David E. O'Brien 1952e2e1c1 Enlist the FreeBSD-CURRENT users as testers of what is to become Gcc 3.1.0.
These bits are taken from the FSF anoncvs repo on 1-Feb-2002 08:20 PST.
2002-02-01 18:16:02 +00:00

2975 lines
112 KiB
C++
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Definitions of target machine for GNU compiler, for IBM RS/6000.
Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
2000, 2001, 2002 Free Software Foundation, Inc.
Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* Note that some other tm.h files include this one and then override
many of the definitions. */
/* Definitions for the object file format. These are set at
compile-time. */
#define OBJECT_XCOFF 1
#define OBJECT_ELF 2
#define OBJECT_PEF 3
#define OBJECT_MACHO 4
#define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
#define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
#define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
#define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
#ifndef TARGET_AIX
#define TARGET_AIX 0
#endif
/* Default string to use for cpu if not specified. */
#ifndef TARGET_CPU_DEFAULT
#define TARGET_CPU_DEFAULT ((char *)0)
#endif
/* Common CPP definitions used by CPP_SPEC among the various targets
for handling -mcpu=xxx switches. */
#define CPP_CPU_SPEC \
"%{!mcpu*: \
%{mpower: %{!mpower2: -D_ARCH_PWR}} \
%{mpower2: -D_ARCH_PWR2} \
%{mpowerpc*: -D_ARCH_PPC} \
%{mno-power: %{!mpowerpc*: -D_ARCH_COM}} \
%{!mno-power: %{!mpower2: %(cpp_default)}}} \
%{mcpu=common: -D_ARCH_COM} \
%{mcpu=power: -D_ARCH_PWR} \
%{mcpu=power2: -D_ARCH_PWR2} \
%{mcpu=powerpc: -D_ARCH_PPC} \
%{mcpu=rios: -D_ARCH_PWR} \
%{mcpu=rios1: -D_ARCH_PWR} \
%{mcpu=rios2: -D_ARCH_PWR2} \
%{mcpu=rsc: -D_ARCH_PWR} \
%{mcpu=rsc1: -D_ARCH_PWR} \
%{mcpu=401: -D_ARCH_PPC} \
%{mcpu=403: -D_ARCH_PPC} \
%{mcpu=405: -D_ARCH_PPC} \
%{mcpu=505: -D_ARCH_PPC} \
%{mcpu=601: -D_ARCH_PPC -D_ARCH_PWR} \
%{mcpu=602: -D_ARCH_PPC} \
%{mcpu=603: -D_ARCH_PPC} \
%{mcpu=603e: -D_ARCH_PPC} \
%{mcpu=ec603e: -D_ARCH_PPC} \
%{mcpu=604: -D_ARCH_PPC} \
%{mcpu=604e: -D_ARCH_PPC} \
%{mcpu=620: -D_ARCH_PPC} \
%{mcpu=740: -D_ARCH_PPC} \
%{mcpu=7400: -D_ARCH_PPC} \
%{mcpu=7450: -D_ARCH_PPC} \
%{mcpu=750: -D_ARCH_PPC} \
%{mcpu=801: -D_ARCH_PPC} \
%{mcpu=821: -D_ARCH_PPC} \
%{mcpu=823: -D_ARCH_PPC} \
%{mcpu=860: -D_ARCH_PPC} \
%{maltivec: -D__ALTIVEC__}"
/* Common ASM definitions used by ASM_SPEC among the various targets
for handling -mcpu=xxx switches. */
#define ASM_CPU_SPEC \
"%{!mcpu*: \
%{mpower: %{!mpower2: -mpwr}} \
%{mpower2: -mpwrx} \
%{mpowerpc*: -mppc} \
%{mno-power: %{!mpowerpc*: -mcom}} \
%{!mno-power: %{!mpower2: %(asm_default)}}} \
%{mcpu=common: -mcom} \
%{mcpu=power: -mpwr} \
%{mcpu=power2: -mpwrx} \
%{mcpu=powerpc: -mppc} \
%{mcpu=rios: -mpwr} \
%{mcpu=rios1: -mpwr} \
%{mcpu=rios2: -mpwrx} \
%{mcpu=rsc: -mpwr} \
%{mcpu=rsc1: -mpwr} \
%{mcpu=401: -mppc} \
%{mcpu=403: -mppc} \
%{mcpu=405: -mppc} \
%{mcpu=505: -mppc} \
%{mcpu=601: -m601} \
%{mcpu=602: -mppc} \
%{mcpu=603: -mppc} \
%{mcpu=603e: -mppc} \
%{mcpu=ec603e: -mppc} \
%{mcpu=604: -mppc} \
%{mcpu=604e: -mppc} \
%{mcpu=620: -mppc} \
%{mcpu=740: -mppc} \
%{mcpu=7400: -mppc} \
%{mcpu=7450: -mppc} \
%{mcpu=750: -mppc} \
%{mcpu=801: -mppc} \
%{mcpu=821: -mppc} \
%{mcpu=823: -mppc} \
%{mcpu=860: -mppc} \
%{maltivec: -maltivec}"
#define CPP_DEFAULT_SPEC ""
#define ASM_DEFAULT_SPEC ""
/* This macro defines names of additional specifications to put in the specs
that can be used in various specifications like CC1_SPEC. Its definition
is an initializer with a subgrouping for each command option.
Each subgrouping contains a string constant, that defines the
specification name, and a string constant that used by the GNU CC driver
program.
Do not define this macro if it does not need to do anything. */
#define SUBTARGET_EXTRA_SPECS
#define EXTRA_SPECS \
{ "cpp_cpu", CPP_CPU_SPEC }, \
{ "cpp_default", CPP_DEFAULT_SPEC }, \
{ "asm_cpu", ASM_CPU_SPEC }, \
{ "asm_default", ASM_DEFAULT_SPEC }, \
SUBTARGET_EXTRA_SPECS
/* Architecture type. */
extern int target_flags;
/* Use POWER architecture instructions and MQ register. */
#define MASK_POWER 0x00000001
/* Use POWER2 extensions to POWER architecture. */
#define MASK_POWER2 0x00000002
/* Use PowerPC architecture instructions. */
#define MASK_POWERPC 0x00000004
/* Use PowerPC General Purpose group optional instructions, e.g. fsqrt. */
#define MASK_PPC_GPOPT 0x00000008
/* Use PowerPC Graphics group optional instructions, e.g. fsel. */
#define MASK_PPC_GFXOPT 0x00000010
/* Use PowerPC-64 architecture instructions. */
#define MASK_POWERPC64 0x00000020
/* Use revised mnemonic names defined for PowerPC architecture. */
#define MASK_NEW_MNEMONICS 0x00000040
/* Disable placing fp constants in the TOC; can be turned on when the
TOC overflows. */
#define MASK_NO_FP_IN_TOC 0x00000080
/* Disable placing symbol+offset constants in the TOC; can be turned on when
the TOC overflows. */
#define MASK_NO_SUM_IN_TOC 0x00000100
/* Output only one TOC entry per module. Normally linking fails if
there are more than 16K unique variables/constants in an executable. With
this option, linking fails only if there are more than 16K modules, or
if there are more than 16K unique variables/constant in a single module.
This is at the cost of having 2 extra loads and one extra store per
function, and one less allocable register. */
#define MASK_MINIMAL_TOC 0x00000200
/* Nonzero for the 64bit model: ints, longs, and pointers are 64 bits. */
#define MASK_64BIT 0x00000400
/* Disable use of FPRs. */
#define MASK_SOFT_FLOAT 0x00000800
/* Enable load/store multiple, even on powerpc */
#define MASK_MULTIPLE 0x00001000
#define MASK_MULTIPLE_SET 0x00002000
/* Use string instructions for block moves */
#define MASK_STRING 0x00004000
#define MASK_STRING_SET 0x00008000
/* Disable update form of load/store */
#define MASK_NO_UPDATE 0x00010000
/* Disable fused multiply/add operations */
#define MASK_NO_FUSED_MADD 0x00020000
/* Nonzero if we need to schedule the prolog and epilog. */
#define MASK_SCHED_PROLOG 0x00040000
/* Use AltiVec instructions. */
#define MASK_ALTIVEC 0x00080000
/* Return small structures in memory (as the AIX ABI requires). */
#define MASK_AIX_STRUCT_RET 0x00100000
#define MASK_AIX_STRUCT_RET_SET 0x00200000
/* The only remaining free bit is 0x00400000. sysv4.h uses
0x00800000 -> 0x40000000, and 0x80000000 is not available
because target_flags is signed. */
#define TARGET_POWER (target_flags & MASK_POWER)
#define TARGET_POWER2 (target_flags & MASK_POWER2)
#define TARGET_POWERPC (target_flags & MASK_POWERPC)
#define TARGET_PPC_GPOPT (target_flags & MASK_PPC_GPOPT)
#define TARGET_PPC_GFXOPT (target_flags & MASK_PPC_GFXOPT)
#define TARGET_NEW_MNEMONICS (target_flags & MASK_NEW_MNEMONICS)
#define TARGET_NO_FP_IN_TOC (target_flags & MASK_NO_FP_IN_TOC)
#define TARGET_NO_SUM_IN_TOC (target_flags & MASK_NO_SUM_IN_TOC)
#define TARGET_MINIMAL_TOC (target_flags & MASK_MINIMAL_TOC)
#define TARGET_64BIT (target_flags & MASK_64BIT)
#define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
#define TARGET_MULTIPLE (target_flags & MASK_MULTIPLE)
#define TARGET_MULTIPLE_SET (target_flags & MASK_MULTIPLE_SET)
#define TARGET_STRING (target_flags & MASK_STRING)
#define TARGET_STRING_SET (target_flags & MASK_STRING_SET)
#define TARGET_NO_UPDATE (target_flags & MASK_NO_UPDATE)
#define TARGET_NO_FUSED_MADD (target_flags & MASK_NO_FUSED_MADD)
#define TARGET_SCHED_PROLOG (target_flags & MASK_SCHED_PROLOG)
#define TARGET_ALTIVEC (target_flags & MASK_ALTIVEC)
#define TARGET_AIX_STRUCT_RET (target_flags & MASK_AIX_STRUCT_RET)
#define TARGET_32BIT (! TARGET_64BIT)
#define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
#define TARGET_UPDATE (! TARGET_NO_UPDATE)
#define TARGET_FUSED_MADD (! TARGET_NO_FUSED_MADD)
#ifdef IN_LIBGCC2
/* For libgcc2 we make sure this is a compile time constant */
#if defined (__64BIT__) || defined (__powerpc64__)
#define TARGET_POWERPC64 1
#else
#define TARGET_POWERPC64 0
#endif
#else
#define TARGET_POWERPC64 (target_flags & MASK_POWERPC64)
#endif
#define TARGET_XL_CALL 0
/* Run-time compilation parameters selecting different hardware subsets.
Macro to define tables used to set the flags.
This is a list in braces of pairs in braces,
each pair being { "NAME", VALUE }
where VALUE is the bits to set or minus the bits to clear.
An empty string NAME is used to identify the default VALUE. */
#define TARGET_SWITCHES \
{{"power", MASK_POWER | MASK_MULTIPLE | MASK_STRING, \
N_("Use POWER instruction set")}, \
{"power2", (MASK_POWER | MASK_MULTIPLE | MASK_STRING \
| MASK_POWER2), \
N_("Use POWER2 instruction set")}, \
{"no-power2", - MASK_POWER2, \
N_("Do not use POWER2 instruction set")}, \
{"no-power", - (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE \
| MASK_STRING), \
N_("Do not use POWER instruction set")}, \
{"powerpc", MASK_POWERPC, \
N_("Use PowerPC instruction set")}, \
{"no-powerpc", - (MASK_POWERPC | MASK_PPC_GPOPT \
| MASK_PPC_GFXOPT | MASK_POWERPC64), \
N_("Do not use PowerPC instruction set")}, \
{"powerpc-gpopt", MASK_POWERPC | MASK_PPC_GPOPT, \
N_("Use PowerPC General Purpose group optional instructions")},\
{"no-powerpc-gpopt", - MASK_PPC_GPOPT, \
N_("Don't use PowerPC General Purpose group optional instructions")},\
{"powerpc-gfxopt", MASK_POWERPC | MASK_PPC_GFXOPT, \
N_("Use PowerPC Graphics group optional instructions")},\
{"no-powerpc-gfxopt", - MASK_PPC_GFXOPT, \
N_("Don't use PowerPC Graphics group optional instructions")},\
{"powerpc64", MASK_POWERPC64, \
N_("Use PowerPC-64 instruction set")}, \
{"no-powerpc64", - MASK_POWERPC64, \
N_("Don't use PowerPC-64 instruction set")}, \
{"altivec", MASK_ALTIVEC , \
N_("Use AltiVec instructions")}, \
{"no-altivec", - MASK_ALTIVEC , \
N_("Don't use AltiVec instructions")}, \
{"new-mnemonics", MASK_NEW_MNEMONICS, \
N_("Use new mnemonics for PowerPC architecture")},\
{"old-mnemonics", -MASK_NEW_MNEMONICS, \
N_("Use old mnemonics for PowerPC architecture")},\
{"full-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC \
| MASK_MINIMAL_TOC), \
N_("Put everything in the regular TOC")}, \
{"fp-in-toc", - MASK_NO_FP_IN_TOC, \
N_("Place floating point constants in TOC")}, \
{"no-fp-in-toc", MASK_NO_FP_IN_TOC, \
N_("Don't place floating point constants in TOC")},\
{"sum-in-toc", - MASK_NO_SUM_IN_TOC, \
N_("Place symbol+offset constants in TOC")}, \
{"no-sum-in-toc", MASK_NO_SUM_IN_TOC, \
N_("Don't place symbol+offset constants in TOC")},\
{"minimal-toc", MASK_MINIMAL_TOC, \
"Use only one TOC entry per procedure"}, \
{"minimal-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC), \
""}, \
{"no-minimal-toc", - MASK_MINIMAL_TOC, \
N_("Place variable addresses in the regular TOC")},\
{"hard-float", - MASK_SOFT_FLOAT, \
N_("Use hardware fp")}, \
{"soft-float", MASK_SOFT_FLOAT, \
N_("Do not use hardware fp")}, \
{"multiple", MASK_MULTIPLE | MASK_MULTIPLE_SET, \
N_("Generate load/store multiple instructions")}, \
{"no-multiple", - MASK_MULTIPLE, \
N_("Do not generate load/store multiple instructions")},\
{"no-multiple", MASK_MULTIPLE_SET, \
""}, \
{"string", MASK_STRING | MASK_STRING_SET, \
N_("Generate string instructions for block moves")},\
{"no-string", - MASK_STRING, \
N_("Do not generate string instructions for block moves")},\
{"no-string", MASK_STRING_SET, \
""}, \
{"update", - MASK_NO_UPDATE, \
N_("Generate load/store with update instructions")},\
{"no-update", MASK_NO_UPDATE, \
N_("Do not generate load/store with update instructions")},\
{"fused-madd", - MASK_NO_FUSED_MADD, \
N_("Generate fused multiply/add instructions")},\
{"no-fused-madd", MASK_NO_FUSED_MADD, \
N_("Don't generate fused multiply/add instructions")},\
{"sched-prolog", MASK_SCHED_PROLOG, \
""}, \
{"no-sched-prolog", -MASK_SCHED_PROLOG, \
N_("Don't schedule the start and end of the procedure")},\
{"sched-epilog", MASK_SCHED_PROLOG, \
""}, \
{"no-sched-epilog", -MASK_SCHED_PROLOG, \
""}, \
{"aix-struct-return", MASK_AIX_STRUCT_RET | MASK_AIX_STRUCT_RET_SET, \
N_("Return all structures in memory (AIX default)")},\
{"svr4-struct-return", - MASK_AIX_STRUCT_RET,\
N_("Return small structures in registers (SVR4 default)")},\
{"svr4-struct-return",MASK_AIX_STRUCT_RET_SET,\
""},\
{"no-aix-struct-return", - MASK_AIX_STRUCT_RET,\
""},\
{"no-aix-struct-return", MASK_AIX_STRUCT_RET_SET,\
""},\
{"no-svr4-struct-return", MASK_AIX_STRUCT_RET | MASK_AIX_STRUCT_RET_SET,\
""},\
SUBTARGET_SWITCHES \
{"", TARGET_DEFAULT | MASK_SCHED_PROLOG, \
""}}
#define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
/* This is meant to be redefined in the host dependent files */
#define SUBTARGET_SWITCHES
/* Processor type. Order must match cpu attribute in MD file. */
enum processor_type
{
PROCESSOR_RIOS1,
PROCESSOR_RIOS2,
PROCESSOR_RS64A,
PROCESSOR_MPCCORE,
PROCESSOR_PPC403,
PROCESSOR_PPC405,
PROCESSOR_PPC601,
PROCESSOR_PPC603,
PROCESSOR_PPC604,
PROCESSOR_PPC604e,
PROCESSOR_PPC620,
PROCESSOR_PPC630,
PROCESSOR_PPC750,
PROCESSOR_PPC7400,
PROCESSOR_PPC7450
};
extern enum processor_type rs6000_cpu;
/* Recast the processor type to the cpu attribute. */
#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
/* Define generic processor types based upon current deployment. */
#define PROCESSOR_COMMON PROCESSOR_PPC601
#define PROCESSOR_POWER PROCESSOR_RIOS1
#define PROCESSOR_POWERPC PROCESSOR_PPC604
#define PROCESSOR_POWERPC64 PROCESSOR_RS64A
/* Define the default processor. This is overridden by other tm.h files. */
#define PROCESSOR_DEFAULT PROCESSOR_RIOS1
#define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
/* Specify the dialect of assembler to use. New mnemonics is dialect one
and the old mnemonics are dialect zero. */
#define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
/* This is meant to be overridden in target specific files. */
#define SUBTARGET_OPTIONS
#define TARGET_OPTIONS \
{ \
{"cpu=", &rs6000_select[1].string, \
N_("Use features of and schedule code for given CPU") }, \
{"tune=", &rs6000_select[2].string, \
N_("Schedule code for given CPU") }, \
{"debug=", &rs6000_debug_name, N_("Enable debug output") }, \
{"abi=", &rs6000_abi_string, N_("Specify ABI to use") }, \
{"long-double-", &rs6000_long_double_size_string, \
N_("Specify size of long double (64 or 128 bits)") }, \
SUBTARGET_OPTIONS \
}
/* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
struct rs6000_cpu_select
{
const char *string;
const char *name;
int set_tune_p;
int set_arch_p;
};
extern struct rs6000_cpu_select rs6000_select[];
/* Debug support */
extern const char *rs6000_debug_name; /* Name for -mdebug-xxxx option */
extern const char *rs6000_abi_string; /* for -mabi={sysv,darwin,eabi,aix,altivec} */
extern int rs6000_debug_stack; /* debug stack applications */
extern int rs6000_debug_arg; /* debug argument handling */
#define TARGET_DEBUG_STACK rs6000_debug_stack
#define TARGET_DEBUG_ARG rs6000_debug_arg
/* These are separate from target_flags because we've run out of bits
there. */
extern const char *rs6000_long_double_size_string;
extern int rs6000_long_double_type_size;
extern int rs6000_altivec_abi;
#define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
#define TARGET_ALTIVEC_ABI rs6000_altivec_abi
/* Sometimes certain combinations of command options do not make sense
on a particular target machine. You can define a macro
`OVERRIDE_OPTIONS' to take account of this. This macro, if
defined, is executed once just after all the command options have
been parsed.
Don't use this macro to turn on various extra optimizations for
`-O'. That is what `OPTIMIZATION_OPTIONS' is for.
On the RS/6000 this is used to define the target cpu type. */
#define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
/* Define this to change the optimizations performed by default. */
#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
/* Show we can debug even without a frame pointer. */
#define CAN_DEBUG_WITHOUT_FP
/* target machine storage layout */
/* Define to support cross compilation to an RS6000 target. */
#define REAL_ARITHMETIC
/* Define this macro if it is advisable to hold scalars in registers
in a wider mode than that declared by the program. In such cases,
the value is constrained to be within the bounds of the declared
type, but kept valid in the wider mode. The signedness of the
extension may differ from that of the type. */
#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
if (GET_MODE_CLASS (MODE) == MODE_INT \
&& GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
(MODE) = word_mode;
/* Define this if function arguments should also be promoted using the above
procedure. */
#define PROMOTE_FUNCTION_ARGS
/* Likewise, if the function return value is promoted. */
#define PROMOTE_FUNCTION_RETURN
/* Define this if most significant bit is lowest numbered
in instructions that operate on numbered bit-fields. */
/* That is true on RS/6000. */
#define BITS_BIG_ENDIAN 1
/* Define this if most significant byte of a word is the lowest numbered. */
/* That is true on RS/6000. */
#define BYTES_BIG_ENDIAN 1
/* Define this if most significant word of a multiword number is lowest
numbered.
For RS/6000 we can decide arbitrarily since there are no machine
instructions for them. Might as well be consistent with bits and bytes. */
#define WORDS_BIG_ENDIAN 1
/* number of bits in an addressable storage unit */
#define BITS_PER_UNIT 8
/* Width in bits of a "word", which is the contents of a machine register.
Note that this is not necessarily the width of data type `int';
if using 16-bit ints on a 68000, this would still be 32.
But on a machine with 16-bit registers, this would be 16. */
#define BITS_PER_WORD (! TARGET_POWERPC64 ? 32 : 64)
#define MAX_BITS_PER_WORD 64
/* Width of a word, in units (bytes). */
#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
#define MIN_UNITS_PER_WORD 4
#define UNITS_PER_FP_WORD 8
#define UNITS_PER_ALTIVEC_WORD 16
/* Type used for ptrdiff_t, as a string used in a declaration. */
#define PTRDIFF_TYPE "int"
/* Type used for size_t, as a string used in a declaration. */
#define SIZE_TYPE "long unsigned int"
/* Type used for wchar_t, as a string used in a declaration. */
#define WCHAR_TYPE "short unsigned int"
/* Width of wchar_t in bits. */
#define WCHAR_TYPE_SIZE 16
/* A C expression for the size in bits of the type `short' on the
target machine. If you don't define this, the default is half a
word. (If this would be less than one storage unit, it is
rounded up to one unit.) */
#define SHORT_TYPE_SIZE 16
/* A C expression for the size in bits of the type `int' on the
target machine. If you don't define this, the default is one
word. */
#define INT_TYPE_SIZE 32
/* A C expression for the size in bits of the type `long' on the
target machine. If you don't define this, the default is one
word. */
#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
#define MAX_LONG_TYPE_SIZE 64
/* A C expression for the size in bits of the type `long long' on the
target machine. If you don't define this, the default is two
words. */
#define LONG_LONG_TYPE_SIZE 64
/* A C expression for the size in bits of the type `char' on the
target machine. If you don't define this, the default is one
quarter of a word. (If this would be less than one storage unit,
it is rounded up to one unit.) */
#define CHAR_TYPE_SIZE BITS_PER_UNIT
/* A C expression for the size in bits of the type `float' on the
target machine. If you don't define this, the default is one
word. */
#define FLOAT_TYPE_SIZE 32
/* A C expression for the size in bits of the type `double' on the
target machine. If you don't define this, the default is two
words. */
#define DOUBLE_TYPE_SIZE 64
/* A C expression for the size in bits of the type `long double' on
the target machine. If you don't define this, the default is two
words. */
#define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
/* Constant which presents upper bound of the above value. */
#define MAX_LONG_DOUBLE_TYPE_SIZE 128
/* Define this to set long double type size to use in libgcc2.c, which can
not depend on target_flags. */
#ifdef __LONG_DOUBLE_128__
#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
#else
#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
#endif
/* Width in bits of a pointer.
See also the macro `Pmode' defined below. */
#define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
/* Boundary (in *bits*) on which stack pointer should be aligned. */
#define STACK_BOUNDARY ((TARGET_32BIT && !TARGET_ALTIVEC_ABI) ? 64 : 128)
/* Allocation boundary (in *bits*) for the code of a function. */
#define FUNCTION_BOUNDARY 32
/* No data type wants to be aligned rounder than this. */
#define BIGGEST_ALIGNMENT 128
/* A C expression to compute the alignment for a variables in the
local store. TYPE is the data type, and ALIGN is the alignment
that the object would ordinarily have. */
#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
((TARGET_ALTIVEC && TREE_CODE (TYPE) == VECTOR_TYPE) ? 128 : ALIGN)
/* Handle #pragma pack. */
#define HANDLE_PRAGMA_PACK 1
/* Alignment of field after `int : 0' in a structure. */
#define EMPTY_FIELD_BOUNDARY 32
/* Every structure's size must be a multiple of this. */
#define STRUCTURE_SIZE_BOUNDARY 8
/* A bitfield declared as `int' forces `int' alignment for the struct. */
#define PCC_BITFIELD_TYPE_MATTERS 1
/* Make strings word-aligned so strcpy from constants will be faster. */
#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
(TREE_CODE (EXP) == STRING_CST \
&& (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
/* Make arrays of chars word-aligned for the same reasons.
Align vectors to 128 bits. */
#define DATA_ALIGNMENT(TYPE, ALIGN) \
(TREE_CODE (TYPE) == VECTOR_TYPE ? 128 \
: TREE_CODE (TYPE) == ARRAY_TYPE \
&& TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
&& (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
/* Non-zero if move instructions will actually fail to work
when given unaligned data. */
#define STRICT_ALIGNMENT 0
/* Define this macro to be the value 1 if unaligned accesses have a cost
many times greater than aligned accesses, for example if they are
emulated in a trap handler. */
#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
(STRICT_ALIGNMENT \
|| (((MODE) == SFmode || (MODE) == DFmode || (MODE) == DImode) \
&& (ALIGN) < 32))
/* Standard register usage. */
/* Number of actual hardware registers.
The hardware registers are assigned numbers for the compiler
from 0 to just below FIRST_PSEUDO_REGISTER.
All registers that the compiler knows about must be given numbers,
even those that are not normally considered general registers.
RS/6000 has 32 fixed-point registers, 32 floating-point registers,
an MQ register, a count register, a link register, and 8 condition
register fields, which we view here as separate registers.
In addition, the difference between the frame and argument pointers is
a function of the number of registers saved, so we need to have a
register for AP that will later be eliminated in favor of SP or FP.
This is a normal register, but it is fixed.
We also create a pseudo register for float/int conversions, that will
really represent the memory location used. It is represented here as
a register, in order to work around problems in allocating stack storage
in inline functions. */
#define FIRST_PSEUDO_REGISTER 110
/* This must be included for pre gcc 3.0 glibc compatibility. */
#define PRE_GCC3_DWARF_FRAME_REGISTERS 77
/* 1 for registers that have pervasive standard uses
and are not available for the register allocator.
On RS/6000, r1 is used for the stack. On Darwin, r2 is available
as a local register; for all other OS's r2 is the TOC pointer.
cr5 is not supposed to be used.
On System V implementations, r13 is fixed and not available for use. */
#define FIXED_REGISTERS \
{0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \
/* AltiVec registers. */ \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1 \
}
/* 1 for registers not available across function calls.
These must include the FIXED_REGISTERS and also any
registers that can be used without being saved.
The latter must include the registers where values are returned
and the register where structure-value addresses are passed.
Aside from that, you can include as many other registers as you like. */
#define CALL_USED_REGISTERS \
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
/* AltiVec registers. */ \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1 \
}
/* Like `CALL_USED_REGISTERS' except this macro doesn't require that
the entire set of `FIXED_REGISTERS' be included.
(`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
This macro is optional. If not specified, it defaults to the value
of `CALL_USED_REGISTERS'. */
#define CALL_REALLY_USED_REGISTERS \
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
/* AltiVec registers. */ \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0 \
}
#define MQ_REGNO 64
#define CR0_REGNO 68
#define CR1_REGNO 69
#define CR2_REGNO 70
#define CR3_REGNO 71
#define CR4_REGNO 72
#define MAX_CR_REGNO 75
#define XER_REGNO 76
#define FIRST_ALTIVEC_REGNO 77
#define LAST_ALTIVEC_REGNO 108
#define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO)
#define VRSAVE_REGNO 109
/* List the order in which to allocate registers. Each register must be
listed once, even those in FIXED_REGISTERS.
We allocate in the following order:
fp0 (not saved or used for anything)
fp13 - fp2 (not saved; incoming fp arg registers)
fp1 (not saved; return value)
fp31 - fp14 (saved; order given to save least number)
cr7, cr6 (not saved or special)
cr1 (not saved, but used for FP operations)
cr0 (not saved, but used for arithmetic operations)
cr4, cr3, cr2 (saved)
r0 (not saved; cannot be base reg)
r9 (not saved; best for TImode)
r11, r10, r8-r4 (not saved; highest used first to make less conflict)
r3 (not saved; return value register)
r31 - r13 (saved; order given to save least number)
r12 (not saved; if used for DImode or DFmode would use r13)
mq (not saved; best to use it if we can)
ctr (not saved; when we have the choice ctr is better)
lr (saved)
cr5, r1, r2, ap, xer, vrsave (fixed)
AltiVec registers:
v0 - v1 (not saved or used for anything)
v13 - v3 (not saved; incoming vector arg registers)
v2 (not saved; incoming vector arg reg; return value)
v19 - v14 (not saved or used for anything)
v31 - v20 (saved; order given to save least number)
*/
#define REG_ALLOC_ORDER \
{32, \
45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
33, \
63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
50, 49, 48, 47, 46, \
75, 74, 69, 68, 72, 71, 70, \
0, \
9, 11, 10, 8, 7, 6, 5, 4, \
3, \
31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
18, 17, 16, 15, 14, 13, 12, \
64, 66, 65, \
73, 1, 2, 67, 76, \
/* AltiVec registers. */ \
77, 78, \
90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
79, \
96, 95, 94, 93, 92, 91, \
108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, \
97, 109 \
}
/* True if register is floating-point. */
#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
/* True if register is a condition register. */
#define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
/* True if register is a condition register, but not cr0. */
#define CR_REGNO_NOT_CR0_P(N) ((N) >= 69 && (N) <= 75)
/* True if register is an integer register. */
#define INT_REGNO_P(N) ((N) <= 31 || (N) == ARG_POINTER_REGNUM)
/* True if register is the XER register. */
#define XER_REGNO_P(N) ((N) == XER_REGNO)
/* True if register is an AltiVec register. */
#define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
/* Return number of consecutive hard regs needed starting at reg REGNO
to hold something of mode MODE.
This is ordinarily the length in words of a value of mode MODE
but can be less for certain modes in special long registers.
POWER and PowerPC GPRs hold 32 bits worth;
PowerPC64 GPRs and FPRs point register holds 64 bits worth. */
#define HARD_REGNO_NREGS(REGNO, MODE) \
(FP_REGNO_P (REGNO) \
? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
: ALTIVEC_REGNO_P (REGNO) \
? ((GET_MODE_SIZE (MODE) + UNITS_PER_ALTIVEC_WORD - 1) / UNITS_PER_ALTIVEC_WORD) \
: ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
#define ALTIVEC_VECTOR_MODE(MODE) \
((MODE) == V16QImode \
|| (MODE) == V8HImode \
|| (MODE) == V4SFmode \
|| (MODE) == V4SImode)
/* Define this macro to be nonzero if the port is prepared to handle
insns involving vector mode MODE. At the very least, it must have
move patterns for this mode. */
#define VECTOR_MODE_SUPPORTED_P(MODE) \
(TARGET_ALTIVEC && ALTIVEC_VECTOR_MODE (MODE))
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
For POWER and PowerPC, the GPRs can hold any mode, but the float
registers only can hold floating modes and DImode, and CR register only
can hold CC modes. We cannot put TImode anywhere except general
register and it must be able to fit within the register set. */
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
(FP_REGNO_P (REGNO) ? \
(GET_MODE_CLASS (MODE) == MODE_FLOAT \
|| (GET_MODE_CLASS (MODE) == MODE_INT \
&& GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD)) \
: ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_VECTOR_MODE (MODE) \
: CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \
: XER_REGNO_P (REGNO) ? (MODE) == PSImode \
: ! INT_REGNO_P (REGNO) ? (GET_MODE_CLASS (MODE) == MODE_INT \
&& GET_MODE_SIZE (MODE) <= UNITS_PER_WORD) \
: 1)
/* Value is 1 if it is a good idea to tie two pseudo registers
when one has mode MODE1 and one has mode MODE2.
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
for any hard reg, then this must be 0 for correct output. */
#define MODES_TIEABLE_P(MODE1, MODE2) \
(GET_MODE_CLASS (MODE1) == MODE_FLOAT \
? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
: GET_MODE_CLASS (MODE2) == MODE_FLOAT \
? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
: GET_MODE_CLASS (MODE1) == MODE_CC \
? GET_MODE_CLASS (MODE2) == MODE_CC \
: GET_MODE_CLASS (MODE2) == MODE_CC \
? GET_MODE_CLASS (MODE1) == MODE_CC \
: ALTIVEC_VECTOR_MODE (MODE1) \
? ALTIVEC_VECTOR_MODE (MODE2) \
: ALTIVEC_VECTOR_MODE (MODE2) \
? ALTIVEC_VECTOR_MODE (MODE1) \
: 1)
/* A C expression returning the cost of moving data from a register of class
CLASS1 to one of CLASS2.
On the RS/6000, copying between floating-point and fixed-point
registers is expensive. */
#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
((CLASS1) == FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 2 \
: (CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS ? 10 \
: (CLASS1) != FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 10 \
: (CLASS1) == ALTIVEC_REGS && (CLASS2) != ALTIVEC_REGS ? 20 \
: (CLASS1) != ALTIVEC_REGS && (CLASS2) == ALTIVEC_REGS ? 20 \
: (((CLASS1) == SPECIAL_REGS || (CLASS1) == MQ_REGS \
|| (CLASS1) == LINK_REGS || (CLASS1) == CTR_REGS \
|| (CLASS1) == LINK_OR_CTR_REGS) \
&& ((CLASS2) == SPECIAL_REGS || (CLASS2) == MQ_REGS \
|| (CLASS2) == LINK_REGS || (CLASS2) == CTR_REGS \
|| (CLASS2) == LINK_OR_CTR_REGS)) ? 10 \
: 2)
/* A C expressions returning the cost of moving data of MODE from a register to
or from memory.
On the RS/6000, bump this up a bit. */
#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
((GET_MODE_CLASS (MODE) == MODE_FLOAT \
&& (rs6000_cpu == PROCESSOR_RIOS1 || rs6000_cpu == PROCESSOR_PPC601) \
? 3 : 2) \
+ 4)
/* Specify the cost of a branch insn; roughly the number of extra insns that
should be added to avoid a branch.
Set this to 3 on the RS/6000 since that is roughly the average cost of an
unscheduled conditional branch. */
#define BRANCH_COST 3
/* Define this macro to change register usage conditional on target flags.
Set MQ register fixed (already call_used) if not POWER architecture
(RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated.
64-bit AIX reserves GPR13 for thread-private data.
Conditionally disable FPRs. */
#define CONDITIONAL_REGISTER_USAGE \
{ \
int i; \
if (! TARGET_POWER) \
fixed_regs[64] = 1; \
if (TARGET_64BIT) \
fixed_regs[13] = call_used_regs[13] \
= call_really_used_regs[13] = 1; \
if (TARGET_SOFT_FLOAT) \
for (i = 32; i < 64; i++) \
fixed_regs[i] = call_used_regs[i] \
= call_really_used_regs[i] = 1; \
if (DEFAULT_ABI == ABI_V4 && flag_pic == 1) \
fixed_regs[PIC_OFFSET_TABLE_REGNUM] \
= call_used_regs[PIC_OFFSET_TABLE_REGNUM] \
= call_really_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
if (DEFAULT_ABI == ABI_DARWIN && flag_pic) \
global_regs[PIC_OFFSET_TABLE_REGNUM] \
= fixed_regs[PIC_OFFSET_TABLE_REGNUM] \
= call_used_regs[PIC_OFFSET_TABLE_REGNUM] \
= call_really_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
if (! TARGET_ALTIVEC) \
for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i) \
fixed_regs[i] = call_used_regs[i] = call_really_used_regs[i] = 1; \
if (TARGET_ALTIVEC_ABI) \
for (i = FIRST_ALTIVEC_REGNO; i < FIRST_ALTIVEC_REGNO + 20; ++i) \
call_used_regs[i] = call_really_used_regs[i] = 1; \
}
/* Specify the registers used for certain standard purposes.
The values of these macros are register numbers. */
/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
/* #define PC_REGNUM */
/* Register to use for pushing function arguments. */
#define STACK_POINTER_REGNUM 1
/* Base register for access to local variables of the function. */
#define FRAME_POINTER_REGNUM 31
/* Value should be nonzero if functions must have frame pointers.
Zero means the frame pointer need not be set up (and parms
may be accessed via the stack pointer) in functions that seem suitable.
This is computed in `reload', in reload1.c. */
#define FRAME_POINTER_REQUIRED 0
/* Base register for access to arguments of the function. */
#define ARG_POINTER_REGNUM 67
/* Place to put static chain when calling a function that requires it. */
#define STATIC_CHAIN_REGNUM 11
/* Link register number. */
#define LINK_REGISTER_REGNUM 65
/* Count register number. */
#define COUNT_REGISTER_REGNUM 66
/* Place that structure value return address is placed.
On the RS/6000, it is passed as an extra parameter. */
#define STRUCT_VALUE 0
/* Define the classes of registers for register constraints in the
machine description. Also define ranges of constants.
One of the classes must always be named ALL_REGS and include all hard regs.
If there is more than one class, another class must be named NO_REGS
and contain no registers.
The name GENERAL_REGS must be the name of a class (or an alias for
another name such as ALL_REGS). This is the class of registers
that is allowed by "g" or "r" in a register constraint.
Also, registers outside this class are allocated only when
instructions express preferences for them.
The classes must be numbered in nondecreasing order; that is,
a larger-numbered class must never be contained completely
in a smaller-numbered class.
For any two classes, it is very desirable that there be another
class that represents their union. */
/* The RS/6000 has three types of registers, fixed-point, floating-point,
and condition registers, plus three special registers, MQ, CTR, and the
link register.
However, r0 is special in that it cannot be used as a base register.
So make a class for registers valid as base registers.
Also, cr0 is the only condition code register that can be used in
arithmetic insns, so make a separate class for it. */
enum reg_class
{
NO_REGS,
BASE_REGS,
GENERAL_REGS,
FLOAT_REGS,
ALTIVEC_REGS,
VRSAVE_REGS,
NON_SPECIAL_REGS,
MQ_REGS,
LINK_REGS,
CTR_REGS,
LINK_OR_CTR_REGS,
SPECIAL_REGS,
SPEC_OR_GEN_REGS,
CR0_REGS,
CR_REGS,
NON_FLOAT_REGS,
XER_REGS,
ALL_REGS,
LIM_REG_CLASSES
};
#define N_REG_CLASSES (int) LIM_REG_CLASSES
/* Give names of register classes as strings for dump file. */
#define REG_CLASS_NAMES \
{ \
"NO_REGS", \
"BASE_REGS", \
"GENERAL_REGS", \
"FLOAT_REGS", \
"ALTIVEC_REGS", \
"VRSAVE_REGS", \
"NON_SPECIAL_REGS", \
"MQ_REGS", \
"LINK_REGS", \
"CTR_REGS", \
"LINK_OR_CTR_REGS", \
"SPECIAL_REGS", \
"SPEC_OR_GEN_REGS", \
"CR0_REGS", \
"CR_REGS", \
"NON_FLOAT_REGS", \
"XER_REGS", \
"ALL_REGS" \
}
/* Define which registers fit in which classes.
This is an initializer for a vector of HARD_REG_SET
of length N_REG_CLASSES. */
#define REG_CLASS_CONTENTS \
{ \
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
{ 0xfffffffe, 0x00000000, 0x00000008, 0x00000000 }, /* BASE_REGS */ \
{ 0xffffffff, 0x00000000, 0x00000008, 0x00000000 }, /* GENERAL_REGS */ \
{ 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \
{ 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \
{ 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \
{ 0xffffffff, 0xffffffff, 0x00000008, 0x00000000 }, /* NON_SPECIAL_REGS */ \
{ 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */ \
{ 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \
{ 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \
{ 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
{ 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */ \
{ 0xffffffff, 0x00000000, 0x0000000f, 0x00000000 }, /* SPEC_OR_GEN_REGS */ \
{ 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \
{ 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \
{ 0xffffffff, 0x00000000, 0x0000efff, 0x00000000 }, /* NON_FLOAT_REGS */ \
{ 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */ \
{ 0xffffffff, 0xffffffff, 0xffffffff, 0x00003fff } /* ALL_REGS */ \
}
/* The same information, inverted:
Return the class number of the smallest class containing
reg number REGNO. This could be a conditional expression
or could index an array. */
#define REGNO_REG_CLASS(REGNO) \
((REGNO) == 0 ? GENERAL_REGS \
: (REGNO) < 32 ? BASE_REGS \
: FP_REGNO_P (REGNO) ? FLOAT_REGS \
: ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_REGS \
: (REGNO) == CR0_REGNO ? CR0_REGS \
: CR_REGNO_P (REGNO) ? CR_REGS \
: (REGNO) == MQ_REGNO ? MQ_REGS \
: (REGNO) == LINK_REGISTER_REGNUM ? LINK_REGS \
: (REGNO) == COUNT_REGISTER_REGNUM ? CTR_REGS \
: (REGNO) == ARG_POINTER_REGNUM ? BASE_REGS \
: (REGNO) == XER_REGNO ? XER_REGS \
: (REGNO) == VRSAVE_REGNO ? VRSAVE_REGS \
: NO_REGS)
/* The class value for index registers, and the one for base regs. */
#define INDEX_REG_CLASS GENERAL_REGS
#define BASE_REG_CLASS BASE_REGS
/* Get reg_class from a letter such as appears in the machine description. */
#define REG_CLASS_FROM_LETTER(C) \
((C) == 'f' ? FLOAT_REGS \
: (C) == 'b' ? BASE_REGS \
: (C) == 'h' ? SPECIAL_REGS \
: (C) == 'q' ? MQ_REGS \
: (C) == 'c' ? CTR_REGS \
: (C) == 'l' ? LINK_REGS \
: (C) == 'v' ? ALTIVEC_REGS \
: (C) == 'x' ? CR0_REGS \
: (C) == 'y' ? CR_REGS \
: (C) == 'z' ? XER_REGS \
: NO_REGS)
/* The letters I, J, K, L, M, N, and P in a register constraint string
can be used to stand for particular ranges of immediate operands.
This macro defines what the ranges are.
C is the letter, and VALUE is a constant value.
Return 1 if VALUE is in the range specified by C.
`I' is a signed 16-bit constant
`J' is a constant with only the high-order 16 bits non-zero
`K' is a constant with only the low-order 16 bits non-zero
`L' is a signed 16-bit constant shifted left 16 bits
`M' is a constant that is greater than 31
`N' is a positive constant that is an exact power of two
`O' is the constant zero
`P' is a constant whose negation is a signed 16-bit constant */
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
: (C) == 'J' ? ((VALUE) & (~ (unsigned HOST_WIDE_INT) 0xffff0000)) == 0 \
: (C) == 'K' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff)) == 0 \
: (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
&& ((VALUE) >> 31 == -1 || (VALUE) >> 31 == 0)) \
: (C) == 'M' ? (VALUE) > 31 \
: (C) == 'N' ? (VALUE) > 0 && exact_log2 (VALUE) >= 0 \
: (C) == 'O' ? (VALUE) == 0 \
: (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x10000 \
: 0)
/* Similar, but for floating constants, and defining letters G and H.
Here VALUE is the CONST_DOUBLE rtx itself.
We flag for special constants when we can copy the constant into
a general register in two insns for DF/DI and one insn for SF.
'H' is used for DI/DF constants that take 3 insns. */
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
( (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) \
== ((GET_MODE (VALUE) == SFmode) ? 1 : 2)) \
: (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3) \
: 0)
/* Optional extra constraints for this machine.
'Q' means that is a memory operand that is just an offset from a reg.
'R' is for AIX TOC entries.
'S' is a constant that can be placed into a 64-bit mask operand
'T' is a consatnt that can be placed into a 32-bit mask operand
'U' is for V.4 small data references. */
#define EXTRA_CONSTRAINT(OP, C) \
((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
: (C) == 'R' ? LEGITIMATE_CONSTANT_POOL_ADDRESS_P (OP) \
: (C) == 'S' ? mask64_operand (OP, VOIDmode) \
: (C) == 'T' ? mask_operand (OP, VOIDmode) \
: (C) == 'U' ? (DEFAULT_ABI == ABI_V4 \
&& small_data_operand (OP, GET_MODE (OP))) \
: 0)
/* Given an rtx X being reloaded into a reg required to be
in class CLASS, return the class of reg to actually use.
In general this is just CLASS; but on some machines
in some cases it is preferable to use a more restrictive class.
On the RS/6000, we have to return NO_REGS when we want to reload a
floating-point CONST_DOUBLE to force it to be copied to memory.
We also don't want to reload integer values into floating-point
registers if we can at all help it. In fact, this can
cause reload to abort, if it tries to generate a reload of CTR
into a FP register and discovers it doesn't have the memory location
required.
??? Would it be a good idea to have reload do the converse, that is
try to reload floating modes into FP registers if possible?
*/
#define PREFERRED_RELOAD_CLASS(X,CLASS) \
(((GET_CODE (X) == CONST_DOUBLE \
&& GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
? NO_REGS \
: (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
&& (CLASS) == NON_SPECIAL_REGS) \
? GENERAL_REGS \
: (CLASS)))
/* Return the register class of a scratch register needed to copy IN into
or out of a register in CLASS in MODE. If it can be done directly,
NO_REGS is returned. */
#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
secondary_reload_class (CLASS, MODE, IN)
/* If we are copying between FP or AltiVec registers and anything
else, we need a memory location. */
#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS \
|| (CLASS2) == FLOAT_REGS \
|| (CLASS1) == ALTIVEC_REGS \
|| (CLASS2) == ALTIVEC_REGS))
/* Return the maximum number of consecutive registers
needed to represent mode MODE in a register of class CLASS.
On RS/6000, this is the size of MODE in words,
except in the FP regs, where a single reg is enough for two words. */
#define CLASS_MAX_NREGS(CLASS, MODE) \
(((CLASS) == FLOAT_REGS) \
? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
: ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
/* If defined, gives a class of registers that cannot be used as the
operand of a SUBREG that changes the mode of the object illegally. */
#define CLASS_CANNOT_CHANGE_MODE FLOAT_REGS
/* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE. */
#define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
(GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO))
/* Stack layout; function entry, exit and calling. */
/* Enumeration to give which calling sequence to use. */
enum rs6000_abi {
ABI_NONE,
ABI_AIX, /* IBM's AIX */
ABI_AIX_NODESC, /* AIX calling sequence minus
function descriptors */
ABI_V4, /* System V.4/eabi */
ABI_DARWIN /* Apple's Darwin (OS X kernel) */
};
extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
/* Structure used to define the rs6000 stack */
typedef struct rs6000_stack {
int first_gp_reg_save; /* first callee saved GP register used */
int first_fp_reg_save; /* first callee saved FP register used */
int first_altivec_reg_save; /* first callee saved AltiVec register used */
int lr_save_p; /* true if the link reg needs to be saved */
int cr_save_p; /* true if the CR reg needs to be saved */
unsigned int vrsave_mask; /* mask of vec registers to save */
int toc_save_p; /* true if the TOC needs to be saved */
int push_p; /* true if we need to allocate stack space */
int calls_p; /* true if the function makes any calls */
enum rs6000_abi abi; /* which ABI to use */
int gp_save_offset; /* offset to save GP regs from initial SP */
int fp_save_offset; /* offset to save FP regs from initial SP */
int altivec_save_offset; /* offset to save AltiVec regs from inital SP */
int lr_save_offset; /* offset to save LR from initial SP */
int cr_save_offset; /* offset to save CR from initial SP */
int vrsave_save_offset; /* offset to save VRSAVE from initial SP */
int toc_save_offset; /* offset to save the TOC pointer */
int varargs_save_offset; /* offset to save the varargs registers */
int ehrd_offset; /* offset to EH return data */
int reg_size; /* register size (4 or 8) */
int varargs_size; /* size to hold V.4 args passed in regs */
int vars_size; /* variable save area size */
int parm_size; /* outgoing parameter size */
int save_size; /* save area size */
int fixed_size; /* fixed size of stack frame */
int gp_size; /* size of saved GP registers */
int fp_size; /* size of saved FP registers */
int altivec_size; /* size of saved AltiVec registers */
int cr_size; /* size to hold CR if not in save_size */
int lr_size; /* size to hold LR if not in save_size */
int vrsave_size; /* size to hold VRSAVE if not in save_size */
int altivec_padding_size; /* size of altivec alignment padding if
not in save_size */
int toc_size; /* size to hold TOC if not in save_size */
int total_size; /* total bytes allocated for stack */
} rs6000_stack_t;
/* Define this if pushing a word on the stack
makes the stack pointer a smaller address. */
#define STACK_GROWS_DOWNWARD
/* Define this if the nominal address of the stack frame
is at the high-address end of the local variables;
that is, each additional local variable allocated
goes at a more negative offset in the frame.
On the RS/6000, we grow upwards, from the area after the outgoing
arguments. */
/* #define FRAME_GROWS_DOWNWARD */
/* Size of the outgoing register save area */
#define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX \
|| DEFAULT_ABI == ABI_AIX_NODESC \
|| DEFAULT_ABI == ABI_DARWIN) \
? (TARGET_64BIT ? 64 : 32) \
: 0)
/* Size of the fixed area on the stack */
#define RS6000_SAVE_AREA \
(((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_AIX_NODESC || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8) \
<< (TARGET_64BIT ? 1 : 0))
/* MEM representing address to save the TOC register */
#define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
plus_constant (stack_pointer_rtx, \
(TARGET_32BIT ? 20 : 40)))
/* Size of the V.4 varargs area if needed */
#define RS6000_VARARGS_AREA 0
/* Align an address */
#define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
/* Size of V.4 varargs area in bytes */
#define RS6000_VARARGS_SIZE \
((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
/* Offset within stack frame to start allocating local variables at.
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
first local allocated. Otherwise, it is the offset to the BEGINNING
of the first local allocated.
On the RS/6000, the frame pointer is the same as the stack pointer,
except for dynamic allocations. So we start after the fixed area and
outgoing parameter area. */
#define STARTING_FRAME_OFFSET \
(RS6000_ALIGN (current_function_outgoing_args_size, \
TARGET_ALTIVEC ? 16 : 8) \
+ RS6000_VARARGS_AREA \
+ RS6000_SAVE_AREA)
/* Offset from the stack pointer register to an item dynamically
allocated on the stack, e.g., by `alloca'.
The default value for this macro is `STACK_POINTER_OFFSET' plus the
length of the outgoing arguments. The default is correct for most
machines. See `function.c' for details. */
#define STACK_DYNAMIC_OFFSET(FUNDECL) \
(RS6000_ALIGN (current_function_outgoing_args_size, \
TARGET_ALTIVEC ? 16 : 8) \
+ (STACK_POINTER_OFFSET))
/* If we generate an insn to push BYTES bytes,
this says how many the stack pointer really advances by.
On RS/6000, don't define this because there are no push insns. */
/* #define PUSH_ROUNDING(BYTES) */
/* Offset of first parameter from the argument pointer register value.
On the RS/6000, we define the argument pointer to the start of the fixed
area. */
#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
/* Offset from the argument pointer register value to the top of
stack. This is different from FIRST_PARM_OFFSET because of the
register save area. */
#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
/* Define this if stack space is still allocated for a parameter passed
in a register. The value is the number of bytes allocated to this
area. */
#define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
/* Define this if the above stack space is to be considered part of the
space allocated by the caller. */
#define OUTGOING_REG_PARM_STACK_SPACE
/* This is the difference between the logical top of stack and the actual sp.
For the RS/6000, sp points past the fixed area. */
#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
/* Define this if the maximum size of all the outgoing args is to be
accumulated and pushed during the prologue. The amount can be
found in the variable current_function_outgoing_args_size. */
#define ACCUMULATE_OUTGOING_ARGS 1
/* Value is the number of bytes of arguments automatically
popped when returning from a subroutine call.
FUNDECL is the declaration node of the function (as a tree),
FUNTYPE is the data type of the function (as a tree),
or for a library call it is an identifier node for the subroutine name.
SIZE is the number of bytes of arguments passed on the stack. */
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
/* Define how to find the value returned by a function.
VALTYPE is the data type of the value (as a tree).
If the precise function being called is known, FUNC is its FUNCTION_DECL;
otherwise, FUNC is 0.
On RS/6000 an integer value is in r3 and a floating-point value is in
fp1, unless -msoft-float. */
#define FUNCTION_VALUE(VALTYPE, FUNC) \
gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
&& TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
|| POINTER_TYPE_P (VALTYPE) \
? word_mode : TYPE_MODE (VALTYPE), \
TREE_CODE (VALTYPE) == VECTOR_TYPE ? ALTIVEC_ARG_RETURN \
: TREE_CODE (VALTYPE) == REAL_TYPE && TARGET_HARD_FLOAT \
? FP_ARG_RETURN : GP_ARG_RETURN)
/* Define how to find the value returned by a library function
assuming the value has mode MODE. */
#define LIBCALL_VALUE(MODE) \
gen_rtx_REG (MODE, ALTIVEC_VECTOR_MODE (MODE) ? ALTIVEC_ARG_RETURN \
: GET_MODE_CLASS (MODE) == MODE_FLOAT \
&& TARGET_HARD_FLOAT \
? FP_ARG_RETURN : GP_ARG_RETURN)
/* The AIX ABI for the RS/6000 specifies that all structures are
returned in memory. The Darwin ABI does the same. The SVR4 ABI
specifies that structures <= 8 bytes are returned in r3/r4, but a
draft put them in memory, and GCC used to implement the draft
instead of the final standard. Therefore, TARGET_AIX_STRUCT_RET
controls this instead of DEFAULT_ABI; V.4 targets needing backward
compatibility can change DRAFT_V4_STRUCT_RET to override the
default, and -m switches get the final word. See
rs6000_override_options for more details.
int_size_in_bytes returns -1 for variable size objects, which go in
memory always. The cast to unsigned makes -1 > 8. */
#define RETURN_IN_MEMORY(TYPE) \
(AGGREGATE_TYPE_P (TYPE) && \
(TARGET_AIX_STRUCT_RET || \
(unsigned HOST_WIDEST_INT) int_size_in_bytes (TYPE) > 8))
/* DRAFT_V4_STRUCT_RET defaults off. */
#define DRAFT_V4_STRUCT_RET 0
/* Let RETURN_IN_MEMORY control what happens. */
#define DEFAULT_PCC_STRUCT_RETURN 0
/* Mode of stack savearea.
FUNCTION is VOIDmode because calling convention maintains SP.
BLOCK needs Pmode for SP.
NONLOCAL needs twice Pmode to maintain both backchain and SP. */
#define STACK_SAVEAREA_MODE(LEVEL) \
(LEVEL == SAVE_FUNCTION ? VOIDmode \
: LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
/* Minimum and maximum general purpose registers used to hold arguments. */
#define GP_ARG_MIN_REG 3
#define GP_ARG_MAX_REG 10
#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
/* Minimum and maximum floating point registers used to hold arguments. */
#define FP_ARG_MIN_REG 33
#define FP_ARG_AIX_MAX_REG 45
#define FP_ARG_V4_MAX_REG 40
#define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX \
|| DEFAULT_ABI == ABI_AIX_NODESC \
|| DEFAULT_ABI == ABI_DARWIN) \
? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
/* Minimum and maximum AltiVec registers used to hold arguments. */
#define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
#define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
#define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
/* Return registers */
#define GP_ARG_RETURN GP_ARG_MIN_REG
#define FP_ARG_RETURN FP_ARG_MIN_REG
#define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
/* Flags for the call/call_value rtl operations set up by function_arg */
#define CALL_NORMAL 0x00000000 /* no special processing */
/* Bits in 0x00000001 are unused. */
#define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
#define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
#define CALL_LONG 0x00000008 /* always call indirect */
/* 1 if N is a possible register number for a function value
as seen by the caller.
On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_ARG_RETURN \
|| ((N) == FP_ARG_RETURN) \
|| (TARGET_ALTIVEC && \
(N) == ALTIVEC_ARG_RETURN))
/* 1 if N is a possible register number for function argument passing.
On RS/6000, these are r3-r10 and fp1-fp13.
On AltiVec, v2 - v13 are used for passing vectors. */
#define FUNCTION_ARG_REGNO_P(N) \
((unsigned)(((N) - GP_ARG_MIN_REG) < (unsigned)(GP_ARG_NUM_REG)) \
|| (TARGET_ALTIVEC && \
(unsigned)((N) - ALTIVEC_ARG_MIN_REG) < (unsigned)(ALTIVEC_ARG_NUM_REG)) \
|| ((unsigned)((N) - FP_ARG_MIN_REG) < (unsigned)(FP_ARG_NUM_REG)))
/* A C structure for machine-specific, per-function data.
This is added to the cfun structure. */
typedef struct machine_function
{
/* Whether a System V.4 varargs area was created. */
int sysv_varargs_p;
/* Flags if __builtin_return_address (n) with n >= 1 was used. */
int ra_needs_full_frame;
} machine_function;
/* Define a data type for recording info about an argument list
during the scan of that argument list. This data type should
hold all necessary information about the function itself
and about the args processed so far, enough to enable macros
such as FUNCTION_ARG to determine where the next arg should go.
On the RS/6000, this is a structure. The first element is the number of
total argument words, the second is used to store the next
floating-point register number, and the third says how many more args we
have prototype types for.
For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
the next availible GP register, `fregno' is the next available FP
register, and `words' is the number of words used on the stack.
The varargs/stdarg support requires that this structure's size
be a multiple of sizeof(int). */
typedef struct rs6000_args
{
int words; /* # words used for passing GP registers */
int fregno; /* next available FP register */
int vregno; /* next available AltiVec register */
int nargs_prototype; /* # args left in the current prototype */
int orig_nargs; /* Original value of nargs_prototype */
int prototype; /* Whether a prototype was defined */
int call_cookie; /* Do special things for this call */
int sysv_gregno; /* next available GP register */
} CUMULATIVE_ARGS;
/* Define intermediate macro to compute the size (in registers) of an argument
for the RS/6000. */
#define RS6000_ARG_SIZE(MODE, TYPE) \
((MODE) != BLKmode \
? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
: ((unsigned HOST_WIDE_INT) int_size_in_bytes (TYPE) \
+ (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
/* Initialize a variable CUM of type CUMULATIVE_ARGS
for a call to a function whose data type is FNTYPE.
For a library call, FNTYPE is 0. */
#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE)
/* Similar, but when scanning the definition of a procedure. We always
set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
#define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,LIBNAME) \
init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE)
/* Update the data in CUM to advance over an argument
of mode MODE and data type TYPE.
(TYPE is null for libcalls where that information may not be available.) */
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
function_arg_advance (&CUM, MODE, TYPE, NAMED)
/* Non-zero if we can use a floating-point register to pass this arg. */
#define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
(GET_MODE_CLASS (MODE) == MODE_FLOAT \
&& (CUM).fregno <= FP_ARG_MAX_REG \
&& TARGET_HARD_FLOAT)
/* Non-zero if we can use an AltiVec register to pass this arg. */
#define USE_ALTIVEC_FOR_ARG_P(CUM,MODE,TYPE) \
(ALTIVEC_VECTOR_MODE (MODE) \
&& (CUM).vregno <= ALTIVEC_ARG_MAX_REG \
&& TARGET_ALTIVEC_ABI)
/* Determine where to put an argument to a function.
Value is zero to push the argument on the stack,
or a hard register in which to store the argument.
MODE is the argument's machine mode.
TYPE is the data type of the argument (as a tree).
This is null for libcalls where that information may
not be available.
CUM is a variable of type CUMULATIVE_ARGS which gives info about
the preceding args and about the function being called.
NAMED is nonzero if this argument is a named parameter
(otherwise it is an extra parameter matching an ellipsis).
On RS/6000 the first eight words of non-FP are normally in registers
and the rest are pushed. The first 13 FP args are in registers.
If this is floating-point and no prototype is specified, we use
both an FP and integer register (or possibly FP reg and stack). Library
functions (when TYPE is zero) always have the proper types for args,
so we can pass the FP value just in one register. emit_library_function
doesn't support EXPR_LIST anyway. */
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
function_arg (&CUM, MODE, TYPE, NAMED)
/* For an arg passed partly in registers and partly in memory,
this is the number of registers used.
For args passed entirely in registers or entirely in memory, zero. */
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
/* A C expression that indicates when an argument must be passed by
reference. If nonzero for an argument, a copy of that argument is
made in memory and a pointer to the argument is passed instead of
the argument itself. The pointer is passed in whatever way is
appropriate for passing a pointer to that type. */
#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
/* If defined, a C expression which determines whether, and in which
direction, to pad out an argument with extra space. The value
should be of type `enum direction': either `upward' to pad above
the argument, `downward' to pad below, or `none' to inhibit
padding. */
#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
/* If defined, a C expression that gives the alignment boundary, in bits,
of an argument with the specified mode and type. If it is not defined,
PARM_BOUNDARY is used for all arguments. */
#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
function_arg_boundary (MODE, TYPE)
/* Perform any needed actions needed for a function that is receiving a
variable number of arguments.
CUM is as above.
MODE and TYPE are the mode and type of the current parameter.
PRETEND_SIZE is a variable that should be set to the amount of stack
that must be pushed by the prolog to pretend that our caller pushed
it.
Normally, this macro will push all remaining incoming registers on the
stack and set PRETEND_SIZE to the length of the registers pushed. */
#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
setup_incoming_varargs (&CUM, MODE, TYPE, &PRETEND_SIZE, NO_RTL)
/* Define the `__builtin_va_list' type for the ABI. */
#define BUILD_VA_LIST_TYPE(VALIST) \
(VALIST) = rs6000_build_va_list ()
/* Implement `va_start' for varargs and stdarg. */
#define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
rs6000_va_start (stdarg, valist, nextarg)
/* Implement `va_arg'. */
#define EXPAND_BUILTIN_VA_ARG(valist, type) \
rs6000_va_arg (valist, type)
/* Define this macro to be a nonzero value if the location where a function
argument is passed depends on whether or not it is a named argument. */
#define STRICT_ARGUMENT_NAMING 1
/* Output assembler code to FILE to increment profiler label # LABELNO
for profiling a function entry. */
#define FUNCTION_PROFILER(FILE, LABELNO) \
output_function_profiler ((FILE), (LABELNO));
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
the stack pointer does not matter. No definition is equivalent to
always zero.
On the RS/6000, this is non-zero because we can restore the stack from
its backpointer, which we maintain. */
#define EXIT_IGNORE_STACK 1
/* Define this macro as a C expression that is nonzero for registers
that are used by the epilogue or the return' pattern. The stack
and frame pointer registers are already be assumed to be used as
needed. */
#define EPILOGUE_USES(REGNO) \
((reload_completed && (REGNO) == LINK_REGISTER_REGNUM) \
|| (REGNO) == VRSAVE_REGNO \
|| (current_function_calls_eh_return \
&& TARGET_AIX \
&& (REGNO) == TOC_REGISTER))
/* TRAMPOLINE_TEMPLATE deleted */
/* Length in units of the trampoline for entering a nested function. */
#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
/* Emit RTL insns to initialize the variable parts of a trampoline.
FNADDR is an RTX for the address of the function's pure code.
CXT is an RTX for the static chain value for the function. */
#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
/* Definitions for __builtin_return_address and __builtin_frame_address.
__builtin_return_address (0) should give link register (65), enable
this. */
/* This should be uncommented, so that the link register is used, but
currently this would result in unmatched insns and spilling fixed
registers so we'll leave it for another day. When these problems are
taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
(mrs) */
/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
/* Number of bytes into the frame return addresses can be found. See
rs6000_stack_info in rs6000.c for more information on how the different
abi's store the return address. */
#define RETURN_ADDRESS_OFFSET \
((DEFAULT_ABI == ABI_AIX \
|| DEFAULT_ABI == ABI_DARWIN \
|| DEFAULT_ABI == ABI_AIX_NODESC) ? (TARGET_32BIT ? 8 : 16) : \
(DEFAULT_ABI == ABI_V4) ? 4 : \
(internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
/* The current return address is in link register (65). The return address
of anything farther back is accessed normally at an offset of 8 from the
frame pointer. */
#define RETURN_ADDR_RTX(COUNT, FRAME) \
(rs6000_return_addr (COUNT, FRAME))
/* Definitions for register eliminations.
We have two registers that can be eliminated on the RS/6000. First, the
frame pointer register can often be eliminated in favor of the stack
pointer register. Secondly, the argument pointer register can always be
eliminated; it is replaced with either the stack or frame pointer.
In addition, we use the elimination mechanism to see if r30 is needed
Initially we assume that it isn't. If it is, we spill it. This is done
by making it an eliminable register. We replace it with itself so that
if it isn't needed, then existing uses won't be modified. */
/* This is an array of structures. Each structure initializes one pair
of eliminable registers. The "from" register number is given first,
followed by "to". Eliminations of the same "from" register are listed
in order of preference. */
#define ELIMINABLE_REGS \
{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
{ 30, 30} }
/* Given FROM and TO register numbers, say whether this elimination is allowed.
Frame pointer elimination is automatically handled.
For the RS/6000, if frame pointer elimination is being done, we would like
to convert ap into fp, not sp.
We need r30 if -mminimal-toc was specified, and there are constant pool
references. */
#define CAN_ELIMINATE(FROM, TO) \
((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
? ! frame_pointer_needed \
: (FROM) == 30 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
: 1)
/* Define the offset between two registers, one to be eliminated, and the other
its replacement, at the start of a routine. */
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
{ \
rs6000_stack_t *info = rs6000_stack_info (); \
\
if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
(OFFSET) = (info->push_p) ? 0 : - info->total_size; \
else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
(OFFSET) = info->total_size; \
else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
(OFFSET) = (info->push_p) ? info->total_size : 0; \
else if ((FROM) == 30) \
(OFFSET) = 0; \
else \
abort (); \
}
/* Addressing modes, and classification of registers for them. */
/* #define HAVE_POST_INCREMENT 0 */
/* #define HAVE_POST_DECREMENT 0 */
#define HAVE_PRE_DECREMENT 1
#define HAVE_PRE_INCREMENT 1
/* Macros to check register numbers against specific register classes. */
/* These assume that REGNO is a hard or pseudo reg number.
They give nonzero only if REGNO is a hard reg of the suitable class
or a pseudo reg currently allocated to a suitable hard reg.
Since they use reg_renumber, they are safe only once reg_renumber
has been allocated, which happens in local-alloc.c. */
#define REGNO_OK_FOR_INDEX_P(REGNO) \
((REGNO) < FIRST_PSEUDO_REGISTER \
? (REGNO) <= 31 || (REGNO) == 67 \
: (reg_renumber[REGNO] >= 0 \
&& (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
#define REGNO_OK_FOR_BASE_P(REGNO) \
((REGNO) < FIRST_PSEUDO_REGISTER \
? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
: (reg_renumber[REGNO] > 0 \
&& (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
/* Maximum number of registers that can appear in a valid memory address. */
#define MAX_REGS_PER_ADDRESS 2
/* Recognize any constant value that is a valid address. */
#define CONSTANT_ADDRESS_P(X) \
(GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
|| GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
|| GET_CODE (X) == HIGH)
/* Nonzero if the constant value X is a legitimate general operand.
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
On the RS/6000, all integer constants are acceptable, most won't be valid
for particular insns, though. Only easy FP constants are
acceptable. */
#define LEGITIMATE_CONSTANT_P(X) \
(GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
|| (TARGET_POWERPC64 && GET_MODE (X) == DImode) \
|| easy_fp_constant (X, GET_MODE (X)))
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
and check its validity for a certain class.
We have two alternate definitions for each of them.
The usual definition accepts all pseudo regs; the other rejects
them unless they have been allocated suitable hard regs.
The symbol REG_OK_STRICT causes the latter definition to be used.
Most source files want to accept pseudo regs in the hope that
they will get allocated to the class that the insn wants them to be in.
Source files for reload pass need to be strict.
After reload, it makes no difference, since pseudo regs have
been eliminated by then. */
#ifdef REG_OK_STRICT
# define REG_OK_STRICT_FLAG 1
#else
# define REG_OK_STRICT_FLAG 0
#endif
/* Nonzero if X is a hard reg that can be used as an index
or if it is a pseudo reg in the non-strict case. */
#define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
((! (STRICT) \
&& (REGNO (X) <= 31 \
|| REGNO (X) == ARG_POINTER_REGNUM \
|| REGNO (X) >= FIRST_PSEUDO_REGISTER)) \
|| ((STRICT) && REGNO_OK_FOR_INDEX_P (REGNO (X))))
/* Nonzero if X is a hard reg that can be used as a base reg
or if it is a pseudo reg in the non-strict case. */
#define INT_REG_OK_FOR_BASE_P(X, STRICT) \
(REGNO (X) > 0 && INT_REG_OK_FOR_INDEX_P (X, (STRICT)))
#define REG_OK_FOR_INDEX_P(X) INT_REG_OK_FOR_INDEX_P (X, REG_OK_STRICT_FLAG)
#define REG_OK_FOR_BASE_P(X) INT_REG_OK_FOR_BASE_P (X, REG_OK_STRICT_FLAG)
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
that is a valid memory address for an instruction.
The MODE argument is the machine mode for the MEM expression
that wants to use this address.
On the RS/6000, there are four valid address: a SYMBOL_REF that
refers to a constant pool entry of an address (or the sum of it
plus a constant), a short (16-bit signed) constant plus a register,
the sum of two registers, or a register indirect, possibly with an
auto-increment. For DFmode and DImode with an constant plus register,
we must ensure that both words are addressable or PowerPC64 with offset
word aligned.
For modes spanning multiple registers (DFmode in 32-bit GPRs,
32-bit DImode, TImode), indexed addressing cannot be used because
adjacent memory cells are accessed by adding word-sized offsets
during assembly output. */
#define CONSTANT_POOL_EXPR_P(X) (constant_pool_expr_p (X))
#define TOC_RELATIVE_EXPR_P(X) (toc_relative_expr_p (X))
#define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X) \
(TARGET_TOC \
&& GET_CODE (X) == PLUS \
&& GET_CODE (XEXP (X, 0)) == REG \
&& (TARGET_MINIMAL_TOC || REGNO (XEXP (X, 0)) == TOC_REGISTER) \
&& CONSTANT_POOL_EXPR_P (XEXP (X, 1)))
#define LEGITIMATE_SMALL_DATA_P(MODE, X) \
(DEFAULT_ABI == ABI_V4 \
&& !flag_pic && !TARGET_TOC \
&& (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST) \
&& small_data_operand (X, MODE))
#define LEGITIMATE_ADDRESS_INTEGER_P(X, OFFSET) \
(GET_CODE (X) == CONST_INT \
&& (unsigned HOST_WIDE_INT) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
#define LEGITIMATE_OFFSET_ADDRESS_P(MODE, X, STRICT) \
(GET_CODE (X) == PLUS \
&& GET_CODE (XEXP (X, 0)) == REG \
&& INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
&& LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
&& (! ALTIVEC_VECTOR_MODE (MODE) || INTVAL (X) == 0) \
&& (((MODE) != DFmode && (MODE) != DImode) \
|| (TARGET_32BIT \
? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4) \
: ! (INTVAL (XEXP (X, 1)) & 3))) \
&& ((MODE) != TImode \
|| (TARGET_32BIT \
? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 12) \
: (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 8) \
&& ! (INTVAL (XEXP (X, 1)) & 3)))))
#define LEGITIMATE_INDEXED_ADDRESS_P(X, STRICT) \
(GET_CODE (X) == PLUS \
&& GET_CODE (XEXP (X, 0)) == REG \
&& GET_CODE (XEXP (X, 1)) == REG \
&& ((INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
&& INT_REG_OK_FOR_INDEX_P (XEXP (X, 1), (STRICT))) \
|| (INT_REG_OK_FOR_BASE_P (XEXP (X, 1), (STRICT)) \
&& INT_REG_OK_FOR_INDEX_P (XEXP (X, 0), (STRICT)))))
#define LEGITIMATE_INDIRECT_ADDRESS_P(X, STRICT) \
(GET_CODE (X) == REG && INT_REG_OK_FOR_BASE_P (X, (STRICT)))
#define LEGITIMATE_LO_SUM_ADDRESS_P(MODE, X, STRICT) \
(TARGET_ELF \
&& ! flag_pic && ! TARGET_TOC \
&& GET_MODE_NUNITS (MODE) == 1 \
&& (GET_MODE_BITSIZE (MODE) <= 32 \
|| (TARGET_HARD_FLOAT && (MODE) == DFmode)) \
&& GET_CODE (X) == LO_SUM \
&& GET_CODE (XEXP (X, 0)) == REG \
&& INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
&& CONSTANT_P (XEXP (X, 1)))
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
{ if (rs6000_legitimate_address (MODE, X, REG_OK_STRICT_FLAG)) \
goto ADDR; \
}
/* Try machine-dependent ways of modifying an illegitimate address
to be legitimate. If we find one, return the new, valid address.
This macro is used in only one place: `memory_address' in explow.c.
OLDX is the address as it was before break_out_memory_refs was called.
In some cases it is useful to look at this to decide what needs to be done.
MODE and WIN are passed so that this macro can use
GO_IF_LEGITIMATE_ADDRESS.
It is always safe for this macro to do nothing. It exists to recognize
opportunities to optimize the output.
On RS/6000, first check for the sum of a register with a constant
integer that is out of range. If so, generate code to add the
constant with the low-order 16 bits masked to the register and force
this result into another register (this can be done with `cau').
Then generate an address of REG+(CONST&0xffff), allowing for the
possibility of bit 16 being a one.
Then check for the sum of a register and something not constant, try to
load the other things into a register and return the sum. */
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
{ rtx result = rs6000_legitimize_address (X, OLDX, MODE); \
if (result != NULL_RTX) \
{ \
(X) = result; \
goto WIN; \
} \
}
/* Try a machine-dependent way of reloading an illegitimate address
operand. If we find one, push the reload and jump to WIN. This
macro is used in only one place: `find_reloads_address' in reload.c.
Implemented on rs6000 by rs6000_legitimize_reload_address.
Note that (X) is evaluated twice; this is safe in current usage. */
#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
do { \
int win; \
(X) = rs6000_legitimize_reload_address ((X), (MODE), (OPNUM), \
(int)(TYPE), (IND_LEVELS), &win); \
if ( win ) \
goto WIN; \
} while (0)
/* Go to LABEL if ADDR (a legitimate address expression)
has an effect that depends on the machine mode it is used for.
On the RS/6000 this is true if the address is valid with a zero offset
but not with an offset of four (this means it cannot be used as an
address for DImode or DFmode) or is a pre-increment or decrement. Since
we know it is valid, we just check for an address that is not valid with
an offset of four. */
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
{ if (GET_CODE (ADDR) == PLUS \
&& LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0) \
&& ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), \
(TARGET_32BIT ? 4 : 8))) \
goto LABEL; \
if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_INC) \
goto LABEL; \
if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_DEC) \
goto LABEL; \
if (GET_CODE (ADDR) == LO_SUM) \
goto LABEL; \
}
/* The register number of the register used to address a table of
static data addresses in memory. In some cases this register is
defined by a processor's "application binary interface" (ABI).
When this macro is defined, RTL is generated for this register
once, as with the stack pointer and frame pointer registers. If
this macro is not defined, it is up to the machine-dependent files
to allocate such a register (if necessary). */
#define PIC_OFFSET_TABLE_REGNUM 30
#define TOC_REGISTER (TARGET_MINIMAL_TOC ? 30 : 2)
/* Define this macro if the register defined by
`PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
/* By generating position-independent code, when two different
programs (A and B) share a common library (libC.a), the text of
the library can be shared whether or not the library is linked at
the same address for both programs. In some of these
environments, position-independent code requires not only the use
of different addressing modes, but also special code to enable the
use of these addressing modes.
The `FINALIZE_PIC' macro serves as a hook to emit these special
codes once the function is being compiled into assembly code, but
not before. (It is not done before, because in the case of
compiling an inline function, it would lead to multiple PIC
prologues being included in functions which used inline functions
and were compiled to assembly language.) */
/* #define FINALIZE_PIC */
/* A C expression that is nonzero if X is a legitimate immediate
operand on the target machine when generating position independent
code. You can assume that X satisfies `CONSTANT_P', so you need
not check this. You can also assume FLAG_PIC is true, so you need
not check it either. You need not define this macro if all
constants (including `SYMBOL_REF') can be immediate operands when
generating position independent code. */
/* #define LEGITIMATE_PIC_OPERAND_P (X) */
/* In rare cases, correct code generation requires extra machine
dependent processing between the second jump optimization pass and
delayed branch scheduling. On those machines, define this macro
as a C statement to act on the code starting at INSN. */
/* #define MACHINE_DEPENDENT_REORG(INSN) */
/* Define this if some processing needs to be done immediately before
emitting code for an insn. */
/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
/* Specify the machine mode that this machine uses
for the index in the tablejump instruction. */
#define CASE_VECTOR_MODE SImode
/* Define as C expression which evaluates to nonzero if the tablejump
instruction expects the table to contain offsets from the address of the
table.
Do not define this if the table should contain absolute addresses. */
#define CASE_VECTOR_PC_RELATIVE 1
/* Define this as 1 if `char' should by default be signed; else as 0. */
#define DEFAULT_SIGNED_CHAR 0
/* This flag, if defined, says the same insns that convert to a signed fixnum
also convert validly to an unsigned one. */
/* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
/* Max number of bytes we can move from memory to memory
in one reasonably fast instruction. */
#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
#define MAX_MOVE_MAX 8
/* Nonzero if access to memory by bytes is no faster than for words.
Also non-zero if doing byte operations (specifically shifts) in registers
is undesirable. */
#define SLOW_BYTE_ACCESS 1
/* Define if operations between registers always perform the operation
on the full register even if a narrower mode is specified. */
#define WORD_REGISTER_OPERATIONS
/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
will either zero-extend or sign-extend. The value of this macro should
be the code that says which one of the two operations is implicitly
done, NIL if none. */
#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
/* Define if loading short immediate values into registers sign extends. */
#define SHORT_IMMEDIATES_SIGN_EXTEND
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
is done just by pretending it is already truncated. */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
/* Specify the machine mode that pointers have.
After generation of rtl, the compiler makes no further distinction
between pointers and any other objects of this machine mode. */
#define Pmode (TARGET_32BIT ? SImode : DImode)
/* Mode of a function address in a call instruction (for indexing purposes).
Doesn't matter on RS/6000. */
#define FUNCTION_MODE (TARGET_32BIT ? SImode : DImode)
/* Define this if addresses of constant functions
shouldn't be put through pseudo regs where they can be cse'd.
Desirable on machines where ordinary constants are expensive
but a CALL with constant address is cheap. */
#define NO_FUNCTION_CSE
/* Define this to be nonzero if shift instructions ignore all but the low-order
few bits.
The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
have been dropped from the PowerPC architecture. */
#define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
/* Compute the cost of computing a constant rtl expression RTX
whose rtx-code is CODE. The body of this macro is a portion
of a switch statement. If the code is computed here,
return it with a return statement. Otherwise, break from the switch.
On the RS/6000, if it is valid in the insn, it is free. So this
always returns 0. */
#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
case CONST_INT: \
case CONST: \
case LABEL_REF: \
case SYMBOL_REF: \
case CONST_DOUBLE: \
case HIGH: \
return 0;
/* Provide the costs of a rtl expression. This is in the body of a
switch on CODE. */
#define RTX_COSTS(X,CODE,OUTER_CODE) \
case PLUS: \
return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
&& ((unsigned HOST_WIDE_INT) (INTVAL (XEXP (X, 1)) \
+ 0x8000) >= 0x10000) \
&& ((INTVAL (XEXP (X, 1)) & 0xffff) != 0)) \
? COSTS_N_INSNS (2) \
: COSTS_N_INSNS (1)); \
case AND: \
case IOR: \
case XOR: \
return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
&& (INTVAL (XEXP (X, 1)) & (~ (HOST_WIDE_INT) 0xffff)) != 0 \
&& ((INTVAL (XEXP (X, 1)) & 0xffff) != 0)) \
? COSTS_N_INSNS (2) \
: COSTS_N_INSNS (1)); \
case MULT: \
switch (rs6000_cpu) \
{ \
case PROCESSOR_RIOS1: \
case PROCESSOR_PPC405: \
return (GET_CODE (XEXP (X, 1)) != CONST_INT \
? COSTS_N_INSNS (5) \
: INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
case PROCESSOR_RS64A: \
return (GET_CODE (XEXP (X, 1)) != CONST_INT \
? GET_MODE (XEXP (X, 1)) != DImode \
? COSTS_N_INSNS (20) : COSTS_N_INSNS (34) \
: INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
? COSTS_N_INSNS (8) : COSTS_N_INSNS (12)); \
case PROCESSOR_RIOS2: \
case PROCESSOR_MPCCORE: \
case PROCESSOR_PPC604e: \
return COSTS_N_INSNS (2); \
case PROCESSOR_PPC601: \
return COSTS_N_INSNS (5); \
case PROCESSOR_PPC603: \
case PROCESSOR_PPC7400: \
case PROCESSOR_PPC750: \
return (GET_CODE (XEXP (X, 1)) != CONST_INT \
? COSTS_N_INSNS (5) \
: INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
? COSTS_N_INSNS (2) : COSTS_N_INSNS (3)); \
case PROCESSOR_PPC7450: \
return (GET_CODE (XEXP (X, 1)) != CONST_INT \
? COSTS_N_INSNS (4) \
: COSTS_N_INSNS (3)); \
case PROCESSOR_PPC403: \
case PROCESSOR_PPC604: \
return COSTS_N_INSNS (4); \
case PROCESSOR_PPC620: \
case PROCESSOR_PPC630: \
return (GET_CODE (XEXP (X, 1)) != CONST_INT \
? GET_MODE (XEXP (X, 1)) != DImode \
? COSTS_N_INSNS (5) : COSTS_N_INSNS (7) \
: INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
} \
case DIV: \
case MOD: \
if (GET_CODE (XEXP (X, 1)) == CONST_INT \
&& exact_log2 (INTVAL (XEXP (X, 1))) >= 0) \
return COSTS_N_INSNS (2); \
/* otherwise fall through to normal divide. */ \
case UDIV: \
case UMOD: \
switch (rs6000_cpu) \
{ \
case PROCESSOR_RIOS1: \
return COSTS_N_INSNS (19); \
case PROCESSOR_RIOS2: \
return COSTS_N_INSNS (13); \
case PROCESSOR_RS64A: \
return (GET_MODE (XEXP (X, 1)) != DImode \
? COSTS_N_INSNS (65) \
: COSTS_N_INSNS (67)); \
case PROCESSOR_MPCCORE: \
return COSTS_N_INSNS (6); \
case PROCESSOR_PPC403: \
return COSTS_N_INSNS (33); \
case PROCESSOR_PPC405: \
return COSTS_N_INSNS (35); \
case PROCESSOR_PPC601: \
return COSTS_N_INSNS (36); \
case PROCESSOR_PPC603: \
return COSTS_N_INSNS (37); \
case PROCESSOR_PPC604: \
case PROCESSOR_PPC604e: \
return COSTS_N_INSNS (20); \
case PROCESSOR_PPC620: \
case PROCESSOR_PPC630: \
return (GET_MODE (XEXP (X, 1)) != DImode \
? COSTS_N_INSNS (21) \
: COSTS_N_INSNS (37)); \
case PROCESSOR_PPC750: \
case PROCESSOR_PPC7400: \
return COSTS_N_INSNS (19); \
case PROCESSOR_PPC7450: \
return COSTS_N_INSNS (23); \
} \
case FFS: \
return COSTS_N_INSNS (4); \
case MEM: \
/* MEM should be slightly more expensive than (plus (reg) (const)) */ \
return 5;
/* Compute the cost of an address. This is meant to approximate the size
and/or execution delay of an insn using that address. If the cost is
approximated by the RTL complexity, including CONST_COSTS above, as
is usually the case for CISC machines, this macro should not be defined.
For aggressively RISCy machines, only one insn format is allowed, so
this macro should be a constant. The value of this macro only matters
for valid addresses.
For the RS/6000, everything is cost 0. */
#define ADDRESS_COST(RTX) 0
/* Adjust the length of an INSN. LENGTH is the currently-computed length and
should be adjusted to reflect any required changes. This macro is used when
there is some systematic length adjustment required that would be difficult
to express in the length attribute. */
/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
/* Add any extra modes needed to represent the condition code.
For the RS/6000, we need separate modes when unsigned (logical) comparisons
are being done and we need a separate mode for floating-point. We also
use a mode for the case when we are comparing the results of two
comparisons, as then only the EQ bit is valid in the register. */
#define EXTRA_CC_MODES \
CC(CCUNSmode, "CCUNS") \
CC(CCFPmode, "CCFP") \
CC(CCEQmode, "CCEQ")
/* Given a comparison code (EQ, NE, etc.) and the first operand of a
COMPARE, return the mode to be used for the comparison. For
floating-point, CCFPmode should be used. CCUNSmode should be used
for unsigned comparisons. CCEQmode should be used when we are
doing an inequality comparison on the result of a
comparison. CCmode should be used in all other cases. */
#define SELECT_CC_MODE(OP,X,Y) \
(GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
: (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
: (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \
? CCEQmode : CCmode))
/* Define the information needed to generate branch and scc insns. This is
stored from the compare operation. Note that we can't use "rtx" here
since it hasn't been defined! */
extern struct rtx_def *rs6000_compare_op0, *rs6000_compare_op1;
extern int rs6000_compare_fp_p;
/* Control the assembler format that we output. */
/* A C string constant describing how to begin a comment in the target
assembler language. The compiler assumes that the comment will end at
the end of the line. */
#define ASM_COMMENT_START " #"
/* Implicit library calls should use memcpy, not bcopy, etc. */
#define TARGET_MEM_FUNCTIONS
/* Flag to say the TOC is initialized */
extern int toc_initialized;
/* Macro to output a special constant pool entry. Go to WIN if we output
it. Otherwise, it is written the usual way.
On the RS/6000, toc entries are handled this way. */
#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
{ \
output_toc (FILE, X, LABELNO, MODE); \
goto WIN; \
} \
}
#ifdef HAVE_GAS_WEAK
#define RS6000_WEAK 1
#else
#define RS6000_WEAK 0
#endif
/* This implementes the `alias' attribute. */
#define ASM_OUTPUT_DEF_FROM_DECLS(FILE,decl,target) \
do { \
const char * alias = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
char * name = IDENTIFIER_POINTER (target); \
if (TREE_CODE (decl) == FUNCTION_DECL \
&& DEFAULT_ABI == ABI_AIX) \
{ \
if (TREE_PUBLIC (decl)) \
{ \
if (RS6000_WEAK && DECL_WEAK (decl)) \
{ \
fputs ("\t.weak .", FILE); \
assemble_name (FILE, alias); \
putc ('\n', FILE); \
} \
else \
{ \
fputs ("\t.globl .", FILE); \
assemble_name (FILE, alias); \
putc ('\n', FILE); \
} \
} \
else \
{ \
fputs ("\t.lglobl .", FILE); \
assemble_name (FILE, alias); \
putc ('\n', FILE); \
} \
fputs ("\t.set .", FILE); \
assemble_name (FILE, alias); \
fputs (",.", FILE); \
assemble_name (FILE, name); \
fputc ('\n', FILE); \
} \
ASM_OUTPUT_DEF (FILE, alias, name); \
} while (0)
/* Output to assembler file text saying following lines
may contain character constants, extra white space, comments, etc. */
#define ASM_APP_ON ""
/* Output to assembler file text saying following lines
no longer contain unusual constructs. */
#define ASM_APP_OFF ""
/* How to refer to registers in assembler output.
This sequence is indexed by compiler's hard-register-number (see above). */
extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
#define REGISTER_NAMES \
{ \
&rs6000_reg_names[ 0][0], /* r0 */ \
&rs6000_reg_names[ 1][0], /* r1 */ \
&rs6000_reg_names[ 2][0], /* r2 */ \
&rs6000_reg_names[ 3][0], /* r3 */ \
&rs6000_reg_names[ 4][0], /* r4 */ \
&rs6000_reg_names[ 5][0], /* r5 */ \
&rs6000_reg_names[ 6][0], /* r6 */ \
&rs6000_reg_names[ 7][0], /* r7 */ \
&rs6000_reg_names[ 8][0], /* r8 */ \
&rs6000_reg_names[ 9][0], /* r9 */ \
&rs6000_reg_names[10][0], /* r10 */ \
&rs6000_reg_names[11][0], /* r11 */ \
&rs6000_reg_names[12][0], /* r12 */ \
&rs6000_reg_names[13][0], /* r13 */ \
&rs6000_reg_names[14][0], /* r14 */ \
&rs6000_reg_names[15][0], /* r15 */ \
&rs6000_reg_names[16][0], /* r16 */ \
&rs6000_reg_names[17][0], /* r17 */ \
&rs6000_reg_names[18][0], /* r18 */ \
&rs6000_reg_names[19][0], /* r19 */ \
&rs6000_reg_names[20][0], /* r20 */ \
&rs6000_reg_names[21][0], /* r21 */ \
&rs6000_reg_names[22][0], /* r22 */ \
&rs6000_reg_names[23][0], /* r23 */ \
&rs6000_reg_names[24][0], /* r24 */ \
&rs6000_reg_names[25][0], /* r25 */ \
&rs6000_reg_names[26][0], /* r26 */ \
&rs6000_reg_names[27][0], /* r27 */ \
&rs6000_reg_names[28][0], /* r28 */ \
&rs6000_reg_names[29][0], /* r29 */ \
&rs6000_reg_names[30][0], /* r30 */ \
&rs6000_reg_names[31][0], /* r31 */ \
\
&rs6000_reg_names[32][0], /* fr0 */ \
&rs6000_reg_names[33][0], /* fr1 */ \
&rs6000_reg_names[34][0], /* fr2 */ \
&rs6000_reg_names[35][0], /* fr3 */ \
&rs6000_reg_names[36][0], /* fr4 */ \
&rs6000_reg_names[37][0], /* fr5 */ \
&rs6000_reg_names[38][0], /* fr6 */ \
&rs6000_reg_names[39][0], /* fr7 */ \
&rs6000_reg_names[40][0], /* fr8 */ \
&rs6000_reg_names[41][0], /* fr9 */ \
&rs6000_reg_names[42][0], /* fr10 */ \
&rs6000_reg_names[43][0], /* fr11 */ \
&rs6000_reg_names[44][0], /* fr12 */ \
&rs6000_reg_names[45][0], /* fr13 */ \
&rs6000_reg_names[46][0], /* fr14 */ \
&rs6000_reg_names[47][0], /* fr15 */ \
&rs6000_reg_names[48][0], /* fr16 */ \
&rs6000_reg_names[49][0], /* fr17 */ \
&rs6000_reg_names[50][0], /* fr18 */ \
&rs6000_reg_names[51][0], /* fr19 */ \
&rs6000_reg_names[52][0], /* fr20 */ \
&rs6000_reg_names[53][0], /* fr21 */ \
&rs6000_reg_names[54][0], /* fr22 */ \
&rs6000_reg_names[55][0], /* fr23 */ \
&rs6000_reg_names[56][0], /* fr24 */ \
&rs6000_reg_names[57][0], /* fr25 */ \
&rs6000_reg_names[58][0], /* fr26 */ \
&rs6000_reg_names[59][0], /* fr27 */ \
&rs6000_reg_names[60][0], /* fr28 */ \
&rs6000_reg_names[61][0], /* fr29 */ \
&rs6000_reg_names[62][0], /* fr30 */ \
&rs6000_reg_names[63][0], /* fr31 */ \
\
&rs6000_reg_names[64][0], /* mq */ \
&rs6000_reg_names[65][0], /* lr */ \
&rs6000_reg_names[66][0], /* ctr */ \
&rs6000_reg_names[67][0], /* ap */ \
\
&rs6000_reg_names[68][0], /* cr0 */ \
&rs6000_reg_names[69][0], /* cr1 */ \
&rs6000_reg_names[70][0], /* cr2 */ \
&rs6000_reg_names[71][0], /* cr3 */ \
&rs6000_reg_names[72][0], /* cr4 */ \
&rs6000_reg_names[73][0], /* cr5 */ \
&rs6000_reg_names[74][0], /* cr6 */ \
&rs6000_reg_names[75][0], /* cr7 */ \
\
&rs6000_reg_names[76][0], /* xer */ \
\
&rs6000_reg_names[77][0], /* v0 */ \
&rs6000_reg_names[78][0], /* v1 */ \
&rs6000_reg_names[79][0], /* v2 */ \
&rs6000_reg_names[80][0], /* v3 */ \
&rs6000_reg_names[81][0], /* v4 */ \
&rs6000_reg_names[82][0], /* v5 */ \
&rs6000_reg_names[83][0], /* v6 */ \
&rs6000_reg_names[84][0], /* v7 */ \
&rs6000_reg_names[85][0], /* v8 */ \
&rs6000_reg_names[86][0], /* v9 */ \
&rs6000_reg_names[87][0], /* v10 */ \
&rs6000_reg_names[88][0], /* v11 */ \
&rs6000_reg_names[89][0], /* v12 */ \
&rs6000_reg_names[90][0], /* v13 */ \
&rs6000_reg_names[91][0], /* v14 */ \
&rs6000_reg_names[92][0], /* v15 */ \
&rs6000_reg_names[93][0], /* v16 */ \
&rs6000_reg_names[94][0], /* v17 */ \
&rs6000_reg_names[95][0], /* v18 */ \
&rs6000_reg_names[96][0], /* v19 */ \
&rs6000_reg_names[97][0], /* v20 */ \
&rs6000_reg_names[98][0], /* v21 */ \
&rs6000_reg_names[99][0], /* v22 */ \
&rs6000_reg_names[100][0], /* v23 */ \
&rs6000_reg_names[101][0], /* v24 */ \
&rs6000_reg_names[102][0], /* v25 */ \
&rs6000_reg_names[103][0], /* v26 */ \
&rs6000_reg_names[104][0], /* v27 */ \
&rs6000_reg_names[105][0], /* v28 */ \
&rs6000_reg_names[106][0], /* v29 */ \
&rs6000_reg_names[107][0], /* v30 */ \
&rs6000_reg_names[108][0], /* v31 */ \
&rs6000_reg_names[109][0], /* vrsave */ \
}
/* print-rtl can't handle the above REGISTER_NAMES, so define the
following for it. Switch to use the alternate names since
they are more mnemonic. */
#define DEBUG_REGISTER_NAMES \
{ \
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
"mq", "lr", "ctr", "ap", \
"cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", \
"xer", \
"v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", \
"v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", \
"v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", \
"v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31", \
"vrsave" \
}
/* Table of additional register names to use in user input. */
#define ADDITIONAL_REGISTER_NAMES \
{{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
{"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
{"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
{"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
{"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
{"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
{"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
{"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
{"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
{"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
{"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
{"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
{"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
{"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
{"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
{"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
{"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
{"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
{"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
{"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
{"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
{"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
{"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
{"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
{"vrsave", 109}, \
/* no additional names for: mq, lr, ctr, ap */ \
{"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
{"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
{"cc", 68}, {"sp", 1}, {"toc", 2} }
/* Text to write out after a CALL that may be replaced by glue code by
the loader. This depends on the AIX version. */
#define RS6000_CALL_GLUE "cror 31,31,31"
/* This is how to output an element of a case-vector that is relative. */
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
do { char buf[100]; \
fputs ("\t.long ", FILE); \
ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
assemble_name (FILE, buf); \
putc ('-', FILE); \
ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
assemble_name (FILE, buf); \
putc ('\n', FILE); \
} while (0)
/* This is how to output an assembler line
that says to advance the location counter
to a multiple of 2**LOG bytes. */
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
if ((LOG) != 0) \
fprintf (FILE, "\t.align %d\n", (LOG))
/* Store in OUTPUT a string (made with alloca) containing
an assembler-name for a local static variable named NAME.
LABELNO is an integer which is different for each call. */
#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
/* Pick up the return address upon entry to a procedure. Used for
dwarf2 unwind information. This also enables the table driven
mechanism. */
#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM)
#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LINK_REGISTER_REGNUM)
/* Describe how we implement __builtin_eh_return. */
#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
/* Print operand X (an rtx) in assembler syntax to file FILE.
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
For `%' followed by punctuation, CODE is the punctuation and X is null. */
#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
/* Define which CODE values are valid. */
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
((CODE) == '.')
/* Print a memory address as an operand to reference that memory location. */
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
/* Define the codes that are matched by predicates in rs6000.c. */
#define PREDICATE_CODES \
{"short_cint_operand", {CONST_INT}}, \
{"u_short_cint_operand", {CONST_INT}}, \
{"non_short_cint_operand", {CONST_INT}}, \
{"exact_log2_cint_operand", {CONST_INT}}, \
{"gpc_reg_operand", {SUBREG, REG}}, \
{"cc_reg_operand", {SUBREG, REG}}, \
{"cc_reg_not_cr0_operand", {SUBREG, REG}}, \
{"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \
{"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
{"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
{"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
{"reg_or_arith_cint_operand", {SUBREG, REG, CONST_INT}}, \
{"reg_or_add_cint64_operand", {SUBREG, REG, CONST_INT}}, \
{"reg_or_sub_cint64_operand", {SUBREG, REG, CONST_INT}}, \
{"reg_or_logical_cint_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
{"got_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
{"got_no_const_operand", {SYMBOL_REF, LABEL_REF}}, \
{"easy_fp_constant", {CONST_DOUBLE}}, \
{"zero_fp_constant", {CONST_DOUBLE}}, \
{"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
{"lwa_operand", {SUBREG, MEM, REG}}, \
{"volatile_mem_operand", {MEM}}, \
{"offsettable_mem_operand", {MEM}}, \
{"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
{"add_operand", {SUBREG, REG, CONST_INT}}, \
{"non_add_cint_operand", {CONST_INT}}, \
{"and_operand", {SUBREG, REG, CONST_INT}}, \
{"and64_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
{"logical_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
{"non_logical_cint_operand", {CONST_INT, CONST_DOUBLE}}, \
{"mask_operand", {CONST_INT}}, \
{"mask64_operand", {CONST_INT, CONST_DOUBLE}}, \
{"count_register_operand", {REG}}, \
{"xer_operand", {REG}}, \
{"call_operand", {SYMBOL_REF, REG}}, \
{"current_file_function_operand", {SYMBOL_REF}}, \
{"input_operand", {SUBREG, MEM, REG, CONST_INT, \
CONST_DOUBLE, SYMBOL_REF}}, \
{"load_multiple_operation", {PARALLEL}}, \
{"store_multiple_operation", {PARALLEL}}, \
{"vrsave_operation", {PARALLEL}}, \
{"branch_comparison_operator", {EQ, NE, LE, LT, GE, \
GT, LEU, LTU, GEU, GTU, \
UNORDERED, ORDERED, \
UNGE, UNLE }}, \
{"branch_positive_comparison_operator", {EQ, LT, GT, LTU, GTU, \
UNORDERED }}, \
{"scc_comparison_operator", {EQ, NE, LE, LT, GE, \
GT, LEU, LTU, GEU, GTU, \
UNORDERED, ORDERED, \
UNGE, UNLE }}, \
{"trap_comparison_operator", {EQ, NE, LE, LT, GE, \
GT, LEU, LTU, GEU, GTU}}, \
{"boolean_operator", {AND, IOR, XOR}}, \
{"boolean_or_operator", {IOR, XOR}}, \
{"min_max_operator", {SMIN, SMAX, UMIN, UMAX}},
/* uncomment for disabling the corresponding default options */
/* #define MACHINE_no_sched_interblock */
/* #define MACHINE_no_sched_speculative */
/* #define MACHINE_no_sched_speculative_load */
/* General flags. */
extern int flag_pic;
extern int optimize;
extern int flag_expensive_optimizations;
extern int frame_pointer_needed;
enum rs6000_builtins
{
/* AltiVec builtins. */
ALTIVEC_BUILTIN_ST_INTERNAL_4si,
ALTIVEC_BUILTIN_LD_INTERNAL_4si,
ALTIVEC_BUILTIN_ST_INTERNAL_8hi,
ALTIVEC_BUILTIN_LD_INTERNAL_8hi,
ALTIVEC_BUILTIN_ST_INTERNAL_16qi,
ALTIVEC_BUILTIN_LD_INTERNAL_16qi,
ALTIVEC_BUILTIN_ST_INTERNAL_4sf,
ALTIVEC_BUILTIN_LD_INTERNAL_4sf,
ALTIVEC_BUILTIN_VADDUBM,
ALTIVEC_BUILTIN_VADDUHM,
ALTIVEC_BUILTIN_VADDUWM,
ALTIVEC_BUILTIN_VADDFP,
ALTIVEC_BUILTIN_VADDCUW,
ALTIVEC_BUILTIN_VADDUBS,
ALTIVEC_BUILTIN_VADDSBS,
ALTIVEC_BUILTIN_VADDUHS,
ALTIVEC_BUILTIN_VADDSHS,
ALTIVEC_BUILTIN_VADDUWS,
ALTIVEC_BUILTIN_VADDSWS,
ALTIVEC_BUILTIN_VAND,
ALTIVEC_BUILTIN_VANDC,
ALTIVEC_BUILTIN_VAVGUB,
ALTIVEC_BUILTIN_VAVGSB,
ALTIVEC_BUILTIN_VAVGUH,
ALTIVEC_BUILTIN_VAVGSH,
ALTIVEC_BUILTIN_VAVGUW,
ALTIVEC_BUILTIN_VAVGSW,
ALTIVEC_BUILTIN_VCFUX,
ALTIVEC_BUILTIN_VCFSX,
ALTIVEC_BUILTIN_VCTSXS,
ALTIVEC_BUILTIN_VCTUXS,
ALTIVEC_BUILTIN_VCMPBFP,
ALTIVEC_BUILTIN_VCMPEQUB,
ALTIVEC_BUILTIN_VCMPEQUH,
ALTIVEC_BUILTIN_VCMPEQUW,
ALTIVEC_BUILTIN_VCMPEQFP,
ALTIVEC_BUILTIN_VCMPGEFP,
ALTIVEC_BUILTIN_VCMPGTUB,
ALTIVEC_BUILTIN_VCMPGTSB,
ALTIVEC_BUILTIN_VCMPGTUH,
ALTIVEC_BUILTIN_VCMPGTSH,
ALTIVEC_BUILTIN_VCMPGTUW,
ALTIVEC_BUILTIN_VCMPGTSW,
ALTIVEC_BUILTIN_VCMPGTFP,
ALTIVEC_BUILTIN_VEXPTEFP,
ALTIVEC_BUILTIN_VLOGEFP,
ALTIVEC_BUILTIN_VMADDFP,
ALTIVEC_BUILTIN_VMAXUB,
ALTIVEC_BUILTIN_VMAXSB,
ALTIVEC_BUILTIN_VMAXUH,
ALTIVEC_BUILTIN_VMAXSH,
ALTIVEC_BUILTIN_VMAXUW,
ALTIVEC_BUILTIN_VMAXSW,
ALTIVEC_BUILTIN_VMAXFP,
ALTIVEC_BUILTIN_VMHADDSHS,
ALTIVEC_BUILTIN_VMHRADDSHS,
ALTIVEC_BUILTIN_VMLADDUHM,
ALTIVEC_BUILTIN_VMRGHB,
ALTIVEC_BUILTIN_VMRGHH,
ALTIVEC_BUILTIN_VMRGHW,
ALTIVEC_BUILTIN_VMRGLB,
ALTIVEC_BUILTIN_VMRGLH,
ALTIVEC_BUILTIN_VMRGLW,
ALTIVEC_BUILTIN_VMSUMUBM,
ALTIVEC_BUILTIN_VMSUMMBM,
ALTIVEC_BUILTIN_VMSUMUHM,
ALTIVEC_BUILTIN_VMSUMSHM,
ALTIVEC_BUILTIN_VMSUMUHS,
ALTIVEC_BUILTIN_VMSUMSHS,
ALTIVEC_BUILTIN_VMINUB,
ALTIVEC_BUILTIN_VMINSB,
ALTIVEC_BUILTIN_VMINUH,
ALTIVEC_BUILTIN_VMINSH,
ALTIVEC_BUILTIN_VMINUW,
ALTIVEC_BUILTIN_VMINSW,
ALTIVEC_BUILTIN_VMINFP,
ALTIVEC_BUILTIN_VMULEUB,
ALTIVEC_BUILTIN_VMULESB,
ALTIVEC_BUILTIN_VMULEUH,
ALTIVEC_BUILTIN_VMULESH,
ALTIVEC_BUILTIN_VMULOUB,
ALTIVEC_BUILTIN_VMULOSB,
ALTIVEC_BUILTIN_VMULOUH,
ALTIVEC_BUILTIN_VMULOSH,
ALTIVEC_BUILTIN_VNMSUBFP,
ALTIVEC_BUILTIN_VNOR,
ALTIVEC_BUILTIN_VOR,
ALTIVEC_BUILTIN_VSEL_4SI,
ALTIVEC_BUILTIN_VSEL_4SF,
ALTIVEC_BUILTIN_VSEL_8HI,
ALTIVEC_BUILTIN_VSEL_16QI,
ALTIVEC_BUILTIN_VPERM_4SI,
ALTIVEC_BUILTIN_VPERM_4SF,
ALTIVEC_BUILTIN_VPERM_8HI,
ALTIVEC_BUILTIN_VPERM_16QI,
ALTIVEC_BUILTIN_VPKUHUM,
ALTIVEC_BUILTIN_VPKUWUM,
ALTIVEC_BUILTIN_VPKPX,
ALTIVEC_BUILTIN_VPKUHSS,
ALTIVEC_BUILTIN_VPKSHSS,
ALTIVEC_BUILTIN_VPKUWSS,
ALTIVEC_BUILTIN_VPKSWSS,
ALTIVEC_BUILTIN_VPKUHUS,
ALTIVEC_BUILTIN_VPKSHUS,
ALTIVEC_BUILTIN_VPKUWUS,
ALTIVEC_BUILTIN_VPKSWUS,
ALTIVEC_BUILTIN_VREFP,
ALTIVEC_BUILTIN_VRFIM,
ALTIVEC_BUILTIN_VRFIN,
ALTIVEC_BUILTIN_VRFIP,
ALTIVEC_BUILTIN_VRFIZ,
ALTIVEC_BUILTIN_VRLB,
ALTIVEC_BUILTIN_VRLH,
ALTIVEC_BUILTIN_VRLW,
ALTIVEC_BUILTIN_VRSQRTEFP,
ALTIVEC_BUILTIN_VSLB,
ALTIVEC_BUILTIN_VSLH,
ALTIVEC_BUILTIN_VSLW,
ALTIVEC_BUILTIN_VSL,
ALTIVEC_BUILTIN_VSLO,
ALTIVEC_BUILTIN_VSPLTB,
ALTIVEC_BUILTIN_VSPLTH,
ALTIVEC_BUILTIN_VSPLTW,
ALTIVEC_BUILTIN_VSPLTISB,
ALTIVEC_BUILTIN_VSPLTISH,
ALTIVEC_BUILTIN_VSPLTISW,
ALTIVEC_BUILTIN_VSRB,
ALTIVEC_BUILTIN_VSRH,
ALTIVEC_BUILTIN_VSRW,
ALTIVEC_BUILTIN_VSRAB,
ALTIVEC_BUILTIN_VSRAH,
ALTIVEC_BUILTIN_VSRAW,
ALTIVEC_BUILTIN_VSR,
ALTIVEC_BUILTIN_VSRO,
ALTIVEC_BUILTIN_VSUBUBM,
ALTIVEC_BUILTIN_VSUBUHM,
ALTIVEC_BUILTIN_VSUBUWM,
ALTIVEC_BUILTIN_VSUBFP,
ALTIVEC_BUILTIN_VSUBCUW,
ALTIVEC_BUILTIN_VSUBUBS,
ALTIVEC_BUILTIN_VSUBSBS,
ALTIVEC_BUILTIN_VSUBUHS,
ALTIVEC_BUILTIN_VSUBSHS,
ALTIVEC_BUILTIN_VSUBUWS,
ALTIVEC_BUILTIN_VSUBSWS,
ALTIVEC_BUILTIN_VSUM4UBS,
ALTIVEC_BUILTIN_VSUM4SBS,
ALTIVEC_BUILTIN_VSUM4SHS,
ALTIVEC_BUILTIN_VSUM2SWS,
ALTIVEC_BUILTIN_VSUMSWS,
ALTIVEC_BUILTIN_VXOR,
ALTIVEC_BUILTIN_VSLDOI_16QI,
ALTIVEC_BUILTIN_VSLDOI_8HI,
ALTIVEC_BUILTIN_VSLDOI_4SI,
ALTIVEC_BUILTIN_VSLDOI_4SF,
ALTIVEC_BUILTIN_VUPKHSB,
ALTIVEC_BUILTIN_VUPKHPX,
ALTIVEC_BUILTIN_VUPKHSH,
ALTIVEC_BUILTIN_VUPKLSB,
ALTIVEC_BUILTIN_VUPKLPX,
ALTIVEC_BUILTIN_VUPKLSH,
ALTIVEC_BUILTIN_VCMPBFP_P,
ALTIVEC_BUILTIN_VCMPEQFP_P,
ALTIVEC_BUILTIN_VCMPEQUB_P,
ALTIVEC_BUILTIN_VCMPEQUH_P,
ALTIVEC_BUILTIN_VCMPEQUW_P,
ALTIVEC_BUILTIN_VCMPGEFP_P,
ALTIVEC_BUILTIN_VCMPGTFP_P,
ALTIVEC_BUILTIN_VCMPGTSB_P,
ALTIVEC_BUILTIN_VCMPGTSH_P,
ALTIVEC_BUILTIN_VCMPGTSW_P,
ALTIVEC_BUILTIN_VCMPGTUB_P,
ALTIVEC_BUILTIN_VCMPGTUH_P,
ALTIVEC_BUILTIN_VCMPGTUW_P,
ALTIVEC_BUILTIN_MTVSCR,
ALTIVEC_BUILTIN_MFVSCR,
ALTIVEC_BUILTIN_DSSALL,
ALTIVEC_BUILTIN_DSS,
ALTIVEC_BUILTIN_LVSL,
ALTIVEC_BUILTIN_LVSR,
ALTIVEC_BUILTIN_DSTT,
ALTIVEC_BUILTIN_DSTST,
ALTIVEC_BUILTIN_DSTSTT,
ALTIVEC_BUILTIN_DST,
ALTIVEC_BUILTIN_LVEBX,
ALTIVEC_BUILTIN_LVEHX,
ALTIVEC_BUILTIN_LVEWX,
ALTIVEC_BUILTIN_LVXL,
ALTIVEC_BUILTIN_LVX,
ALTIVEC_BUILTIN_STVX,
ALTIVEC_BUILTIN_STVEBX,
ALTIVEC_BUILTIN_STVEHX,
ALTIVEC_BUILTIN_STVEWX,
ALTIVEC_BUILTIN_STVXL
};