freebsd-nq/sys/dev/pci/pci_host_generic.c
Michal Meloun 895c8b1c39 INTRNG: Rework handling with resources. Partially revert r301453.
- Read interrupt properties at bus enumeration time and store
   it into global mapping table.
 - At bus_activate_resource() time, given mapping entry is resolved and
   connected to real interrupt source. A copy of mapping entry is attached
   to given resource.
 - At bus_setup_intr() time, mapping entry stored in resource is used
   for delivery of requested interrupt configuration.
 - For MSI/MSIX interrupts, mapping entry is created within
   pci_alloc_msi()/pci_alloc_msix() call.
 - For legacy PCI interrupts, mapping entry must be created within
   pcib_route_interrupt() by pcib driver itself.

Reviewed by: nwhitehorn, andrew
Differential Revision: https://reviews.freebsd.org/D7493
2016-08-19 10:52:39 +00:00

970 lines
25 KiB
C

/*-
* Copyright (c) 2015 Ruslan Bukin <br@bsdpad.com>
* Copyright (c) 2014 The FreeBSD Foundation
* All rights reserved.
*
* This software was developed by Semihalf under
* the sponsorship of the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* Generic ECAM PCIe driver */
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_platform.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/rman.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/cpuset.h>
#include <sys/rwlock.h>
#if defined(INTRNG)
#include <machine/intr.h>
#endif
#include <dev/ofw/openfirm.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/ofw/ofw_pci.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcib_private.h>
#include <dev/pci/pci_host_generic.h>
#include <machine/cpu.h>
#include <machine/bus.h>
#include <machine/intr.h>
#include <vm/vm_page.h>
#include "pcib_if.h"
/* Assembling ECAM Configuration Address */
#define PCIE_BUS_SHIFT 20
#define PCIE_SLOT_SHIFT 15
#define PCIE_FUNC_SHIFT 12
#define PCIE_BUS_MASK 0xFF
#define PCIE_SLOT_MASK 0x1F
#define PCIE_FUNC_MASK 0x07
#define PCIE_REG_MASK 0xFFF
#define PCIE_ADDR_OFFSET(bus, slot, func, reg) \
((((bus) & PCIE_BUS_MASK) << PCIE_BUS_SHIFT) | \
(((slot) & PCIE_SLOT_MASK) << PCIE_SLOT_SHIFT) | \
(((func) & PCIE_FUNC_MASK) << PCIE_FUNC_SHIFT) | \
((reg) & PCIE_REG_MASK))
#define PCI_IO_WINDOW_OFFSET 0x1000
#define SPACE_CODE_SHIFT 24
#define SPACE_CODE_MASK 0x3
#define SPACE_CODE_IO_SPACE 0x1
#define PROPS_CELL_SIZE 1
#define PCI_ADDR_CELL_SIZE 2
/* OFW bus interface */
struct generic_pcie_ofw_devinfo {
struct ofw_bus_devinfo di_dinfo;
struct resource_list di_rl;
};
/* Forward prototypes */
static int generic_pcie_probe(device_t dev);
static int parse_pci_mem_ranges(struct generic_pcie_softc *sc);
static uint32_t generic_pcie_read_config(device_t dev, u_int bus, u_int slot,
u_int func, u_int reg, int bytes);
static void generic_pcie_write_config(device_t dev, u_int bus, u_int slot,
u_int func, u_int reg, uint32_t val, int bytes);
static int generic_pcie_maxslots(device_t dev);
static int generic_pcie_read_ivar(device_t dev, device_t child, int index,
uintptr_t *result);
static int generic_pcie_write_ivar(device_t dev, device_t child, int index,
uintptr_t value);
static struct resource *generic_pcie_alloc_resource_ofw(device_t, device_t,
int, int *, rman_res_t, rman_res_t, rman_res_t, u_int);
static struct resource *generic_pcie_alloc_resource_pcie(device_t dev,
device_t child, int type, int *rid, rman_res_t start, rman_res_t end,
rman_res_t count, u_int flags);
static int generic_pcie_release_resource(device_t dev, device_t child,
int type, int rid, struct resource *res);
static int generic_pcie_release_resource_ofw(device_t, device_t, int, int,
struct resource *);
static int generic_pcie_release_resource_pcie(device_t, device_t, int, int,
struct resource *);
static int generic_pcie_ofw_bus_attach(device_t);
static const struct ofw_bus_devinfo *generic_pcie_ofw_get_devinfo(device_t,
device_t);
static __inline void
get_addr_size_cells(phandle_t node, pcell_t *addr_cells, pcell_t *size_cells)
{
*addr_cells = 2;
/* Find address cells if present */
OF_getencprop(node, "#address-cells", addr_cells, sizeof(*addr_cells));
*size_cells = 2;
/* Find size cells if present */
OF_getencprop(node, "#size-cells", size_cells, sizeof(*size_cells));
}
static int
generic_pcie_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (ofw_bus_is_compatible(dev, "pci-host-ecam-generic")) {
device_set_desc(dev, "Generic PCI host controller");
return (BUS_PROBE_GENERIC);
}
if (ofw_bus_is_compatible(dev, "arm,gem5_pcie")) {
device_set_desc(dev, "GEM5 PCIe host controller");
return (BUS_PROBE_DEFAULT);
}
return (ENXIO);
}
int
pci_host_generic_attach(device_t dev)
{
struct generic_pcie_softc *sc;
uint64_t phys_base;
uint64_t pci_base;
uint64_t size;
phandle_t node;
int error;
int tuple;
int rid;
sc = device_get_softc(dev);
sc->dev = dev;
/* Retrieve 'ranges' property from FDT */
if (bootverbose)
device_printf(dev, "parsing FDT for ECAM%d:\n",
sc->ecam);
if (parse_pci_mem_ranges(sc))
return (ENXIO);
/* Attach OFW bus */
if (generic_pcie_ofw_bus_attach(dev) != 0)
return (ENXIO);
node = ofw_bus_get_node(dev);
if (sc->coherent == 0) {
sc->coherent = OF_hasprop(node, "dma-coherent");
}
if (bootverbose)
device_printf(dev, "Bus is%s cache-coherent\n",
sc->coherent ? "" : " not");
/* Create the parent DMA tag to pass down the coherent flag */
error = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */
1, 0, /* alignment, bounds */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE, /* maxsize */
BUS_SPACE_UNRESTRICTED, /* nsegments */
BUS_SPACE_MAXSIZE, /* maxsegsize */
sc->coherent ? BUS_DMA_COHERENT : 0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->dmat);
if (error != 0)
return (error);
rid = 0;
sc->res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE);
if (sc->res == NULL) {
device_printf(dev, "could not map memory.\n");
return (ENXIO);
}
sc->bst = rman_get_bustag(sc->res);
sc->bsh = rman_get_bushandle(sc->res);
sc->mem_rman.rm_type = RMAN_ARRAY;
sc->mem_rman.rm_descr = "PCIe Memory";
sc->io_rman.rm_type = RMAN_ARRAY;
sc->io_rman.rm_descr = "PCIe IO window";
/* Initialize rman and allocate memory regions */
error = rman_init(&sc->mem_rman);
if (error) {
device_printf(dev, "rman_init() failed. error = %d\n", error);
return (error);
}
error = rman_init(&sc->io_rman);
if (error) {
device_printf(dev, "rman_init() failed. error = %d\n", error);
return (error);
}
for (tuple = 0; tuple < MAX_RANGES_TUPLES; tuple++) {
phys_base = sc->ranges[tuple].phys_base;
pci_base = sc->ranges[tuple].pci_base;
size = sc->ranges[tuple].size;
if (phys_base == 0 || size == 0)
continue; /* empty range element */
if (sc->ranges[tuple].flags & FLAG_MEM) {
error = rman_manage_region(&sc->mem_rman,
phys_base, phys_base + size - 1);
} else if (sc->ranges[tuple].flags & FLAG_IO) {
error = rman_manage_region(&sc->io_rman,
pci_base + PCI_IO_WINDOW_OFFSET,
pci_base + PCI_IO_WINDOW_OFFSET + size - 1);
} else
continue;
if (error) {
device_printf(dev, "rman_manage_region() failed."
"error = %d\n", error);
rman_fini(&sc->mem_rman);
return (error);
}
}
ofw_bus_setup_iinfo(node, &sc->pci_iinfo, sizeof(cell_t));
device_add_child(dev, "pci", -1);
return (bus_generic_attach(dev));
}
static int
parse_pci_mem_ranges(struct generic_pcie_softc *sc)
{
pcell_t pci_addr_cells, parent_addr_cells;
pcell_t attributes, size_cells;
cell_t *base_ranges;
int nbase_ranges;
phandle_t node;
int i, j, k;
int tuple;
node = ofw_bus_get_node(sc->dev);
OF_getencprop(node, "#address-cells", &pci_addr_cells,
sizeof(pci_addr_cells));
OF_getencprop(node, "#size-cells", &size_cells,
sizeof(size_cells));
OF_getencprop(OF_parent(node), "#address-cells", &parent_addr_cells,
sizeof(parent_addr_cells));
if (parent_addr_cells != 2 || pci_addr_cells != 3 || size_cells != 2) {
device_printf(sc->dev,
"Unexpected number of address or size cells in FDT\n");
return (ENXIO);
}
nbase_ranges = OF_getproplen(node, "ranges");
sc->nranges = nbase_ranges / sizeof(cell_t) /
(parent_addr_cells + pci_addr_cells + size_cells);
base_ranges = malloc(nbase_ranges, M_DEVBUF, M_WAITOK);
OF_getencprop(node, "ranges", base_ranges, nbase_ranges);
for (i = 0, j = 0; i < sc->nranges; i++) {
attributes = (base_ranges[j++] >> SPACE_CODE_SHIFT) & \
SPACE_CODE_MASK;
if (attributes == SPACE_CODE_IO_SPACE) {
sc->ranges[i].flags |= FLAG_IO;
} else {
sc->ranges[i].flags |= FLAG_MEM;
}
sc->ranges[i].pci_base = 0;
for (k = 0; k < (pci_addr_cells - 1); k++) {
sc->ranges[i].pci_base <<= 32;
sc->ranges[i].pci_base |= base_ranges[j++];
}
sc->ranges[i].phys_base = 0;
for (k = 0; k < parent_addr_cells; k++) {
sc->ranges[i].phys_base <<= 32;
sc->ranges[i].phys_base |= base_ranges[j++];
}
sc->ranges[i].size = 0;
for (k = 0; k < size_cells; k++) {
sc->ranges[i].size <<= 32;
sc->ranges[i].size |= base_ranges[j++];
}
}
for (; i < MAX_RANGES_TUPLES; i++) {
/* zero-fill remaining tuples to mark empty elements in array */
sc->ranges[i].pci_base = 0;
sc->ranges[i].phys_base = 0;
sc->ranges[i].size = 0;
}
if (bootverbose) {
for (tuple = 0; tuple < MAX_RANGES_TUPLES; tuple++) {
device_printf(sc->dev,
"\tPCI addr: 0x%jx, CPU addr: 0x%jx, Size: 0x%jx\n",
sc->ranges[tuple].pci_base,
sc->ranges[tuple].phys_base,
sc->ranges[tuple].size);
}
}
free(base_ranges, M_DEVBUF);
return (0);
}
static uint32_t
generic_pcie_read_config(device_t dev, u_int bus, u_int slot,
u_int func, u_int reg, int bytes)
{
struct generic_pcie_softc *sc;
bus_space_handle_t h;
bus_space_tag_t t;
uint64_t offset;
uint32_t data;
if ((bus > PCI_BUSMAX) || (slot > PCI_SLOTMAX) ||
(func > PCI_FUNCMAX) || (reg > PCIE_REGMAX))
return (~0U);
sc = device_get_softc(dev);
offset = PCIE_ADDR_OFFSET(bus, slot, func, reg);
t = sc->bst;
h = sc->bsh;
switch (bytes) {
case 1:
data = bus_space_read_1(t, h, offset);
break;
case 2:
data = le16toh(bus_space_read_2(t, h, offset));
break;
case 4:
data = le32toh(bus_space_read_4(t, h, offset));
break;
default:
return (~0U);
}
return (data);
}
static void
generic_pcie_write_config(device_t dev, u_int bus, u_int slot,
u_int func, u_int reg, uint32_t val, int bytes)
{
struct generic_pcie_softc *sc;
bus_space_handle_t h;
bus_space_tag_t t;
uint64_t offset;
if ((bus > PCI_BUSMAX) || (slot > PCI_SLOTMAX) ||
(func > PCI_FUNCMAX) || (reg > PCIE_REGMAX))
return;
sc = device_get_softc(dev);
offset = PCIE_ADDR_OFFSET(bus, slot, func, reg);
t = sc->bst;
h = sc->bsh;
switch (bytes) {
case 1:
bus_space_write_1(t, h, offset, val);
break;
case 2:
bus_space_write_2(t, h, offset, htole16(val));
break;
case 4:
bus_space_write_4(t, h, offset, htole32(val));
break;
default:
return;
}
}
static int
generic_pcie_maxslots(device_t dev)
{
return (31); /* max slots per bus acc. to standard */
}
static int
generic_pcie_route_interrupt(device_t bus, device_t dev, int pin)
{
struct generic_pcie_softc *sc;
struct ofw_pci_register reg;
uint32_t pintr, mintr[2];
phandle_t iparent;
int intrcells;
sc = device_get_softc(bus);
pintr = pin;
bzero(&reg, sizeof(reg));
reg.phys_hi = (pci_get_bus(dev) << OFW_PCI_PHYS_HI_BUSSHIFT) |
(pci_get_slot(dev) << OFW_PCI_PHYS_HI_DEVICESHIFT) |
(pci_get_function(dev) << OFW_PCI_PHYS_HI_FUNCTIONSHIFT);
intrcells = ofw_bus_lookup_imap(ofw_bus_get_node(dev),
&sc->pci_iinfo, &reg, sizeof(reg), &pintr, sizeof(pintr),
mintr, sizeof(mintr), &iparent);
if (intrcells) {
pintr = ofw_bus_map_intr(dev, iparent, intrcells, mintr);
return (pintr);
}
device_printf(bus, "could not route pin %d for device %d.%d\n",
pin, pci_get_slot(dev), pci_get_function(dev));
return (PCI_INVALID_IRQ);
}
static int
generic_pcie_read_ivar(device_t dev, device_t child, int index,
uintptr_t *result)
{
struct generic_pcie_softc *sc;
int secondary_bus;
sc = device_get_softc(dev);
if (index == PCIB_IVAR_BUS) {
/* this pcib adds only pci bus 0 as child */
secondary_bus = 0;
*result = secondary_bus;
return (0);
}
if (index == PCIB_IVAR_DOMAIN) {
*result = sc->ecam;
return (0);
}
if (bootverbose)
device_printf(dev, "ERROR: Unknown index %d.\n", index);
return (ENOENT);
}
static int
generic_pcie_write_ivar(device_t dev, device_t child, int index,
uintptr_t value)
{
return (ENOENT);
}
static struct rman *
generic_pcie_rman(struct generic_pcie_softc *sc, int type)
{
switch (type) {
case SYS_RES_IOPORT:
return (&sc->io_rman);
case SYS_RES_MEMORY:
return (&sc->mem_rman);
default:
break;
}
return (NULL);
}
static int
generic_pcie_release_resource_pcie(device_t dev, device_t child, int type,
int rid, struct resource *res)
{
struct generic_pcie_softc *sc;
struct rman *rm;
sc = device_get_softc(dev);
rm = generic_pcie_rman(sc, type);
if (rm != NULL) {
KASSERT(rman_is_region_manager(res, rm), ("rman mismatch"));
rman_release_resource(res);
}
return (bus_generic_release_resource(dev, child, type, rid, res));
}
static int
generic_pcie_release_resource(device_t dev, device_t child, int type,
int rid, struct resource *res)
{
#if defined(NEW_PCIB) && defined(PCI_RES_BUS)
struct generic_pcie_softc *sc;
if (type == PCI_RES_BUS) {
sc = device_get_softc(dev);
return (pci_domain_release_bus(sc->ecam, child, rid, res));
}
#endif
/* For PCIe devices that do not have FDT nodes, use PCIB method */
if ((int)ofw_bus_get_node(child) <= 0) {
return (generic_pcie_release_resource_pcie(dev,
child, type, rid, res));
}
/* For other devices use OFW method */
return (generic_pcie_release_resource_ofw(dev,
child, type, rid, res));
}
struct resource *
pci_host_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
{
#if defined(NEW_PCIB) && defined(PCI_RES_BUS)
struct generic_pcie_softc *sc;
if (type == PCI_RES_BUS) {
sc = device_get_softc(dev);
return (pci_domain_alloc_bus(sc->ecam, child, rid, start, end,
count, flags));
}
#endif
/* For PCIe devices that do not have FDT nodes, use PCIB method */
if ((int)ofw_bus_get_node(child) <= 0)
return (generic_pcie_alloc_resource_pcie(dev, child, type, rid,
start, end, count, flags));
/* For other devices use OFW method */
return (generic_pcie_alloc_resource_ofw(dev, child, type, rid,
start, end, count, flags));
}
static struct resource *
generic_pcie_alloc_resource_pcie(device_t dev, device_t child, int type, int *rid,
rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
{
struct generic_pcie_softc *sc;
struct resource *res;
struct rman *rm;
sc = device_get_softc(dev);
rm = generic_pcie_rman(sc, type);
if (rm == NULL)
return (BUS_ALLOC_RESOURCE(device_get_parent(dev), dev,
type, rid, start, end, count, flags));
if (bootverbose) {
device_printf(dev,
"rman_reserve_resource: start=%#jx, end=%#jx, count=%#jx\n",
start, end, count);
}
res = rman_reserve_resource(rm, start, end, count, flags, child);
if (res == NULL)
goto fail;
rman_set_rid(res, *rid);
if (flags & RF_ACTIVE)
if (bus_activate_resource(child, type, *rid, res)) {
rman_release_resource(res);
goto fail;
}
return (res);
fail:
device_printf(dev, "%s FAIL: type=%d, rid=%d, "
"start=%016jx, end=%016jx, count=%016jx, flags=%x\n",
__func__, type, *rid, start, end, count, flags);
return (NULL);
}
static int
generic_pcie_adjust_resource(device_t dev, device_t child, int type,
struct resource *res, rman_res_t start, rman_res_t end)
{
struct generic_pcie_softc *sc;
struct rman *rm;
sc = device_get_softc(dev);
#if defined(NEW_PCIB) && defined(PCI_RES_BUS)
if (type == PCI_RES_BUS)
return (pci_domain_adjust_bus(sc->ecam, child, res, start,
end));
#endif
rm = generic_pcie_rman(sc, type);
if (rm != NULL)
return (rman_adjust_resource(res, start, end));
return (bus_generic_adjust_resource(dev, child, type, res, start, end));
}
static int
generic_pcie_activate_resource(device_t dev, device_t child, int type, int rid,
struct resource *r)
{
struct generic_pcie_softc *sc;
uint64_t phys_base;
uint64_t pci_base;
uint64_t size;
int found;
int res;
int i;
sc = device_get_softc(dev);
if ((res = rman_activate_resource(r)) != 0)
return (res);
switch(type) {
case SYS_RES_IOPORT:
found = 0;
for (i = 0; i < MAX_RANGES_TUPLES; i++) {
pci_base = sc->ranges[i].pci_base;
phys_base = sc->ranges[i].phys_base;
size = sc->ranges[i].size;
if ((rid > pci_base) && (rid < (pci_base + size))) {
found = 1;
break;
}
}
if (found) {
rman_set_start(r, rman_get_start(r) + phys_base);
rman_set_end(r, rman_get_end(r) + phys_base);
BUS_ACTIVATE_RESOURCE(device_get_parent(dev), child,
type, rid, r);
} else {
device_printf(dev, "Failed to activate IOPORT resource\n");
res = 0;
}
break;
case SYS_RES_MEMORY:
BUS_ACTIVATE_RESOURCE(device_get_parent(dev), child, type, rid, r);
break;
default:
break;
}
return (res);
}
static int
generic_pcie_deactivate_resource(device_t dev, device_t child, int type, int rid,
struct resource *r)
{
struct generic_pcie_softc *sc;
vm_offset_t vaddr;
int res;
sc = device_get_softc(dev);
if ((res = rman_deactivate_resource(r)) != 0)
return (res);
switch(type) {
case SYS_RES_IOPORT:
case SYS_RES_MEMORY:
vaddr = (vm_offset_t)rman_get_virtual(r);
pmap_unmapdev(vaddr, rman_get_size(r));
break;
default:
break;
}
return (res);
}
static bus_dma_tag_t
generic_pcie_get_dma_tag(device_t dev, device_t child)
{
struct generic_pcie_softc *sc;
sc = device_get_softc(dev);
return (sc->dmat);
}
static int
generic_pcie_alloc_msi(device_t pci, device_t child, int count, int maxcount,
int *irqs)
{
#if defined(INTRNG)
phandle_t msi_parent;
ofw_bus_msimap(ofw_bus_get_node(pci), pci_get_rid(child), &msi_parent,
NULL);
return (intr_alloc_msi(pci, child, msi_parent, count, maxcount,
irqs));
#else
return (ENXIO);
#endif
}
static int
generic_pcie_release_msi(device_t pci, device_t child, int count, int *irqs)
{
#if defined(INTRNG)
phandle_t msi_parent;
ofw_bus_msimap(ofw_bus_get_node(pci), pci_get_rid(child), &msi_parent,
NULL);
return (intr_release_msi(pci, child, msi_parent, count, irqs));
#else
return (ENXIO);
#endif
}
static int
generic_pcie_map_msi(device_t pci, device_t child, int irq, uint64_t *addr,
uint32_t *data)
{
#if defined(INTRNG)
phandle_t msi_parent;
ofw_bus_msimap(ofw_bus_get_node(pci), pci_get_rid(child), &msi_parent,
NULL);
return (intr_map_msi(pci, child, msi_parent, irq, addr, data));
#else
return (ENXIO);
#endif
}
static int
generic_pcie_alloc_msix(device_t pci, device_t child, int *irq)
{
#if defined(INTRNG)
phandle_t msi_parent;
ofw_bus_msimap(ofw_bus_get_node(pci), pci_get_rid(child), &msi_parent,
NULL);
return (intr_alloc_msix(pci, child, msi_parent, irq));
#else
return (ENXIO);
#endif
}
static int
generic_pcie_release_msix(device_t pci, device_t child, int irq)
{
#if defined(INTRNG)
phandle_t msi_parent;
ofw_bus_msimap(ofw_bus_get_node(pci), pci_get_rid(child), &msi_parent,
NULL);
return (intr_release_msix(pci, child, msi_parent, irq));
#else
return (ENXIO);
#endif
}
int
generic_pcie_get_id(device_t pci, device_t child, enum pci_id_type type,
uintptr_t *id)
{
phandle_t node;
uint32_t rid;
uint16_t pci_rid;
if (type != PCI_ID_MSI)
return (pcib_get_id(pci, child, type, id));
node = ofw_bus_get_node(pci);
pci_rid = pci_get_rid(child);
ofw_bus_msimap(node, pci_rid, NULL, &rid);
*id = rid;
return (0);
}
static device_method_t generic_pcie_methods[] = {
DEVMETHOD(device_probe, generic_pcie_probe),
DEVMETHOD(device_attach, pci_host_generic_attach),
DEVMETHOD(bus_read_ivar, generic_pcie_read_ivar),
DEVMETHOD(bus_write_ivar, generic_pcie_write_ivar),
DEVMETHOD(bus_alloc_resource, pci_host_generic_alloc_resource),
DEVMETHOD(bus_adjust_resource, generic_pcie_adjust_resource),
DEVMETHOD(bus_release_resource, generic_pcie_release_resource),
DEVMETHOD(bus_activate_resource, generic_pcie_activate_resource),
DEVMETHOD(bus_deactivate_resource, generic_pcie_deactivate_resource),
DEVMETHOD(bus_setup_intr, bus_generic_setup_intr),
DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
DEVMETHOD(bus_get_dma_tag, generic_pcie_get_dma_tag),
/* pcib interface */
DEVMETHOD(pcib_maxslots, generic_pcie_maxslots),
DEVMETHOD(pcib_route_interrupt, generic_pcie_route_interrupt),
DEVMETHOD(pcib_read_config, generic_pcie_read_config),
DEVMETHOD(pcib_write_config, generic_pcie_write_config),
DEVMETHOD(pcib_alloc_msi, generic_pcie_alloc_msi),
DEVMETHOD(pcib_release_msi, generic_pcie_release_msi),
DEVMETHOD(pcib_alloc_msix, generic_pcie_alloc_msix),
DEVMETHOD(pcib_release_msix, generic_pcie_release_msix),
DEVMETHOD(pcib_map_msi, generic_pcie_map_msi),
DEVMETHOD(pcib_get_id, generic_pcie_get_id),
/* ofw_bus interface */
DEVMETHOD(ofw_bus_get_devinfo, generic_pcie_ofw_get_devinfo),
DEVMETHOD(ofw_bus_get_compat, ofw_bus_gen_get_compat),
DEVMETHOD(ofw_bus_get_model, ofw_bus_gen_get_model),
DEVMETHOD(ofw_bus_get_name, ofw_bus_gen_get_name),
DEVMETHOD(ofw_bus_get_node, ofw_bus_gen_get_node),
DEVMETHOD(ofw_bus_get_type, ofw_bus_gen_get_type),
DEVMETHOD_END
};
static const struct ofw_bus_devinfo *
generic_pcie_ofw_get_devinfo(device_t bus __unused, device_t child)
{
struct generic_pcie_ofw_devinfo *di;
di = device_get_ivars(child);
return (&di->di_dinfo);
}
static struct resource *
generic_pcie_alloc_resource_ofw(device_t bus, device_t child, int type, int *rid,
rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
{
struct generic_pcie_softc *sc;
struct generic_pcie_ofw_devinfo *di;
struct resource_list_entry *rle;
int i;
sc = device_get_softc(bus);
if (RMAN_IS_DEFAULT_RANGE(start, end)) {
if ((di = device_get_ivars(child)) == NULL)
return (NULL);
if (type == SYS_RES_IOPORT)
type = SYS_RES_MEMORY;
/* Find defaults for this rid */
rle = resource_list_find(&di->di_rl, type, *rid);
if (rle == NULL)
return (NULL);
start = rle->start;
end = rle->end;
count = rle->count;
}
if (type == SYS_RES_MEMORY) {
/* Remap through ranges property */
for (i = 0; i < MAX_RANGES_TUPLES; i++) {
if (start >= sc->ranges[i].phys_base && end <
sc->ranges[i].pci_base + sc->ranges[i].size) {
start -= sc->ranges[i].phys_base;
start += sc->ranges[i].pci_base;
end -= sc->ranges[i].phys_base;
end += sc->ranges[i].pci_base;
break;
}
}
if (i == MAX_RANGES_TUPLES) {
device_printf(bus, "Could not map resource "
"%#jx-%#jx\n", start, end);
return (NULL);
}
}
return (bus_generic_alloc_resource(bus, child, type, rid, start, end,
count, flags));
}
static int
generic_pcie_release_resource_ofw(device_t bus, device_t child, int type, int rid,
struct resource *res)
{
return (bus_generic_release_resource(bus, child, type, rid, res));
}
/* Helper functions */
static int
generic_pcie_ofw_bus_attach(device_t dev)
{
struct generic_pcie_ofw_devinfo *di;
device_t child;
phandle_t parent, node;
pcell_t addr_cells, size_cells;
parent = ofw_bus_get_node(dev);
if (parent > 0) {
get_addr_size_cells(parent, &addr_cells, &size_cells);
/* Iterate through all bus subordinates */
for (node = OF_child(parent); node > 0; node = OF_peer(node)) {
/* Allocate and populate devinfo. */
di = malloc(sizeof(*di), M_DEVBUF, M_WAITOK | M_ZERO);
if (ofw_bus_gen_setup_devinfo(&di->di_dinfo, node) != 0) {
free(di, M_DEVBUF);
continue;
}
/* Initialize and populate resource list. */
resource_list_init(&di->di_rl);
ofw_bus_reg_to_rl(dev, node, addr_cells, size_cells,
&di->di_rl);
ofw_bus_intr_to_rl(dev, node, &di->di_rl, NULL);
/* Add newbus device for this FDT node */
child = device_add_child(dev, NULL, -1);
if (child == NULL) {
resource_list_free(&di->di_rl);
ofw_bus_gen_destroy_devinfo(&di->di_dinfo);
free(di, M_DEVBUF);
continue;
}
device_set_ivars(child, di);
}
}
return (0);
}
DEFINE_CLASS_0(pcib, generic_pcie_driver,
generic_pcie_methods, sizeof(struct generic_pcie_softc));
devclass_t generic_pcie_devclass;
DRIVER_MODULE(pcib, simplebus, generic_pcie_driver,
generic_pcie_devclass, 0, 0);
DRIVER_MODULE(pcib, ofwbus, generic_pcie_driver,
generic_pcie_devclass, 0, 0);