freebsd-nq/module/zfs/dsl_deleg.c
Gvozden Neskovic ee36c709c3 Performance optimization of AVL tree comparator functions
perf: 2.75x faster ddt_entry_compare()
    First 256bits of ddt_key_t is a block checksum, which are expected
to be close to random data. Hence, on average, comparison only needs to
look at first few bytes of the keys. To reduce number of conditional
jump instructions, the result is computed as: sign(memcmp(k1, k2)).

Sign of an integer 'a' can be obtained as: `(0 < a) - (a < 0)` := {-1, 0, 1} ,
which is computed efficiently.  Synthetic performance evaluation of
original and new algorithm over 1G random keys on 2.6GHz Intel(R) Xeon(R)
CPU E5-2660 v3:

old	6.85789 s
new	2.49089 s

perf: 2.8x faster vdev_queue_offset_compare() and vdev_queue_timestamp_compare()
    Compute the result directly instead of using conditionals

perf: zfs_range_compare()
    Speedup between 1.1x - 2.5x, depending on compiler version and
optimization level.

perf: spa_error_entry_compare()
    `bcmp()` is not suitable for comparator use. Use `memcmp()` instead.

perf: 2.8x faster metaslab_compare() and metaslab_rangesize_compare()
perf: 2.8x faster zil_bp_compare()
perf: 2.8x faster mze_compare()
perf: faster dbuf_compare()
perf: faster compares in spa_misc
perf: 2.8x faster layout_hash_compare()
perf: 2.8x faster space_reftree_compare()
perf: libzfs: faster avl tree comparators
perf: guid_compare()
perf: dsl_deadlist_compare()
perf: perm_set_compare()
perf: 2x faster range_tree_seg_compare()
perf: faster unique_compare()
perf: faster vdev_cache _compare()
perf: faster vdev_uberblock_compare()
perf: faster fuid _compare()
perf: faster zfs_znode_hold_compare()

Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Richard Elling <richard.elling@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #5033
2016-08-31 14:35:34 -07:00

775 lines
20 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2011, 2015 by Delphix. All rights reserved.
*/
/*
* DSL permissions are stored in a two level zap attribute
* mechanism. The first level identifies the "class" of
* entry. The class is identified by the first 2 letters of
* the attribute. The second letter "l" or "d" identifies whether
* it is a local or descendent permission. The first letter
* identifies the type of entry.
*
* ul$<id> identifies permissions granted locally for this userid.
* ud$<id> identifies permissions granted on descendent datasets for
* this userid.
* Ul$<id> identifies permission sets granted locally for this userid.
* Ud$<id> identifies permission sets granted on descendent datasets for
* this userid.
* gl$<id> identifies permissions granted locally for this groupid.
* gd$<id> identifies permissions granted on descendent datasets for
* this groupid.
* Gl$<id> identifies permission sets granted locally for this groupid.
* Gd$<id> identifies permission sets granted on descendent datasets for
* this groupid.
* el$ identifies permissions granted locally for everyone.
* ed$ identifies permissions granted on descendent datasets
* for everyone.
* El$ identifies permission sets granted locally for everyone.
* Ed$ identifies permission sets granted to descendent datasets for
* everyone.
* c-$ identifies permission to create at dataset creation time.
* C-$ identifies permission sets to grant locally at dataset creation
* time.
* s-$@<name> permissions defined in specified set @<name>
* S-$@<name> Sets defined in named set @<name>
*
* Each of the above entities points to another zap attribute that contains one
* attribute for each allowed permission, such as create, destroy,...
* All of the "upper" case class types will specify permission set names
* rather than permissions.
*
* Basically it looks something like this:
* ul$12 -> ZAP OBJ -> permissions...
*
* The ZAP OBJ is referred to as the jump object.
*/
#include <sys/dmu.h>
#include <sys/dmu_objset.h>
#include <sys/dmu_tx.h>
#include <sys/dsl_dataset.h>
#include <sys/dsl_dir.h>
#include <sys/dsl_prop.h>
#include <sys/dsl_synctask.h>
#include <sys/dsl_deleg.h>
#include <sys/spa.h>
#include <sys/zap.h>
#include <sys/fs/zfs.h>
#include <sys/cred.h>
#include <sys/sunddi.h>
#include "zfs_deleg.h"
/*
* Validate that user is allowed to delegate specified permissions.
*
* In order to delegate "create" you must have "create"
* and "allow".
*/
int
dsl_deleg_can_allow(char *ddname, nvlist_t *nvp, cred_t *cr)
{
nvpair_t *whopair = NULL;
int error;
if ((error = dsl_deleg_access(ddname, ZFS_DELEG_PERM_ALLOW, cr)) != 0)
return (error);
while ((whopair = nvlist_next_nvpair(nvp, whopair))) {
nvlist_t *perms;
nvpair_t *permpair = NULL;
VERIFY(nvpair_value_nvlist(whopair, &perms) == 0);
while ((permpair = nvlist_next_nvpair(perms, permpair))) {
const char *perm = nvpair_name(permpair);
if (strcmp(perm, ZFS_DELEG_PERM_ALLOW) == 0)
return (SET_ERROR(EPERM));
if ((error = dsl_deleg_access(ddname, perm, cr)) != 0)
return (error);
}
}
return (0);
}
/*
* Validate that user is allowed to unallow specified permissions. They
* must have the 'allow' permission, and even then can only unallow
* perms for their uid.
*/
int
dsl_deleg_can_unallow(char *ddname, nvlist_t *nvp, cred_t *cr)
{
nvpair_t *whopair = NULL;
int error;
char idstr[32];
if ((error = dsl_deleg_access(ddname, ZFS_DELEG_PERM_ALLOW, cr)) != 0)
return (error);
(void) snprintf(idstr, sizeof (idstr), "%lld",
(longlong_t)crgetuid(cr));
while ((whopair = nvlist_next_nvpair(nvp, whopair))) {
zfs_deleg_who_type_t type = nvpair_name(whopair)[0];
if (type != ZFS_DELEG_USER &&
type != ZFS_DELEG_USER_SETS)
return (SET_ERROR(EPERM));
if (strcmp(idstr, &nvpair_name(whopair)[3]) != 0)
return (SET_ERROR(EPERM));
}
return (0);
}
typedef struct dsl_deleg_arg {
const char *dda_name;
nvlist_t *dda_nvlist;
} dsl_deleg_arg_t;
static void
dsl_deleg_set_sync(void *arg, dmu_tx_t *tx)
{
dsl_deleg_arg_t *dda = arg;
dsl_dir_t *dd;
dsl_pool_t *dp = dmu_tx_pool(tx);
objset_t *mos = dp->dp_meta_objset;
nvpair_t *whopair = NULL;
uint64_t zapobj;
VERIFY0(dsl_dir_hold(dp, dda->dda_name, FTAG, &dd, NULL));
zapobj = dsl_dir_phys(dd)->dd_deleg_zapobj;
if (zapobj == 0) {
dmu_buf_will_dirty(dd->dd_dbuf, tx);
zapobj = dsl_dir_phys(dd)->dd_deleg_zapobj = zap_create(mos,
DMU_OT_DSL_PERMS, DMU_OT_NONE, 0, tx);
}
while ((whopair = nvlist_next_nvpair(dda->dda_nvlist, whopair))) {
const char *whokey = nvpair_name(whopair);
nvlist_t *perms;
nvpair_t *permpair = NULL;
uint64_t jumpobj;
perms = fnvpair_value_nvlist(whopair);
if (zap_lookup(mos, zapobj, whokey, 8, 1, &jumpobj) != 0) {
jumpobj = zap_create_link(mos, DMU_OT_DSL_PERMS,
zapobj, whokey, tx);
}
while ((permpair = nvlist_next_nvpair(perms, permpair))) {
const char *perm = nvpair_name(permpair);
uint64_t n = 0;
VERIFY(zap_update(mos, jumpobj,
perm, 8, 1, &n, tx) == 0);
spa_history_log_internal_dd(dd, "permission update", tx,
"%s %s", whokey, perm);
}
}
dsl_dir_rele(dd, FTAG);
}
static void
dsl_deleg_unset_sync(void *arg, dmu_tx_t *tx)
{
dsl_deleg_arg_t *dda = arg;
dsl_dir_t *dd;
dsl_pool_t *dp = dmu_tx_pool(tx);
objset_t *mos = dp->dp_meta_objset;
nvpair_t *whopair = NULL;
uint64_t zapobj;
VERIFY0(dsl_dir_hold(dp, dda->dda_name, FTAG, &dd, NULL));
zapobj = dsl_dir_phys(dd)->dd_deleg_zapobj;
if (zapobj == 0) {
dsl_dir_rele(dd, FTAG);
return;
}
while ((whopair = nvlist_next_nvpair(dda->dda_nvlist, whopair))) {
const char *whokey = nvpair_name(whopair);
nvlist_t *perms;
nvpair_t *permpair = NULL;
uint64_t jumpobj;
if (nvpair_value_nvlist(whopair, &perms) != 0) {
if (zap_lookup(mos, zapobj, whokey, 8,
1, &jumpobj) == 0) {
(void) zap_remove(mos, zapobj, whokey, tx);
VERIFY(0 == zap_destroy(mos, jumpobj, tx));
}
spa_history_log_internal_dd(dd, "permission who remove",
tx, "%s", whokey);
continue;
}
if (zap_lookup(mos, zapobj, whokey, 8, 1, &jumpobj) != 0)
continue;
while ((permpair = nvlist_next_nvpair(perms, permpair))) {
const char *perm = nvpair_name(permpair);
uint64_t n = 0;
(void) zap_remove(mos, jumpobj, perm, tx);
if (zap_count(mos, jumpobj, &n) == 0 && n == 0) {
(void) zap_remove(mos, zapobj,
whokey, tx);
VERIFY(0 == zap_destroy(mos,
jumpobj, tx));
}
spa_history_log_internal_dd(dd, "permission remove", tx,
"%s %s", whokey, perm);
}
}
dsl_dir_rele(dd, FTAG);
}
static int
dsl_deleg_check(void *arg, dmu_tx_t *tx)
{
dsl_deleg_arg_t *dda = arg;
dsl_dir_t *dd;
int error;
if (spa_version(dmu_tx_pool(tx)->dp_spa) <
SPA_VERSION_DELEGATED_PERMS) {
return (SET_ERROR(ENOTSUP));
}
error = dsl_dir_hold(dmu_tx_pool(tx), dda->dda_name, FTAG, &dd, NULL);
if (error == 0)
dsl_dir_rele(dd, FTAG);
return (error);
}
int
dsl_deleg_set(const char *ddname, nvlist_t *nvp, boolean_t unset)
{
dsl_deleg_arg_t dda;
/* nvp must already have been verified to be valid */
dda.dda_name = ddname;
dda.dda_nvlist = nvp;
return (dsl_sync_task(ddname, dsl_deleg_check,
unset ? dsl_deleg_unset_sync : dsl_deleg_set_sync,
&dda, fnvlist_num_pairs(nvp), ZFS_SPACE_CHECK_RESERVED));
}
/*
* Find all 'allow' permissions from a given point and then continue
* traversing up to the root.
*
* This function constructs an nvlist of nvlists.
* each setpoint is an nvlist composed of an nvlist of an nvlist
* of the individual * users/groups/everyone/create
* permissions.
*
* The nvlist will look like this.
*
* { source fsname -> { whokeys { permissions,...}, ...}}
*
* The fsname nvpairs will be arranged in a bottom up order. For example,
* if we have the following structure a/b/c then the nvpairs for the fsnames
* will be ordered a/b/c, a/b, a.
*/
int
dsl_deleg_get(const char *ddname, nvlist_t **nvp)
{
dsl_dir_t *dd, *startdd;
dsl_pool_t *dp;
int error;
objset_t *mos;
zap_cursor_t *basezc, *zc;
zap_attribute_t *baseza, *za;
char *source;
error = dsl_pool_hold(ddname, FTAG, &dp);
if (error != 0)
return (error);
error = dsl_dir_hold(dp, ddname, FTAG, &startdd, NULL);
if (error != 0) {
dsl_pool_rele(dp, FTAG);
return (error);
}
dp = startdd->dd_pool;
mos = dp->dp_meta_objset;
zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
basezc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
baseza = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
source = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
for (dd = startdd; dd != NULL; dd = dd->dd_parent) {
nvlist_t *sp_nvp;
uint64_t n;
if (dsl_dir_phys(dd)->dd_deleg_zapobj == 0 ||
zap_count(mos,
dsl_dir_phys(dd)->dd_deleg_zapobj, &n) != 0 || n == 0)
continue;
sp_nvp = fnvlist_alloc();
for (zap_cursor_init(basezc, mos,
dsl_dir_phys(dd)->dd_deleg_zapobj);
zap_cursor_retrieve(basezc, baseza) == 0;
zap_cursor_advance(basezc)) {
nvlist_t *perms_nvp;
ASSERT(baseza->za_integer_length == 8);
ASSERT(baseza->za_num_integers == 1);
perms_nvp = fnvlist_alloc();
for (zap_cursor_init(zc, mos, baseza->za_first_integer);
zap_cursor_retrieve(zc, za) == 0;
zap_cursor_advance(zc)) {
fnvlist_add_boolean(perms_nvp, za->za_name);
}
zap_cursor_fini(zc);
fnvlist_add_nvlist(sp_nvp, baseza->za_name, perms_nvp);
fnvlist_free(perms_nvp);
}
zap_cursor_fini(basezc);
dsl_dir_name(dd, source);
fnvlist_add_nvlist(*nvp, source, sp_nvp);
nvlist_free(sp_nvp);
}
kmem_free(source, ZFS_MAX_DATASET_NAME_LEN);
kmem_free(baseza, sizeof (zap_attribute_t));
kmem_free(basezc, sizeof (zap_cursor_t));
kmem_free(za, sizeof (zap_attribute_t));
kmem_free(zc, sizeof (zap_cursor_t));
dsl_dir_rele(startdd, FTAG);
dsl_pool_rele(dp, FTAG);
return (0);
}
/*
* Routines for dsl_deleg_access() -- access checking.
*/
typedef struct perm_set {
avl_node_t p_node;
boolean_t p_matched;
char p_setname[ZFS_MAX_DELEG_NAME];
} perm_set_t;
static int
perm_set_compare(const void *arg1, const void *arg2)
{
const perm_set_t *node1 = (const perm_set_t *)arg1;
const perm_set_t *node2 = (const perm_set_t *)arg2;
int val;
val = strcmp(node1->p_setname, node2->p_setname);
return (AVL_ISIGN(val));
}
/*
* Determine whether a specified permission exists.
*
* First the base attribute has to be retrieved. i.e. ul$12
* Once the base object has been retrieved the actual permission
* is lookup up in the zap object the base object points to.
*
* Return 0 if permission exists, ENOENT if there is no whokey, EPERM if
* there is no perm in that jumpobj.
*/
static int
dsl_check_access(objset_t *mos, uint64_t zapobj,
char type, char checkflag, void *valp, const char *perm)
{
int error;
uint64_t jumpobj, zero;
char whokey[ZFS_MAX_DELEG_NAME];
zfs_deleg_whokey(whokey, type, checkflag, valp);
error = zap_lookup(mos, zapobj, whokey, 8, 1, &jumpobj);
if (error == 0) {
error = zap_lookup(mos, jumpobj, perm, 8, 1, &zero);
if (error == ENOENT)
error = SET_ERROR(EPERM);
}
return (error);
}
/*
* check a specified user/group for a requested permission
*/
static int
dsl_check_user_access(objset_t *mos, uint64_t zapobj, const char *perm,
int checkflag, cred_t *cr)
{
const gid_t *gids;
int ngids;
int i;
uint64_t id;
/* check for user */
id = crgetuid(cr);
if (dsl_check_access(mos, zapobj,
ZFS_DELEG_USER, checkflag, &id, perm) == 0)
return (0);
/* check for users primary group */
id = crgetgid(cr);
if (dsl_check_access(mos, zapobj,
ZFS_DELEG_GROUP, checkflag, &id, perm) == 0)
return (0);
/* check for everyone entry */
id = -1;
if (dsl_check_access(mos, zapobj,
ZFS_DELEG_EVERYONE, checkflag, &id, perm) == 0)
return (0);
/* check each supplemental group user is a member of */
ngids = crgetngroups(cr);
gids = crgetgroups(cr);
for (i = 0; i != ngids; i++) {
id = gids[i];
if (dsl_check_access(mos, zapobj,
ZFS_DELEG_GROUP, checkflag, &id, perm) == 0)
return (0);
}
return (SET_ERROR(EPERM));
}
/*
* Iterate over the sets specified in the specified zapobj
* and load them into the permsets avl tree.
*/
static int
dsl_load_sets(objset_t *mos, uint64_t zapobj,
char type, char checkflag, void *valp, avl_tree_t *avl)
{
zap_cursor_t zc;
zap_attribute_t za;
perm_set_t *permnode;
avl_index_t idx;
uint64_t jumpobj;
int error;
char whokey[ZFS_MAX_DELEG_NAME];
zfs_deleg_whokey(whokey, type, checkflag, valp);
error = zap_lookup(mos, zapobj, whokey, 8, 1, &jumpobj);
if (error != 0)
return (error);
for (zap_cursor_init(&zc, mos, jumpobj);
zap_cursor_retrieve(&zc, &za) == 0;
zap_cursor_advance(&zc)) {
permnode = kmem_alloc(sizeof (perm_set_t), KM_SLEEP);
(void) strlcpy(permnode->p_setname, za.za_name,
sizeof (permnode->p_setname));
permnode->p_matched = B_FALSE;
if (avl_find(avl, permnode, &idx) == NULL) {
avl_insert(avl, permnode, idx);
} else {
kmem_free(permnode, sizeof (perm_set_t));
}
}
zap_cursor_fini(&zc);
return (0);
}
/*
* Load all permissions user based on cred belongs to.
*/
static void
dsl_load_user_sets(objset_t *mos, uint64_t zapobj, avl_tree_t *avl,
char checkflag, cred_t *cr)
{
const gid_t *gids;
int ngids, i;
uint64_t id;
id = crgetuid(cr);
(void) dsl_load_sets(mos, zapobj,
ZFS_DELEG_USER_SETS, checkflag, &id, avl);
id = crgetgid(cr);
(void) dsl_load_sets(mos, zapobj,
ZFS_DELEG_GROUP_SETS, checkflag, &id, avl);
(void) dsl_load_sets(mos, zapobj,
ZFS_DELEG_EVERYONE_SETS, checkflag, NULL, avl);
ngids = crgetngroups(cr);
gids = crgetgroups(cr);
for (i = 0; i != ngids; i++) {
id = gids[i];
(void) dsl_load_sets(mos, zapobj,
ZFS_DELEG_GROUP_SETS, checkflag, &id, avl);
}
}
/*
* Check if user has requested permission.
*/
int
dsl_deleg_access_impl(dsl_dataset_t *ds, const char *perm, cred_t *cr)
{
dsl_dir_t *dd;
dsl_pool_t *dp;
void *cookie;
int error;
char checkflag;
objset_t *mos;
avl_tree_t permsets;
perm_set_t *setnode;
dp = ds->ds_dir->dd_pool;
mos = dp->dp_meta_objset;
if (dsl_delegation_on(mos) == B_FALSE)
return (SET_ERROR(ECANCELED));
if (spa_version(dmu_objset_spa(dp->dp_meta_objset)) <
SPA_VERSION_DELEGATED_PERMS)
return (SET_ERROR(EPERM));
if (ds->ds_is_snapshot) {
/*
* Snapshots are treated as descendents only,
* local permissions do not apply.
*/
checkflag = ZFS_DELEG_DESCENDENT;
} else {
checkflag = ZFS_DELEG_LOCAL;
}
avl_create(&permsets, perm_set_compare, sizeof (perm_set_t),
offsetof(perm_set_t, p_node));
ASSERT(dsl_pool_config_held(dp));
for (dd = ds->ds_dir; dd != NULL; dd = dd->dd_parent,
checkflag = ZFS_DELEG_DESCENDENT) {
uint64_t zapobj;
boolean_t expanded;
/*
* If not in global zone then make sure
* the zoned property is set
*/
if (!INGLOBALZONE(curproc)) {
uint64_t zoned;
if (dsl_prop_get_dd(dd,
zfs_prop_to_name(ZFS_PROP_ZONED),
8, 1, &zoned, NULL, B_FALSE) != 0)
break;
if (!zoned)
break;
}
zapobj = dsl_dir_phys(dd)->dd_deleg_zapobj;
if (zapobj == 0)
continue;
dsl_load_user_sets(mos, zapobj, &permsets, checkflag, cr);
again:
expanded = B_FALSE;
for (setnode = avl_first(&permsets); setnode;
setnode = AVL_NEXT(&permsets, setnode)) {
if (setnode->p_matched == B_TRUE)
continue;
/* See if this set directly grants this permission */
error = dsl_check_access(mos, zapobj,
ZFS_DELEG_NAMED_SET, 0, setnode->p_setname, perm);
if (error == 0)
goto success;
if (error == EPERM)
setnode->p_matched = B_TRUE;
/* See if this set includes other sets */
error = dsl_load_sets(mos, zapobj,
ZFS_DELEG_NAMED_SET_SETS, 0,
setnode->p_setname, &permsets);
if (error == 0)
setnode->p_matched = expanded = B_TRUE;
}
/*
* If we expanded any sets, that will define more sets,
* which we need to check.
*/
if (expanded)
goto again;
error = dsl_check_user_access(mos, zapobj, perm, checkflag, cr);
if (error == 0)
goto success;
}
error = SET_ERROR(EPERM);
success:
cookie = NULL;
while ((setnode = avl_destroy_nodes(&permsets, &cookie)) != NULL)
kmem_free(setnode, sizeof (perm_set_t));
return (error);
}
int
dsl_deleg_access(const char *dsname, const char *perm, cred_t *cr)
{
dsl_pool_t *dp;
dsl_dataset_t *ds;
int error;
error = dsl_pool_hold(dsname, FTAG, &dp);
if (error != 0)
return (error);
error = dsl_dataset_hold(dp, dsname, FTAG, &ds);
if (error == 0) {
error = dsl_deleg_access_impl(ds, perm, cr);
dsl_dataset_rele(ds, FTAG);
}
dsl_pool_rele(dp, FTAG);
return (error);
}
/*
* Other routines.
*/
static void
copy_create_perms(dsl_dir_t *dd, uint64_t pzapobj,
boolean_t dosets, uint64_t uid, dmu_tx_t *tx)
{
objset_t *mos = dd->dd_pool->dp_meta_objset;
uint64_t jumpobj, pjumpobj;
uint64_t zapobj = dsl_dir_phys(dd)->dd_deleg_zapobj;
zap_cursor_t zc;
zap_attribute_t za;
char whokey[ZFS_MAX_DELEG_NAME];
zfs_deleg_whokey(whokey,
dosets ? ZFS_DELEG_CREATE_SETS : ZFS_DELEG_CREATE,
ZFS_DELEG_LOCAL, NULL);
if (zap_lookup(mos, pzapobj, whokey, 8, 1, &pjumpobj) != 0)
return;
if (zapobj == 0) {
dmu_buf_will_dirty(dd->dd_dbuf, tx);
zapobj = dsl_dir_phys(dd)->dd_deleg_zapobj = zap_create(mos,
DMU_OT_DSL_PERMS, DMU_OT_NONE, 0, tx);
}
zfs_deleg_whokey(whokey,
dosets ? ZFS_DELEG_USER_SETS : ZFS_DELEG_USER,
ZFS_DELEG_LOCAL, &uid);
if (zap_lookup(mos, zapobj, whokey, 8, 1, &jumpobj) == ENOENT) {
jumpobj = zap_create(mos, DMU_OT_DSL_PERMS, DMU_OT_NONE, 0, tx);
VERIFY(zap_add(mos, zapobj, whokey, 8, 1, &jumpobj, tx) == 0);
}
for (zap_cursor_init(&zc, mos, pjumpobj);
zap_cursor_retrieve(&zc, &za) == 0;
zap_cursor_advance(&zc)) {
uint64_t zero = 0;
ASSERT(za.za_integer_length == 8 && za.za_num_integers == 1);
VERIFY(zap_update(mos, jumpobj, za.za_name,
8, 1, &zero, tx) == 0);
}
zap_cursor_fini(&zc);
}
/*
* set all create time permission on new dataset.
*/
void
dsl_deleg_set_create_perms(dsl_dir_t *sdd, dmu_tx_t *tx, cred_t *cr)
{
dsl_dir_t *dd;
uint64_t uid = crgetuid(cr);
if (spa_version(dmu_objset_spa(sdd->dd_pool->dp_meta_objset)) <
SPA_VERSION_DELEGATED_PERMS)
return;
for (dd = sdd->dd_parent; dd != NULL; dd = dd->dd_parent) {
uint64_t pzapobj = dsl_dir_phys(dd)->dd_deleg_zapobj;
if (pzapobj == 0)
continue;
copy_create_perms(sdd, pzapobj, B_FALSE, uid, tx);
copy_create_perms(sdd, pzapobj, B_TRUE, uid, tx);
}
}
int
dsl_deleg_destroy(objset_t *mos, uint64_t zapobj, dmu_tx_t *tx)
{
zap_cursor_t zc;
zap_attribute_t za;
if (zapobj == 0)
return (0);
for (zap_cursor_init(&zc, mos, zapobj);
zap_cursor_retrieve(&zc, &za) == 0;
zap_cursor_advance(&zc)) {
ASSERT(za.za_integer_length == 8 && za.za_num_integers == 1);
VERIFY(0 == zap_destroy(mos, za.za_first_integer, tx));
}
zap_cursor_fini(&zc);
VERIFY(0 == zap_destroy(mos, zapobj, tx));
return (0);
}
boolean_t
dsl_delegation_on(objset_t *os)
{
return (!!spa_delegation(os->os_spa));
}
#if defined(_KERNEL) && defined(HAVE_SPL)
EXPORT_SYMBOL(dsl_deleg_get);
EXPORT_SYMBOL(dsl_deleg_set);
#endif