freebsd-nq/sys/dev/iicbus/ds13rtc.c

621 lines
16 KiB
C

/*-
* Copyright (c) 2017 Ian Lepore <ian@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Driver for Dallas/Maxim DS13xx real-time clock/calendar chips:
*
* - DS1307 = Original/basic rtc + 56 bytes ram; 5v only.
* - DS1308 = Updated 1307, available in 1.8v-5v variations.
* - DS1337 = Like 1308, integrated xtal, 32khz output on at powerup.
* - DS1338 = Like 1308, integrated xtal.
* - DS1339 = Like 1337, integrated xtal, integrated trickle charger.
* - DS1340 = Like 1338, ST M41T00 compatible.
* - DS1341 = Like 1338, can slave-sync osc to external clock signal.
* - DS1342 = Like 1341 but requires different xtal.
* - DS1371 = 32-bit binary counter, watchdog timer.
* - DS1372 = 32-bit binary counter, 64-bit unique id in rom.
* - DS1374 = 32-bit binary counter, watchdog timer, trickle charger.
* - DS1375 = Like 1308 but only 16 bytes ram.
* - DS1388 = Rtc, watchdog timer, 512 bytes eeprom (not sram).
*
* This driver supports only basic timekeeping functions. It provides no access
* to or control over any other functionality provided by the chips.
*/
#include "opt_platform.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/clock.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/libkern.h>
#include <sys/module.h>
#include <dev/iicbus/iicbus.h>
#include <dev/iicbus/iiconf.h>
#ifdef FDT
#include <dev/ofw/openfirm.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#endif
#include "clock_if.h"
#include "iicbus_if.h"
/*
* I2C address 1101 000x
*/
#define DS13xx_ADDR 0xd0
/*
* Registers, bits within them, and masks for the various chip types.
*/
#define DS13xx_R_NONE 0xff /* Placeholder */
#define DS130x_R_CONTROL 0x07
#define DS133x_R_CONTROL 0x0e
#define DS1340_R_CONTROL 0x07
#define DS1341_R_CONTROL 0x0e
#define DS1371_R_CONTROL 0x07
#define DS1372_R_CONTROL 0x07
#define DS1374_R_CONTROL 0x07
#define DS1375_R_CONTROL 0x0e
#define DS1388_R_CONTROL 0x0c
#define DS13xx_R_SECOND 0x00
#define DS1388_R_SECOND 0x01
#define DS130x_R_STATUS DS13xx_R_NONE
#define DS133x_R_STATUS 0x0f
#define DS1340_R_STATUS 0x09
#define DS137x_R_STATUS 0x08
#define DS1388_R_STATUS 0x0b
#define DS13xx_B_STATUS_OSF 0x80 /* OSF is 1<<7 in status and sec regs */
#define DS13xx_B_HOUR_AMPM 0x40 /* AMPM mode is bit 1<<6 */
#define DS13xx_B_HOUR_PM 0x20 /* PM hours indicated by 1<<5 */
#define DS13xx_B_MONTH_CENTURY 0x80 /* 21st century indicated by 1<<7 */
#define DS13xx_M_SECOND 0x7f /* Masks for all BCD time regs... */
#define DS13xx_M_MINUTE 0x7f
#define DS13xx_M_12HOUR 0x1f
#define DS13xx_M_24HOUR 0x3f
#define DS13xx_M_DAY 0x3f
#define DS13xx_M_MONTH 0x1f
#define DS13xx_M_YEAR 0xff
/*
* The chip types we support.
*/
enum {
TYPE_NONE,
TYPE_DS1307,
TYPE_DS1308,
TYPE_DS1337,
TYPE_DS1338,
TYPE_DS1339,
TYPE_DS1340,
TYPE_DS1341,
TYPE_DS1342,
TYPE_DS1371,
TYPE_DS1372,
TYPE_DS1374,
TYPE_DS1375,
TYPE_DS1388,
TYPE_COUNT
};
static const char *desc_strings[] = {
"",
"Dallas/Maxim DS1307 RTC",
"Dallas/Maxim DS1308 RTC",
"Dallas/Maxim DS1337 RTC",
"Dallas/Maxim DS1338 RTC",
"Dallas/Maxim DS1339 RTC",
"Dallas/Maxim DS1340 RTC",
"Dallas/Maxim DS1341 RTC",
"Dallas/Maxim DS1342 RTC",
"Dallas/Maxim DS1371 RTC",
"Dallas/Maxim DS1372 RTC",
"Dallas/Maxim DS1374 RTC",
"Dallas/Maxim DS1375 RTC",
"Dallas/Maxim DS1388 RTC",
};
CTASSERT(nitems(desc_strings) == TYPE_COUNT);
/*
* The time registers in the order they are laid out in hardware.
*/
struct time_regs {
uint8_t sec, min, hour, wday, day, month, year;
};
struct ds13rtc_softc {
device_t dev;
device_t busdev;
u_int chiptype; /* Type of DS13xx chip */
uint8_t secaddr; /* Address of seconds register */
uint8_t osfaddr; /* Address of register with OSF */
bool use_ampm; /* Use AM/PM mode. */
bool use_century; /* Use the Century bit. */
bool is_binary_counter; /* Chip has 32-bit binary counter. */
};
/*
* We use the compat_data table to look up hint strings in the non-FDT case, so
* define the struct locally when we don't get it from ofw_bus_subr.h.
*/
#ifdef FDT
typedef struct ofw_compat_data ds13_compat_data;
#else
typedef struct {
const char *ocd_str;
uintptr_t ocd_data;
} ds13_compat_data;
#endif
static ds13_compat_data compat_data[] = {
{"dallas,ds1307", TYPE_DS1307},
{"dallas,ds1308", TYPE_DS1308},
{"dallas,ds1337", TYPE_DS1337},
{"dallas,ds1338", TYPE_DS1338},
{"dallas,ds1339", TYPE_DS1339},
{"dallas,ds1340", TYPE_DS1340},
{"dallas,ds1341", TYPE_DS1341},
{"dallas,ds1342", TYPE_DS1342},
{"dallas,ds1371", TYPE_DS1371},
{"dallas,ds1372", TYPE_DS1372},
{"dallas,ds1374", TYPE_DS1374},
{"dallas,ds1375", TYPE_DS1375},
{"dallas,ds1388", TYPE_DS1388},
{NULL, TYPE_NONE},
};
static int
read_reg(struct ds13rtc_softc *sc, uint8_t reg, uint8_t *val)
{
return (iicdev_readfrom(sc->dev, reg, val, sizeof(*val), IIC_WAIT));
}
static int
write_reg(struct ds13rtc_softc *sc, uint8_t reg, uint8_t val)
{
return (iicdev_writeto(sc->dev, reg, &val, sizeof(val), IIC_WAIT));
}
static int
read_timeregs(struct ds13rtc_softc *sc, struct time_regs *tregs)
{
int err;
if ((err = iicdev_readfrom(sc->dev, sc->secaddr, tregs,
sizeof(*tregs), IIC_WAIT)) != 0)
return (err);
return (err);
}
static int
write_timeregs(struct ds13rtc_softc *sc, struct time_regs *tregs)
{
return (iicdev_writeto(sc->dev, sc->secaddr, tregs,
sizeof(*tregs), IIC_WAIT));
}
static int
read_timeword(struct ds13rtc_softc *sc, time_t *secs)
{
int err;
uint8_t buf[4];
if ((err = iicdev_readfrom(sc->dev, sc->secaddr, buf, sizeof(buf),
IIC_WAIT)) == 0)
*secs = le32dec(buf);
return (err);
}
static int
write_timeword(struct ds13rtc_softc *sc, time_t secs)
{
uint8_t buf[4];
le32enc(buf, (uint32_t)secs);
return (iicdev_writeto(sc->dev, sc->secaddr, buf, sizeof(buf),
IIC_WAIT));
}
static void
ds13rtc_start(void *arg)
{
struct ds13rtc_softc *sc;
uint8_t ctlreg, statreg;
sc = arg;
/*
* Every chip in this family can be usefully initialized by writing 0 to
* the control register, except DS1375 which has an external oscillator
* controlled by values in the ctlreg that we know nothing about, so
* we'd best leave them alone. For all other chips, writing 0 enables
* the oscillator, disables signals/outputs in battery-backed mode
* (saves power) and disables features like watchdog timers and alarms.
*/
switch (sc->chiptype) {
case TYPE_DS1307:
case TYPE_DS1308:
case TYPE_DS1338:
case TYPE_DS1340:
case TYPE_DS1371:
case TYPE_DS1372:
case TYPE_DS1374:
ctlreg = DS130x_R_CONTROL;
break;
case TYPE_DS1337:
case TYPE_DS1339:
ctlreg = DS133x_R_CONTROL;
break;
case TYPE_DS1341:
case TYPE_DS1342:
ctlreg = DS1341_R_CONTROL;
break;
case TYPE_DS1375:
ctlreg = DS13xx_R_NONE;
break;
case TYPE_DS1388:
ctlreg = DS1388_R_CONTROL;
break;
default:
device_printf(sc->dev, "missing init code for this chiptype\n");
return;
}
if (ctlreg != DS13xx_R_NONE)
write_reg(sc, ctlreg, 0);
/*
* Common init. Read the OSF/CH status bit and report stopped clocks to
* the user. The status bit will be cleared the first time we write
* valid time to the chip (and must not be cleared before that).
*/
if (read_reg(sc, sc->osfaddr, &statreg) != 0) {
device_printf(sc->dev, "cannot read RTC clock status bit\n");
return;
}
if (statreg & DS13xx_B_STATUS_OSF) {
device_printf(sc->dev,
"WARNING: RTC battery failed; time is invalid\n");
}
/*
* Figure out whether the chip is configured for AM/PM mode. On all
* chips that do AM/PM mode, the flag bit is in the hours register,
* which is secaddr+2.
*/
if ((sc->chiptype != TYPE_DS1340) && !sc->is_binary_counter) {
if (read_reg(sc, sc->secaddr + 2, &statreg) != 0) {
device_printf(sc->dev,
"cannot read RTC clock AM/PM bit\n");
return;
}
if (statreg & DS13xx_B_HOUR_AMPM)
sc->use_ampm = true;
}
/*
* Everything looks good if we make it to here; register as an RTC.
* Schedule RTC updates to happen just after top-of-second.
*/
clock_register_flags(sc->dev, 1000000, CLOCKF_SETTIME_NO_ADJ);
clock_schedule(sc->dev, 1);
}
static int
ds13rtc_gettime(device_t dev, struct timespec *ts)
{
struct bcd_clocktime bct;
struct time_regs tregs;
struct ds13rtc_softc *sc;
int err;
uint8_t statreg, hourmask;
sc = device_get_softc(dev);
/* Read the OSF/CH bit; if the clock stopped we can't provide time. */
if ((err = read_reg(sc, sc->osfaddr, &statreg)) != 0) {
return (err);
}
if (statreg & DS13xx_B_STATUS_OSF)
return (EINVAL); /* hardware is good, time is not. */
/* If the chip counts time in binary, we just read and return it. */
if (sc->is_binary_counter) {
ts->tv_nsec = 0;
return (read_timeword(sc, &ts->tv_sec));
}
/*
* Chip counts in BCD, read and decode it...
*/
if ((err = read_timeregs(sc, &tregs)) != 0) {
device_printf(dev, "cannot read RTC time\n");
return (err);
}
if (sc->use_ampm)
hourmask = DS13xx_M_12HOUR;
else
hourmask = DS13xx_M_24HOUR;
bct.nsec = 0;
bct.ispm = tregs.hour & DS13xx_B_HOUR_PM;
bct.sec = tregs.sec & DS13xx_M_SECOND;
bct.min = tregs.min & DS13xx_M_MINUTE;
bct.hour = tregs.hour & hourmask;
bct.day = tregs.day & DS13xx_M_DAY;
bct.mon = tregs.month & DS13xx_M_MONTH;
bct.year = tregs.year & DS13xx_M_YEAR;
/*
* If this chip has a century bit, honor it. Otherwise let
* clock_ct_to_ts() infer the century from the 2-digit year.
*/
if (sc->use_century)
bct.year += (tregs.month & DS13xx_B_MONTH_CENTURY) ? 0x100 : 0;
clock_dbgprint_bcd(sc->dev, CLOCK_DBG_READ, &bct);
err = clock_bcd_to_ts(&bct, ts, sc->use_ampm);
return (err);
}
static int
ds13rtc_settime(device_t dev, struct timespec *ts)
{
struct bcd_clocktime bct;
struct time_regs tregs;
struct ds13rtc_softc *sc;
int err;
uint8_t cflag, statreg, pmflags;
sc = device_get_softc(dev);
/*
* We request a timespec with no resolution-adjustment. That also
* disables utc adjustment, so apply that ourselves.
*/
ts->tv_sec -= utc_offset();
/* If the chip counts time in binary, store tv_sec and we're done. */
if (sc->is_binary_counter)
return (write_timeword(sc, ts->tv_sec));
clock_ts_to_bcd(ts, &bct, sc->use_ampm);
clock_dbgprint_bcd(sc->dev, CLOCK_DBG_WRITE, &bct);
/* If the chip is in AMPM mode deal with the PM flag. */
pmflags = 0;
if (sc->use_ampm) {
pmflags = DS13xx_B_HOUR_AMPM;
if (bct.ispm)
pmflags |= DS13xx_B_HOUR_PM;
}
/* If the chip has a century bit, set it as needed. */
cflag = 0;
if (sc->use_century) {
if (bct.year >= 2000)
cflag |= DS13xx_B_MONTH_CENTURY;
}
tregs.sec = bct.sec;
tregs.min = bct.min;
tregs.hour = bct.hour | pmflags;
tregs.day = bct.day;
tregs.month = bct.mon | cflag;
tregs.year = bct.year & 0xff;
tregs.wday = bct.dow;
/*
* Set the time. Reset the OSF bit if it is on and it is not part of
* the time registers (in which case writing time resets it).
*/
if ((err = write_timeregs(sc, &tregs)) != 0)
goto errout;
if (sc->osfaddr != sc->secaddr) {
if ((err = read_reg(sc, sc->osfaddr, &statreg)) != 0)
goto errout;
if (statreg & DS13xx_B_STATUS_OSF) {
statreg &= ~DS13xx_B_STATUS_OSF;
err = write_reg(sc, sc->osfaddr, statreg);
}
}
errout:
if (err != 0)
device_printf(dev, "cannot update RTC time\n");
return (err);
}
static int
ds13rtc_get_chiptype(device_t dev)
{
#ifdef FDT
return (ofw_bus_search_compatible(dev, compat_data)->ocd_data);
#else
ds13_compat_data *cdata;
const char *htype;
/*
* We can only attach if provided a chiptype hint string.
*/
if (resource_string_value(device_get_name(dev),
device_get_unit(dev), "compatible", &htype) != 0)
return (TYPE_NONE);
/*
* Loop through the ofw compat data comparing the hinted chip type to
* the compat strings.
*/
for (cdata = compat_data; cdata->ocd_str != NULL; ++cdata) {
if (strcmp(htype, cdata->ocd_str) == 0)
break;
}
return (cdata->ocd_data);
#endif
}
static int
ds13rtc_probe(device_t dev)
{
int chiptype, goodrv;
#ifdef FDT
if (!ofw_bus_status_okay(dev))
return (ENXIO);
goodrv = BUS_PROBE_GENERIC;
#else
goodrv = BUS_PROBE_NOWILDCARD;
#endif
chiptype = ds13rtc_get_chiptype(dev);
if (chiptype == TYPE_NONE)
return (ENXIO);
device_set_desc(dev, desc_strings[chiptype]);
return (goodrv);
}
static int
ds13rtc_attach(device_t dev)
{
struct ds13rtc_softc *sc;
sc = device_get_softc(dev);
sc->dev = dev;
sc->busdev = device_get_parent(dev);
/*
* We need to know what kind of chip we're driving.
*/
if ((sc->chiptype = ds13rtc_get_chiptype(dev)) == TYPE_NONE) {
device_printf(dev, "impossible: cannot determine chip type\n");
return (ENXIO);
}
/* The seconds register is in the same place on all except DS1388. */
if (sc->chiptype == TYPE_DS1388)
sc->secaddr = DS1388_R_SECOND;
else
sc->secaddr = DS13xx_R_SECOND;
/*
* The OSF/CH (osc failed/clock-halted) bit appears in different
* registers for different chip types. The DS1375 has no OSF indicator
* because it has no internal oscillator; we just point to an always-
* zero bit in the status register for that chip.
*/
switch (sc->chiptype) {
case TYPE_DS1307:
case TYPE_DS1308:
case TYPE_DS1338:
sc->osfaddr = DS13xx_R_SECOND;
break;
case TYPE_DS1337:
case TYPE_DS1339:
case TYPE_DS1341:
case TYPE_DS1342:
case TYPE_DS1375:
sc->osfaddr = DS133x_R_STATUS;
sc->use_century = true;
break;
case TYPE_DS1340:
sc->osfaddr = DS1340_R_STATUS;
break;
case TYPE_DS1371:
case TYPE_DS1372:
case TYPE_DS1374:
sc->osfaddr = DS137x_R_STATUS;
sc->is_binary_counter = true;
break;
case TYPE_DS1388:
sc->osfaddr = DS1388_R_STATUS;
break;
}
/*
* We have to wait until interrupts are enabled. Sometimes I2C read
* and write only works when the interrupts are available.
*/
config_intrhook_oneshot(ds13rtc_start, sc);
return (0);
}
static int
ds13rtc_detach(device_t dev)
{
clock_unregister(dev);
return (0);
}
static device_method_t ds13rtc_methods[] = {
DEVMETHOD(device_probe, ds13rtc_probe),
DEVMETHOD(device_attach, ds13rtc_attach),
DEVMETHOD(device_detach, ds13rtc_detach),
DEVMETHOD(clock_gettime, ds13rtc_gettime),
DEVMETHOD(clock_settime, ds13rtc_settime),
DEVMETHOD_END
};
static driver_t ds13rtc_driver = {
"ds13rtc",
ds13rtc_methods,
sizeof(struct ds13rtc_softc),
};
static devclass_t ds13rtc_devclass;
DRIVER_MODULE(ds13rtc, iicbus, ds13rtc_driver, ds13rtc_devclass, NULL, NULL);
MODULE_VERSION(ds13rtc, 1);
MODULE_DEPEND(ds13rtc, iicbus, IICBB_MINVER, IICBB_PREFVER, IICBB_MAXVER);
IICBUS_FDT_PNP_INFO(compat_data);