variables at.
|
||
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
|
||
first local allocated. Otherwise, it is the offset to the BEGINNING
|
||
of the first local allocated.
|
||
|
||
On the RS/6000, the frame pointer is the same as the stack pointer,
|
||
except for dynamic allocations. So we start after the fixed area and
|
||
outgoing parameter area. */
|
||
|
||
#define STARTING_FRAME_OFFSET \
|
||
(RS6000_ALIGN (current_function_outgoing_args_size, \
|
||
TARGET_ALTIVEC ? 16 : 8) \
|
||
+ RS6000_VARARGS_AREA \
|
||
+ RS6000_SAVE_AREA)
|
||
|
||
/* Offset from the stack pointer register to an item dynamically
|
||
allocated on the stack, e.g., by `alloca'.
|
||
|
||
The default value for this macro is `STACK_POINTER_OFFSET' plus the
|
||
length of the outgoing arguments. The default is correct for most
|
||
machines. See `function.c' for details. */
|
||
#define STACK_DYNAMIC_OFFSET(FUNDECL) \
|
||
(RS6000_ALIGN (current_function_outgoing_args_size, \
|
||
TARGET_ALTIVEC ? 16 : 8) \
|
||
+ (STACK_POINTER_OFFSET))
|
||
|
||
/* If we generate an insn to push BYTES bytes,
|
||
this says how many the stack pointer really advances by.
|
||
On RS/6000, don't define this because there are no push insns. */
|
||
/* #define PUSH_ROUNDING(BYTES) */
|
||
|
||
/* Offset of first parameter from the argument pointer register value.
|
||
On the RS/6000, we define the argument pointer to the start of the fixed
|
||
area. */
|
||
#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
|
||
|
||
/* Offset from the argument pointer register value to the top of
|
||
stack. This is different from FIRST_PARM_OFFSET because of the
|
||
register save area. */
|
||
#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
|
||
|
||
/* Define this if stack space is still allocated for a parameter passed
|
||
in a register. The value is the number of bytes allocated to this
|
||
area. */
|
||
#define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
|
||
|
||
/* Define this if the above stack space is to be considered part of the
|
||
space allocated by the caller. */
|
||
#define OUTGOING_REG_PARM_STACK_SPACE
|
||
|
||
/* This is the difference between the logical top of stack and the actual sp.
|
||
|
||
For the RS/6000, sp points past the fixed area. */
|
||
#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
|
||
|
||
/* Define this if the maximum size of all the outgoing args is to be
|
||
accumulated and pushed during the prologue. The amount can be
|
||
found in the variable current_function_outgoing_args_size. */
|
||
#define ACCUMULATE_OUTGOING_ARGS 1
|
||
|
||
/* Value is the number of bytes of arguments automatically
|
||
popped when returning from a subroutine call.
|
||
FUNDECL is the declaration node of the function (as a tree),
|
||
FUNTYPE is the data type of the function (as a tree),
|
||
or for a library call it is an identifier node for the subroutine name.
|
||
SIZE is the number of bytes of arguments passed on the stack. */
|
||
|
||
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
|
||
|
||
/* Define how to find the value returned by a function.
|
||
VALTYPE is the data type of the value (as a tree).
|
||
If the precise function being called is known, FUNC is its FUNCTION_DECL;
|
||
otherwise, FUNC is 0.
|
||
|
||
On RS/6000 an integer value is in r3 and a floating-point value is in
|
||
fp1, unless -msoft-float. */
|
||
|
||
#define FUNCTION_VALUE(VALTYPE, FUNC) \
|
||
gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
|
||
&& TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
|
||
|| POINTER_TYPE_P (VALTYPE) \
|
||
? word_mode : TYPE_MODE (VALTYPE), \
|
||
TREE_CODE (VALTYPE) == VECTOR_TYPE ? ALTIVEC_ARG_RETURN \
|
||
: TREE_CODE (VALTYPE) == REAL_TYPE && TARGET_HARD_FLOAT \
|
||
? FP_ARG_RETURN : GP_ARG_RETURN)
|
||
|
||
/* Define how to find the value returned by a library function
|
||
assuming the value has mode MODE. */
|
||
|
||
#define LIBCALL_VALUE(MODE) \
|
||
gen_rtx_REG (MODE, ALTIVEC_VECTOR_MODE (MODE) ? ALTIVEC_ARG_RETURN \
|
||
: GET_MODE_CLASS (MODE) == MODE_FLOAT \
|
||
&& TARGET_HARD_FLOAT \
|
||
? FP_ARG_RETURN : GP_ARG_RETURN)
|
||
|
||
/* The AIX ABI for the RS/6000 specifies that all structures are
|
||
returned in memory. The Darwin ABI does the same. The SVR4 ABI
|
||
specifies that structures <= 8 bytes are returned in r3/r4, but a
|
||
draft put them in memory, and GCC used to implement the draft
|
||
instead of the final standard. Therefore, TARGET_AIX_STRUCT_RET
|
||
controls this instead of DEFAULT_ABI; V.4 targets needing backward
|
||
compatibility can change DRAFT_V4_STRUCT_RET to override the
|
||
default, and -m switches get the final word. See
|
||
rs6000_override_options for more details.
|
||
|
||
int_size_in_bytes returns -1 for variable size objects, which go in
|
||
memory always. The cast to unsigned makes -1 > 8. */
|
||
|
||
#define RETURN_IN_MEMORY(TYPE) \
|
||
(AGGREGATE_TYPE_P (TYPE) && \
|
||
(TARGET_AIX_STRUCT_RET || \
|
||
(unsigned HOST_WIDEST_INT) int_size_in_bytes (TYPE) > 8))
|
||
|
||
/* DRAFT_V4_STRUCT_RET defaults off. */
|
||
#define DRAFT_V4_STRUCT_RET 0
|
||
|
||
/* Let RETURN_IN_MEMORY control what happens. */
|
||
#define DEFAULT_PCC_STRUCT_RETURN 0
|
||
|
||
/* Mode of stack savearea.
|
||
FUNCTION is VOIDmode because calling convention maintains SP.
|
||
BLOCK needs Pmode for SP.
|
||
NONLOCAL needs twice Pmode to maintain both backchain and SP. */
|
||
#define STACK_SAVEAREA_MODE(LEVEL) \
|
||
(LEVEL == SAVE_FUNCTION ? VOIDmode \
|
||
: LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
|
||
|
||
/* Minimum and maximum general purpose registers used to hold arguments. */
|
||
#define GP_ARG_MIN_REG 3
|
||
#define GP_ARG_MAX_REG 10
|
||
#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
|
||
|
||
/* Minimum and maximum floating point registers used to hold arguments. */
|
||
#define FP_ARG_MIN_REG 33
|
||
#define FP_ARG_AIX_MAX_REG 45
|
||
#define FP_ARG_V4_MAX_REG 40
|
||
#define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX \
|
||
|| DEFAULT_ABI == ABI_AIX_NODESC \
|
||
|| DEFAULT_ABI == ABI_DARWIN) \
|
||
? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
|
||
#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
|
||
|
||
/* Minimum and maximum AltiVec registers used to hold arguments. */
|
||
#define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
|
||
#define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
|
||
#define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
|
||
|
||
/* Return registers */
|
||
#define GP_ARG_RETURN GP_ARG_MIN_REG
|
||
#define FP_ARG_RETURN FP_ARG_MIN_REG
|
||
#define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
|
||
|
||
/* Flags for the call/call_value rtl operations set up by function_arg */
|
||
#define CALL_NORMAL 0x00000000 /* no special processing */
|
||
/* Bits in 0x00000001 are unused. */
|
||
#define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
|
||
#define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
|
||
#define CALL_LONG 0x00000008 /* always call indirect */
|
||
|
||
/* 1 if N is a possible register number for a function value
|
||
as seen by the caller.
|
||
|
||
On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
|
||
#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_ARG_RETURN \
|
||
|| ((N) == FP_ARG_RETURN) \
|
||
|| (TARGET_ALTIVEC && \
|
||
(N) == ALTIVEC_ARG_RETURN))
|
||
|
||
/* 1 if N is a possible register number for function argument passing.
|
||
On RS/6000, these are r3-r10 and fp1-fp13.
|
||
On AltiVec, v2 - v13 are used for passing vectors. */
|
||
#define FUNCTION_ARG_REGNO_P(N) \
|
||
((unsigned)(((N) - GP_ARG_MIN_REG) < (unsigned)(GP_ARG_NUM_REG)) \
|
||
|| (TARGET_ALTIVEC && \
|
||
(unsigned)((N) - ALTIVEC_ARG_MIN_REG) < (unsigned)(ALTIVEC_ARG_NUM_REG)) \
|
||
|| ((unsigned)((N) - FP_ARG_MIN_REG) < (unsigned)(FP_ARG_NUM_REG)))
|
||
|
||
|
||
/* A C structure for machine-specific, per-function data.
|
||
This is added to the cfun structure. */
|
||
typedef struct machine_function
|
||
{
|
||
/* Whether a System V.4 varargs area was created. */
|
||
int sysv_varargs_p;
|
||
/* Flags if __builtin_return_address (n) with n >= 1 was used. */
|
||
int ra_needs_full_frame;
|
||
} machine_function;
|
||
|
||
/* Define a data type for recording info about an argument list
|
||
during the scan of that argument list. This data type should
|
||
hold all necessary information about the function itself
|
||
and about the args processed so far, enough to enable macros
|
||
such as FUNCTION_ARG to determine where the next arg should go.
|
||
|
||
On the RS/6000, this is a structure. The first element is the number of
|
||
total argument words, the second is used to store the next
|
||
floating-point register number, and the third says how many more args we
|
||
have prototype types for.
|
||
|
||
For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
|
||
the next availible GP register, `fregno' is the next available FP
|
||
register, and `words' is the number of words used on the stack.
|
||
|
||
The varargs/stdarg support requires that this structure's size
|
||
be a multiple of sizeof(int). */
|
||
|
||
typedef struct rs6000_args
|
||
{
|
||
int words; /* # words used for passing GP registers */
|
||
int fregno; /* next available FP register */
|
||
int vregno; /* next available AltiVec register */
|
||
int nargs_prototype; /* # args left in the current prototype */
|
||
int orig_nargs; /* Original value of nargs_prototype */
|
||
int prototype; /* Whether a prototype was defined */
|
||
int call_cookie; /* Do special things for this call */
|
||
int sysv_gregno; /* next available GP register */
|
||
} CUMULATIVE_ARGS;
|
||
|
||
/* Define intermediate macro to compute the size (in registers) of an argument
|
||
for the RS/6000. */
|
||
|
||
#define RS6000_ARG_SIZE(MODE, TYPE) \
|
||
((MODE) != BLKmode \
|
||
? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
|
||
: ((unsigned HOST_WIDE_INT) int_size_in_bytes (TYPE) \
|
||
+ (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
|
||
|
||
/* Initialize a variable CUM of type CUMULATIVE_ARGS
|
||
for a call to a function whose data type is FNTYPE.
|
||
For a library call, FNTYPE is 0. */
|
||
|
||
#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
|
||
init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE)
|
||
|
||
/* Similar, but when scanning the definition of a procedure. We always
|
||
set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
|
||
|
||
#define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,LIBNAME) \
|
||
init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE)
|
||
|
||
/* Update the data in CUM to advance over an argument
|
||
of mode MODE and data type TYPE.
|
||
(TYPE is null for libcalls where that information may not be available.) */
|
||
|
||
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
|
||
function_arg_advance (&CUM, MODE, TYPE, NAMED)
|
||
|
||
/* Non-zero if we can use a floating-point register to pass this arg. */
|
||
#define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
|
||
(GET_MODE_CLASS (MODE) == MODE_FLOAT \
|
||
&& (CUM).fregno <= FP_ARG_MAX_REG \
|
||
&& TARGET_HARD_FLOAT)
|
||
|
||
/* Non-zero if we can use an AltiVec register to pass this arg. */
|
||
#define USE_ALTIVEC_FOR_ARG_P(CUM,MODE,TYPE) \
|
||
(ALTIVEC_VECTOR_MODE (MODE) \
|
||
&& (CUM).vregno <= ALTIVEC_ARG_MAX_REG \
|
||
&& TARGET_ALTIVEC_ABI)
|
||
|
||
/* Determine where to put an argument to a function.
|
||
Value is zero to push the argument on the stack,
|
||
or a hard register in which to store the argument.
|
||
|
||
MODE is the argument's machine mode.
|
||
TYPE is the data type of the argument (as a tree).
|
||
This is null for libcalls where that information may
|
||
not be available.
|
||
CUM is a variable of type CUMULATIVE_ARGS which gives info about
|
||
the preceding args and about the function being called.
|
||
NAMED is nonzero if this argument is a named parameter
|
||
(otherwise it is an extra parameter matching an ellipsis).
|
||
|
||
On RS/6000 the first eight words of non-FP are normally in registers
|
||
and the rest are pushed. The first 13 FP args are in registers.
|
||
|
||
If this is floating-point and no prototype is specified, we use
|
||
both an FP and integer register (or possibly FP reg and stack). Library
|
||
functions (when TYPE is zero) always have the proper types for args,
|
||
so we can pass the FP value just in one register. emit_library_function
|
||
doesn't support EXPR_LIST anyway. */
|
||
|
||
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
|
||
function_arg (&CUM, MODE, TYPE, NAMED)
|
||
|
||
/* For an arg passed partly in registers and partly in memory,
|
||
this is the number of registers used.
|
||
For args passed entirely in registers or entirely in memory, zero. */
|
||
|
||
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
|
||
function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
|
||
|
||
/* A C expression that indicates when an argument must be passed by
|
||
reference. If nonzero for an argument, a copy of that argument is
|
||
made in memory and a pointer to the argument is passed instead of
|
||
the argument itself. The pointer is passed in whatever way is
|
||
appropriate for passing a pointer to that type. */
|
||
|
||
#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
|
||
function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
|
||
|
||
/* If defined, a C expression which determines whether, and in which
|
||
direction, to pad out an argument with extra space. The value
|
||
should be of type `enum direction': either `upward' to pad above
|
||
the argument, `downward' to pad below, or `none' to inhibit
|
||
padding. */
|
||
|
||
#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
|
||
|
||
/* If defined, a C expression that gives the alignment boundary, in bits,
|
||
of an argument with the specified mode and type. If it is not defined,
|
||
PARM_BOUNDARY is used for all arguments. */
|
||
|
||
#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
|
||
function_arg_boundary (MODE, TYPE)
|
||
|
||
/* Perform any needed actions needed for a function that is receiving a
|
||
variable number of arguments.
|
||
|
||
CUM is as above.
|
||
|
||
MODE and TYPE are the mode and type of the current parameter.
|
||
|
||
PRETEND_SIZE is a variable that should be set to the amount of stack
|
||
that must be pushed by the prolog to pretend that our caller pushed
|
||
it.
|
||
|
||
Normally, this macro will push all remaining incoming registers on the
|
||
stack and set PRETEND_SIZE to the length of the registers pushed. */
|
||
|
||
#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
|
||
setup_incoming_varargs (&CUM, MODE, TYPE, &PRETEND_SIZE, NO_RTL)
|
||
|
||
/* Define the `__builtin_va_list' type for the ABI. */
|
||
#define BUILD_VA_LIST_TYPE(VALIST) \
|
||
(VALIST) = rs6000_build_va_list ()
|
||
|
||
/* Implement `va_start' for varargs and stdarg. */
|
||
#define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
|
||
rs6000_va_start (stdarg, valist, nextarg)
|
||
|
||
/* Implement `va_arg'. */
|
||
#define EXPAND_BUILTIN_VA_ARG(valist, type) \
|
||
rs6000_va_arg (valist, type)
|
||
|
||
/* Define this macro to be a nonzero value if the location where a function
|
||
argument is passed depends on whether or not it is a named argument. */
|
||
#define STRICT_ARGUMENT_NAMING 1
|
||
|
||
/* Output assembler code to FILE to increment profiler label # LABELNO
|
||
for profiling a function entry. */
|
||
|
||
#define FUNCTION_PROFILER(FILE, LABELNO) \
|
||
output_function_profiler ((FILE), (LABELNO));
|
||
|
||
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
|
||
the stack pointer does not matter. No definition is equivalent to
|
||
always zero.
|
||
|
||
On the RS/6000, this is non-zero because we can restore the stack from
|
||
its backpointer, which we maintain. */
|
||
#define EXIT_IGNORE_STACK 1
|
||
|
||
/* Define this macro as a C expression that is nonzero for registers
|
||
that are used by the epilogue or the return' pattern. The stack
|
||
and frame pointer registers are already be assumed to be used as
|
||
needed. */
|
||
|
||
#define EPILOGUE_USES(REGNO) \
|
||
((reload_completed && (REGNO) == LINK_REGISTER_REGNUM) \
|
||
|| (REGNO) == VRSAVE_REGNO \
|
||
|| (current_function_calls_eh_return \
|
||
&& TARGET_AIX \
|
||
&& (REGNO) == TOC_REGISTER))
|
||
|
||
|
||
/* TRAMPOLINE_TEMPLATE deleted */
|
||
|
||
/* Length in units of the trampoline for entering a nested function. */
|
||
|
||
#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
|
||
|
||
/* Emit RTL insns to initialize the variable parts of a trampoline.
|
||
FNADDR is an RTX for the address of the function's pure code.
|
||
CXT is an RTX for the static chain value for the function. */
|
||
|
||
#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
|
||
rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
|
||
|
||
/* Definitions for __builtin_return_address and __builtin_frame_address.
|
||
__builtin_return_address (0) should give link register (65), enable
|
||
this. */
|
||
/* This should be uncommented, so that the link register is used, but
|
||
currently this would result in unmatched insns and spilling fixed
|
||
registers so we'll leave it for another day. When these problems are
|
||
taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
|
||
(mrs) */
|
||
/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
|
||
|
||
/* Number of bytes into the frame return addresses can be found. See
|
||
rs6000_stack_info in rs6000.c for more information on how the different
|
||
abi's store the return address. */
|
||
#define RETURN_ADDRESS_OFFSET \
|
||
((DEFAULT_ABI == ABI_AIX \
|
||
|| DEFAULT_ABI == ABI_DARWIN \
|
||
|| DEFAULT_ABI == ABI_AIX_NODESC) ? (TARGET_32BIT ? 8 : 16) : \
|
||
(DEFAULT_ABI == ABI_V4) ? 4 : \
|
||
(internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
|
||
|
||
/* The current return address is in link register (65). The return address
|
||
of anything farther back is accessed normally at an offset of 8 from the
|
||
frame pointer. */
|
||
#define RETURN_ADDR_RTX(COUNT, FRAME) \
|
||
(rs6000_return_addr (COUNT, FRAME))
|
||
|
||
|
||
/* Definitions for register eliminations.
|
||
|
||
We have two registers that can be eliminated on the RS/6000. First, the
|
||
frame pointer register can often be eliminated in favor of the stack
|
||
pointer register. Secondly, the argument pointer register can always be
|
||
eliminated; it is replaced with either the stack or frame pointer.
|
||
|
||
In addition, we use the elimination mechanism to see if r30 is needed
|
||
Initially we assume that it isn't. If it is, we spill it. This is done
|
||
by making it an eliminable register. We replace it with itself so that
|
||
if it isn't needed, then existing uses won't be modified. */
|
||
|
||
/* This is an array of structures. Each structure initializes one pair
|
||
of eliminable registers. The "from" register number is given first,
|
||
followed by "to". Eliminations of the same "from" register are listed
|
||
in order of preference. */
|
||
#define ELIMINABLE_REGS \
|
||
{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
|
||
{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
|
||
{ ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
|
||
{ 30, 30} }
|
||
|
||
/* Given FROM and TO register numbers, say whether this elimination is allowed.
|
||
Frame pointer elimination is automatically handled.
|
||
|
||
For the RS/6000, if frame pointer elimination is being done, we would like
|
||
to convert ap into fp, not sp.
|
||
|
||
We need r30 if -mminimal-toc was specified, and there are constant pool
|
||
references. */
|
||
|
||
#define CAN_ELIMINATE(FROM, TO) \
|
||
((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
|
||
? ! frame_pointer_needed \
|
||
: (FROM) == 30 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
|
||
: 1)
|
||
|
||
/* Define the offset between two registers, one to be eliminated, and the other
|
||
its replacement, at the start of a routine. */
|
||
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
|
||
{ \
|
||
rs6000_stack_t *info = rs6000_stack_info (); \
|
||
\
|
||
if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
|
||
(OFFSET) = (info->push_p) ? 0 : - info->total_size; \
|
||
else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
|
||
(OFFSET) = info->total_size; \
|
||
else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
|
||
(OFFSET) = (info->push_p) ? info->total_size : 0; \
|
||
else if ((FROM) == 30) \
|
||
(OFFSET) = 0; \
|
||
else \
|
||
abort (); \
|
||
}
|
||
|
||
/* Addressing modes, and classification of registers for them. */
|
||
|
||
/* #define HAVE_POST_INCREMENT 0 */
|
||
/* #define HAVE_POST_DECREMENT 0 */
|
||
|
||
#define HAVE_PRE_DECREMENT 1
|
||
#define HAVE_PRE_INCREMENT 1
|
||
|
||
/* Macros to check register numbers against specific register classes. */
|
||
|
||
/* These assume that REGNO is a hard or pseudo reg number.
|
||
They give nonzero only if REGNO is a hard reg of the suitable class
|
||
or a pseudo reg currently allocated to a suitable hard reg.
|
||
Since they use reg_renumber, they are safe only once reg_renumber
|
||
has been allocated, which happens in local-alloc.c. */
|
||
|
||
#define REGNO_OK_FOR_INDEX_P(REGNO) \
|
||
((REGNO) < FIRST_PSEUDO_REGISTER \
|
||
? (REGNO) <= 31 || (REGNO) == 67 \
|
||
: (reg_renumber[REGNO] >= 0 \
|
||
&& (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
|
||
|
||
#define REGNO_OK_FOR_BASE_P(REGNO) \
|
||
((REGNO) < FIRST_PSEUDO_REGISTER \
|
||
? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
|
||
: (reg_renumber[REGNO] > 0 \
|
||
&& (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
|
||
|
||
/* Maximum number of registers that can appear in a valid memory address. */
|
||
|
||
#define MAX_REGS_PER_ADDRESS 2
|
||
|
||
/* Recognize any constant value that is a valid address. */
|
||
|
||
#define CONSTANT_ADDRESS_P(X) \
|
||
(GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
|
||
|| GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
|
||
|| GET_CODE (X) == HIGH)
|
||
|
||
/* Nonzero if the constant value X is a legitimate general operand.
|
||
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
|
||
|
||
On the RS/6000, all integer constants are acceptable, most won't be valid
|
||
for particular insns, though. Only easy FP constants are
|
||
acceptable. */
|
||
|
||
#define LEGITIMATE_CONSTANT_P(X) \
|
||
(GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
|
||
|| (TARGET_POWERPC64 && GET_MODE (X) == DImode) \
|
||
|| easy_fp_constant (X, GET_MODE (X)))
|
||
|
||
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
|
||
and check its validity for a certain class.
|
||
We have two alternate definitions for each of them.
|
||
The usual definition accepts all pseudo regs; the other rejects
|
||
them unless they have been allocated suitable hard regs.
|
||
The symbol REG_OK_STRICT causes the latter definition to be used.
|
||
|
||
Most source files want to accept pseudo regs in the hope that
|
||
they will get allocated to the class that the insn wants them to be in.
|
||
Source files for reload pass need to be strict.
|
||
After reload, it makes no difference, since pseudo regs have
|
||
been eliminated by then. */
|
||
|
||
#ifdef REG_OK_STRICT
|
||
# define REG_OK_STRICT_FLAG 1
|
||
#else
|
||
# define REG_OK_STRICT_FLAG 0
|
||
#endif
|
||
|
||
/* Nonzero if X is a hard reg that can be used as an index
|
||
or if it is a pseudo reg in the non-strict case. */
|
||
#define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
|
||
((! (STRICT) \
|
||
&& (REGNO (X) <= 31 \
|
||
|| REGNO (X) == ARG_POINTER_REGNUM \
|
||
|| REGNO (X) >= FIRST_PSEUDO_REGISTER)) \
|
||
|| ((STRICT) && REGNO_OK_FOR_INDEX_P (REGNO (X))))
|
||
|
||
/* Nonzero if X is a hard reg that can be used as a base reg
|
||
or if it is a pseudo reg in the non-strict case. */
|
||
#define INT_REG_OK_FOR_BASE_P(X, STRICT) \
|
||
(REGNO (X) > 0 && INT_REG_OK_FOR_INDEX_P (X, (STRICT)))
|
||
|
||
#define REG_OK_FOR_INDEX_P(X) INT_REG_OK_FOR_INDEX_P (X, REG_OK_STRICT_FLAG)
|
||
#define REG_OK_FOR_BASE_P(X) INT_REG_OK_FOR_BASE_P (X, REG_OK_STRICT_FLAG)
|
||
|
||
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
|
||
that is a valid memory address for an instruction.
|
||
The MODE argument is the machine mode for the MEM expression
|
||
that wants to use this address.
|
||
|
||
On the RS/6000, there are four valid address: a SYMBOL_REF that
|
||
refers to a constant pool entry of an address (or the sum of it
|
||
plus a constant), a short (16-bit signed) constant plus a register,
|
||
the sum of two registers, or a register indirect, possibly with an
|
||
auto-increment. For DFmode and DImode with an constant plus register,
|
||
we must ensure that both words are addressable or PowerPC64 with offset
|
||
word aligned.
|
||
|
||
For modes spanning multiple registers (DFmode in 32-bit GPRs,
|
||
32-bit DImode, TImode), indexed addressing cannot be used because
|
||
adjacent memory cells are accessed by adding word-sized offsets
|
||
during assembly output. */
|
||
|
||
#define CONSTANT_POOL_EXPR_P(X) (constant_pool_expr_p (X))
|
||
|
||
#define TOC_RELATIVE_EXPR_P(X) (toc_relative_expr_p (X))
|
||
|
||
#define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X) \
|
||
(TARGET_TOC \
|
||
&& GET_CODE (X) == PLUS \
|
||
&& GET_CODE (XEXP (X, 0)) == REG \
|
||
&& (TARGET_MINIMAL_TOC || REGNO (XEXP (X, 0)) == TOC_REGISTER) \
|
||
&& CONSTANT_POOL_EXPR_P (XEXP (X, 1)))
|
||
|
||
#define LEGITIMATE_SMALL_DATA_P(MODE, X) \
|
||
(DEFAULT_ABI == ABI_V4 \
|
||
&& !flag_pic && !TARGET_TOC \
|
||
&& (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST) \
|
||
&& small_data_operand (X, MODE))
|
||
|
||
#define LEGITIMATE_ADDRESS_INTEGER_P(X, OFFSET) \
|
||
(GET_CODE (X) == CONST_INT \
|
||
&& (unsigned HOST_WIDE_INT) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
|
||
|
||
#define LEGITIMATE_OFFSET_ADDRESS_P(MODE, X, STRICT) \
|
||
(GET_CODE (X) == PLUS \
|
||
&& GET_CODE (XEXP (X, 0)) == REG \
|
||
&& INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
|
||
&& LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
|
||
&& (! ALTIVEC_VECTOR_MODE (MODE) || INTVAL (X) == 0) \
|
||
&& (((MODE) != DFmode && (MODE) != DImode) \
|
||
|| (TARGET_32BIT \
|
||
? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4) \
|
||
: ! (INTVAL (XEXP (X, 1)) & 3))) \
|
||
&& ((MODE) != TImode \
|
||
|| (TARGET_32BIT \
|
||
? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 12) \
|
||
: (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 8) \
|
||
&& ! (INTVAL (XEXP (X, 1)) & 3)))))
|
||
|
||
#define LEGITIMATE_INDEXED_ADDRESS_P(X, STRICT) \
|
||
(GET_CODE (X) == PLUS \
|
||
&& GET_CODE (XEXP (X, 0)) == REG \
|
||
&& GET_CODE (XEXP (X, 1)) == REG \
|
||
&& ((INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
|
||
&& INT_REG_OK_FOR_INDEX_P (XEXP (X, 1), (STRICT))) \
|
||
|| (INT_REG_OK_FOR_BASE_P (XEXP (X, 1), (STRICT)) \
|
||
&& INT_REG_OK_FOR_INDEX_P (XEXP (X, 0), (STRICT)))))
|
||
|
||
#define LEGITIMATE_INDIRECT_ADDRESS_P(X, STRICT) \
|
||
(GET_CODE (X) == REG && INT_REG_OK_FOR_BASE_P (X, (STRICT)))
|
||
|
||
#define LEGITIMATE_LO_SUM_ADDRESS_P(MODE, X, STRICT) \
|
||
(TARGET_ELF \
|
||
&& ! flag_pic && ! TARGET_TOC \
|
||
&& GET_MODE_NUNITS (MODE) == 1 \
|
||
&& (GET_MODE_BITSIZE (MODE) <= 32 \
|
||
|| (TARGET_HARD_FLOAT && (MODE) == DFmode)) \
|
||
&& GET_CODE (X) == LO_SUM \
|
||
&& GET_CODE (XEXP (X, 0)) == REG \
|
||
&& INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
|
||
&& CONSTANT_P (XEXP (X, 1)))
|
||
|
||
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
|
||
{ if (rs6000_legitimate_address (MODE, X, REG_OK_STRICT_FLAG)) \
|
||
goto ADDR; \
|
||
}
|
||
|
||
/* Try machine-dependent ways of modifying an illegitimate address
|
||
to be legitimate. If we find one, return the new, valid address.
|
||
This macro is used in only one place: `memory_address' in explow.c.
|
||
|
||
OLDX is the address as it was before break_out_memory_refs was called.
|
||
In some cases it is useful to look at this to decide what needs to be done.
|
||
|
||
MODE and WIN are passed so that this macro can use
|
||
GO_IF_LEGITIMATE_ADDRESS.
|
||
|
||
It is always safe for this macro to do nothing. It exists to recognize
|
||
opportunities to optimize the output.
|
||
|
||
On RS/6000, first check for the sum of a register with a constant
|
||
integer that is out of range. If so, generate code to add the
|
||
constant with the low-order 16 bits masked to the register and force
|
||
this result into another register (this can be done with `cau').
|
||
Then generate an address of REG+(CONST&0xffff), allowing for the
|
||
possibility of bit 16 being a one.
|
||
|
||
Then check for the sum of a register and something not constant, try to
|
||
load the other things into a register and return the sum. */
|
||
|
||
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
|
||
{ rtx result = rs6000_legitimize_address (X, OLDX, MODE); \
|
||
if (result != NULL_RTX) \
|
||
{ \
|
||
(X) = result; \
|
||
goto WIN; \
|
||
} \
|
||
}
|
||
|
||
/* Try a machine-dependent way of reloading an illegitimate address
|
||
operand. If we find one, push the reload and jump to WIN. This
|
||
macro is used in only one place: `find_reloads_address' in reload.c.
|
||
|
||
Implemented on rs6000 by rs6000_legitimize_reload_address.
|
||
Note that (X) is evaluated twice; this is safe in current usage. */
|
||
|
||
#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
|
||
do { \
|
||
int win; \
|
||
(X) = rs6000_legitimize_reload_address ((X), (MODE), (OPNUM), \
|
||
(int)(TYPE), (IND_LEVELS), &win); \
|
||
if ( win ) \
|
||
goto WIN; \
|
||
} while (0)
|
||
|
||
/* Go to LABEL if ADDR (a legitimate address expression)
|
||
has an effect that depends on the machine mode it is used for.
|
||
|
||
On the RS/6000 this is true if the address is valid with a zero offset
|
||
but not with an offset of four (this means it cannot be used as an
|
||
address for DImode or DFmode) or is a pre-increment or decrement. Since
|
||
we know it is valid, we just check for an address that is not valid with
|
||
an offset of four. */
|
||
|
||
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
|
||
{ if (GET_CODE (ADDR) == PLUS \
|
||
&& LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0) \
|
||
&& ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), \
|
||
(TARGET_32BIT ? 4 : 8))) \
|
||
goto LABEL; \
|
||
if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_INC) \
|
||
goto LABEL; \
|
||
if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_DEC) \
|
||
goto LABEL; \
|
||
if (GET_CODE (ADDR) == LO_SUM) \
|
||
goto LABEL; \
|
||
}
|
||
|
||
/* The register number of the register used to address a table of
|
||
static data addresses in memory. In some cases this register is
|
||
defined by a processor's "application binary interface" (ABI).
|
||
When this macro is defined, RTL is generated for this register
|
||
once, as with the stack pointer and frame pointer registers. If
|
||
this macro is not defined, it is up to the machine-dependent files
|
||
to allocate such a register (if necessary). */
|
||
|
||
#define PIC_OFFSET_TABLE_REGNUM 30
|
||
|
||
#define TOC_REGISTER (TARGET_MINIMAL_TOC ? 30 : 2)
|
||
|
||
/* Define this macro if the register defined by
|
||
`PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
|
||
this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
|
||
|
||
/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
|
||
|
||
/* By generating position-independent code, when two different
|
||
programs (A and B) share a common library (libC.a), the text of
|
||
the library can be shared whether or not the library is linked at
|
||
the same address for both programs. In some of these
|
||
environments, position-independent code requires not only the use
|
||
of different addressing modes, but also special code to enable the
|
||
use of these addressing modes.
|
||
|
||
The `FINALIZE_PIC' macro serves as a hook to emit these special
|
||
codes once the function is being compiled into assembly code, but
|
||
not before. (It is not done before, because in the case of
|
||
compiling an inline function, it would lead to multiple PIC
|
||
prologues being included in functions which used inline functions
|
||
and were compiled to assembly language.) */
|
||
|
||
/* #define FINALIZE_PIC */
|
||
|
||
/* A C expression that is nonzero if X is a legitimate immediate
|
||
operand on the target machine when generating position independent
|
||
code. You can assume that X satisfies `CONSTANT_P', so you need
|
||
not check this. You can also assume FLAG_PIC is true, so you need
|
||
not check it either. You need not define this macro if all
|
||
constants (including `SYMBOL_REF') can be immediate operands when
|
||
generating position independent code. */
|
||
|
||
/* #define LEGITIMATE_PIC_OPERAND_P (X) */
|
||
|
||
/* In rare cases, correct code generation requires extra machine
|
||
dependent processing between the second jump optimization pass and
|
||
delayed branch scheduling. On those machines, define this macro
|
||
as a C statement to act on the code starting at INSN. */
|
||
|
||
/* #define MACHINE_DEPENDENT_REORG(INSN) */
|
||
|
||
|
||
/* Define this if some processing needs to be done immediately before
|
||
emitting code for an insn. */
|
||
|
||
/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
|
||
|
||
/* Specify the machine mode that this machine uses
|
||
for the index in the tablejump instruction. */
|
||
#define CASE_VECTOR_MODE SImode
|
||
|
||
/* Define as C expression which evaluates to nonzero if the tablejump
|
||
instruction expects the table to contain offsets from the address of the
|
||
table.
|
||
Do not define this if the table should contain absolute addresses. */
|
||
#define CASE_VECTOR_PC_RELATIVE 1
|
||
|
||
/* Define this as 1 if `char' should by default be signed; else as 0. */
|
||
#define DEFAULT_SIGNED_CHAR 0
|
||
|
||
/* This flag, if defined, says the same insns that convert to a signed fixnum
|
||
also convert validly to an unsigned one. */
|
||
|
||
/* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
|
||
|
||
/* Max number of bytes we can move from memory to memory
|
||
in one reasonably fast instruction. */
|
||
#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
|
||
#define MAX_MOVE_MAX 8
|
||
|
||
/* Nonzero if access to memory by bytes is no faster than for words.
|
||
Also non-zero if doing byte operations (specifically shifts) in registers
|
||
is undesirable. */
|
||
#define SLOW_BYTE_ACCESS 1
|
||
|
||
/* Define if operations between registers always perform the operation
|
||
on the full register even if a narrower mode is specified. */
|
||
#define WORD_REGISTER_OPERATIONS
|
||
|
||
/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
|
||
will either zero-extend or sign-extend. The value of this macro should
|
||
be the code that says which one of the two operations is implicitly
|
||
done, NIL if none. */
|
||
#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
|
||
|
||
/* Define if loading short immediate values into registers sign extends. */
|
||
#define SHORT_IMMEDIATES_SIGN_EXTEND
|
||
|
||
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
|
||
is done just by pretending it is already truncated. */
|
||
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
|
||
|
||
/* Specify the machine mode that pointers have.
|
||
After generation of rtl, the compiler makes no further distinction
|
||
between pointers and any other objects of this machine mode. */
|
||
#define Pmode (TARGET_32BIT ? SImode : DImode)
|
||
|
||
/* Mode of a function address in a call instruction (for indexing purposes).
|
||
Doesn't matter on RS/6000. */
|
||
#define FUNCTION_MODE (TARGET_32BIT ? SImode : DImode)
|
||
|
||
/* Define this if addresses of constant functions
|
||
shouldn't be put through pseudo regs where they can be cse'd.
|
||
Desirable on machines where ordinary constants are expensive
|
||
but a CALL with constant address is cheap. */
|
||
#define NO_FUNCTION_CSE
|
||
|
||
/* Define this to be nonzero if shift instructions ignore all but the low-order
|
||
few bits.
|
||
|
||
The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
|
||
have been dropped from the PowerPC architecture. */
|
||
|
||
#define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
|
||
|
||
/* Compute the cost of computing a constant rtl expression RTX
|
||
whose rtx-code is CODE. The body of this macro is a portion
|
||
of a switch statement. If the code is computed here,
|
||
return it with a return statement. Otherwise, break from the switch.
|
||
|
||
On the RS/6000, if it is valid in the insn, it is free. So this
|
||
always returns 0. */
|
||
|
||
#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
|
||
case CONST_INT: \
|
||
case CONST: \
|
||
case LABEL_REF: \
|
||
case SYMBOL_REF: \
|
||
case CONST_DOUBLE: \
|
||
case HIGH: \
|
||
return 0;
|
||
|
||
/* Provide the costs of a rtl expression. This is in the body of a
|
||
switch on CODE. */
|
||
|
||
#define RTX_COSTS(X,CODE,OUTER_CODE) \
|
||
case PLUS: \
|
||
return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
|
||
&& ((unsigned HOST_WIDE_INT) (INTVAL (XEXP (X, 1)) \
|
||
+ 0x8000) >= 0x10000) \
|
||
&& ((INTVAL (XEXP (X, 1)) & 0xffff) != 0)) \
|
||
? COSTS_N_INSNS (2) \
|
||
: COSTS_N_INSNS (1)); \
|
||
case AND: \
|
||
case IOR: \
|
||
case XOR: \
|
||
return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
|
||
&& (INTVAL (XEXP (X, 1)) & (~ (HOST_WIDE_INT) 0xffff)) != 0 \
|
||
&& ((INTVAL (XEXP (X, 1)) & 0xffff) != 0)) \
|
||
? COSTS_N_INSNS (2) \
|
||
: COSTS_N_INSNS (1)); \
|
||
case MULT: \
|
||
switch (rs6000_cpu) \
|
||
{ \
|
||
case PROCESSOR_RIOS1: \
|
||
case PROCESSOR_PPC405: \
|
||
return (GET_CODE (XEXP (X, 1)) != CONST_INT \
|
||
? COSTS_N_INSNS (5) \
|
||
: INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
|
||
? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
|
||
case PROCESSOR_RS64A: \
|
||
return (GET_CODE (XEXP (X, 1)) != CONST_INT \
|
||
? GET_MODE (XEXP (X, 1)) != DImode \
|
||
? COSTS_N_INSNS (20) : COSTS_N_INSNS (34) \
|
||
: INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
|
||
? COSTS_N_INSNS (8) : COSTS_N_INSNS (12)); \
|
||
case PROCESSOR_RIOS2: \
|
||
case PROCESSOR_MPCCORE: \
|
||
case PROCESSOR_PPC604e: \
|
||
return COSTS_N_INSNS (2); \
|
||
case PROCESSOR_PPC601: \
|
||
return COSTS_N_INSNS (5); \
|
||
case PROCESSOR_PPC603: \
|
||
case PROCESSOR_PPC7400: \
|
||
case PROCESSOR_PPC750: \
|
||
return (GET_CODE (XEXP (X, 1)) != CONST_INT \
|
||
? COSTS_N_INSNS (5) \
|
||
: INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
|
||
? COSTS_N_INSNS (2) : COSTS_N_INSNS (3)); \
|
||
case PROCESSOR_PPC7450: \
|
||
return (GET_CODE (XEXP (X, 1)) != CONST_INT \
|
||
? COSTS_N_INSNS (4) \
|
||
: COSTS_N_INSNS (3)); \
|
||
case PROCESSOR_PPC403: \
|
||
case PROCESSOR_PPC604: \
|
||
return COSTS_N_INSNS (4); \
|
||
case PROCESSOR_PPC620: \
|
||
case PROCESSOR_PPC630: \
|
||
return (GET_CODE (XEXP (X, 1)) != CONST_INT \
|
||
? GET_MODE (XEXP (X, 1)) != DImode \
|
||
? COSTS_N_INSNS (5) : COSTS_N_INSNS (7) \
|
||
: INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
|
||
? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
|
||
} \
|
||
case DIV: \
|
||
case MOD: \
|
||
if (GET_CODE (XEXP (X, 1)) == CONST_INT \
|
||
&& exact_log2 (INTVAL (XEXP (X, 1))) >= 0) \
|
||
return COSTS_N_INSNS (2); \
|
||
/* otherwise fall through to normal divide. */ \
|
||
case UDIV: \
|
||
case UMOD: \
|
||
switch (rs6000_cpu) \
|
||
{ \
|
||
case PROCESSOR_RIOS1: \
|
||
return COSTS_N_INSNS (19); \
|
||
case PROCESSOR_RIOS2: \
|
||
return COSTS_N_INSNS (13); \
|
||
case PROCESSOR_RS64A: \
|
||
return (GET_MODE (XEXP (X, 1)) != DImode \
|
||
? COSTS_N_INSNS (65) \
|
||
: COSTS_N_INSNS (67)); \
|
||
case PROCESSOR_MPCCORE: \
|
||
return COSTS_N_INSNS (6); \
|
||
case PROCESSOR_PPC403: \
|
||
return COSTS_N_INSNS (33); \
|
||
case PROCESSOR_PPC405: \
|
||
return COSTS_N_INSNS (35); \
|
||
case PROCESSOR_PPC601: \
|
||
return COSTS_N_INSNS (36); \
|
||
case PROCESSOR_PPC603: \
|
||
return COSTS_N_INSNS (37); \
|
||
case PROCESSOR_PPC604: \
|
||
case PROCESSOR_PPC604e: \
|
||
return COSTS_N_INSNS (20); \
|
||
case PROCESSOR_PPC620: \
|
||
case PROCESSOR_PPC630: \
|
||
return (GET_MODE (XEXP (X, 1)) != DImode \
|
||
? COSTS_N_INSNS (21) \
|
||
: COSTS_N_INSNS (37)); \
|
||
case PROCESSOR_PPC750: \
|
||
case PROCESSOR_PPC7400: \
|
||
return COSTS_N_INSNS (19); \
|
||
case PROCESSOR_PPC7450: \
|
||
return COSTS_N_INSNS (23); \
|
||
} \
|
||
case FFS: \
|
||
return COSTS_N_INSNS (4); \
|
||
case MEM: \
|
||
/* MEM should be slightly more expensive than (plus (reg) (const)) */ \
|
||
return 5;
|
||
|
||
/* Compute the cost of an address. This is meant to approximate the size
|
||
and/or execution delay of an insn using that address. If the cost is
|
||
approximated by the RTL complexity, including CONST_COSTS above, as
|
||
is usually the case for CISC machines, this macro should not be defined.
|
||
For aggressively RISCy machines, only one insn format is allowed, so
|
||
this macro should be a constant. The value of this macro only matters
|
||
for valid addresses.
|
||
|
||
For the RS/6000, everything is cost 0. */
|
||
|
||
#define ADDRESS_COST(RTX) 0
|
||
|
||
/* Adjust the length of an INSN. LENGTH is the currently-computed length and
|
||
should be adjusted to reflect any required changes. This macro is used when
|
||
there is some systematic length adjustment required that would be difficult
|
||
to express in the length attribute. */
|
||
|
||
/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
|
||
|
||
/* Add any extra modes needed to represent the condition code.
|
||
|
||
For the RS/6000, we need separate modes when unsigned (logical) comparisons
|
||
are being done and we need a separate mode for floating-point. We also
|
||
use a mode for the case when we are comparing the results of two
|
||
comparisons, as then only the EQ bit is valid in the register. */
|
||
|
||
#define EXTRA_CC_MODES \
|
||
CC(CCUNSmode, "CCUNS") \
|
||
CC(CCFPmode, "CCFP") \
|
||
CC(CCEQmode, "CCEQ")
|
||
|
||
/* Given a comparison code (EQ, NE, etc.) and the first operand of a
|
||
COMPARE, return the mode to be used for the comparison. For
|
||
floating-point, CCFPmode should be used. CCUNSmode should be used
|
||
for unsigned comparisons. CCEQmode should be used when we are
|
||
doing an inequality comparison on the result of a
|
||
comparison. CCmode should be used in all other cases. */
|
||
|
||
#define SELECT_CC_MODE(OP,X,Y) \
|
||
(GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
|
||
: (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
|
||
: (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \
|
||
? CCEQmode : CCmode))
|
||
|
||
/* Define the information needed to generate branch and scc insns. This is
|
||
stored from the compare operation. Note that we can't use "rtx" here
|
||
since it hasn't been defined! */
|
||
|
||
extern struct rtx_def *rs6000_compare_op0, *rs6000_compare_op1;
|
||
extern int rs6000_compare_fp_p;
|
||
|
||
/* Control the assembler format that we output. */
|
||
|
||
/* A C string constant describing how to begin a comment in the target
|
||
assembler language. The compiler assumes that the comment will end at
|
||
the end of the line. */
|
||
#define ASM_COMMENT_START " #"
|
||
|
||
/* Implicit library calls should use memcpy, not bcopy, etc. */
|
||
|
||
#define TARGET_MEM_FUNCTIONS
|
||
|
||
/* Flag to say the TOC is initialized */
|
||
extern int toc_initialized;
|
||
|
||
/* Macro to output a special constant pool entry. Go to WIN if we output
|
||
it. Otherwise, it is written the usual way.
|
||
|
||
On the RS/6000, toc entries are handled this way. */
|
||
|
||
#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
|
||
{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
|
||
{ \
|
||
output_toc (FILE, X, LABELNO, MODE); \
|
||
goto WIN; \
|
||
} \
|
||
}
|
||
|
||
#ifdef HAVE_GAS_WEAK
|
||
#define RS6000_WEAK 1
|
||
#else
|
||
#define RS6000_WEAK 0
|
||
#endif
|
||
|
||
/* This implementes the `alias' attribute. */
|
||
#define ASM_OUTPUT_DEF_FROM_DECLS(FILE,decl,target) \
|
||
do { \
|
||
const char * alias = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
|
||
char * name = IDENTIFIER_POINTER (target); \
|
||
if (TREE_CODE (decl) == FUNCTION_DECL \
|
||
&& DEFAULT_ABI == ABI_AIX) \
|
||
{ \
|
||
if (TREE_PUBLIC (decl)) \
|
||
{ \
|
||
if (RS6000_WEAK && DECL_WEAK (decl)) \
|
||
{ \
|
||
fputs ("\t.weak .", FILE); \
|
||
assemble_name (FILE, alias); \
|
||
putc ('\n', FILE); \
|
||
} \
|
||
else \
|
||
{ \
|
||
fputs ("\t.globl .", FILE); \
|
||
assemble_name (FILE, alias); \
|
||
putc ('\n', FILE); \
|
||
} \
|
||
} \
|
||
else \
|
||
{ \
|
||
fputs ("\t.lglobl .", FILE); \
|
||
assemble_name (FILE, alias); \
|
||
putc ('\n', FILE); \
|
||
} \
|
||
fputs ("\t.set .", FILE); \
|
||
assemble_name (FILE, alias); \
|
||
fputs (",.", FILE); \
|
||
assemble_name (FILE, name); \
|
||
fputc ('\n', FILE); \
|
||
} \
|
||
ASM_OUTPUT_DEF (FILE, alias, name); \
|
||
} while (0)
|
||
|
||
/* Output to assembler file text saying following lines
|
||
may contain character constants, extra white space, comments, etc. */
|
||
|
||
#define ASM_APP_ON ""
|
||
|
||
/* Output to assembler file text saying following lines
|
||
no longer contain unusual constructs. */
|
||
|
||
#define ASM_APP_OFF ""
|
||
|
||
/* How to refer to registers in assembler output.
|
||
This sequence is indexed by compiler's hard-register-number (see above). */
|
||
|
||
extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
|
||
|
||
#define REGISTER_NAMES \
|
||
{ \
|
||
&rs6000_reg_names[ 0][0], /* r0 */ \
|
||
&rs6000_reg_names[ 1][0], /* r1 */ \
|
||
&rs6000_reg_names[ 2][0], /* r2 */ \
|
||
&rs6000_reg_names[ 3][0], /* r3 */ \
|
||
&rs6000_reg_names[ 4][0], /* r4 */ \
|
||
&rs6000_reg_names[ 5][0], /* r5 */ \
|
||
&rs6000_reg_names[ 6][0], /* r6 */ \
|
||
&rs6000_reg_names[ 7][0], /* r7 */ \
|
||
&rs6000_reg_names[ 8][0], /* r8 */ \
|
||
&rs6000_reg_names[ 9][0], /* r9 */ \
|
||
&rs6000_reg_names[10][0], /* r10 */ \
|
||
&rs6000_reg_names[11][0], /* r11 */ \
|
||
&rs6000_reg_names[12][0], /* r12 */ \
|
||
&rs6000_reg_names[13][0], /* r13 */ \
|
||
&rs6000_reg_names[14][0], /* r14 */ \
|
||
&rs6000_reg_names[15][0], /* r15 */ \
|
||
&rs6000_reg_names[16][0], /* r16 */ \
|
||
&rs6000_reg_names[17][0], /* r17 */ \
|
||
&rs6000_reg_names[18][0], /* r18 */ \
|
||
&rs6000_reg_names[19][0], /* r19 */ \
|
||
&rs6000_reg_names[20][0], /* r20 */ \
|
||
&rs6000_reg_names[21][0], /* r21 */ \
|
||
&rs6000_reg_names[22][0], /* r22 */ \
|
||
&rs6000_reg_names[23][0], /* r23 */ \
|
||
&rs6000_reg_names[24][0], /* r24 */ \
|
||
&rs6000_reg_names[25][0], /* r25 */ \
|
||
&rs6000_reg_names[26][0], /* r26 */ \
|
||
&rs6000_reg_names[27][0], /* r27 */ \
|
||
&rs6000_reg_names[28][0], /* r28 */ \
|
||
&rs6000_reg_names[29][0], /* r29 */ \
|
||
&rs6000_reg_names[30][0], /* r30 */ \
|
||
&rs6000_reg_names[31][0], /* r31 */ \
|
||
\
|
||
&rs6000_reg_names[32][0], /* fr0 */ \
|
||
&rs6000_reg_names[33][0], /* fr1 */ \
|
||
&rs6000_reg_names[34][0], /* fr2 */ \
|
||
&rs6000_reg_names[35][0], /* fr3 */ \
|
||
&rs6000_reg_names[36][0], /* fr4 */ \
|
||
&rs6000_reg_names[37][0], /* fr5 */ \
|
||
&rs6000_reg_names[38][0], /* fr6 */ \
|
||
&rs6000_reg_names[39][0], /* fr7 */ \
|
||
&rs6000_reg_names[40][0], /* fr8 */ \
|
||
&rs6000_reg_names[41][0], /* fr9 */ \
|
||
&rs6000_reg_names[42][0], /* fr10 */ \
|
||
&rs6000_reg_names[43][0], /* fr11 */ \
|
||
&rs6000_reg_names[44][0], /* fr12 */ \
|
||
&rs6000_reg_names[45][0], /* fr13 */ \
|
||
&rs6000_reg_names[46][0], /* fr14 */ \
|
||
&rs6000_reg_names[47][0], /* fr15 */ \
|
||
&rs6000_reg_names[48][0], /* fr16 */ \
|
||
&rs6000_reg_names[49][0], /* fr17 */ \
|
||
&rs6000_reg_names[50][0], /* fr18 */ \
|
||
&rs6000_reg_names[51][0], /* fr19 */ \
|
||
&rs6000_reg_names[52][0], /* fr20 */ \
|
||
&rs6000_reg_names[53][0], /* fr21 */ \
|
||
&rs6000_reg_names[54][0], /* fr22 */ \
|
||
&rs6000_reg_names[55][0], /* fr23 */ \
|
||
&rs6000_reg_names[56][0], /* fr24 */ \
|
||
&rs6000_reg_names[57][0], /* fr25 */ \
|
||
&rs6000_reg_names[58][0], /* fr26 */ \
|
||
&rs6000_reg_names[59][0], /* fr27 */ \
|
||
&rs6000_reg_names[60][0], /* fr28 */ \
|
||
&rs6000_reg_names[61][0], /* fr29 */ \
|
||
&rs6000_reg_names[62][0], /* fr30 */ \
|
||
&rs6000_reg_names[63][0], /* fr31 */ \
|
||
\
|
||
&rs6000_reg_names[64][0], /* mq */ \
|
||
&rs6000_reg_names[65][0], /* lr */ \
|
||
&rs6000_reg_names[66][0], /* ctr */ \
|
||
&rs6000_reg_names[67][0], /* ap */ \
|
||
\
|
||
&rs6000_reg_names[68][0], /* cr0 */ \
|
||
&rs6000_reg_names[69][0], /* cr1 */ \
|
||
&rs6000_reg_names[70][0], /* cr2 */ \
|
||
&rs6000_reg_names[71][0], /* cr3 */ \
|
||
&rs6000_reg_names[72][0], /* cr4 */ \
|
||
&rs6000_reg_names[73][0], /* cr5 */ \
|
||
&rs6000_reg_names[74][0], /* cr6 */ \
|
||
&rs6000_reg_names[75][0], /* cr7 */ \
|
||
\
|
||
&rs6000_reg_names[76][0], /* xer */ \
|
||
\
|
||
&rs6000_reg_names[77][0], /* v0 */ \
|
||
&rs6000_reg_names[78][0], /* v1 */ \
|
||
&rs6000_reg_names[79][0], /* v2 */ \
|
||
&rs6000_reg_names[80][0], /* v3 */ \
|
||
&rs6000_reg_names[81][0], /* v4 */ \
|
||
&rs6000_reg_names[82][0], /* v5 */ \
|
||
&rs6000_reg_names[83][0], /* v6 */ \
|
||
&rs6000_reg_names[84][0], /* v7 */ \
|
||
&rs6000_reg_names[85][0], /* v8 */ \
|
||
&rs6000_reg_names[86][0], /* v9 */ \
|
||
&rs6000_reg_names[87][0], /* v10 */ \
|
||
&rs6000_reg_names[88][0], /* v11 */ \
|
||
&rs6000_reg_names[89][0], /* v12 */ \
|
||
&rs6000_reg_names[90][0], /* v13 */ \
|
||
&rs6000_reg_names[91][0], /* v14 */ \
|
||
&rs6000_reg_names[92][0], /* v15 */ \
|
||
&rs6000_reg_names[93][0], /* v16 */ \
|
||
&rs6000_reg_names[94][0], /* v17 */ \
|
||
&rs6000_reg_names[95][0], /* v18 */ \
|
||
&rs6000_reg_names[96][0], /* v19 */ \
|
||
&rs6000_reg_names[97][0], /* v20 */ \
|
||
&rs6000_reg_names[98][0], /* v21 */ \
|
||
&rs6000_reg_names[99][0], /* v22 */ \
|
||
&rs6000_reg_names[100][0], /* v23 */ \
|
||
&rs6000_reg_names[101][0], /* v24 */ \
|
||
&rs6000_reg_names[102][0], /* v25 */ \
|
||
&rs6000_reg_names[103][0], /* v26 */ \
|
||
&rs6000_reg_names[104][0], /* v27 */ \
|
||
&rs6000_reg_names[105][0], /* v28 */ \
|
||
&rs6000_reg_names[106][0], /* v29 */ \
|
||
&rs6000_reg_names[107][0], /* v30 */ \
|
||
&rs6000_reg_names[108][0], /* v31 */ \
|
||
&rs6000_reg_names[109][0], /* vrsave */ \
|
||
}
|
||
|
||
/* print-rtl can't handle the above REGISTER_NAMES, so define the
|
||
following for it. Switch to use the alternate names since
|
||
they are more mnemonic. */
|
||
|
||
#define DEBUG_REGISTER_NAMES \
|
||
{ \
|
||
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
|
||
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
|
||
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
|
||
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
|
||
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
|
||
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
|
||
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
|
||
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
|
||
"mq", "lr", "ctr", "ap", \
|
||
"cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", \
|
||
"xer", \
|
||
"v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", \
|
||
"v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", \
|
||
"v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", \
|
||
"v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31", \
|
||
"vrsave" \
|
||
}
|
||
|
||
/* Table of additional register names to use in user input. */
|
||
|
||
#define ADDITIONAL_REGISTER_NAMES \
|
||
{{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
|
||
{"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
|
||
{"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
|
||
{"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
|
||
{"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
|
||
{"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
|
||
{"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
|
||
{"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
|
||
{"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
|
||
{"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
|
||
{"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
|
||
{"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
|
||
{"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
|
||
{"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
|
||
{"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
|
||
{"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
|
||
{"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
|
||
{"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
|
||
{"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
|
||
{"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
|
||
{"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
|
||
{"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
|
||
{"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
|
||
{"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
|
||
{"vrsave", 109}, \
|
||
/* no additional names for: mq, lr, ctr, ap */ \
|
||
{"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
|
||
{"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
|
||
{"cc", 68}, {"sp", 1}, {"toc", 2} }
|
||
|
||
/* Text to write out after a CALL that may be replaced by glue code by
|
||
the loader. This depends on the AIX version. */
|
||
#define RS6000_CALL_GLUE "cror 31,31,31"
|
||
|
||
/* This is how to output an element of a case-vector that is relative. */
|
||
|
||
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
|
||
do { char buf[100]; \
|
||
fputs ("\t.long ", FILE); \
|
||
ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
|
||
assemble_name (FILE, buf); \
|
||
putc ('-', FILE); \
|
||
ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
|
||
assemble_name (FILE, buf); \
|
||
putc ('\n', FILE); \
|
||
} while (0)
|
||
|
||
/* This is how to output an assembler line
|
||
that says to advance the location counter
|
||
to a multiple of 2**LOG bytes. */
|
||
|
||
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
|
||
if ((LOG) != 0) \
|
||
fprintf (FILE, "\t.align %d\n", (LOG))
|
||
|
||
/* Store in OUTPUT a string (made with alloca) containing
|
||
an assembler-name for a local static variable named NAME.
|
||
LABELNO is an integer which is different for each call. */
|
||
|
||
#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
|
||
( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
|
||
sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
|
||
|
||
/* Pick up the return address upon entry to a procedure. Used for
|
||
dwarf2 unwind information. This also enables the table driven
|
||
mechanism. */
|
||
|
||
#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM)
|
||
#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LINK_REGISTER_REGNUM)
|
||
|
||
/* Describe how we implement __builtin_eh_return. */
|
||
#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
|
||
#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
|
||
|
||
/* Print operand X (an rtx) in assembler syntax to file FILE.
|
||
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
|
||
For `%' followed by punctuation, CODE is the punctuation and X is null. */
|
||
|
||
#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
|
||
|
||
/* Define which CODE values are valid. */
|
||
|
||
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
|
||
((CODE) == '.')
|
||
|
||
/* Print a memory address as an operand to reference that memory location. */
|
||
|
||
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
|
||
|
||
/* Define the codes that are matched by predicates in rs6000.c. */
|
||
|
||
#define PREDICATE_CODES \
|
||
{"short_cint_operand", {CONST_INT}}, \
|
||
{"u_short_cint_operand", {CONST_INT}}, \
|
||
{"non_short_cint_operand", {CONST_INT}}, \
|
||
{"exact_log2_cint_operand", {CONST_INT}}, \
|
||
{"gpc_reg_operand", {SUBREG, REG}}, \
|
||
{"cc_reg_operand", {SUBREG, REG}}, \
|
||
{"cc_reg_not_cr0_operand", {SUBREG, REG}}, \
|
||
{"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \
|
||
{"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
|
||
{"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
|
||
{"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
|
||
{"reg_or_arith_cint_operand", {SUBREG, REG, CONST_INT}}, \
|
||
{"reg_or_add_cint64_operand", {SUBREG, REG, CONST_INT}}, \
|
||
{"reg_or_sub_cint64_operand", {SUBREG, REG, CONST_INT}}, \
|
||
{"reg_or_logical_cint_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
|
||
{"got_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
|
||
{"got_no_const_operand", {SYMBOL_REF, LABEL_REF}}, \
|
||
{"easy_fp_constant", {CONST_DOUBLE}}, \
|
||
{"zero_fp_constant", {CONST_DOUBLE}}, \
|
||
{"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
|
||
{"lwa_operand", {SUBREG, MEM, REG}}, \
|
||
{"volatile_mem_operand", {MEM}}, \
|
||
{"offsettable_mem_operand", {MEM}}, \
|
||
{"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
|
||
{"add_operand", {SUBREG, REG, CONST_INT}}, \
|
||
{"non_add_cint_operand", {CONST_INT}}, \
|
||
{"and_operand", {SUBREG, REG, CONST_INT}}, \
|
||
{"and64_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
|
||
{"logical_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
|
||
{"non_logical_cint_operand", {CONST_INT, CONST_DOUBLE}}, \
|
||
{"mask_operand", {CONST_INT}}, \
|
||
{"mask64_operand", {CONST_INT, CONST_DOUBLE}}, \
|
||
{"count_register_operand", {REG}}, \
|
||
{"xer_operand", {REG}}, \
|
||
{"call_operand", {SYMBOL_REF, REG}}, \
|
||
{"current_file_function_operand", {SYMBOL_REF}}, \
|
||
{"input_operand", {SUBREG, MEM, REG, CONST_INT, \
|
||
CONST_DOUBLE, SYMBOL_REF}}, \
|
||
{"load_multiple_operation", {PARALLEL}}, \
|
||
{"store_multiple_operation", {PARALLEL}}, \
|
||
{"vrsave_operation", {PARALLEL}}, \
|
||
{"branch_comparison_operator", {EQ, NE, LE, LT, GE, \
|
||
GT, LEU, LTU, GEU, GTU, \
|
||
UNORDERED, ORDERED, \
|
||
UNGE, UNLE }}, \
|
||
{"branch_positive_comparison_operator", {EQ, LT, GT, LTU, GTU, \
|
||
UNORDERED }}, \
|
||
{"scc_comparison_operator", {EQ, NE, LE, LT, GE, \
|
||
GT, LEU, LTU, GEU, GTU, \
|
||
UNORDERED, ORDERED, \
|
||
UNGE, UNLE }}, \
|
||
{"trap_comparison_operator", {EQ, NE, LE, LT, GE, \
|
||
GT, LEU, LTU, GEU, GTU}}, \
|
||
{"boolean_operator", {AND, IOR, XOR}}, \
|
||
{"boolean_or_operator", {IOR, XOR}}, \
|
||
{"min_max_operator", {SMIN, SMAX, UMIN, UMAX}},
|
||
|
||
/* uncomment for disabling the corresponding default options */
|
||
/* #define MACHINE_no_sched_interblock */
|
||
/* #define MACHINE_no_sched_speculative */
|
||
/* #define MACHINE_no_sched_speculative_load */
|
||
|
||
/* General flags. */
|
||
extern int flag_pic;
|
||
extern int optimize;
|
||
extern int flag_expensive_optimizations;
|
||
extern int frame_pointer_needed;
|
||
|
||
enum rs6000_builtins
|
||
{
|
||
/* AltiVec builtins. */
|
||
ALTIVEC_BUILTIN_ST_INTERNAL_4si,
|
||
ALTIVEC_BUILTIN_LD_INTERNAL_4si,
|
||
ALTIVEC_BUILTIN_ST_INTERNAL_8hi,
|
||
ALTIVEC_BUILTIN_LD_INTERNAL_8hi,
|
||
ALTIVEC_BUILTIN_ST_INTERNAL_16qi,
|
||
ALTIVEC_BUILTIN_LD_INTERNAL_16qi,
|
||
ALTIVEC_BUILTIN_ST_INTERNAL_4sf,
|
||
ALTIVEC_BUILTIN_LD_INTERNAL_4sf,
|
||
ALTIVEC_BUILTIN_VADDUBM,
|
||
ALTIVEC_BUILTIN_VADDUHM,
|
||
ALTIVEC_BUILTIN_VADDUWM,
|
||
ALTIVEC_BUILTIN_VADDFP,
|
||
ALTIVEC_BUILTIN_VADDCUW,
|
||
ALTIVEC_BUILTIN_VADDUBS,
|
||
ALTIVEC_BUILTIN_VADDSBS,
|
||
ALTIVEC_BUILTIN_VADDUHS,
|
||
ALTIVEC_BUILTIN_VADDSHS,
|
||
ALTIVEC_BUILTIN_VADDUWS,
|
||
ALTIVEC_BUILTIN_VADDSWS,
|
||
ALTIVEC_BUILTIN_VAND,
|
||
ALTIVEC_BUILTIN_VANDC,
|
||
ALTIVEC_BUILTIN_VAVGUB,
|
||
ALTIVEC_BUILTIN_VAVGSB,
|
||
ALTIVEC_BUILTIN_VAVGUH,
|
||
ALTIVEC_BUILTIN_VAVGSH,
|
||
ALTIVEC_BUILTIN_VAVGUW,
|
||
ALTIVEC_BUILTIN_VAVGSW,
|
||
ALTIVEC_BUILTIN_VCFUX,
|
||
ALTIVEC_BUILTIN_VCFSX,
|
||
ALTIVEC_BUILTIN_VCTSXS,
|
||
ALTIVEC_BUILTIN_VCTUXS,
|
||
ALTIVEC_BUILTIN_VCMPBFP,
|
||
ALTIVEC_BUILTIN_VCMPEQUB,
|
||
ALTIVEC_BUILTIN_VCMPEQUH,
|
||
ALTIVEC_BUILTIN_VCMPEQUW,
|
||
ALTIVEC_BUILTIN_VCMPEQFP,
|
||
ALTIVEC_BUILTIN_VCMPGEFP,
|
||
ALTIVEC_BUILTIN_VCMPGTUB,
|
||
ALTIVEC_BUILTIN_VCMPGTSB,
|
||
ALTIVEC_BUILTIN_VCMPGTUH,
|
||
ALTIVEC_BUILTIN_VCMPGTSH,
|
||
ALTIVEC_BUILTIN_VCMPGTUW,
|
||
ALTIVEC_BUILTIN_VCMPGTSW,
|
||
ALTIVEC_BUILTIN_VCMPGTFP,
|
||
ALTIVEC_BUILTIN_VEXPTEFP,
|
||
ALTIVEC_BUILTIN_VLOGEFP,
|
||
ALTIVEC_BUILTIN_VMADDFP,
|
||
ALTIVEC_BUILTIN_VMAXUB,
|
||
ALTIVEC_BUILTIN_VMAXSB,
|
||
ALTIVEC_BUILTIN_VMAXUH,
|
||
ALTIVEC_BUILTIN_VMAXSH,
|
||
ALTIVEC_BUILTIN_VMAXUW,
|
||
ALTIVEC_BUILTIN_VMAXSW,
|
||
ALTIVEC_BUILTIN_VMAXFP,
|
||
ALTIVEC_BUILTIN_VMHADDSHS,
|
||
ALTIVEC_BUILTIN_VMHRADDSHS,
|
||
ALTIVEC_BUILTIN_VMLADDUHM,
|
||
ALTIVEC_BUILTIN_VMRGHB,
|
||
ALTIVEC_BUILTIN_VMRGHH,
|
||
ALTIVEC_BUILTIN_VMRGHW,
|
||
ALTIVEC_BUILTIN_VMRGLB,
|
||
ALTIVEC_BUILTIN_VMRGLH,
|
||
ALTIVEC_BUILTIN_VMRGLW,
|
||
ALTIVEC_BUILTIN_VMSUMUBM,
|
||
ALTIVEC_BUILTIN_VMSUMMBM,
|
||
ALTIVEC_BUILTIN_VMSUMUHM,
|
||
ALTIVEC_BUILTIN_VMSUMSHM,
|
||
ALTIVEC_BUILTIN_VMSUMUHS,
|
||
ALTIVEC_BUILTIN_VMSUMSHS,
|
||
ALTIVEC_BUILTIN_VMINUB,
|
||
ALTIVEC_BUILTIN_VMINSB,
|
||
ALTIVEC_BUILTIN_VMINUH,
|
||
ALTIVEC_BUILTIN_VMINSH,
|
||
ALTIVEC_BUILTIN_VMINUW,
|
||
ALTIVEC_BUILTIN_VMINSW,
|
||
ALTIVEC_BUILTIN_VMINFP,
|
||
ALTIVEC_BUILTIN_VMULEUB,
|
||
ALTIVEC_BUILTIN_VMULESB,
|
||
ALTIVEC_BUILTIN_VMULEUH,
|
||
ALTIVEC_BUILTIN_VMULESH,
|
||
ALTIVEC_BUILTIN_VMULOUB,
|
||
ALTIVEC_BUILTIN_VMULOSB,
|
||
ALTIVEC_BUILTIN_VMULOUH,
|
||
ALTIVEC_BUILTIN_VMULOSH,
|
||
ALTIVEC_BUILTIN_VNMSUBFP,
|
||
ALTIVEC_BUILTIN_VNOR,
|
||
ALTIVEC_BUILTIN_VOR,
|
||
ALTIVEC_BUILTIN_VSEL_4SI,
|
||
ALTIVEC_BUILTIN_VSEL_4SF,
|
||
ALTIVEC_BUILTIN_VSEL_8HI,
|
||
ALTIVEC_BUILTIN_VSEL_16QI,
|
||
ALTIVEC_BUILTIN_VPERM_4SI,
|
||
ALTIVEC_BUILTIN_VPERM_4SF,
|
||
ALTIVEC_BUILTIN_VPERM_8HI,
|
||
ALTIVEC_BUILTIN_VPERM_16QI,
|
||
ALTIVEC_BUILTIN_VPKUHUM,
|
||
ALTIVEC_BUILTIN_VPKUWUM,
|
||
ALTIVEC_BUILTIN_VPKPX,
|
||
ALTIVEC_BUILTIN_VPKUHSS,
|
||
ALTIVEC_BUILTIN_VPKSHSS,
|
||
ALTIVEC_BUILTIN_VPKUWSS,
|
||
ALTIVEC_BUILTIN_VPKSWSS,
|
||
ALTIVEC_BUILTIN_VPKUHUS,
|
||
ALTIVEC_BUILTIN_VPKSHUS,
|
||
ALTIVEC_BUILTIN_VPKUWUS,
|
||
ALTIVEC_BUILTIN_VPKSWUS,
|
||
ALTIVEC_BUILTIN_VREFP,
|
||
ALTIVEC_BUILTIN_VRFIM,
|
||
ALTIVEC_BUILTIN_VRFIN,
|
||
ALTIVEC_BUILTIN_VRFIP,
|
||
ALTIVEC_BUILTIN_VRFIZ,
|
||
ALTIVEC_BUILTIN_VRLB,
|
||
ALTIVEC_BUILTIN_VRLH,
|
||
ALTIVEC_BUILTIN_VRLW,
|
||
ALTIVEC_BUILTIN_VRSQRTEFP,
|
||
ALTIVEC_BUILTIN_VSLB,
|
||
ALTIVEC_BUILTIN_VSLH,
|
||
ALTIVEC_BUILTIN_VSLW,
|
||
ALTIVEC_BUILTIN_VSL,
|
||
ALTIVEC_BUILTIN_VSLO,
|
||
ALTIVEC_BUILTIN_VSPLTB,
|
||
ALTIVEC_BUILTIN_VSPLTH,
|
||
ALTIVEC_BUILTIN_VSPLTW,
|
||
ALTIVEC_BUILTIN_VSPLTISB,
|
||
ALTIVEC_BUILTIN_VSPLTISH,
|
||
ALTIVEC_BUILTIN_VSPLTISW,
|
||
ALTIVEC_BUILTIN_VSRB,
|
||
ALTIVEC_BUILTIN_VSRH,
|
||
ALTIVEC_BUILTIN_VSRW,
|
||
ALTIVEC_BUILTIN_VSRAB,
|
||
ALTIVEC_BUILTIN_VSRAH,
|
||
ALTIVEC_BUILTIN_VSRAW,
|
||
ALTIVEC_BUILTIN_VSR,
|
||
ALTIVEC_BUILTIN_VSRO,
|
||
ALTIVEC_BUILTIN_VSUBUBM,
|
||
ALTIVEC_BUILTIN_VSUBUHM,
|
||
ALTIVEC_BUILTIN_VSUBUWM,
|
||
ALTIVEC_BUILTIN_VSUBFP,
|
||
ALTIVEC_BUILTIN_VSUBCUW,
|
||
ALTIVEC_BUILTIN_VSUBUBS,
|
||
ALTIVEC_BUILTIN_VSUBSBS,
|
||
ALTIVEC_BUILTIN_VSUBUHS,
|
||
ALTIVEC_BUILTIN_VSUBSHS,
|
||
ALTIVEC_BUILTIN_VSUBUWS,
|
||
ALTIVEC_BUILTIN_VSUBSWS,
|
||
ALTIVEC_BUILTIN_VSUM4UBS,
|
||
ALTIVEC_BUILTIN_VSUM4SBS,
|
||
ALTIVEC_BUILTIN_VSUM4SHS,
|
||
ALTIVEC_BUILTIN_VSUM2SWS,
|
||
ALTIVEC_BUILTIN_VSUMSWS,
|
||
ALTIVEC_BUILTIN_VXOR,
|
||
ALTIVEC_BUILTIN_VSLDOI_16QI,
|
||
ALTIVEC_BUILTIN_VSLDOI_8HI,
|
||
ALTIVEC_BUILTIN_VSLDOI_4SI,
|
||
ALTIVEC_BUILTIN_VSLDOI_4SF,
|
||
ALTIVEC_BUILTIN_VUPKHSB,
|
||
ALTIVEC_BUILTIN_VUPKHPX,
|
||
ALTIVEC_BUILTIN_VUPKHSH,
|
||
ALTIVEC_BUILTIN_VUPKLSB,
|
||
ALTIVEC_BUILTIN_VUPKLPX,
|
||
ALTIVEC_BUILTIN_VUPKLSH,
|
||
ALTIVEC_BUILTIN_VCMPBFP_P,
|
||
ALTIVEC_BUILTIN_VCMPEQFP_P,
|
||
ALTIVEC_BUILTIN_VCMPEQUB_P,
|
||
ALTIVEC_BUILTIN_VCMPEQUH_P,
|
||
ALTIVEC_BUILTIN_VCMPEQUW_P,
|
||
ALTIVEC_BUILTIN_VCMPGEFP_P,
|
||
ALTIVEC_BUILTIN_VCMPGTFP_P,
|
||
ALTIVEC_BUILTIN_VCMPGTSB_P,
|
||
ALTIVEC_BUILTIN_VCMPGTSH_P,
|
||
ALTIVEC_BUILTIN_VCMPGTSW_P,
|
||
ALTIVEC_BUILTIN_VCMPGTUB_P,
|
||
ALTIVEC_BUILTIN_VCMPGTUH_P,
|
||
ALTIVEC_BUILTIN_VCMPGTUW_P,
|
||
ALTIVEC_BUILTIN_MTVSCR,
|
||
ALTIVEC_BUILTIN_MFVSCR,
|
||
ALTIVEC_BUILTIN_DSSALL,
|
||
ALTIVEC_BUILTIN_DSS,
|
||
ALTIVEC_BUILTIN_LVSL,
|
||
ALTIVEC_BUILTIN_LVSR,
|
||
ALTIVEC_BUILTIN_DSTT,
|
||
ALTIVEC_BUILTIN_DSTST,
|
||
ALTIVEC_BUILTIN_DSTSTT,
|
||
ALTIVEC_BUILTIN_DST,
|
||
ALTIVEC_BUILTIN_LVEBX,
|
||
ALTIVEC_BUILTIN_LVEHX,
|
||
ALTIVEC_BUILTIN_LVEWX,
|
||
ALTIVEC_BUILTIN_LVXL,
|
||
ALTIVEC_BUILTIN_LVX,
|
||
ALTIVEC_BUILTIN_STVX,
|
||
ALTIVEC_BUILTIN_STVEBX,
|
||
ALTIVEC_BUILTIN_STVEHX,
|
||
ALTIVEC_BUILTIN_STVEWX,
|
||
ALTIVEC_BUILTIN_STVXL
|
||
};
|