Robert Noland 14c436e101 Correct some issues with zfs boot.
- Teach it to read gang blocks. (essentially untested)
   If you see "ZFS: gang block detected!", please let
   me know, so we can either remove the printf if it
   works, or fix it if it doesn't.

 - If multiple partitions exist on a disk, probe them all.
   We also need to reset dsk->start to 0 to read the right
   sector here.

 - With GPT, we can have 128 partitions.

 - If the bootfs property has ever been set on a pool
   it seems that it never goes away.  zpool won't allow
   you to add to the pool with the bootfs property set.
   However, if you clear the property back to default
   we end up getting 0 for the object number and read
   a bogus block pointer and fail to boot.

 - Fix some error printfs. The printf in the loader is
   only capable of c,s and u formats.

 - Teach printf how to display %llu

Reviewed by:	dfr, jhb
MFC after:	2 weeks
2009-10-23 18:44:53 +00:00

519 lines
11 KiB
C

/*-
* Copyright (c) 2007 Doug Rabson
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Stand-alone file reading package.
*/
#include <sys/param.h>
#include <sys/disklabel.h>
#include <sys/time.h>
#include <sys/queue.h>
#include <stddef.h>
#include <stdarg.h>
#include <string.h>
#include <stand.h>
#include <bootstrap.h>
#include "zfsimpl.c"
static int zfs_open(const char *path, struct open_file *f);
static int zfs_write(struct open_file *f, void *buf, size_t size, size_t *resid);
static int zfs_close(struct open_file *f);
static int zfs_read(struct open_file *f, void *buf, size_t size, size_t *resid);
static off_t zfs_seek(struct open_file *f, off_t offset, int where);
static int zfs_stat(struct open_file *f, struct stat *sb);
static int zfs_readdir(struct open_file *f, struct dirent *d);
struct devsw zfs_dev;
struct fs_ops zfs_fsops = {
"zfs",
zfs_open,
zfs_close,
zfs_read,
zfs_write,
zfs_seek,
zfs_stat,
zfs_readdir
};
/*
* In-core open file.
*/
struct file {
off_t f_seekp; /* seek pointer */
dnode_phys_t f_dnode;
uint64_t f_zap_type; /* zap type for readdir */
uint64_t f_num_leafs; /* number of fzap leaf blocks */
zap_leaf_phys_t *f_zap_leaf; /* zap leaf buffer */
};
/*
* Open a file.
*/
static int
zfs_open(const char *upath, struct open_file *f)
{
spa_t *spa = (spa_t *) f->f_devdata;
struct file *fp;
int rc;
if (f->f_dev != &zfs_dev)
return (EINVAL);
rc = zfs_mount_pool(spa);
if (rc)
return (rc);
/* allocate file system specific data structure */
fp = malloc(sizeof(struct file));
bzero(fp, sizeof(struct file));
f->f_fsdata = (void *)fp;
if (spa->spa_root_objset.os_type != DMU_OST_ZFS) {
printf("Unexpected object set type %llu\n",
spa->spa_root_objset.os_type);
rc = EIO;
goto out;
}
rc = zfs_lookup(spa, upath, &fp->f_dnode);
if (rc)
goto out;
fp->f_seekp = 0;
out:
if (rc) {
f->f_fsdata = NULL;
free(fp);
}
return (rc);
}
static int
zfs_close(struct open_file *f)
{
struct file *fp = (struct file *)f->f_fsdata;
dnode_cache_obj = 0;
f->f_fsdata = (void *)0;
if (fp == (struct file *)0)
return (0);
free(fp);
return (0);
}
/*
* Copy a portion of a file into kernel memory.
* Cross block boundaries when necessary.
*/
static int
zfs_read(struct open_file *f, void *start, size_t size, size_t *resid /* out */)
{
spa_t *spa = (spa_t *) f->f_devdata;
struct file *fp = (struct file *)f->f_fsdata;
const znode_phys_t *zp = (const znode_phys_t *) fp->f_dnode.dn_bonus;
size_t n;
int rc;
n = size;
if (fp->f_seekp + n > zp->zp_size)
n = zp->zp_size - fp->f_seekp;
rc = dnode_read(spa, &fp->f_dnode, fp->f_seekp, start, n);
if (rc)
return (rc);
if (0) {
int i;
for (i = 0; i < n; i++)
putchar(((char*) start)[i]);
}
fp->f_seekp += n;
if (resid)
*resid = size - n;
return (0);
}
/*
* Don't be silly - the bootstrap has no business writing anything.
*/
static int
zfs_write(struct open_file *f, void *start, size_t size, size_t *resid /* out */)
{
return (EROFS);
}
static off_t
zfs_seek(struct open_file *f, off_t offset, int where)
{
struct file *fp = (struct file *)f->f_fsdata;
znode_phys_t *zp = (znode_phys_t *) fp->f_dnode.dn_bonus;
switch (where) {
case SEEK_SET:
fp->f_seekp = offset;
break;
case SEEK_CUR:
fp->f_seekp += offset;
break;
case SEEK_END:
fp->f_seekp = zp->zp_size - offset;
break;
default:
errno = EINVAL;
return (-1);
}
return (fp->f_seekp);
}
static int
zfs_stat(struct open_file *f, struct stat *sb)
{
struct file *fp = (struct file *)f->f_fsdata;
znode_phys_t *zp = (znode_phys_t *) fp->f_dnode.dn_bonus;
/* only important stuff */
sb->st_mode = zp->zp_mode;
sb->st_uid = zp->zp_uid;
sb->st_gid = zp->zp_gid;
sb->st_size = zp->zp_size;
return (0);
}
static int
zfs_readdir(struct open_file *f, struct dirent *d)
{
spa_t *spa = (spa_t *) f->f_devdata;
struct file *fp = (struct file *)f->f_fsdata;
znode_phys_t *zp = (znode_phys_t *) fp->f_dnode.dn_bonus;
mzap_ent_phys_t mze;
size_t bsize = fp->f_dnode.dn_datablkszsec << SPA_MINBLOCKSHIFT;
int rc;
if ((zp->zp_mode >> 12) != 0x4) {
return (ENOTDIR);
}
/*
* If this is the first read, get the zap type.
*/
if (fp->f_seekp == 0) {
rc = dnode_read(spa, &fp->f_dnode,
0, &fp->f_zap_type, sizeof(fp->f_zap_type));
if (rc)
return (rc);
if (fp->f_zap_type == ZBT_MICRO) {
fp->f_seekp = offsetof(mzap_phys_t, mz_chunk);
} else {
rc = dnode_read(spa, &fp->f_dnode,
offsetof(zap_phys_t, zap_num_leafs),
&fp->f_num_leafs,
sizeof(fp->f_num_leafs));
if (rc)
return (rc);
fp->f_seekp = bsize;
fp->f_zap_leaf = (zap_leaf_phys_t *)malloc(bsize);
rc = dnode_read(spa, &fp->f_dnode,
fp->f_seekp,
fp->f_zap_leaf,
bsize);
if (rc)
return (rc);
}
}
if (fp->f_zap_type == ZBT_MICRO) {
mzap_next:
if (fp->f_seekp >= bsize)
return (ENOENT);
rc = dnode_read(spa, &fp->f_dnode,
fp->f_seekp, &mze, sizeof(mze));
fp->f_seekp += sizeof(mze);
if (!mze.mze_name[0])
goto mzap_next;
d->d_fileno = ZFS_DIRENT_OBJ(mze.mze_value);
d->d_type = ZFS_DIRENT_TYPE(mze.mze_value);
strcpy(d->d_name, mze.mze_name);
d->d_namlen = strlen(d->d_name);
return (0);
} else {
zap_leaf_t zl;
zap_leaf_chunk_t *zc, *nc;
int chunk;
size_t namelen;
char *p;
uint64_t value;
/*
* Initialise this so we can use the ZAP size
* calculating macros.
*/
zl.l_bs = ilog2(bsize);
zl.l_phys = fp->f_zap_leaf;
/*
* Figure out which chunk we are currently looking at
* and consider seeking to the next leaf. We use the
* low bits of f_seekp as a simple chunk index.
*/
fzap_next:
chunk = fp->f_seekp & (bsize - 1);
if (chunk == ZAP_LEAF_NUMCHUNKS(&zl)) {
fp->f_seekp = (fp->f_seekp & ~(bsize - 1)) + bsize;
chunk = 0;
/*
* Check for EOF and read the new leaf.
*/
if (fp->f_seekp >= bsize * fp->f_num_leafs)
return (ENOENT);
rc = dnode_read(spa, &fp->f_dnode,
fp->f_seekp,
fp->f_zap_leaf,
bsize);
if (rc)
return (rc);
}
zc = &ZAP_LEAF_CHUNK(&zl, chunk);
fp->f_seekp++;
if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
goto fzap_next;
namelen = zc->l_entry.le_name_length;
if (namelen > sizeof(d->d_name))
namelen = sizeof(d->d_name);
/*
* Paste the name back together.
*/
nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk);
p = d->d_name;
while (namelen > 0) {
int len;
len = namelen;
if (len > ZAP_LEAF_ARRAY_BYTES)
len = ZAP_LEAF_ARRAY_BYTES;
memcpy(p, nc->l_array.la_array, len);
p += len;
namelen -= len;
nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next);
}
d->d_name[sizeof(d->d_name) - 1] = 0;
/*
* Assume the first eight bytes of the value are
* a uint64_t.
*/
value = fzap_leaf_value(&zl, zc);
d->d_fileno = ZFS_DIRENT_OBJ(value);
d->d_type = ZFS_DIRENT_TYPE(value);
d->d_namlen = strlen(d->d_name);
return (0);
}
}
static int
vdev_read(vdev_t *vdev, void *priv, off_t offset, void *buf, size_t size)
{
int fd;
fd = (uintptr_t) priv;
lseek(fd, offset, SEEK_SET);
if (read(fd, buf, size) == size) {
return 0;
} else {
return (EIO);
}
}
/*
* Convert a pool guid to a 'unit number' suitable for use with zfs_dev_open.
*/
int
zfs_guid_to_unit(uint64_t guid)
{
spa_t *spa;
int unit;
unit = 0;
STAILQ_FOREACH(spa, &zfs_pools, spa_link) {
if (spa->spa_guid == guid)
return unit;
unit++;
}
return (-1);
}
static int
zfs_dev_init(void)
{
char devname[512];
int unit, slice;
int fd;
/*
* Open all the disks we can find and see if we can reconstruct
* ZFS pools from them. Bogusly assumes that the disks are named
* diskN or diskNsM.
*/
zfs_init();
for (unit = 0; unit < 32 /* XXX */; unit++) {
sprintf(devname, "disk%d:", unit);
fd = open(devname, O_RDONLY);
if (fd == -1)
continue;
/*
* If we find a vdev, the zfs code will eat the fd, otherwise
* we close it.
*/
if (vdev_probe(vdev_read, (void*) (uintptr_t) fd, 0))
close(fd);
for (slice = 1; slice <= 128; slice++) {
sprintf(devname, "disk%dp%d:", unit, slice);
fd = open(devname, O_RDONLY);
if (fd == -1) {
sprintf(devname, "disk%ds%d:", unit, slice);
fd = open(devname, O_RDONLY);
if (fd == -1)
continue;
}
if (vdev_probe(vdev_read, (void*) (uintptr_t) fd, 0))
close(fd);
}
}
return (0);
}
/*
* Print information about ZFS pools
*/
static void
zfs_dev_print(int verbose)
{
spa_t *spa;
char line[80];
int unit;
if (verbose) {
spa_all_status();
return;
}
unit = 0;
STAILQ_FOREACH(spa, &zfs_pools, spa_link) {
sprintf(line, " zfs%d: %s\n", unit, spa->spa_name);
pager_output(line);
unit++;
}
}
/*
* Attempt to open the pool described by (dev) for use by (f).
*/
static int
zfs_dev_open(struct open_file *f, ...)
{
va_list args;
struct devdesc *dev;
int unit, i;
spa_t *spa;
va_start(args, f);
dev = va_arg(args, struct devdesc*);
va_end(args);
/*
* We mostly ignore the stuff that devopen sends us. For now,
* use the unit to find a pool - later we will override the
* devname parsing so that we can name a pool and a fs within
* the pool.
*/
unit = dev->d_unit;
i = 0;
STAILQ_FOREACH(spa, &zfs_pools, spa_link) {
if (i == unit)
break;
i++;
}
if (!spa) {
return (ENXIO);
}
f->f_devdata = spa;
free(dev);
return (0);
}
static int
zfs_dev_close(struct open_file *f)
{
f->f_devdata = NULL;
return (0);
}
static int
zfs_dev_strategy(void *devdata, int rw, daddr_t dblk, size_t size, char *buf, size_t *rsize)
{
return (ENOSYS);
}
struct devsw zfs_dev = {
.dv_name = "zfs",
.dv_type = DEVT_ZFS,
.dv_init = zfs_dev_init,
.dv_strategy = zfs_dev_strategy,
.dv_open = zfs_dev_open,
.dv_close = zfs_dev_close,
.dv_ioctl = noioctl,
.dv_print = zfs_dev_print,
.dv_cleanup = NULL
};