2995 lines
83 KiB
C

/*-
* Copyright (c) 2003-2004 HighPoint Technologies, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/malloc.h>
#include <sys/resource.h>
#include <sys/time.h>
#include <sys/callout.h>
#include <sys/signalvar.h>
#include <sys/eventhandler.h>
#include <sys/proc.h>
#include <sys/kthread.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/hptmv/global.h>
#include <dev/hptmv/hptintf.h>
#include <dev/hptmv/osbsd.h>
#include <contrib/dev/hptmv/access601.h>
#ifdef DEBUG
#ifdef DEBUG_LEVEL
int hpt_dbg_level = DEBUG_LEVEL;
#else
int hpt_dbg_level = 0;
#endif
#endif
#define MV_ERROR printf
/*
* CAM SIM entry points
*/
static int hpt_probe(device_t dev);
static int hpt_attach(device_t dev);
static int hpt_detach(device_t dev);
static int hpt_shutdown(device_t dev);
static void hpt_poll(struct cam_sim *sim);
static void hpt_intr(void *arg);
static void hpt_action(struct cam_sim *sim, union ccb *ccb);
static void SetInquiryData(PINQUIRYDATA inquiryData, PVDevice pVDev);
static void HPTLIBAPI OsSendCommand (_VBUS_ARG union ccb * ccb);
static void HPTLIBAPI fOsCommandDone(_VBUS_ARG PCommand pCmd);
static void ccb_done(union ccb *ccb);
static void hpt_queue_ccb(union ccb **ccb_Q, union ccb *ccb);
static void hpt_free_ccb(union ccb **ccb_Q, union ccb *ccb);
static void launch_worker_thread(void);
static MV_SATA_CHANNEL gMvSataChannels[MAX_VBUS][MV_SATA_CHANNELS_NUM];
static void hptmv_free_edma_queues(IAL_ADAPTER_T *pAdapter);
static void hptmv_free_channel(IAL_ADAPTER_T *pAdapter, MV_U8 channelNum);
static void handleEdmaError(_VBUS_ARG PCommand pCmd);
static int hptmv_init_channel(IAL_ADAPTER_T *pAdapter, MV_U8 channelNum);
static int fResetActiveCommands(PVBus _vbus_p);
static void fRegisterVdevice(IAL_ADAPTER_T *pAdapter);
static int hptmv_allocate_edma_queues(IAL_ADAPTER_T *pAdapter);
static void hptmv_handle_event_disconnect(void *data);
static void hptmv_handle_event_connect(void *data);
static int start_channel(IAL_ADAPTER_T *pAdapter, MV_U8 channelNum);
static void init_vdev_params(IAL_ADAPTER_T *pAdapter, MV_U8 channel);
static int hptmv_parse_identify_results(MV_SATA_CHANNEL *pMvSataChannel);
static void hpt_async(void *callback_arg, u_int32_t code,
struct cam_path *path, void *arg);
static int HPTLIBAPI fOsBuildSgl(_VBUS_ARG PCommand pCmd, FPSCAT_GATH pSg,
int logical);
static MV_BOOLEAN CommandCompletionCB(MV_SATA_ADAPTER *pMvSataAdapter,
MV_U8 channelNum, MV_COMPLETION_TYPE comp_type, MV_VOID_PTR commandId,
MV_U16 responseFlags, MV_U32 timeStamp,
MV_STORAGE_DEVICE_REGISTERS *registerStruct);
static MV_BOOLEAN hptmv_event_notify(MV_SATA_ADAPTER *pMvSataAdapter,
MV_EVENT_TYPE eventType, MV_U32 param1, MV_U32 param2);
#define ccb_ccb_ptr spriv_ptr0
#define ccb_adapter ccb_h.spriv_ptr1
IAL_ADAPTER_T *gIal_Adapter = 0;
IAL_ADAPTER_T *pCurAdapter = 0;
typedef struct st_HPT_DPC {
IAL_ADAPTER_T *pAdapter;
void (*dpc)(IAL_ADAPTER_T *, void *, UCHAR);
void *arg;
UCHAR flags;
} ST_HPT_DPC;
#define MAX_DPC 16
UCHAR DPC_Request_Nums = 0;
static ST_HPT_DPC DpcQueue[MAX_DPC];
static int DpcQueue_First=0;
static int DpcQueue_Last = 0;
static device_method_t driver_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, hpt_probe),
DEVMETHOD(device_attach, hpt_attach),
DEVMETHOD(device_detach, hpt_detach),
{ 0, 0 }
};
static driver_t hpt_pci_driver = {
__str(PROC_DIR_NAME),
driver_methods,
sizeof(IAL_ADAPTER_T)
};
static devclass_t hpt_devclass;
DRIVER_MODULE(PROC_DIR_NAME, pci, hpt_pci_driver, hpt_devclass, 0, 0);
MODULE_DEPEND(PROC_DIR_NAME, cam, 1, 1, 1);
intrmask_t
lock_driver()
{
intrmask_t spl = splcam();
return spl;
}
void
unlock_driver(intrmask_t spl)
{
splx(spl);
}
/*******************************************************************************
* Name: hptmv_free_channel
*
* Description: free allocated queues for the given channel
*
* Parameters: pMvSataAdapter - pointer to the RR182x controler this
* channel connected to.
* channelNum - channel number.
*
******************************************************************************/
static void
hptmv_free_channel(IAL_ADAPTER_T *pAdapter, MV_U8 channelNum)
{
PVDevice pVDev = &(pAdapter->VDevices[channelNum]);
_VBUS_INST(&pAdapter->VBus);
HPT_ASSERT(channelNum < MV_SATA_CHANNELS_NUM);
pAdapter->mvSataAdapter.sataChannel[channelNum] = NULL;
if(pVDev->vf_online)
{
pVDev->u.disk.df_on_line = 0;
pVDev->vf_online = 0;
if (pVDev->pfnDeviceFailed) {
CallWhenIdle(_VBUS_P (DPC_PROC)pVDev->pfnDeviceFailed,
pVDev);
}
}
}
int MvSataResetChannel(MV_SATA_ADAPTER *pMvSataAdapter, MV_U8 channel);
static void
handleEdmaError(_VBUS_ARG PCommand pCmd)
{
PDevice pDevice = &pCmd->pVDevice->u.disk;
MV_SATA_ADAPTER * pSataAdapter = pDevice->mv->mvSataAdapter;
MV_ERROR("Reset channel\n");
MvSataResetChannel(pSataAdapter, pDevice->mv->channelNumber);
/*now no other cmds on this channel*/
if (!pDevice->df_on_line) {
KdPrint(("Device is offline"));
pCmd->Result = RETURN_BAD_DEVICE;
CallAfterReturn(_VBUS_P (DPC_PROC)pCmd->pfnCompletion, pCmd);
return;
}
if (pCmd->RetryCount++>5) {
pDevice->df_on_line = 0;
pCmd->pVDevice->vf_online = 0;
if (pCmd->pVDevice->pfnDeviceFailed)
CallWhenIdle(_VBUS_P
(DPC_PROC)pCmd->pVDevice->pfnDeviceFailed,
pCmd->pVDevice);
fNotifyGUI(ET_DEVICE_REMOVED, Map2pVDevice(pDevice));
pCmd->Result = RETURN_IDE_ERROR;
CallAfterReturn(_VBUS_P (DPC_PROC)pCmd->pfnCompletion, pCmd);
return;
}
/* retry the command */
fDeviceSendCommand(_VBUS_P pCmd);
}
/****************************************************************
* Name: hptmv_init_channel
*
* Description: allocate request and response queues for the EDMA of
* the given channel and sets other fields.
* Parameters:
* pAdapter - pointer to the emulated adapter data structure
* channelNum - channel number.
* Return: 0 on success, otherwise on failure
****************************************************************/
static int
hptmv_init_channel(IAL_ADAPTER_T *pAdapter, MV_U8 channelNum)
{
MV_SATA_CHANNEL *pMvSataChannel;
dma_addr_t req_dma_addr;
dma_addr_t rsp_dma_addr;
if (channelNum >= MV_SATA_CHANNELS_NUM)
{
MV_ERROR("RR182x[%d]: Bad channelNum=%d",
pAdapter->mvSataAdapter.adapterId, channelNum);
return -1;
}
pMvSataChannel =
&gMvSataChannels[pAdapter->mvSataAdapter.adapterId][channelNum];
pAdapter->mvSataAdapter.sataChannel[channelNum] = pMvSataChannel;
pMvSataChannel->channelNumber = channelNum;
pMvSataChannel->lba48Address = MV_FALSE;
pMvSataChannel->maxReadTransfer = MV_FALSE;
pMvSataChannel->requestQueue =
(struct mvDmaRequestQueueEntry *)
(pAdapter->requestsArrayBaseAlignedAddr +
(channelNum * MV_EDMA_REQUEST_QUEUE_SIZE));
req_dma_addr = pAdapter->requestsArrayBaseDmaAlignedAddr +
(channelNum * MV_EDMA_REQUEST_QUEUE_SIZE);
KdPrint(("requestQueue addr is 0x%lX", (u_long)req_dma_addr));
/* check the 1K alignment of the request queue*/
if (req_dma_addr & 0x3ff)
{
MV_ERROR("RR182x[%d]: request queue allocated not 1 K aligned,"
" dma_addr=%lx channel=%d\n",
pAdapter->mvSataAdapter.adapterId,(u_long)req_dma_addr,
channelNum);
return -1;
}
pMvSataChannel->requestQueuePciLowAddress = req_dma_addr;
pMvSataChannel->requestQueuePciHiAddress = 0;
KdPrint(("RR182x[%d,%d]: request queue allocated: 0x%p",
pAdapter->mvSataAdapter.adapterId, channelNum,
pMvSataChannel->requestQueue));
pMvSataChannel->responseQueue =
(struct mvDmaResponseQueueEntry *)
(pAdapter->responsesArrayBaseAlignedAddr +
(channelNum * MV_EDMA_RESPONSE_QUEUE_SIZE));
rsp_dma_addr = pAdapter->responsesArrayBaseDmaAlignedAddr +
(channelNum * MV_EDMA_RESPONSE_QUEUE_SIZE);
/* check the 256 alignment of the response queue*/
if (rsp_dma_addr & 0xff)
{
MV_ERROR("RR182x[%d,%d]: response queue allocated not 256 byte"
" aligned, dma_addr=%lx\n",
pAdapter->mvSataAdapter.adapterId, channelNum,
(u_long)rsp_dma_addr);
return -1;
}
pMvSataChannel->responseQueuePciLowAddress = rsp_dma_addr;
pMvSataChannel->responseQueuePciHiAddress = 0;
KdPrint(("RR182x[%d,%d]: response queue allocated: 0x%p",
pAdapter->mvSataAdapter.adapterId, channelNum,
pMvSataChannel->responseQueue));
pAdapter->mvChannel[channelNum].online = MV_TRUE;
return 0;
}
/******************************************************************************
* Name: hptmv_parse_identify_results
*
* Description: this functions parses the identify command results,
* checks that the connected deives can be accesed by
* RR182x EDMA, and updates the channel stucture
* accordingly.
* Parameters: pMvSataChannel, pointer to the channel data structure.
*
* Returns: =0 ->success, < 0 ->failure.
*
******************************************************************************/
static int
hptmv_parse_identify_results(MV_SATA_CHANNEL *pMvSataChannel)
{
MV_U16 *iden = pMvSataChannel->identifyDevice;
/*LBA addressing*/
if (! (iden[IDEN_CAPACITY_1_OFFSET] & 0x200)) {
KdPrint(("IAL Error in IDENTIFY info: LBA not supported\n"));
return -1;
} else {
KdPrint(("%25s - %s\n", "Capabilities", "LBA supported"));
}
/*DMA support*/
if (! (iden[IDEN_CAPACITY_1_OFFSET] & 0x100)) {
KdPrint(("IAL Error in IDENTIFY info: DMA not supported\n"));
return -1;
} else {
KdPrint(("%25s - %s\n", "Capabilities", "DMA supported"));
}
/* PIO */
if ((iden[IDEN_VALID] & 2) == 0) {
KdPrint(("IAL Error in IDENTIFY info: not able to find PIO "
"mode\n"));
return -1;
}
KdPrint(("%25s - 0x%02x\n", "PIO modes supported",
iden[IDEN_PIO_MODE_SPPORTED] & 0xff));
/*UDMA*/
if ((iden[IDEN_VALID] & 4) == 0) {
KdPrint(("IAL Error in IDENTIFY info: not able to find UDMA "
"mode\n"));
return -1;
}
/* 48 bit address */
if ((iden[IDEN_SUPPORTED_COMMANDS2] & 0x400)) {
KdPrint(("%25s - %s\n", "LBA48 addressing", "supported"));
pMvSataChannel->lba48Address = MV_TRUE;
} else {
KdPrint(("%25s - %s\n", "LBA48 addressing", "Not supported"));
pMvSataChannel->lba48Address = MV_FALSE;
}
return 0;
}
static void
init_vdev_params(IAL_ADAPTER_T *pAdapter, MV_U8 channel)
{
PVDevice pVDev;
MV_SATA_CHANNEL *pMvSataChannel;
MV_U16_PTR IdentifyData;
pVDev = &pAdapter->VDevices[channel];
pMvSataChannel = pAdapter->mvSataAdapter.sataChannel[channel];
pMvSataChannel->outstandingCommands = 0;
IdentifyData = pMvSataChannel->identifyDevice;
pVDev->u.disk.mv = pMvSataChannel;
pVDev->u.disk.df_on_line = 1;
pVDev->u.disk.pVBus = &pAdapter->VBus;
pVDev->pVBus = &pAdapter->VBus;
#ifdef SUPPORT_48BIT_LBA
if (pMvSataChannel->lba48Address == MV_TRUE)
pVDev->u.disk.dDeRealCapacity =
((IdentifyData[101]<<16) | IdentifyData[100]) - 1;
else
#endif
if(IdentifyData[53] & 1) {
pVDev->u.disk.dDeRealCapacity =
(((IdentifyData[58]<<16 | IdentifyData[57]) <
(IdentifyData[61]<<16 | IdentifyData[60])) ?
(IdentifyData[61]<<16 | IdentifyData[60]) :
(IdentifyData[58]<<16 | IdentifyData[57])) - 1;
} else
pVDev->u.disk.dDeRealCapacity =
(IdentifyData[61]<<16 | IdentifyData[60]) - 1;
pVDev->u.disk.bDeUsable_Mode = pVDev->u.disk.bDeModeSetting =
pAdapter->mvChannel[channel].maxPioModeSupported -
MV_ATA_TRANSFER_PIO_0;
if (pAdapter->mvChannel[channel].maxUltraDmaModeSupported!=0xFF) {
pVDev->u.disk.bDeUsable_Mode = pVDev->u.disk.bDeModeSetting =
pAdapter->mvChannel[channel].maxUltraDmaModeSupported -
MV_ATA_TRANSFER_UDMA_0 + 8;
}
}
static void
device_change(IAL_ADAPTER_T *pAdapter , MV_U8 channelIndex, int plugged)
{
PVDevice pVDev;
MV_SATA_ADAPTER *pMvSataAdapter;
MV_SATA_CHANNEL *pMvSataChannel;
PVBus _vbus_p;
pMvSataAdapter = &pAdapter->mvSataAdapter;
pMvSataChannel = pMvSataAdapter->sataChannel[channelIndex];
_vbus_p = &pAdapter->VBus;
if (!pMvSataChannel)
return;
if (plugged) {
pVDev = &(pAdapter->VDevices[channelIndex]);
init_vdev_params(pAdapter, channelIndex);
pVDev->VDeviceType = pVDev->u.disk.df_atapi ? VD_ATAPI :
pVDev->u.disk.df_removable_drive ? VD_REMOVABLE :
VD_SINGLE_DISK;
pVDev->VDeviceCapacity = pVDev->u.disk.dDeRealCapacity;
pVDev->pfnSendCommand = pfnSendCommand[pVDev->VDeviceType];
pVDev->pfnDeviceFailed = pfnDeviceFailed[pVDev->VDeviceType];
pVDev->vf_online = 1;
#ifdef SUPPORT_ARRAY
if(pVDev->pParent) {
int iMember;
for (iMember = 0;
iMember < pVDev->pParent->u.array.bArnMember;
iMember++)
if ((PVDevice)pVDev->pParent->u.array.pMember[iMember] == pVDev)
pVDev->pParent->u.array.pMember[iMember] = NULL;
pVDev->pParent = NULL;
}
#endif
fNotifyGUI(ET_DEVICE_PLUGGED,pVDev);
fCheckBootable(pVDev);
RegisterVDevice(pVDev);
#ifndef FOR_DEMO
if (pAdapter->beeping) {
pAdapter->beeping = 0;
BeepOff(pAdapter->mvSataAdapter.adapterIoBaseAddress);
}
#endif
} else {
pVDev = &(pAdapter->VDevices[channelIndex]);
pVDev->u.disk.df_on_line = 0;
pVDev->vf_online = 0;
if (pVDev->pfnDeviceFailed) {
_VBUS_INST(&pAdapter->VBus)
CallWhenIdle(_VBUS_P (DPC_PROC)pVDev->pfnDeviceFailed,
pVDev);
}
fNotifyGUI(ET_DEVICE_REMOVED,pVDev);
#ifndef FOR_DEMO
if (pAdapter->ver_601==2 && !pAdapter->beeping) {
pAdapter->beeping = 1;
BeepOn(pAdapter->mvSataAdapter.adapterIoBaseAddress);
set_fail_led(&pAdapter->mvSataAdapter, channelIndex, 1);
}
#endif
}
}
static int
start_channel(IAL_ADAPTER_T *pAdapter, MV_U8 channelNum)
{
MV_SATA_ADAPTER *pMvSataAdapter;
MV_SATA_CHANNEL *pMvSataChannel;
MV_CHANNEL *pChannelInfo;
MV_U32 udmaMode,pioMode;
pMvSataAdapter = &pAdapter->mvSataAdapter;
pMvSataChannel = pMvSataAdapter->sataChannel[channelNum];
pChannelInfo = &(pAdapter->mvChannel[channelNum]);
KdPrint(("RR182x [%d]: start channel (%d)", pMvSataAdapter->adapterId,
channelNum));
/* Software reset channel */
if (mvStorageDevATASoftResetDevice(pMvSataAdapter, channelNum) ==
MV_FALSE) {
MV_ERROR("RR182x [%d,%d]: failed to perform Software reset\n",
pMvSataAdapter->adapterId, channelNum);
return -1;
}
/* Hardware reset channel */
if (mvSataChannelHardReset(pMvSataAdapter, channelNum) == MV_FALSE) {
/*
* If failed, try again - this is when trying to hardreset a
* channel when drive is just spinning up
*/
StallExec(5000000); /* wait 5 sec before trying again */
if (mvSataChannelHardReset(pMvSataAdapter, channelNum) ==
MV_FALSE) {
MV_ERROR("RR182x [%d,%d]: failed to perform Hard "
"reset\n", pMvSataAdapter->adapterId,
channelNum);
return -1;
}
}
/* identify device*/
if (mvStorageDevATAIdentifyDevice(pMvSataAdapter, channelNum) ==
MV_FALSE) {
MV_ERROR("RR182x [%d,%d]: failed to perform ATA Identify "
"command\n", pMvSataAdapter->adapterId, channelNum);
return -1;
}
if (hptmv_parse_identify_results(pMvSataChannel)) {
MV_ERROR("RR182x [%d,%d]: Error in parsing ATA Identify "
"message\n", pMvSataAdapter->adapterId, channelNum);
return -1;
}
/* mvStorageDevATASetFeatures */
/* Disable 8 bit PIO in case CFA enabled */
if (pMvSataChannel->identifyDevice[86] & 4) {
KdPrint(("RR182x [%d]: Disable 8 bit PIO (CFA enabled) \n",
pMvSataAdapter->adapterId));
if (mvStorageDevATASetFeatures(pMvSataAdapter, channelNum,
MV_ATA_SET_FEATURES_DISABLE_8_BIT_PIO, 0, 0, 0, 0) ==
MV_FALSE) {
MV_ERROR("RR182x [%d]: channel %d: "
"mvStorageDevATASetFeatures failed\n",
pMvSataAdapter->adapterId, channelNum);
return -1;
}
}
#ifdef ENABLE_WRITE_CACHE
/* Write cache */
if (pMvSataChannel->identifyDevice[82] & 0x20) {
if (!(pMvSataChannel->identifyDevice[85] & 0x20)) {
/* if not enabled by default */
if (mvStorageDevATASetFeatures(pMvSataAdapter,
channelNum, MV_ATA_SET_FEATURES_ENABLE_WCACHE, 0,
0, 0, 0) == MV_FALSE) {
MV_ERROR("RR182x [%d]: channel %d: "
"mvStorageDevATASetFeatures failed\n",
pMvSataAdapter->adapterId, channelNum);
return -1;
}
}
KdPrint(("RR182x [%d]: channel %d, write cache enabled\n",
pMvSataAdapter->adapterId, channelNum));
} else {
KdPrint(("RR182x [%d]: channel %d, write cache not supported\n",
pMvSataAdapter->adapterId, channelNum));
}
#else
/* disable write cache */
if (pMvSataChannel->identifyDevice[85] & 0x20) {
KdPrint(("RR182x [%d]: channel =%d, disable write cache\n",
pMvSataAdapter->adapterId, channelNum));
if (mvStorageDevATASetFeatures(pMvSataAdapter, channelNum,
MV_ATA_SET_FEATURES_DISABLE_WCACHE, 0, 0, 0, 0) ==
MV_FALSE) {
MV_ERROR("RR182x [%d]: channel %d: "
"mvStorageDevATASetFeatures failed\n",
pMvSataAdapter->adapterId, channelNum);
return -1;
}
}
KdPrint(("RR182x [%d]: channel=%d, write cache disabled\n",
pMvSataAdapter->adapterId, channelNum));
#endif
/* Set transfer mode */
KdPrint(("RR182x [%d] Set transfer mode XFER_PIO_SLOW\n",
pMvSataAdapter->adapterId));
if (mvStorageDevATASetFeatures(pMvSataAdapter, channelNum,
MV_ATA_SET_FEATURES_TRANSFER, MV_ATA_TRANSFER_PIO_SLOW, 0, 0, 0) ==
MV_FALSE) {
MV_ERROR("RR182x [%d] channel %d: Set Features failed\n",
pMvSataAdapter->adapterId, channelNum);
return -1;
}
if (pMvSataChannel->identifyDevice[IDEN_PIO_MODE_SPPORTED] & 1) {
pioMode = MV_ATA_TRANSFER_PIO_4;
} else if (pMvSataChannel->identifyDevice[IDEN_PIO_MODE_SPPORTED] & 2) {
pioMode = MV_ATA_TRANSFER_PIO_3;
} else {
MV_ERROR("IAL Error in IDENTIFY info: PIO modes 3 and 4 not "
"supported\n");
pioMode = MV_ATA_TRANSFER_PIO_SLOW;
}
KdPrint(("RR182x [%d] Set transfer mode XFER_PIO_4\n",
pMvSataAdapter->adapterId));
pAdapter->mvChannel[channelNum].maxPioModeSupported = pioMode;
if (mvStorageDevATASetFeatures(pMvSataAdapter, channelNum,
MV_ATA_SET_FEATURES_TRANSFER, pioMode, 0, 0, 0) == MV_FALSE) {
MV_ERROR("RR182x [%d] channel %d: Set Features failed\n",
pMvSataAdapter->adapterId, channelNum);
return -1;
}
udmaMode = MV_ATA_TRANSFER_UDMA_0;
if (pMvSataChannel->identifyDevice[IDEN_UDMA_MODE] & 0x40) {
udmaMode = MV_ATA_TRANSFER_UDMA_6;
} else if (pMvSataChannel->identifyDevice[IDEN_UDMA_MODE] & 0x20) {
udmaMode = MV_ATA_TRANSFER_UDMA_5;
} else if (pMvSataChannel->identifyDevice[IDEN_UDMA_MODE] & 0x10) {
udmaMode = MV_ATA_TRANSFER_UDMA_4;
} else if (pMvSataChannel->identifyDevice[IDEN_UDMA_MODE] & 8) {
udmaMode = MV_ATA_TRANSFER_UDMA_3;
} else if (pMvSataChannel->identifyDevice[IDEN_UDMA_MODE] & 4) {
udmaMode = MV_ATA_TRANSFER_UDMA_2;
}
KdPrint(("RR182x [%d] Set transfer mode XFER_UDMA_%d\n",
pMvSataAdapter->adapterId, udmaMode & 0xf));
pChannelInfo->maxUltraDmaModeSupported = udmaMode;
#if 0
if (mvStorageDevATASetFeatures(pMvSataAdapter, channelNum,
MV_ATA_SET_FEATURES_TRANSFER, udmaMode, 0, 0, 0) == MV_FALSE) {
MV_ERROR("RR182x [%d] channel %d: Set Features failed\n",
pMvSataAdapter->adapterId, channelNum);
return -1;
}
#endif
if (pChannelInfo->maxUltraDmaModeSupported == 0xFF)
return TRUE;
do {
if (mvStorageDevATASetFeatures(pMvSataAdapter, channelNum,
MV_ATA_SET_FEATURES_TRANSFER,
pChannelInfo->maxUltraDmaModeSupported, 0, 0, 0) !=
MV_FALSE) {
break;
}
if (pChannelInfo->maxUltraDmaModeSupported <=
MV_ATA_TRANSFER_UDMA_0) {
return FALSE;
}
if (mvStorageDevATASoftResetDevice(pMvSataAdapter,
channelNum) == MV_FALSE) {
mv_reg_write_byte(pMvSataAdapter->adapterIoBaseAddress,
pMvSataChannel->eDmaRegsOffset + 0x11c,
/* command reg */ MV_ATA_COMMAND_IDLE_IMMEDIATE);
mvMicroSecondsDelay(10000);
mvSataChannelHardReset(pMvSataAdapter, channelNum);
if (mvStorageDevATASoftResetDevice(pMvSataAdapter,
channelNum) == MV_FALSE)
return FALSE;
}
if (mvSataChannelHardReset(pMvSataAdapter, channelNum) ==
MV_FALSE)
return FALSE;
pChannelInfo->maxUltraDmaModeSupported--;
} while (1);
#ifdef ENABLE_READ_AHEAD
/* Read look ahead */
if (pMvSataChannel->identifyDevice[82] & 0x40) {
if (!(pMvSataChannel->identifyDevice[85] & 0x40)) {
/* if not enabled by default */
if (mvStorageDevATASetFeatures(pMvSataAdapter,
channelNum, MV_ATA_SET_FEATURES_ENABLE_RLA, 0, 0,
0, 0) == MV_FALSE) {
MV_ERROR("RR182x [%d] channel %d: Set Features "
"failed\n", pMvSataAdapter->adapterId,
channelNum);
return -1;
}
}
KdPrint(("RR182x [%d]: channel=%d, read look ahead enabled\n",
pMvSataAdapter->adapterId, channelNum));
} else {
KdPrint(("RR182x [%d]: channel %d, Read Look Ahead not "
"supported\n", pMvSataAdapter->adapterId, channelNum));
}
#else
if (pMvSataChannel->identifyDevice[86] & 0x20) {
KdPrint(("RR182x [%d]:channel %d, disable read look ahead\n",
pMvSataAdapter->adapterId, channelNum));
if (mvStorageDevATASetFeatures(pMvSataAdapter, channelNum,
MV_ATA_SET_FEATURES_DISABLE_RLA, 0, 0, 0, 0) == MV_FALSE) {
MV_ERROR("RR182x [%d]:channel %d: ATA Set Features "
"failed\n", pMvSataAdapter->adapterId,
channelNum);
return -1;
}
}
KdPrint(("RR182x [%d]:channel %d, read look ahead disabled\n",
pMvSataAdapter->adapterId, channelNum));
#endif
#if 0
KdPrint(("RR182x [%d]:channel %d, Set standby timer to 200 seconds\n",
pMvSataAdapter->adapterId, channelNum));
if (mvStorageDevATAExecuteNonUDMACommand(pMvSataAdapter, channelNum,
MV_NON_UDMA_PROTOCOL_NON_DATA,
MV_FALSE, /* isEXT*/
NULL, 0, 0, /* features*/
40, /*sectorCount*/
0, /*lbaLow*/
0, /*lbaMid*/
0, /*lbaHigh*/
0, /*device*/
MV_ATA_COMMAND_IDLE) ==
MV_FALSE) {
MV_ERROR("RR182x [%d]:channel %d: ATA Idle command failed\n",
pMvSataAdapter->adapterId, channelNum);
return -1;
}
#endif
#if 0
/* 2003-9-16 disable TCQ until we have better solution */
if ((pMvSataChannel->identifyDevice[IDEN_SUPPORTED_COMMANDS2] & 2)) {
MV_U8 depth;
MV_BOOLEAN result;
depth = (pMvSataChannel->identifyDevice[IDEN_QUEUE_DEPTH] &
0x1f) + 1;
KdPrint(("RR182x [%d]: channel %d config EDMA, Queued Mode, "
"queue depth %d\n", pMvSataAdapter->adapterId,
channelNum, depth));
result = mvSataConfigEdmaMode(pMvSataAdapter, channelNum,
MV_EDMA_MODE_QUEUED, depth);
if (result == MV_FALSE) {
MV_ERROR("RR182x [%d] Error: mvSataConfigEdmaMode "
"failed\n", pMvSataAdapter->adapterId);
return -1;
}
} else {
#endif
KdPrint(("RR182x [%d]: channel %d config EDMA, Non Queued Mode\n",
pMvSataAdapter->adapterId, channelNum));
if (mvSataConfigEdmaMode(pMvSataAdapter, channelNum,
MV_EDMA_MODE_NOT_QUEUED, 0) == MV_FALSE) {
MV_ERROR("RR182x [%d] channel %d Error: mvSataConfigEdmaMode "
"failed\n", pMvSataAdapter->adapterId, channelNum);
return -1;
}
/* Enable EDMA */
if (mvSataEnableChannelDma(pMvSataAdapter, channelNum) == MV_FALSE) {
MV_ERROR("RR182x [%d] Failed to enable DMA, channel=%d\n",
pMvSataAdapter->adapterId, channelNum);
return -1;
}
MV_ERROR("RR182x [%d,%d]: channel started successfully\n",
pMvSataAdapter->adapterId, channelNum);
#ifndef FOR_DEMO
set_fail_led(pMvSataAdapter, channelNum, 0);
#endif
return 0;
}
static void
hptmv_handle_event(void * data, int flag)
{
IAL_ADAPTER_T *pAdapter;
MV_SATA_ADAPTER *pMvSataAdapter;
MV_U8 channelIndex;
pAdapter = (IAL_ADAPTER_T *)data;
pMvSataAdapter = &pAdapter->mvSataAdapter;
mvOsSemTake(&pMvSataAdapter->semaphore);
for (channelIndex = 0; channelIndex < MV_SATA_CHANNELS_NUM;
channelIndex++) {
switch(pAdapter->sataEvents[channelIndex]) {
case SATA_EVENT_CHANNEL_CONNECTED:
/* Handle only connects */
if (flag == 1)
break;
KdPrint(("RR182x [%d,%d]: new device connected\n",
pMvSataAdapter->adapterId, channelIndex));
hptmv_init_channel(pAdapter, channelIndex);
if (mvSataConfigureChannel( pMvSataAdapter,
channelIndex) == MV_FALSE) {
MV_ERROR("RR182x [%d,%d] Failed to configure\n",
pMvSataAdapter->adapterId,
channelIndex);
hptmv_free_channel(pAdapter, channelIndex);
} else {
#if 0
mvSataChannelHardReset(pMvSataAdapter, channel);
#endif
if (start_channel( pAdapter, channelIndex)) {
MV_ERROR("RR182x [%d,%d]Failed to start"
" channel\n",
pMvSataAdapter->adapterId,
channelIndex);
hptmv_free_channel(pAdapter,
channelIndex);
} else {
device_change(pAdapter, channelIndex,
TRUE);
}
}
pAdapter->sataEvents[channelIndex] =
SATA_EVENT_NO_CHANGE;
break;
case SATA_EVENT_CHANNEL_DISCONNECTED:
/* Handle only disconnects */
if (flag == 0)
break;
KdPrint(("RR182x [%d,%d]: device disconnected\n",
pMvSataAdapter->adapterId, channelIndex));
/* Flush pending commands */
if(pMvSataAdapter->sataChannel[channelIndex]) {
_VBUS_INST(&pAdapter->VBus)
mvSataFlushDmaQueue (pMvSataAdapter,
channelIndex, MV_FLUSH_TYPE_CALLBACK);
CheckPendingCall(_VBUS_P0);
mvSataRemoveChannel(pMvSataAdapter,
channelIndex);
hptmv_free_channel(pAdapter, channelIndex);
pMvSataAdapter->sataChannel[channelIndex] =
NULL;
KdPrint(("RR182x [%d,%d]: channel removed\n",
pMvSataAdapter->adapterId,
channelIndex));
if (pAdapter->outstandingCommands==0 &&
DPC_Request_Nums==0)
Check_Idle_Call(pAdapter);
} else {
KdPrint(("RR182x [%d,%d]: channel already "
"removed!!\n",
pMvSataAdapter->adapterId,
channelIndex));
}
pAdapter->sataEvents[channelIndex] =
SATA_EVENT_NO_CHANGE;
break;
case SATA_EVENT_NO_CHANGE:
break;
default:
break;
}
}
mvOsSemRelease(&pMvSataAdapter->semaphore);
}
#define EVENT_CONNECT 1
#define EVENT_DISCONNECT 0
static void
hptmv_handle_event_connect(void *data)
{
hptmv_handle_event (data, 0);
}
static void
hptmv_handle_event_disconnect(void *data)
{
hptmv_handle_event (data, 1);
}
static MV_BOOLEAN
hptmv_event_notify(MV_SATA_ADAPTER *pMvSataAdapter, MV_EVENT_TYPE eventType,
MV_U32 param1, MV_U32 param2)
{
IAL_ADAPTER_T *pAdapter = pMvSataAdapter->IALData;
switch (eventType) {
case MV_EVENT_TYPE_SATA_CABLE:
{
MV_U8 channel = param2;
if (param1 == EVENT_CONNECT) {
pAdapter->sataEvents[channel] =
SATA_EVENT_CHANNEL_CONNECTED;
KdPrint(("RR182x [%d,%d]: device connected event "
"received\n", pMvSataAdapter->adapterId,
channel));
/*
* Delete previous timers (if multiple drives connected
* in the same time
*/
pAdapter->event_timer_connect =
timeout(hptmv_handle_event_connect, pAdapter,10*hz);
} else if (param1 == EVENT_DISCONNECT) {
pAdapter->sataEvents[channel] =
SATA_EVENT_CHANNEL_DISCONNECTED;
KdPrint(("RR182x [%d,%d]: device disconnected event "
"received \n", pMvSataAdapter->adapterId,
channel));
device_change(pAdapter, channel, FALSE);
/*
* Delete previous timers (if multiple drives
* disconnected in the same time
*/
pAdapter->event_timer_disconnect =
timeout(hptmv_handle_event_disconnect, pAdapter,
10*hz);
} else {
MV_ERROR("RR182x: illigal value for param1(%d) at "
"connect/disconect event, host=%d\n", param1,
pMvSataAdapter->adapterId );
}
break;
}
case MV_EVENT_TYPE_ADAPTER_ERROR:
KdPrint(("RR182x: DEVICE error event received, pci cause "
"reg=%x, don't how to handle this\n", param1));
return MV_TRUE;
default:
MV_ERROR("RR182x[%d]: unknown event type (%d)\n",
pMvSataAdapter->adapterId, eventType);
return MV_FALSE;
}
return MV_TRUE;
}
static void
hptmv_map_req(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
dma_addr_t *addr;
addr = (dma_addr_t *)arg;
if (error || nsegs != 1)
return;
*addr = segs[0].ds_addr;
return;
}
static int
hptmv_allocate_edma_queues(IAL_ADAPTER_T *pAdapter)
{
if (bus_dmamem_alloc(pAdapter->req_dmat,
(void **)&pAdapter->requestsArrayBaseAddr, BUS_DMA_WAITOK,
&pAdapter->req_map) != 0) {
MV_ERROR("RR182x[%d]: Failed to allocate memory for EDMA "
"request queues\n", pAdapter->mvSataAdapter.adapterId);
return -1;
}
(void)bus_dmamap_load(pAdapter->req_dmat, pAdapter->req_map,
pAdapter->requestsArrayBaseAddr, REQUESTS_ARRAY_SIZE, hptmv_map_req,
&pAdapter->requestsArrayBaseDmaAddr, 0);
pAdapter->requestsArrayBaseAlignedAddr =
pAdapter->requestsArrayBaseAddr;
pAdapter->requestsArrayBaseAlignedAddr += MV_EDMA_REQUEST_QUEUE_SIZE;
pAdapter->requestsArrayBaseAlignedAddr =
(MV_U8 *)(((ULONG_PTR)pAdapter->requestsArrayBaseAlignedAddr) &
~(ULONG_PTR)(MV_EDMA_REQUEST_QUEUE_SIZE - 1));
pAdapter->requestsArrayBaseDmaAlignedAddr =
pAdapter->requestsArrayBaseDmaAddr;
pAdapter->requestsArrayBaseDmaAlignedAddr += MV_EDMA_REQUEST_QUEUE_SIZE;
pAdapter->requestsArrayBaseDmaAlignedAddr &=
~(ULONG_PTR)(MV_EDMA_REQUEST_QUEUE_SIZE - 1);
if ((pAdapter->requestsArrayBaseDmaAlignedAddr -
pAdapter->requestsArrayBaseDmaAddr) !=
(pAdapter->requestsArrayBaseAlignedAddr -
pAdapter->requestsArrayBaseAddr)) {
MV_ERROR("RR182x[%d]: Error in Request Quueues Alignment\n",
pAdapter->mvSataAdapter.adapterId);
bus_dmamap_unload(pAdapter->req_dmat, pAdapter->req_map);
bus_dmamem_free(pAdapter->req_dmat,
pAdapter->requestsArrayBaseAddr, pAdapter->req_map);
return -1;
}
/* response queues */
if (bus_dmamem_alloc(pAdapter->resp_dmat,
(void **)&pAdapter->responsesArrayBaseAddr, BUS_DMA_WAITOK,
&pAdapter->resp_map) != 0) {
MV_ERROR("RR182x[%d]: Failed to allocate memory for EDMA "
"response queues\n", pAdapter->mvSataAdapter.adapterId);
bus_dmamap_unload(pAdapter->req_dmat, pAdapter->req_map);
bus_dmamem_free(pAdapter->req_dmat,
pAdapter->requestsArrayBaseAddr, pAdapter->req_map);
return -1;
}
(void)bus_dmamap_load(pAdapter->resp_dmat, pAdapter->resp_map,
pAdapter->responsesArrayBaseAddr, RESPONSES_ARRAY_SIZE,
hptmv_map_req, &pAdapter->responsesArrayBaseDmaAddr, 0);
pAdapter->responsesArrayBaseAlignedAddr =
pAdapter->responsesArrayBaseAddr;
pAdapter->responsesArrayBaseAlignedAddr += MV_EDMA_RESPONSE_QUEUE_SIZE;
pAdapter->responsesArrayBaseAlignedAddr =
(MV_U8 *)(((ULONG_PTR)pAdapter->responsesArrayBaseAlignedAddr) &
~(ULONG_PTR)(MV_EDMA_RESPONSE_QUEUE_SIZE - 1));
pAdapter->responsesArrayBaseDmaAlignedAddr =
pAdapter->responsesArrayBaseDmaAddr;
pAdapter->responsesArrayBaseDmaAlignedAddr +=
MV_EDMA_RESPONSE_QUEUE_SIZE;
pAdapter->responsesArrayBaseDmaAlignedAddr &=
~(ULONG_PTR)(MV_EDMA_RESPONSE_QUEUE_SIZE - 1);
if ((pAdapter->responsesArrayBaseDmaAlignedAddr -
pAdapter->responsesArrayBaseDmaAddr) !=
(pAdapter->responsesArrayBaseAlignedAddr -
pAdapter->responsesArrayBaseAddr)) {
MV_ERROR("RR182x[%d]: Error in Response Quueues Alignment\n",
pAdapter->mvSataAdapter.adapterId);
hptmv_free_edma_queues(pAdapter);
return -1;
}
return 0;
}
static void
hptmv_free_edma_queues(IAL_ADAPTER_T *pAdapter)
{
bus_dmamap_unload(pAdapter->req_dmat, pAdapter->req_map);
bus_dmamem_free(pAdapter->req_dmat, pAdapter->requestsArrayBaseAddr,
pAdapter->req_map);
bus_dmamap_unload(pAdapter->resp_dmat, pAdapter->resp_map);
bus_dmamem_free(pAdapter->resp_dmat, pAdapter->responsesArrayBaseAddr,
pAdapter->resp_map);
}
static PVOID
AllocatePRDTable(IAL_ADAPTER_T *pAdapter)
{
PVOID ret;
if (pAdapter->pFreePRDLink) {
KdPrint(("pAdapter->pFreePRDLink:%p\n",
pAdapter->pFreePRDLink));
ret = pAdapter->pFreePRDLink;
pAdapter->pFreePRDLink = *(void**)ret;
return ret;
}
return NULL;
}
static void
FreePRDTable(IAL_ADAPTER_T *pAdapter, PVOID PRDTable)
{
*(void**)PRDTable = pAdapter->pFreePRDLink;
pAdapter->pFreePRDLink = PRDTable;
}
extern PVDevice fGetFirstChild(PVDevice pLogical);
extern void fResetBootMark(PVDevice pLogical);
static void
fRegisterVdevice(IAL_ADAPTER_T *pAdapter)
{
PVDevice pPhysical, pLogical;
PVBus pVBus;
int i,j;
for(i = 0; i < MV_SATA_CHANNELS_NUM; i++) {
pPhysical = &(pAdapter->VDevices[i]);
pLogical = pPhysical;
while (pLogical->pParent) pLogical = pLogical->pParent;
if (pLogical->vf_online==0) {
pPhysical->vf_bootmark = pLogical->vf_bootmark = 0;
continue;
}
if (pLogical->VDeviceType == VD_SPARE ||
pPhysical != fGetFirstChild(pLogical))
continue;
pVBus = &pAdapter->VBus;
if(pVBus) {
j=0;
while(j < MAX_VDEVICE_PER_VBUS && pVBus->pVDevice[j])
j++;
if (j < MAX_VDEVICE_PER_VBUS) {
pVBus->pVDevice[j] = pLogical;
pLogical->pVBus = pVBus;
if (j>0 && pLogical->vf_bootmark) {
if (pVBus->pVDevice[0]->vf_bootmark) {
fResetBootMark(pLogical);
} else {
do {
pVBus->pVDevice[j] =
pVBus->pVDevice[j-1];
} while (--j);
pVBus->pVDevice[0] = pLogical;
}
}
}
}
}
}
PVDevice
GetSpareDisk(_VBUS_ARG PVDevice pArray)
{
IAL_ADAPTER_T *pAdapter;
ULONG capacity;
ULONG thiscap, maxcap = MAX_LBA_T;
PVDevice pVDevice, pFind = NULL;
int i;
pAdapter = (IAL_ADAPTER_T *)pArray->pVBus->OsExt;
capacity =
LongDiv(pArray->VDeviceCapacity, pArray->u.array.bArnMember-1);
for (i = 0;i < MV_SATA_CHANNELS_NUM; i++) {
pVDevice = &pAdapter->VDevices[i];
if(!pVDevice)
continue;
thiscap = pArray->vf_format_v2 ?
pVDevice->u.disk.dDeRealCapacity : pVDevice->VDeviceCapacity;
/* find the smallest usable spare disk */
if (pVDevice->VDeviceType==VD_SPARE &&
pVDevice->u.disk.df_on_line && thiscap < maxcap &&
thiscap >= capacity) {
maxcap = pVDevice->VDeviceCapacity;
pFind = pVDevice;
}
}
return pFind;
}
/******************************************************************
* IO ATA Command
*******************************************************************/
int HPTLIBAPI
fDeReadWrite(PDevice pDev, ULONG Lba, UCHAR Cmd, void *tmpBuffer)
{
return mvReadWrite(pDev->mv, Lba, Cmd, tmpBuffer);
}
void HPTLIBAPI fDeSelectMode(PDevice pDev, UCHAR NewMode)
{
#ifndef SIMULATE
MV_SATA_CHANNEL *pSataChannel;
MV_SATA_ADAPTER *pSataAdapter;
MV_U8 channelIndex;
UCHAR mvMode;
pSataChannel = pDev->mv;
pSataAdapter = pSataChannel->mvSataAdapter;
channelIndex = pSataChannel->channelNumber;
/* 508x don't use MW-DMA? */
if (NewMode>4 && NewMode<8) NewMode = 4;
pDev->bDeModeSetting = NewMode;
if (NewMode<=4)
mvMode = MV_ATA_TRANSFER_PIO_0 + NewMode;
else
mvMode = MV_ATA_TRANSFER_UDMA_0 + (NewMode-8);
/*To fix 88i8030 bug*/
if (mvMode > MV_ATA_TRANSFER_UDMA_0 && mvMode < MV_ATA_TRANSFER_UDMA_4)
mvMode = MV_ATA_TRANSFER_UDMA_0;
mvSataDisableChannelDma(pSataAdapter, channelIndex);
/* Flush pending commands */
mvSataFlushDmaQueue (pSataAdapter, channelIndex, MV_FLUSH_TYPE_NONE);
if (mvStorageDevATASetFeatures(pSataAdapter, channelIndex,
MV_ATA_SET_FEATURES_TRANSFER, mvMode, 0, 0, 0) == MV_FALSE) {
KdPrint(("channel %d: Set Features failed\n", channelIndex));
}
/* Enable EDMA */
if (mvSataEnableChannelDma(pSataAdapter, channelIndex) == MV_FALSE)
KdPrint(("Failed to enable DMA, channel=%d", channelIndex));
#endif
}
#ifdef SUPPORT_ARRAY
#define IdeRegisterVDevice fCheckArray
#else
void
IdeRegisterVDevice(PDevice pDev)
{
PVDevice pVDev = Map2pVDevice(pDev);
pVDev->VDeviceType = pDev->df_atapi? VD_ATAPI :
pDev->df_removable_drive ? VD_REMOVABLE : VD_SINGLE_DISK;
pVDev->vf_online = 1;
pVDev->VDeviceCapacity = pDev->dDeRealCapacity;
pVDev->pfnSendCommand = pfnSendCommand[pVDev->VDeviceType];
pVDev->pfnDeviceFailed = pfnDeviceFailed[pVDev->VDeviceType];
}
#endif
static int num_adapters = 0;
static int
init_adapter(IAL_ADAPTER_T *pAdapter)
{
PCommand pCmd;
pPrivCommand prvCmd;
PVBus _vbus_p = &pAdapter->VBus;
MV_SATA_ADAPTER *pMvSataAdapter;
PUCHAR PRDTable;
int i, channel, rid, error;
PVDevice pVDev;
intrmask_t oldspl = lock_driver();
pAdapter->next = 0;
if(gIal_Adapter == 0) {
gIal_Adapter = pAdapter;
pCurAdapter = gIal_Adapter;
} else {
pCurAdapter->next = pAdapter;
pCurAdapter = pAdapter;
}
pAdapter->outstandingCommands = 0;
pMvSataAdapter = &(pAdapter->mvSataAdapter);
_vbus_p->OsExt = (void *)pAdapter;
pMvSataAdapter->IALData = pAdapter;
if (bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT,
MV_MAX_SEGMENTS, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
&pAdapter->parent_dmat) != 0) {
MV_ERROR("RR182x: Failed to create busdma resources\n");
unlock_driver(oldspl);
return (ENOMEM);
}
if (bus_dma_tag_create(pAdapter->parent_dmat, PAGE_SIZE, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
REQUESTS_ARRAY_SIZE, 1, REQUESTS_ARRAY_SIZE, 0, NULL, NULL,
&pAdapter->req_dmat) != 0) {
MV_ERROR("RR182x: Failed to create busdma resources\n");
error = ENOMEM;
goto unregister;
}
if (bus_dma_tag_create(pAdapter->parent_dmat, PAGE_SIZE, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
RESPONSES_ARRAY_SIZE, 1, RESPONSES_ARRAY_SIZE, 0, NULL, NULL,
&pAdapter->resp_dmat) != 0) {
MV_ERROR("RR182x: Failed to create busdma resources\n");
error = ENOMEM;
goto unregister;
}
if (bus_dma_tag_create(pAdapter->parent_dmat, 1, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
MAXBSIZE, MV_MAX_SEGMENTS, MAXBSIZE, 0, busdma_lock_mutex, &Giant,
&pAdapter->buf_dmat) != 0) {
MV_ERROR("RR182x: Failed to create busdma resources\n");
error = ENOMEM;
goto unregister;
}
if (hptmv_allocate_edma_queues(pAdapter)) {
MV_ERROR("RR182x: Failed to allocate memory for EDMA queues\n");
error = ENOMEM;
goto unregister;
}
/* also map EPROM address */
rid = 0x10;
if ((pAdapter->mem_res = bus_alloc_resource(pAdapter->hpt_dev,
SYS_RES_MEMORY, &rid, 0, ~0, MV_SATA_PCI_BAR0_SPACE_SIZE+0x40000,
RF_ACTIVE)) == 0) {
MV_ERROR("RR182x: Failed to remap memory space\n");
error = ENXIO;
goto unregister;
}
/*
* This field is opaque. Abuse it so that the bus_space functions
* can get the info that they need when called.
*/
pMvSataAdapter->adapterIoBaseAddress = pAdapter;
pAdapter->mem_bsh = rman_get_bushandle(pAdapter->mem_res);
pAdapter->mem_btag = rman_get_bustag(pAdapter->mem_res);
pMvSataAdapter->adapterId = num_adapters++;
/* get the revision ID */
pMvSataAdapter->pciConfigRevisionId =
pci_read_config(pAdapter->hpt_dev, PCIR_REVID, 1);
pMvSataAdapter->pciConfigDeviceId = pci_get_device(pAdapter->hpt_dev);
/* init RR182x */
pMvSataAdapter->intCoalThre[0]= 1;
pMvSataAdapter->intCoalThre[1]= 1;
pMvSataAdapter->intTimeThre[0] = 1;
pMvSataAdapter->intTimeThre[1] = 1;
pMvSataAdapter->pciCommand = 0x0107E371;
pMvSataAdapter->pciSerrMask = 0xd77fe6ul;
pMvSataAdapter->pciInterruptMask = 0xd77fe6ul;
pMvSataAdapter->mvSataEventNotify = hptmv_event_notify;
if (mvSataInitAdapter(pMvSataAdapter) == MV_FALSE) {
MV_ERROR("RR182x[%d]: core failed to initialize the adapter\n",
pMvSataAdapter->adapterId);
error = ENXIO;
goto unregister;
}
pAdapter->ver_601 = pMvSataAdapter->pcbVersion;
#ifndef FOR_DEMO
set_fail_leds(pMvSataAdapter, 0);
#endif
/* setup command blocks */
KdPrint(("Allocate command blocks\n"));
_vbus_(pFreeCommands) = 0;
pAdapter->pCommandBlocks = malloc(sizeof(struct _Command) *
MAX_COMMAND_BLOCKS_FOR_EACH_VBUS, M_DEVBUF, M_ZERO | M_WAITOK);
KdPrint(("pCommandBlocks:%p\n", pAdapter->pCommandBlocks));
/*
* Gotta cheat here. The _Command struct only gives us a single
* pointer for private data, but we need to store more than that.
* Of course the pCommand retains no type stability, and FreeCommand
* is hidden in the binary object, so gotta track these on our own
* list.
*/
pAdapter->pPrivateBlocks = malloc(sizeof(struct _privCommand) *
MAX_COMMAND_BLOCKS_FOR_EACH_VBUS, M_DEVBUF, M_ZERO | M_WAITOK);
TAILQ_INIT(&pAdapter->PrivCmdTQH);
for (i = 0; i < MAX_COMMAND_BLOCKS_FOR_EACH_VBUS; i++) {
pCmd = &pAdapter->pCommandBlocks[i];
prvCmd = &pAdapter->pPrivateBlocks[i];
prvCmd->pAdapter = pAdapter;
if ((error = bus_dmamap_create(pAdapter->buf_dmat, 0,
&prvCmd->buf_map)) == 0) {
FreeCommand(_VBUS_P (pCmd));
FreePrivCommand(pAdapter, prvCmd);
} else
break;
}
/* setup PRD Tables */
KdPrint(("Allocate PRD Tables\n"));
pAdapter->pFreePRDLink = 0;
if (bus_dma_tag_create(pAdapter->parent_dmat, PAGE_SIZE, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
PRD_ENTRIES_SIZE * PRD_TABLES_FOR_VBUS, 1,
PRD_ENTRIES_SIZE * PRD_TABLES_FOR_VBUS, 0, NULL, NULL,
&pAdapter->prd_dmat) != 0) {
MV_ERROR("RR182x: Failed to create busdma resources\n");
error = ENOMEM;
goto unregister;
}
if (bus_dmamem_alloc(pAdapter->prd_dmat,
(void **)&pAdapter->prdTableAddr, BUS_DMA_WAITOK,
&pAdapter->prd_map) != 0)
goto unregister;
(void)bus_dmamap_load(pAdapter->prd_dmat, pAdapter->prd_map,
pAdapter->prdTableAddr, PRD_ENTRIES_SIZE * PRD_TABLES_FOR_VBUS,
hptmv_map_req, &pAdapter->prdTableDmaAddr, 0);
KdPrint(("prdTableAddr:%p\n",pAdapter->prdTableAddr));
if (!pAdapter->prdTableAddr) {
MV_ERROR("insufficient PRD Tables\n");
error = ENOMEM;
goto unregister;
}
PRDTable = pAdapter->prdTableAddr;
for (i = 0; i < PRD_TABLES_FOR_VBUS; i++) {
KdPrint(("i= %d, pAdapter->pFreePRDLink= %p\n", i,
pAdapter->pFreePRDLink));
FreePRDTable(pAdapter, PRDTable);
PRDTable += PRD_ENTRIES_SIZE;
}
/* enable the adapter interrupts */
/* configure and start the connected channels*/
for (channel = 0; channel < MV_SATA_CHANNELS_NUM; channel++) {
pAdapter->mvChannel[channel].online = MV_FALSE;
if (mvSataIsStorageDeviceConnected(pMvSataAdapter, channel)
!= MV_TRUE)
continue;
KdPrint(("RR182x[%d]: channel %d is connected\n",
pMvSataAdapter->adapterId, channel));
if (hptmv_init_channel(pAdapter, channel) == 0) {
if (mvSataConfigureChannel(pMvSataAdapter, channel)
== MV_FALSE) {
MV_ERROR("RR182x[%d]: Failed to configure "
"channel %d\n", pMvSataAdapter->adapterId,
channel);
hptmv_free_channel(pAdapter, channel);
continue;
}
if (start_channel(pAdapter, channel)) {
MV_ERROR("RR182x[%d]: Failed to start channel, "
"channel=%d\n", pMvSataAdapter->adapterId,
channel);
hptmv_free_channel(pAdapter, channel);
}
pAdapter->mvChannel[channel].online = MV_TRUE;
#if 0
mvSataChannelSetEdmaLoopBackMode(
pMvSataAdapter, channel, MV_TRUE);
#endif
}
KdPrint(("pAdapter->mvChannel[channel].online:%x, channel:%d\n",
pAdapter->mvChannel[channel].online, channel));
}
#ifdef SUPPORT_ARRAY
for(i = MAX_ARRAY_DEVICE - 1; i >= 0; i--) {
pVDev = ArrayTables(i);
mArFreeArrayTable(pVDev);
}
#endif
KdPrint(("Initialize Devices\n"));
for (channel = 0; channel < MV_SATA_CHANNELS_NUM; channel++) {
MV_SATA_CHANNEL *pMvSataChannel;
pMvSataChannel = pMvSataAdapter->sataChannel[channel];
if (pMvSataChannel) {
init_vdev_params(pAdapter, channel);
IdeRegisterVDevice(&pAdapter->VDevices[channel].u.disk);
}
}
#ifdef SUPPORT_ARRAY
CheckArrayCritical(_VBUS_P0);
#endif
_vbus_p->nInstances = 1;
fRegisterVdevice(pAdapter);
for (channel=0;channel<MV_SATA_CHANNELS_NUM;channel++) {
pVDev = _vbus_p->pVDevice[channel];
if (pVDev && pVDev->vf_online)
fCheckBootable(pVDev);
}
#if defined(SUPPORT_ARRAY) && defined(_RAID5N_)
init_raid5_memory(_VBUS_P0);
_vbus_(r5).enable_write_back = 1;
printf("RR182x: RAID5 write-back %s\n",
_vbus_(r5).enable_write_back? "enabled" : "disabled");
#endif
mvSataUnmaskAdapterInterrupt(pMvSataAdapter);
unlock_driver(oldspl);
return 0;
unregister:
if (pAdapter->mem_res != 0)
bus_release_resource(pAdapter->hpt_dev, SYS_RES_MEMORY, rid,
pAdapter->mem_res);
hptmv_free_edma_queues(pAdapter);
if (pAdapter->resp_dmat != NULL)
bus_dma_tag_destroy(pAdapter->resp_dmat);
if (pAdapter->req_dmat != NULL)
bus_dma_tag_destroy(pAdapter->req_dmat);
if (pAdapter->buf_dmat != NULL)
bus_dma_tag_destroy(pAdapter->buf_dmat);
if (pAdapter->parent_dmat != NULL)
bus_dma_tag_destroy(pAdapter->parent_dmat);
unlock_driver(oldspl);
return error;
}
int
MvSataResetChannel(MV_SATA_ADAPTER *pMvSataAdapter, MV_U8 channel)
{
IAL_ADAPTER_T *pAdapter = (IAL_ADAPTER_T *)pMvSataAdapter->IALData;
mvSataDisableChannelDma(pMvSataAdapter, channel);
/* Flush pending commands */
mvSataFlushDmaQueue (pMvSataAdapter, channel, MV_FLUSH_TYPE_CALLBACK);
/* Software reset channel */
if (mvStorageDevATASoftResetDevice(pMvSataAdapter, channel) ==
MV_FALSE) {
MV_ERROR("RR182x [%d,%d]: failed to perform Software reset\n",
pMvSataAdapter->adapterId, channel);
return -1;
}
/* Hardware reset channel */
if (mvSataChannelHardReset(pMvSataAdapter, channel)== MV_FALSE) {
MV_ERROR("RR182x [%d,%d] Failed to Hard reser the SATA "
"channel\n", pMvSataAdapter->adapterId, channel);
hptmv_free_channel(pAdapter, channel);
return -1;
}
if (mvSataIsStorageDeviceConnected(pMvSataAdapter, channel) ==
MV_FALSE) {
MV_ERROR("RR182x [%d,%d] Failed to Connect Device\n",
pMvSataAdapter->adapterId, channel);
hptmv_free_channel(pAdapter, channel);
return -1;
} else {
/* Set transfer mode */
if((mvStorageDevATASetFeatures(pMvSataAdapter, channel,
MV_ATA_SET_FEATURES_TRANSFER, MV_ATA_TRANSFER_PIO_SLOW, 0,
0, 0) == MV_FALSE) ||
(mvStorageDevATASetFeatures(pMvSataAdapter, channel,
MV_ATA_SET_FEATURES_TRANSFER,
pAdapter->mvChannel[channel].maxPioModeSupported, 0, 0, 0)
== MV_FALSE) || (mvStorageDevATASetFeatures(pMvSataAdapter,
channel, MV_ATA_SET_FEATURES_TRANSFER,
pAdapter->mvChannel[channel].maxUltraDmaModeSupported, 0,
0, 0) == MV_FALSE)) {
MV_ERROR("channel %d: Set Features failed", channel);
hptmv_free_channel(pAdapter, channel);
return -1;
}
/* Enable EDMA */
if (mvSataEnableChannelDma(pMvSataAdapter, channel)==MV_FALSE) {
MV_ERROR("Failed to enable DMA, channel=%d", channel);
hptmv_free_channel(pAdapter, channel);
return -1;
}
}
return 0;
}
static int
fResetActiveCommands(PVBus _vbus_p)
{
MV_SATA_ADAPTER *pMvSataAdapter;
MV_U8 channel;
int rtn = 0;
pMvSataAdapter = &((IAL_ADAPTER_T *)_vbus_p->OsExt)->mvSataAdapter;
for (channel=0;channel< MV_SATA_CHANNELS_NUM;channel++) {
if (pMvSataAdapter->sataChannel[channel] &&
pMvSataAdapter->sataChannel[channel]->outstandingCommands)
if (MvSataResetChannel(pMvSataAdapter,channel) == -1)
rtn = -1;
}
HPT_ASSERT(rtn==0);
return 0;
}
void
fCompleteAllCommandsSynchronously(PVBus _vbus_p)
{
UINT cont;
ULONG ticks = 0;
MV_U8 channel;
MV_SATA_ADAPTER *pMvSataAdapter;
MV_SATA_CHANNEL *pMvSataChannel;
pMvSataAdapter = &((IAL_ADAPTER_T *)_vbus_p->OsExt)->mvSataAdapter;
do {
check_cmds:
cont = 0;
CheckPendingCall(_VBUS_P0);
#ifdef _RAID5N_
dataxfer_poll();
xor_poll();
#endif
for (channel = 0; channel < MV_SATA_CHANNELS_NUM; channel++) {
pMvSataChannel = pMvSataAdapter->sataChannel[channel];
if (pMvSataChannel &&
pMvSataChannel->outstandingCommands) {
while (pMvSataChannel->outstandingCommands) {
if (!mvSataInterruptServiceRoutine(
pMvSataAdapter)) {
StallExec(1000);
if (ticks++ > 3000) {
MvSataResetChannel(
pMvSataAdapter,
channel);
goto check_cmds;
}
} else
ticks = 0;
}
cont = 1;
}
}
} while (cont);
}
void
fResetVBus(_VBUS_ARG0)
{
KdPrint(("fMvResetBus(%p)", _vbus_p));
/* some commands may already finished. */
CheckPendingCall(_VBUS_P0);
fResetActiveCommands(_vbus_p);
/*
* the other pending commands may still be finished successfully.
*/
fCompleteAllCommandsSynchronously(_vbus_p);
/* Now there should be no pending commands. No more action needed. */
CheckIdleCall(_VBUS_P0);
KdPrint(("fMvResetBus() done"));
}
void
fRescanAllDevice(_VBUS_ARG0)
{
}
static MV_BOOLEAN
CommandCompletionCB(MV_SATA_ADAPTER *pMvSataAdapter, MV_U8 channelNum,
MV_COMPLETION_TYPE comp_type, MV_VOID_PTR commandId, MV_U16 responseFlags,
MV_U32 timeStamp, MV_STORAGE_DEVICE_REGISTERS *registerStruct)
{
PCommand pCmd = (PCommand) commandId;
_VBUS_INST(pCmd->pVDevice->pVBus)
if (pCmd->uScratch.sata_param.prdAddr)
FreePRDTable(pMvSataAdapter->IALData,
pCmd->uScratch.sata_param.prdAddr);
switch (comp_type) {
case MV_COMPLETION_TYPE_NORMAL:
pCmd->Result = RETURN_SUCCESS;
break;
case MV_COMPLETION_TYPE_ABORT:
pCmd->Result = RETURN_BUS_RESET;
break;
case MV_COMPLETION_TYPE_ERROR:
MV_ERROR("IAL: COMPLETION ERROR, adapter %d, channel %d, "
"flags=%x\n", pMvSataAdapter->adapterId, channelNum,
responseFlags);
if (responseFlags & 4) {
MV_ERROR("ATA regs: error %x, sector count %x, LBA low "
"%x, LBA mid %x, LBA high %x, device %x, "
"status %x\n", registerStruct->errorRegister,
registerStruct->sectorCountRegister,
registerStruct->lbaLowRegister,
registerStruct->lbaMidRegister,
registerStruct->lbaHighRegister,
registerStruct->deviceRegister,
registerStruct->statusRegister);
}
/*
* We can't do handleEdmaError directly here, because
* CommandCompletionCB is called by mv's ISR, if we retry the
* command, than the internel data structure may be destroyed
*/
pCmd->uScratch.sata_param.responseFlags = responseFlags;
pCmd->uScratch.sata_param.bIdeStatus =
registerStruct->statusRegister;
pCmd->uScratch.sata_param.errorRegister =
registerStruct->errorRegister;
pCmd->pVDevice->u.disk.QueueLength--;
CallAfterReturn(_VBUS_P (DPC_PROC)handleEdmaError,pCmd);
return TRUE;
default:
MV_ERROR(" Unknown completion type (%d)\n", comp_type);
return MV_FALSE;
}
if (pCmd->uCmd.Ide.Command == IDE_COMMAND_VERIFY &&
pCmd->uScratch.sata_param.cmd_priv > 1) {
pCmd->uScratch.sata_param.cmd_priv --;
return TRUE;
}
pCmd->pVDevice->u.disk.QueueLength--;
CallAfterReturn(_VBUS_P (DPC_PROC)pCmd->pfnCompletion, pCmd);
return TRUE;
}
void
fDeviceSendCommand(_VBUS_ARG PCommand pCmd)
{
MV_SATA_EDMA_PRD_ENTRY *pPRDTable = 0;
MV_SATA_ADAPTER *pMvSataAdapter;
MV_SATA_CHANNEL *pMvSataChannel;
IAL_ADAPTER_T *pAdapter;
MV_QUEUE_COMMAND_RESULT result;
MV_QUEUE_COMMAND_INFO commandInfo;
MV_UDMA_COMMAND_PARAMS *pUdmaParams;
MV_NONE_UDMA_COMMAND_PARAMS *pNoUdmaParams;
MV_BOOLEAN is48bit = MV_FALSE;
PVDevice pVDevice;
PDevice pDevice;
ULONG Lba;
USHORT nSector;
MV_U8 channel;
int i=0;
pVDevice = pCmd->pVDevice;
pDevice = &pVDevice->u.disk;
Lba = pCmd->uCmd.Ide.Lba;
nSector = pCmd->uCmd.Ide.nSectors;
pUdmaParams = &commandInfo.commandParams.udmaCommand;
pNoUdmaParams = &commandInfo.commandParams.NoneUdmaCommand;
DECLARE_BUFFER(FPSCAT_GATH, tmpSg);
if (!pDevice->df_on_line) {
MV_ERROR("Device is offline");
pCmd->Result = RETURN_BAD_DEVICE;
CallAfterReturn(_VBUS_P (DPC_PROC)pCmd->pfnCompletion, pCmd);
return;
}
pDevice->HeadPosition = pCmd->uCmd.Ide.Lba + pCmd->uCmd.Ide.nSectors;
pMvSataChannel = pDevice->mv;
pMvSataAdapter = pMvSataChannel->mvSataAdapter;
channel = pMvSataChannel->channelNumber;
pAdapter = pMvSataAdapter->IALData;
/*
* Old RAID0 has hidden lba. Remember to clear dDeHiddenLba when
* deleting array!
*/
Lba += pDevice->dDeHiddenLba;
/* check LBA */
if (Lba+nSector-1 > pDevice->dDeRealCapacity) {
pCmd->Result = RETURN_INVALID_REQUEST;
CallAfterReturn(_VBUS_P (DPC_PROC)pCmd->pfnCompletion, pCmd);
return;
}
if(Lba & 0xF0000000){
is48bit = MV_TRUE;
}
switch (pCmd->uCmd.Ide.Command) {
case IDE_COMMAND_READ:
case IDE_COMMAND_WRITE:
if (pDevice->bDeModeSetting<8) goto pio;
commandInfo.type = MV_QUEUED_COMMAND_TYPE_UDMA;
pUdmaParams->isEXT = is48bit;
pUdmaParams->numOfSectors = nSector;
pUdmaParams->lowLBAAddress = Lba;
pUdmaParams->highLBAAddress = 0;
pUdmaParams->prdHighAddr = 0;
pUdmaParams->callBack = CommandCompletionCB;
pUdmaParams->commandId = (MV_VOID_PTR )pCmd;
if(pCmd->uCmd.Ide.Command == IDE_COMMAND_READ)
pUdmaParams->readWrite = MV_UDMA_TYPE_READ;
else
pUdmaParams->readWrite = MV_UDMA_TYPE_WRITE;
if (pCmd->pSgTable && pCmd->cf_physical_sg) {
FPSCAT_GATH sg1=tmpSg, sg2=pCmd->pSgTable;
do {
*sg1++=*sg2;
} while ((sg2++->wSgFlag & SG_FLAG_EOT)==0);
} else if (!pCmd->pfnBuildSgl ||
!pCmd->pfnBuildSgl(_VBUS_P pCmd, tmpSg, 0)) {
pio:
mvSataDisableChannelDma(pMvSataAdapter, channel);
mvSataFlushDmaQueue(pMvSataAdapter, channel,
MV_FLUSH_TYPE_CALLBACK);
if (pCmd->pSgTable && pCmd->cf_physical_sg==0) {
FPSCAT_GATH sg1=tmpSg, sg2=pCmd->pSgTable;
do {
*sg1++=*sg2;
} while ((sg2++->wSgFlag & SG_FLAG_EOT)==0);
} else if (!pCmd->pfnBuildSgl ||
!pCmd->pfnBuildSgl(_VBUS_P pCmd, tmpSg, 1)){
pCmd->Result = RETURN_NEED_LOGICAL_SG;
goto finish_cmd;
}
do {
ULONG size;
ULONG_PTR addr = tmpSg->dSgAddress;
size = tmpSg->wSgSize? tmpSg->wSgSize : 0x10000;
if (size & 0x1ff) {
pCmd->Result = RETURN_INVALID_REQUEST;
goto finish_cmd;
}
if (mvStorageDevATAExecuteNonUDMACommand(
pMvSataAdapter, channel,
(pCmd->cf_data_out) ?
MV_NON_UDMA_PROTOCOL_PIO_DATA_OUT :
MV_NON_UDMA_PROTOCOL_PIO_DATA_IN,
is48bit, (MV_U16_PTR)addr,
size >> 1, /* count */
0, /* features N/A */
(MV_U16)(size>>9), /*sector count*/
(MV_U16)((is48bit ?
(MV_U16)((Lba >> 16) & 0xFF00) : 0 ) |
(UCHAR)(Lba & 0xFF) ), /*lbalow*/
(MV_U16)((Lba >> 8) & 0xFF), /* lbaMid */
(MV_U16)((Lba >> 16) & 0xFF),/* lbaHig */
(MV_U8)(0x40 | (is48bit ? 0 :
(UCHAR)(Lba >> 24) & 0xFF )),/* device */
(MV_U8)(is48bit ? (pCmd->cf_data_in ?
IDE_COMMAND_READ_EXT :
IDE_COMMAND_WRITE_EXT) :
pCmd->uCmd.Ide.Command))==MV_FALSE) {
pCmd->Result = RETURN_IDE_ERROR;
goto finish_cmd;
}
Lba += size>>9;
if(Lba & 0xF0000000) is48bit = MV_TRUE;
}
while ((tmpSg++->wSgFlag & SG_FLAG_EOT)==0);
pCmd->Result = RETURN_SUCCESS;
finish_cmd:
mvSataEnableChannelDma(pMvSataAdapter,channel);
CallAfterReturn(_VBUS_P (DPC_PROC)pCmd->pfnCompletion,
pCmd);
return;
}
pPRDTable = AllocatePRDTable(pAdapter);
KdPrint(("pPRDTable:%p\n",pPRDTable));
if (!pPRDTable) {
pCmd->Result = RETURN_DEVICE_BUSY;
CallAfterReturn(_VBUS_P (DPC_PROC)pCmd->pfnCompletion,
pCmd);
HPT_ASSERT(0);
return;
}
do {
pPRDTable[i].highBaseAddr = 0;
pPRDTable[i].flags = (MV_U16)tmpSg->wSgFlag;
pPRDTable[i].byteCount = (MV_U16)tmpSg->wSgSize;
pPRDTable[i].lowBaseAddr = (MV_U32)tmpSg->dSgAddress;
pPRDTable[i].reserved = 0;
i++;
} while((tmpSg++->wSgFlag & SG_FLAG_EOT)==0);
pUdmaParams->prdLowAddr = pAdapter->prdTableDmaAddr +
((ULONG)pPRDTable - (ULONG)pAdapter->prdTableAddr);
if ((pUdmaParams->numOfSectors == 256) &&
(pMvSataChannel->lba48Address == MV_FALSE)) {
pUdmaParams->numOfSectors = 0;
}
pCmd->uScratch.sata_param.prdAddr = (PVOID)pPRDTable;
result = mvSataQueueCommand(pMvSataAdapter, channel,
&commandInfo);
if (result != MV_QUEUE_COMMAND_RESULT_OK) {
queue_failed:
switch (result) {
case MV_QUEUE_COMMAND_RESULT_BAD_LBA_ADDRESS:
MV_ERROR("IAL Error: Edma Queue command "
"failed. Bad LBA LBA[31:0](0x%08x)\n",
pUdmaParams->lowLBAAddress);
pCmd->Result = RETURN_IDE_ERROR;
break;
case MV_QUEUE_COMMAND_RESULT_QUEUED_MODE_DISABLED:
MV_ERROR("IAL Error: Edma Queue command "
"failed. EDMA disabled adapter %d "
"channel %d\n",
pMvSataAdapter->adapterId, channel);
mvSataEnableChannelDma(pMvSataAdapter,channel);
pCmd->Result = RETURN_IDE_ERROR;
break;
case MV_QUEUE_COMMAND_RESULT_FULL:
MV_ERROR("IAL Error: Edma Queue command "
"failed. Queue is Full adapter %d "
"channel %d\n",
pMvSataAdapter->adapterId, channel);
pCmd->Result = RETURN_DEVICE_BUSY;
break;
case MV_QUEUE_COMMAND_RESULT_BAD_PARAMS:
MV_ERROR("IAL Error: Edma Queue command "
"failed. (Bad Params), pMvSataAdapter:"
" %p, pSataChannel: %p.\n",
pMvSataAdapter,
pMvSataAdapter->sataChannel[channel]);
pCmd->Result = RETURN_IDE_ERROR;
break;
default:
MV_ERROR("IAL Error: Bad result value (%d) "
"from queue command\n", result);
pCmd->Result = RETURN_IDE_ERROR;
}
if(pPRDTable)
FreePRDTable(pAdapter, pPRDTable);
CallAfterReturn(_VBUS_P (DPC_PROC)pCmd->pfnCompletion,
pCmd);
}
pDevice->QueueLength++;
return;
case IDE_COMMAND_VERIFY:
commandInfo.type = MV_QUEUED_COMMAND_TYPE_NONE_UDMA;
pNoUdmaParams->bufPtr = NULL;
pNoUdmaParams->callBack = CommandCompletionCB;
pNoUdmaParams->commandId = (MV_VOID_PTR)pCmd;
pNoUdmaParams->count = 0;
pNoUdmaParams->features = 0;
pNoUdmaParams->protocolType = MV_NON_UDMA_PROTOCOL_NON_DATA;
pCmd->uScratch.sata_param.cmd_priv = 1;
if (pMvSataChannel->lba48Address == MV_TRUE){
pNoUdmaParams->command =
MV_ATA_COMMAND_READ_VERIFY_SECTORS_EXT;
pNoUdmaParams->isEXT = MV_TRUE;
pNoUdmaParams->lbaHigh =
(MV_U16)((Lba & 0xff0000) >> 16);
pNoUdmaParams->lbaMid = (MV_U16)((Lba & 0xff00) >> 8);
pNoUdmaParams->lbaLow =
(MV_U16)(((Lba & 0xff000000) >> 16)| (Lba & 0xff));
pNoUdmaParams->sectorCount = nSector;
pNoUdmaParams->device = 0x40;
result = mvSataQueueCommand(pMvSataAdapter, channel,
&commandInfo);
if (result != MV_QUEUE_COMMAND_RESULT_OK) {
goto queue_failed;
}
return;
}
pNoUdmaParams->command = MV_ATA_COMMAND_READ_VERIFY_SECTORS;
pNoUdmaParams->isEXT = MV_FALSE;
pNoUdmaParams->lbaHigh = (MV_U16)((Lba & 0xff0000) >> 16);
pNoUdmaParams->lbaMid = (MV_U16)((Lba & 0xff00) >> 8);
pNoUdmaParams->lbaLow = (MV_U16)(Lba & 0xff);
pNoUdmaParams->sectorCount = 0xff & nSector;
pNoUdmaParams->device = (MV_U8)(0x40 |
((Lba & 0xf000000) >> 24));
pNoUdmaParams->callBack = CommandCompletionCB;
result = mvSataQueueCommand(pMvSataAdapter, channel,
&commandInfo);
/*
* FIXME: how about the commands already queued? but marvel
* also forgets to consider this
*/
if (result != MV_QUEUE_COMMAND_RESULT_OK){
goto queue_failed;
}
break;
default:
pCmd->Result = RETURN_INVALID_REQUEST;
CallAfterReturn(_VBUS_P (DPC_PROC)pCmd->pfnCompletion, pCmd);
break;
}
}
/**********************************************************
*
* Probe the hostadapter.
*
**********************************************************/
static int
hpt_probe(device_t dev)
{
if ((pci_get_vendor(dev) == MV_SATA_VENDOR_ID) &&
(pci_get_device(dev) == MV_SATA_DEVICE_ID_5081
#ifdef FOR_DEMO
|| pci_get_device(dev) == MV_SATA_DEVICE_ID_5080
#endif
)) {
KdPrintI((CONTROLLER_NAME " found\n"));
device_set_desc(dev, CONTROLLER_NAME);
return 0;
}
else
return(ENXIO);
}
/***********************************************************
*
* Auto configuration: attach and init a host adapter.
*
***********************************************************/
static int
hpt_attach(device_t dev)
{
IAL_ADAPTER_T * pAdapter;
int rid;
union ccb *ccb;
struct cam_devq *devq;
struct cam_sim *hpt_vsim;
printf("%s Version %s\n", DRIVER_NAME, DRIVER_VERSION);
pAdapter = device_get_softc(dev);
pAdapter->hpt_dev = dev;
rid = init_adapter(pAdapter);
if (rid)
return rid;
rid = 0;
if ((pAdapter->hpt_irq = bus_alloc_resource(pAdapter->hpt_dev,
SYS_RES_IRQ, &rid, 0, ~0ul, 1, RF_SHAREABLE | RF_ACTIVE)) == NULL){
hpt_printk(("can't allocate interrupt\n"));
return(ENXIO);
}
if(bus_setup_intr(pAdapter->hpt_dev, pAdapter->hpt_irq, INTR_TYPE_CAM,
hpt_intr, pAdapter, &pAdapter->hpt_intr)) {
hpt_printk(("can't set up interrupt\n"));
free(pAdapter, M_DEVBUF);
return(ENXIO);
}
#if 1
if ((ccb = malloc(sizeof(*ccb), M_DEVBUF, M_WAITOK | M_ZERO)) != NULL) {
ccb->ccb_h.pinfo.priority = 1;
ccb->ccb_h.pinfo.index = CAM_UNQUEUED_INDEX;
} else {
return ENOMEM;
}
#endif
/*
* Create the device queue for our SIM(s).
*/
if((devq = cam_simq_alloc(8/*MAX_QUEUE_COMM*/)) == NULL) {
KdPrint(("ENXIO\n"));
return ENOMEM;
}
/*
* Construct our SIM entry
*/
if ((hpt_vsim = cam_sim_alloc(hpt_action, hpt_poll,__str(PROC_DIR_NAME),
pAdapter, device_get_unit(pAdapter->hpt_dev), /*untagged*/1,
/*tagged*/8, devq)) == NULL) {
cam_simq_free(devq);
return ENOMEM;
}
if(xpt_bus_register(hpt_vsim, 0) != CAM_SUCCESS) {
cam_sim_free(hpt_vsim, /*free devq*/ TRUE);
hpt_vsim = NULL;
return ENXIO;
}
if(xpt_create_path(&pAdapter->path, /*periph */ NULL,
cam_sim_path(hpt_vsim), CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD)
!= CAM_REQ_CMP) {
xpt_bus_deregister(cam_sim_path(hpt_vsim));
cam_sim_free(hpt_vsim, /*free_devq*/TRUE);
hpt_vsim = NULL;
return ENXIO;
}
xpt_setup_ccb(&(ccb->ccb_h), pAdapter->path, /*priority*/5);
ccb->ccb_h.func_code = XPT_SASYNC_CB;
ccb->csa.event_enable = AC_LOST_DEVICE;
ccb->csa.callback = hpt_async;
ccb->csa.callback_arg = hpt_vsim;
xpt_action((union ccb *)ccb);
free(ccb, M_DEVBUF);
/* Only do this setup for the first device. */
if (device_get_unit(dev) == 0) {
pAdapter->eh = EVENTHANDLER_REGISTER(shutdown_final,
hpt_shutdown, dev, SHUTDOWN_PRI_DEFAULT);
if (pAdapter->eh != NULL)
launch_worker_thread();
else
printf("hptmv: shutdown event registration failed\n");
}
return 0;
}
static int
hpt_detach(device_t dev)
{
return (EBUSY);
}
/***************************************************************
* The poll function is used to simulate the interrupt when
* the interrupt subsystem is not functioning.
*
***************************************************************/
static void
hpt_poll(struct cam_sim *sim)
{
hpt_intr((void *)cam_sim_softc(sim));
}
/****************************************************************
* Name: hpt_intr
* Description: Interrupt handler.
****************************************************************/
static void
hpt_intr(void *arg)
{
IAL_ADAPTER_T *pAdapter = (IAL_ADAPTER_T *)arg;
intrmask_t oldspl;
oldspl = lock_driver();
/* KdPrintI(("----- Entering Isr() -----\n")); */
if (mvSataInterruptServiceRoutine(&pAdapter->mvSataAdapter) == MV_TRUE){
_VBUS_INST(&pAdapter->VBus)
CheckPendingCall(_VBUS_P0);
}
/* KdPrintI(("----- Leaving Isr() -----\n")); */
unlock_driver(oldspl);
}
/**********************************************************
* Asynchronous Events
*********************************************************/
#if (!defined(UNREFERENCED_PARAMETER))
#define UNREFERENCED_PARAMETER(x) (void)(x)
#endif
static void
hpt_async(void * callback_arg, u_int32_t code, struct cam_path * path,
void * arg)
{
/* debug XXXX */
panic("Here");
UNREFERENCED_PARAMETER(callback_arg);
UNREFERENCED_PARAMETER(code);
UNREFERENCED_PARAMETER(path);
UNREFERENCED_PARAMETER(arg);
}
static void
FlushAdapter(IAL_ADAPTER_T *pAdapter)
{
int i;
hpt_printk(("flush all devices\n"));
/* flush all devices */
for (i=0; i<MAX_VDEVICE_PER_VBUS; i++) {
PVDevice pVDev = pAdapter->VBus.pVDevice[i];
if (pVDev)
fFlushVDev(pVDev);
}
}
static int
hpt_shutdown(device_t dev)
{
IAL_ADAPTER_T *pAdapter;
pAdapter = device_get_softc(dev);
if (pAdapter == NULL)
return (EINVAL);
EVENTHANDLER_DEREGISTER(shutdown_final, pAdapter->eh);
FlushAdapter(pAdapter);
return 0;
}
void
Check_Idle_Call(IAL_ADAPTER_T *pAdapter)
{
int i = 0;
_VBUS_INST(&pAdapter->VBus)
if (mWaitingForIdle(_VBUS_P0)) {
CheckIdleCall(_VBUS_P0);
#ifdef SUPPORT_ARRAY
for(i = 0; i < MAX_ARRAY_PER_VBUS; i++){
PVDevice pArray;
if ((pArray = ArrayTables(i))->u.array.dArStamp == 0)
continue;
else if (pArray->u.array.rf_auto_rebuild) {
KdPrint(("auto rebuild.\n"));
pArray->u.array.rf_auto_rebuild = 0;
hpt_queue_dpc((HPT_DPC)hpt_rebuild_data_block,
pAdapter, pArray, DUPLICATE);
}
}
#endif
}
/* launch the awaiting commands blocked by mWaitingForIdle */
while(pAdapter->pending_Q!= NULL) {
_VBUS_INST(&pAdapter->VBus)
union ccb *ccb =
(union ccb *)pAdapter->pending_Q->ccb_h.ccb_ccb_ptr;
hpt_free_ccb(&pAdapter->pending_Q, ccb);
CallAfterReturn(_VBUS_P (DPC_PROC)OsSendCommand, ccb);
}
}
static void
ccb_done(union ccb *ccb)
{
IAL_ADAPTER_T * pAdapter = (IAL_ADAPTER_T *)ccb->ccb_adapter;
KdPrintI(("ccb_done: ccb %p status %x", ccb, ccb->ccb_h.status));
xpt_done(ccb);
pAdapter->outstandingCommands--;
if (pAdapter->outstandingCommands == 0) {
if(DPC_Request_Nums == 0)
Check_Idle_Call(pAdapter);
}
}
/****************************************************************
* Name: hpt_action
* Description: Process a queued command from the CAM layer.
* Parameters: sim - Pointer to SIM object
* ccb - Pointer to SCSI command structure.
****************************************************************/
void
hpt_action(struct cam_sim *sim, union ccb *ccb)
{
intrmask_t oldspl;
IAL_ADAPTER_T * pAdapter = (IAL_ADAPTER_T *) cam_sim_softc(sim);
_VBUS_INST(&pAdapter->VBus)
ccb->ccb_adapter = pAdapter;
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("hpt_action\n"));
KdPrint(("hpt_action(%lx,%lx{%x})\n", (u_long)sim, (u_long)ccb,
ccb->ccb_h.func_code));
switch (ccb->ccb_h.func_code) {
case XPT_SCSI_IO: /* Execute the requested I/O operation */
/* ccb->ccb_h.path_id is not our bus id - don't check it */
if (ccb->ccb_h.target_lun) {
ccb->ccb_h.status = CAM_LUN_INVALID;
xpt_done(ccb);
return;
}
if (ccb->ccb_h.target_id >= MAX_VDEVICE_PER_VBUS ||
pAdapter->VBus.pVDevice[ccb->ccb_h.target_id]==0) {
ccb->ccb_h.status = CAM_TID_INVALID;
xpt_done(ccb);
return;
}
oldspl = lock_driver();
if (pAdapter->outstandingCommands==0 && DPC_Request_Nums==0)
Check_Idle_Call(pAdapter);
if (mWaitingForIdle(_VBUS_P0))
hpt_queue_ccb(&pAdapter->pending_Q, ccb);
else
OsSendCommand(_VBUS_P ccb);
unlock_driver(oldspl);
/* KdPrint(("leave scsiio\n")); */
break;
case XPT_RESET_BUS:
KdPrint(("reset bus\n"));
oldspl = lock_driver();
fResetVBus(_VBUS_P0);
unlock_driver(oldspl);
xpt_done(ccb);
break;
case XPT_RESET_DEV: /* Bus Device Reset the specified SCSI device */
case XPT_EN_LUN: /* Enable LUN as a target */
case XPT_TARGET_IO: /* Execute target I/O request */
case XPT_ACCEPT_TARGET_IO: /* Accept Host Target Mode CDB */
case XPT_CONT_TARGET_IO: /* Continue Host Target I/O Connection*/
case XPT_ABORT: /* Abort the specified CCB */
case XPT_TERM_IO: /* Terminate the I/O process */
/* XXX Implement */
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
case XPT_GET_TRAN_SETTINGS:
case XPT_SET_TRAN_SETTINGS:
/* XXX Implement */
ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
xpt_done(ccb);
break;
case XPT_CALC_GEOMETRY:
{
struct ccb_calc_geometry *ccg;
u_int32_t size_mb;
u_int32_t secs_per_cylinder;
ccg = &ccb->ccg;
size_mb = ccg->volume_size / ((1024L*1024L) / ccg->block_size);
if (size_mb > 1024 ) {
ccg->heads = 255;
ccg->secs_per_track = 63;
} else {
ccg->heads = 64;
ccg->secs_per_track = 32;
}
secs_per_cylinder = ccg->heads * ccg->secs_per_track;
ccg->cylinders = ccg->volume_size / secs_per_cylinder;
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
case XPT_PATH_INQ: /* Path routing inquiry */
{
struct ccb_pathinq *cpi = &ccb->cpi;
cpi->version_num = 1; /* XXX??? */
cpi->hba_inquiry = PI_SDTR_ABLE;
cpi->target_sprt = 0;
/* Not necessary to reset bus */
cpi->hba_misc = PIM_NOBUSRESET;
cpi->hba_eng_cnt = 0;
cpi->max_target = MAX_VDEVICE_PER_VBUS;
cpi->max_lun = 0;
cpi->initiator_id = MAX_VDEVICE_PER_VBUS;
cpi->bus_id = cam_sim_bus(sim);
cpi->base_transfer_speed = 3300;
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "HPT ", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
cpi->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
default:
KdPrint(("invalid cmd\n"));
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
}
/* KdPrint(("leave hpt_action..............\n")); */
}
/* shall be called at lock_driver() */
static void
hpt_queue_ccb(union ccb **ccb_Q, union ccb *ccb)
{
if(*ccb_Q == NULL)
ccb->ccb_h.ccb_ccb_ptr = ccb;
else {
ccb->ccb_h.ccb_ccb_ptr = (*ccb_Q)->ccb_h.ccb_ccb_ptr;
(*ccb_Q)->ccb_h.ccb_ccb_ptr = (char *)ccb;
}
*ccb_Q = ccb;
}
/* shall be called at lock_driver() */
static void
hpt_free_ccb(union ccb **ccb_Q, union ccb *ccb)
{
union ccb *TempCCB;
TempCCB = *ccb_Q;
if(ccb->ccb_h.ccb_ccb_ptr == ccb)
/*it means SCpnt is the last one in CURRCMDs*/
*ccb_Q = NULL;
else {
while(TempCCB->ccb_h.ccb_ccb_ptr != (char *)ccb)
TempCCB = (union ccb *)TempCCB->ccb_h.ccb_ccb_ptr;
TempCCB->ccb_h.ccb_ccb_ptr = ccb->ccb_h.ccb_ccb_ptr;
if(*ccb_Q == ccb)
*ccb_Q = TempCCB;
}
}
#ifdef SUPPORT_ARRAY
/***************************************************************************
* Function: hpt_worker_thread
* Description: Do background rebuilding. Execute in kernel thread context.
* Returns: None
***************************************************************************/
static void hpt_worker_thread(void)
{
intrmask_t oldspl;
for(;;) {
while (DpcQueue_First!=DpcQueue_Last) {
ST_HPT_DPC p;
IAL_ADAPTER_T *pAdapter;
PVDevice pArray;
PVBus _vbus_p;
int i;
oldspl = lock_driver();
p = DpcQueue[DpcQueue_First];
DpcQueue_First++;
DpcQueue_First %= MAX_DPC;
DPC_Request_Nums++;
unlock_driver(oldspl);
p.dpc(p.pAdapter, p.arg, p.flags);
oldspl = lock_driver();
DPC_Request_Nums--;
/*
* since we may have prevented Check_Idle_Call, do it
* here
*/
if (DPC_Request_Nums==0) {
if (p.pAdapter->outstandingCommands == 0) {
_VBUS_INST(&p.pAdapter->VBus);
Check_Idle_Call(p.pAdapter);
CheckPendingCall(_VBUS_P0);
}
}
unlock_driver(oldspl);
if (SIGISMEMBER(curproc->p_siglist, SIGSTOP) == 0)
continue;
/* abort rebuilding process. */
pAdapter = gIal_Adapter;
while (pAdapter != 0) {
_vbus_p = &pAdapter->VBus;
for (i = 0; i < MAX_ARRAY_PER_VBUS;i++){
if ((pArray=ArrayTables(i))->u.array.dArStamp==0)
continue;
if (pArray->u.array.rf_rebuilding ||
pArray->u.array.rf_verifying ||
pArray->u.array.rf_initializing) {
pArray->u.array.rf_abort_rebuild = 1;
}
}
pAdapter = pAdapter->next;
}
}
#ifdef DEBUG
if (SIGISMEMBER(curproc->p_siglist, SIGSTOP))
tsleep(hpt_worker_thread, PPAUSE, "hptrdy", 2 * hz);
#endif
#if (__FreeBSD_version >= 500043)
kthread_suspend_check(curproc);
#else
kproc_suspend_loop(curproc);
#endif
/* wait for something to do */
tsleep(hpt_worker_thread, PPAUSE, "hptrdy", 2 * hz);
}
}
static struct proc *hptdaemonproc;
static struct kproc_desc hpt_kp = {
"hpt_wt",
hpt_worker_thread,
&hptdaemonproc
};
static void
launch_worker_thread(void)
{
IAL_ADAPTER_T *pAdapTemp;
kproc_start(&hpt_kp);
for (pAdapTemp = gIal_Adapter; pAdapTemp; pAdapTemp = pAdapTemp->next) {
_VBUS_INST(&pAdapTemp->VBus)
int i;
PVDevice pVDev;
for(i = 0; i < MAX_ARRAY_PER_VBUS; i++)
if ((pVDev=ArrayTables(i))->u.array.dArStamp==0)
continue;
if (pVDev->u.array.rf_need_rebuild &&
!pVDev->u.array.rf_rebuilding) {
hpt_queue_dpc((HPT_DPC)hpt_rebuild_data_block,
pAdapTemp, pVDev,
(UCHAR)((pVDev->u.array.CriticalMembers ||
pVDev->VDeviceType == VD_RAID_1) ?
DUPLICATE : REBUILD_PARITY));
}
}
/*
* hpt_worker_thread needs to be suspended after shutdown sync, when fs
* sync finished.
*/
#if (__FreeBSD_version < 500043)
EVENTHANDLER_REGISTER(shutdown_post_sync, shutdown_kproc,
hptdaemonproc, SHUTDOWN_PRI_FIRST);
#else
EVENTHANDLER_REGISTER(shutdown_post_sync, kproc_shutdown,
hptdaemonproc, SHUTDOWN_PRI_FIRST);
#endif
}
#endif /* SUPPORT_ARRAY */
/* build sgl with merge function */
#define ON64KBOUNDARY(x) (((ULONG_PTR)(x) & 0xFFFF) == 0)
/* XXX */
/* #define NOTNEIGHBORPAGE(x, y) (max(x, y) - min(x, y) > PAGE_SIZE) */
#define NOTNEIGHBORPAGE(highvaddr, lowvaddr) \
((ULONG_PTR)(highvaddr) - (ULONG_PTR)(lowvaddr) != PAGE_SIZE)
/********************************************************************************/
static void
hptmv_buffer_callback(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
FPSCAT_GATH pSg;
int idx;
if (error || nsegs == 0) {
panic("busdma bewm");
return;
}
pSg = *(FPSCAT_GATH *)arg;
for (idx = 0; idx < nsegs; idx++) {
pSg[idx].dSgAddress = (ULONG_PTR)segs[idx].ds_addr;
pSg[idx].wSgSize = segs[idx].ds_len;
pSg[idx].wSgFlag = 0;
}
pSg[idx - 1].wSgFlag = SG_FLAG_EOT;
return;
}
static int HPTLIBAPI
fOsBuildSgl(_VBUS_ARG PCommand pCmd, FPSCAT_GATH pSg, int logical)
{
IAL_ADAPTER_T *pAdapter;
pPrivCommand prvCmd;
union ccb *ccb;
struct ccb_hdr *ccb_h;
struct ccb_scsiio *csio;
bus_dma_segment_t *sgList;
int error;
prvCmd = pCmd->pOrgCommand;
pAdapter = prvCmd->pAdapter;
ccb = prvCmd->ccb;
ccb_h = &ccb->ccb_h;
csio = &ccb->csio;
sgList = (bus_dma_segment_t *)(csio->data_ptr);
if ((ccb_h->flags & CAM_DIR_MASK) == CAM_DIR_NONE)
return TRUE;
if ((ccb_h->flags & CAM_SCATTER_VALID) != 0) {
if((ccb_h->flags & CAM_DATA_PHYS) != 0)
panic(KMSG_LEADING "physical address unsupported!");
hptmv_buffer_callback(&pSg, sgList, csio->sglist_cnt, 0);
return TRUE;
}
if (logical) {
if ((ccb_h->flags & CAM_DATA_PHYS) != 0)
panic(KMSG_LEADING "physical address unsupported\n");
pSg->dSgAddress = (ULONG_PTR)csio->data_ptr;
pSg->wSgSize = (USHORT)csio->dxfer_len;
pSg->wSgFlag = SG_FLAG_EOT;
return TRUE;
}
KdPrint(("use sgl (physical) ...........\n"));
/*
* XXX Hack to make this work with PAE. It will fail under
* heavy load.
*/
error = bus_dmamap_load(pAdapter->buf_dmat, prvCmd->buf_map,
csio->data_ptr, csio->dxfer_len, hptmv_buffer_callback, &pSg,
BUS_DMA_NOWAIT);
if (error) {
printf("bus_dmamap_load failed error= %d\n", error);
return FALSE;
}
/*#ifdef DEBUG
do {
int size, i = 0;
KdPrintI(("sg[%d]:0x%lx %d\n", i++, pSg[i].dSgAddress,
pSg[i].wSgSize));
size = pSg->wSgSize;
if (pSg[i].wSgFlag & SG_FLAG_EOT)
break;
} while (i<17);
#endif*/
if ((ccb_h->flags & CAM_DIR_MASK) == CAM_DIR_IN) {
bus_dmamap_sync(pAdapter->buf_dmat, prvCmd->buf_map,
BUS_DMASYNC_PREREAD);
} else {
bus_dmamap_sync(pAdapter->buf_dmat, prvCmd->buf_map,
BUS_DMASYNC_PREWRITE);
}
return TRUE;
}
/*******************************************************************************/
ULONG HPTLIBAPI
GetStamp(void)
{
ULONG stamp;
/*
* the system variable, ticks, can't be used since it hasn't yet been active
* when our driver starts (ticks==0, it's a invalid stamp value)
*/
do {
stamp = random();
} while (stamp==0);
return stamp;
}
static void
SetInquiryData(PINQUIRYDATA inquiryData, PVDevice pVDev)
{
int i;
IDENTIFY_DATA2 *pIdentify;
pIdentify = (IDENTIFY_DATA2*)pVDev->u.disk.mv->identifyDevice;
inquiryData->DeviceType = T_DIRECT; /*DIRECT_ACCESS_DEVICE*/
inquiryData->AdditionalLength = (UCHAR)(sizeof(INQUIRYDATA) - 5);
#ifndef SERIAL_CMDS
inquiryData->CommandQueue = 1;
#endif
switch(pVDev->VDeviceType) {
case VD_SINGLE_DISK:
case VD_ATAPI:
case VD_REMOVABLE:
/* Set the removable bit, if applicable. */
if ((pVDev->u.disk.df_removable_drive) ||
(pIdentify->GeneralConfiguration & 0x80))
inquiryData->RemovableMedia = 1;
/* Fill in vendor identification fields. */
for (i = 0; i < 20; i += 2) {
inquiryData->VendorId[i] =
((PUCHAR)pIdentify->ModelNumber)[i + 1];
inquiryData->VendorId[i+1] =
((PUCHAR)pIdentify->ModelNumber)[i];
}
/* Initialize unused portion of product id. */
for (i = 0; i < 4; i++) inquiryData->ProductId[12+i] = ' ';
/* firmware revision */
for (i = 0; i < 4; i += 2) {
inquiryData->ProductRevisionLevel[i] =
((PUCHAR)pIdentify->FirmwareRevision)[i+1];
inquiryData->ProductRevisionLevel[i+1] =
((PUCHAR)pIdentify->FirmwareRevision)[i];
}
break;
default:
memcpy(&inquiryData->VendorId, "RR182x ", 8);
#ifdef SUPPORT_ARRAY
switch(pVDev->VDeviceType) {
case VD_RAID_0:
if ((pVDev->u.array.pMember[0] &&
mIsArray(pVDev->u.array.pMember[0])) ||
(pVDev->u.array.pMember[1] &&
mIsArray(pVDev->u.array.pMember[1])))
memcpy(&inquiryData->ProductId,
"RAID 1/0 Array ", 16);
else
memcpy(&inquiryData->ProductId,
"RAID 0 Array ", 16);
break;
case VD_RAID_1:
if ((pVDev->u.array.pMember[0] &&
mIsArray(pVDev->u.array.pMember[0])) ||
(pVDev->u.array.pMember[1] &&
mIsArray(pVDev->u.array.pMember[1])))
memcpy(&inquiryData->ProductId,
"RAID 0/1 Array ", 16);
else
memcpy(&inquiryData->ProductId,
"RAID 1 Array ", 16);
break;
case VD_RAID_5:
memcpy(&inquiryData->ProductId, "RAID 5 Array ", 16);
break;
case VD_JBOD:
memcpy(&inquiryData->ProductId, "JBOD Array ", 16);
break;
}
#endif
memcpy(&inquiryData->ProductRevisionLevel, "3.00", 4);
break;
}
}
static void
hpt_timeout(void *arg)
{
_VBUS_INST(&((IAL_ADAPTER_T*)((union ccb *)arg)->ccb_adapter)->VBus)
intrmask_t oldspl;
oldspl = lock_driver();
fResetVBus(_VBUS_P0);
unlock_driver(oldspl);
}
static void HPTLIBAPI
OsSendCommand(_VBUS_ARG union ccb *ccb)
{
IAL_ADAPTER_T *pAdapter;
struct ccb_hdr *ccb_h;
struct ccb_scsiio *csio;
PVDevice pVDev;
pAdapter = (IAL_ADAPTER_T *)ccb->ccb_adapter;
ccb_h = &ccb->ccb_h;
csio = &ccb->csio;
pVDev = pAdapter->VBus.pVDevice[ccb_h->target_id];
KdPrintI(("OsSendCommand: ccb %p cdb %x-%x-%x\n",
ccb,
*(ULONG *)&ccb->csio.cdb_io.cdb_bytes[0],
*(ULONG *)&ccb->csio.cdb_io.cdb_bytes[4],
*(ULONG *)&ccb->csio.cdb_io.cdb_bytes[8]
));
pAdapter->outstandingCommands++;
if (pVDev == NULL || pVDev->vf_online == 0) {
ccb->ccb_h.status = CAM_REQ_INVALID;
ccb_done(ccb);
goto Command_Complished;
}
switch(ccb->csio.cdb_io.cdb_bytes[0])
{
case TEST_UNIT_READY:
case START_STOP_UNIT:
case SYNCHRONIZE_CACHE:
/* FALLTHROUGH */
ccb->ccb_h.status = CAM_REQ_CMP;
break;
case INQUIRY:
ZeroMemory(ccb->csio.data_ptr, ccb->csio.dxfer_len);
SetInquiryData((PINQUIRYDATA)ccb->csio.data_ptr, pVDev);
ccb_h->status = CAM_REQ_CMP;
break;
case READ_CAPACITY:
{
UCHAR swip[4];
/* Claim 512 byte blocks (big-endian). */
((PREAD_CAPACITY_DATA)csio->data_ptr)->BytesPerBlock = 0x20000;
*(ULONG*)swip = pVDev->VDeviceCapacity - 1;
((PREAD_CAPACITY_DATA)csio->data_ptr)->LogicalBlockAddress =
(swip[0] << 24) | (swip[1] << 16) | (swip[2] << 8) | swip[3];
ccb_h->status = CAM_REQ_CMP;
break;
}
case READ_6:
case WRITE_6:
case READ_10:
case WRITE_10:
case 0x13:
case 0x2f:
{
UCHAR Cdb[16];
UCHAR CdbLength;
_VBUS_INST(pVDev->pVBus)
PCommand pCmd;
pCmd = AllocateCommand(_VBUS_P0);
HPT_ASSERT(pCmd);
CdbLength = csio->cdb_len;
if ((ccb->ccb_h.flags & CAM_CDB_POINTER) != 0) {
if ((ccb->ccb_h.flags & CAM_CDB_PHYS) == 0) {
bcopy(csio->cdb_io.cdb_ptr, Cdb, CdbLength);
} else {
KdPrintE(("ERROR!!!\n"));
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
} else {
bcopy(csio->cdb_io.cdb_bytes, Cdb, CdbLength);
}
pCmd->pOrgCommand = AllocPrivCommand(pAdapter);
if (pCmd->pOrgCommand == NULL)
panic("command leak!");
((pPrivCommand)(pCmd->pOrgCommand))->ccb = ccb;
pCmd->pVDevice = pVDev;
pCmd->pfnCompletion = fOsCommandDone;
pCmd->pfnBuildSgl = fOsBuildSgl;
switch (Cdb[0]) {
case READ_6:
case WRITE_6:
case 0x13:
pCmd->uCmd.Ide.Lba = ((ULONG)Cdb[1] << 16) |
((ULONG)Cdb[2] << 8) | (ULONG)Cdb[3];
pCmd->uCmd.Ide.nSectors = (USHORT) Cdb[4];
break;
default:
pCmd->uCmd.Ide.Lba = (ULONG)Cdb[5] |
((ULONG)Cdb[4] << 8) | ((ULONG)Cdb[3] << 16) |
((ULONG)Cdb[2] << 24);
pCmd->uCmd.Ide.nSectors = (USHORT) Cdb[8] |
((USHORT)Cdb[7]<<8);
break;
}
switch (Cdb[0]) {
case READ_6:
case READ_10:
pCmd->uCmd.Ide.Command = IDE_COMMAND_READ;
pCmd->cf_data_in = 1;
break;
case WRITE_6:
case WRITE_10:
pCmd->uCmd.Ide.Command = IDE_COMMAND_WRITE;
pCmd->cf_data_out = 1;
break;
case 0x13:
case 0x2f:
pCmd->uCmd.Ide.Command = IDE_COMMAND_VERIFY;
break;
}
ccb->ccb_h.timeout_ch = timeout(hpt_timeout, (caddr_t)ccb, 20*hz);
pVDev->pfnSendCommand(_VBUS_P pCmd);
goto Command_Complished;
}
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
ccb_done(ccb);
Command_Complished:
CheckPendingCall(_VBUS_P0);
return;
}
static void HPTLIBAPI
fOsCommandDone(_VBUS_ARG PCommand pCmd)
{
IAL_ADAPTER_T *pAdapter;
pPrivCommand prvCmd;
union ccb *ccb;
prvCmd = pCmd->pOrgCommand;
pAdapter = prvCmd->pAdapter;
ccb = prvCmd->ccb;
KdPrint(("fOsCommandDone(%p, %d)", pCmd, pCmd->Result));
untimeout(hpt_timeout, (caddr_t)ccb, ccb->ccb_h.timeout_ch);
switch(pCmd->Result) {
case RETURN_SUCCESS:
ccb->ccb_h.status = CAM_REQ_CMP;
break;
case RETURN_BAD_DEVICE:
ccb->ccb_h.status = CAM_DEV_NOT_THERE;
break;
case RETURN_DEVICE_BUSY:
ccb->ccb_h.status = CAM_BUSY;
break;
case RETURN_INVALID_REQUEST:
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
case RETURN_SELECTION_TIMEOUT:
ccb->ccb_h.status = CAM_SEL_TIMEOUT;
break;
case RETURN_RETRY:
ccb->ccb_h.status = CAM_BUSY;
break;
default:
ccb->ccb_h.status = CAM_SCSI_STATUS_ERROR;
break;
}
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
bus_dmamap_sync(pAdapter->buf_dmat, prvCmd->buf_map,
BUS_DMASYNC_POSTREAD);
} else {
bus_dmamap_sync(pAdapter->buf_dmat, prvCmd->buf_map,
BUS_DMASYNC_POSTWRITE);
}
bus_dmamap_unload(pAdapter->buf_dmat, prvCmd->buf_map);
FreePrivCommand(pAdapter, prvCmd);
FreeCommand(_VBUS_P pCmd);
ccb_done(ccb);
}
int
hpt_queue_dpc(HPT_DPC dpc, IAL_ADAPTER_T * pAdapter, void *arg, UCHAR flags)
{
int p;
p = (DpcQueue_Last + 1) % MAX_DPC;
if (p==DpcQueue_First) {
KdPrint(("DPC Queue full!\n"));
return -1;
}
DpcQueue[DpcQueue_Last].dpc = dpc;
DpcQueue[DpcQueue_Last].pAdapter = pAdapter;
DpcQueue[DpcQueue_Last].arg = arg;
DpcQueue[DpcQueue_Last].flags = flags;
DpcQueue_Last = p;
return 0;
}
#ifdef _RAID5N_
/*
* Allocate memory above 16M, otherwise we may eat all low memory for ISA
* devices.
*
* Busdma should be used here, not contigmalloc/free. However, this API
* will need to be changed to use it effective.
*/
void
*os_alloc_page(_VBUS_ARG0)
{
return (void *)contigmalloc(0x1000, M_DEVBUF, M_NOWAIT, 0x1000000,
0xffffffff, PAGE_SIZE, 0);
}
void
*os_alloc_dma_page(_VBUS_ARG0)
{
return (void *)contigmalloc(0x1000, M_DEVBUF, M_NOWAIT, 0x1000000,
0xffffffff, PAGE_SIZE, 0);
}
/*
* The next two are not used right now.
*/
void
os_free_page(_VBUS_ARG void *p)
{
contigfree(p, 0x1000, M_DEVBUF);
}
void
os_free_dma_page(_VBUS_ARG void *p)
{
contigfree(p, 0x1000, M_DEVBUF);
}
void
DoXor1(ULONG *p0, ULONG *p1, ULONG *p2, UINT nBytes)
{
UINT i;
for (i = 0; i < nBytes / 4; i++)
*p0++ = *p1++ ^ *p2++;
}
void
DoXor2(ULONG *p0, ULONG *p2, UINT nBytes)
{
UINT i;
for (i = 0; i < nBytes / 4; i++)
*p0++ ^= *p2++;
}
#endif