freebsd-nq/module/zfs/dmu_object.c
Matthew Ahrens dbeb879699 OpenZFS 8199 - multi-threaded dmu_object_alloc()
dmu_object_alloc() is single-threaded, so when multiple threads are
creating files in a single filesystem, they spend a lot of time waiting
for the os_obj_lock.  To improve performance of multi-threaded file
creation, we must make dmu_object_alloc() typically not grab any
filesystem-wide locks.

The solution is to have a "next object to allocate" for each CPU. Each
of these "next object"s is in a different block of the dnode object, so
that concurrent allocation holds dnodes in different dbufs.  When a
thread's "next object" reaches the end of a chunk of objects (by default
4 blocks worth -- 128 dnodes), it will be reset to the per-objset
os_obj_next, which will be increased by a chunk of objects (128).  Only
when manipulating the os_obj_next will we need to grab the os_obj_lock.
This decreases lock contention dramatically, because each thread only
needs to grab the os_obj_lock briefly, once per 128 allocations.

This results in a 70% performance improvement to multi-threaded object
creation (where each thread is creating objects in its own directory),
from 67,000/sec to 115,000/sec, with 8 CPUs.

Work sponsored by Intel Corp.

Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Ned Bass <bass6@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>

OpenZFS-issue: https://www.illumos.org/issues/8199
OpenZFS-commit: https://github.com/openzfs/openzfs/pull/374
Closes #4703
Closes #6117
2017-06-09 09:43:26 -07:00

407 lines
11 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2013, 2015 by Delphix. All rights reserved.
* Copyright 2014 HybridCluster. All rights reserved.
*/
#include <sys/dmu.h>
#include <sys/dmu_objset.h>
#include <sys/dmu_tx.h>
#include <sys/dnode.h>
#include <sys/zap.h>
#include <sys/zfeature.h>
#include <sys/dsl_dataset.h>
/*
* Each of the concurrent object allocators will grab
* 2^dmu_object_alloc_chunk_shift dnode slots at a time. The default is to
* grab 128 slots, which is 4 blocks worth. This was experimentally
* determined to be the lowest value that eliminates the measurable effect
* of lock contention from this code path.
*/
int dmu_object_alloc_chunk_shift = 7;
uint64_t
dmu_object_alloc(objset_t *os, dmu_object_type_t ot, int blocksize,
dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
{
return dmu_object_alloc_dnsize(os, ot, blocksize, bonustype, bonuslen,
0, tx);
}
uint64_t
dmu_object_alloc_dnsize(objset_t *os, dmu_object_type_t ot, int blocksize,
dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
{
uint64_t object;
uint64_t L1_dnode_count = DNODES_PER_BLOCK <<
(DMU_META_DNODE(os)->dn_indblkshift - SPA_BLKPTRSHIFT);
dnode_t *dn = NULL;
int dn_slots = dnodesize >> DNODE_SHIFT;
boolean_t restarted = B_FALSE;
uint64_t *cpuobj = &os->os_obj_next_percpu[CPU_SEQID %
os->os_obj_next_percpu_len];
int dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift;
if (dn_slots == 0) {
dn_slots = DNODE_MIN_SLOTS;
} else {
ASSERT3S(dn_slots, >=, DNODE_MIN_SLOTS);
ASSERT3S(dn_slots, <=, DNODE_MAX_SLOTS);
}
/*
* The "chunk" of dnodes that is assigned to a CPU-specific
* allocator needs to be at least one block's worth, to avoid
* lock contention on the dbuf. It can be at most one L1 block's
* worth, so that the "rescan after polishing off a L1's worth"
* logic below will be sure to kick in.
*/
if (dnodes_per_chunk < DNODES_PER_BLOCK)
dnodes_per_chunk = DNODES_PER_BLOCK;
if (dnodes_per_chunk > L1_dnode_count)
dnodes_per_chunk = L1_dnode_count;
object = *cpuobj;
for (;;) {
/*
* If we finished a chunk of dnodes, get a new one from
* the global allocator.
*/
if (P2PHASE(object, dnodes_per_chunk) == 0) {
mutex_enter(&os->os_obj_lock);
ASSERT0(P2PHASE(os->os_obj_next_chunk,
dnodes_per_chunk));
object = os->os_obj_next_chunk;
/*
* Each time we polish off a L1 bp worth of dnodes
* (2^12 objects), move to another L1 bp that's
* still reasonably sparse (at most 1/4 full). Look
* from the beginning at most once per txg. If we
* still can't allocate from that L1 block, search
* for an empty L0 block, which will quickly skip
* to the end of the metadnode if no nearby L0
* blocks are empty. This fallback avoids a
* pathology where full dnode blocks containing
* large dnodes appear sparse because they have a
* low blk_fill, leading to many failed allocation
* attempts. In the long term a better mechanism to
* search for sparse metadnode regions, such as
* spacemaps, could be implemented.
*
* os_scan_dnodes is set during txg sync if enough
* objects have been freed since the previous
* rescan to justify backfilling again.
*
* Note that dmu_traverse depends on the behavior
* that we use multiple blocks of the dnode object
* before going back to reuse objects. Any change
* to this algorithm should preserve that property
* or find another solution to the issues described
* in traverse_visitbp.
*/
if (P2PHASE(object, L1_dnode_count) == 0) {
uint64_t offset;
uint64_t blkfill;
int minlvl;
int error;
if (os->os_rescan_dnodes) {
offset = 0;
os->os_rescan_dnodes = B_FALSE;
} else {
offset = object << DNODE_SHIFT;
}
blkfill = restarted ? 1 : DNODES_PER_BLOCK >> 2;
minlvl = restarted ? 1 : 2;
restarted = B_TRUE;
error = dnode_next_offset(DMU_META_DNODE(os),
DNODE_FIND_HOLE, &offset, minlvl,
blkfill, 0);
if (error == 0) {
object = offset >> DNODE_SHIFT;
}
}
/*
* Note: if "restarted", we may find a L0 that
* is not suitably aligned.
*/
os->os_obj_next_chunk =
P2ALIGN(object, dnodes_per_chunk) +
dnodes_per_chunk;
(void) atomic_swap_64(cpuobj, object);
mutex_exit(&os->os_obj_lock);
}
/*
* XXX We should check for an i/o error here and return
* up to our caller. Actually we should pre-read it in
* dmu_tx_assign(), but there is currently no mechanism
* to do so.
*/
(void) dnode_hold_impl(os, object, DNODE_MUST_BE_FREE,
dn_slots, FTAG, &dn);
if (dn != NULL) {
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
/*
* Another thread could have allocated it; check
* again now that we have the struct lock.
*/
if (dn->dn_type == DMU_OT_NONE) {
dnode_allocate(dn, ot, blocksize, 0,
bonustype, bonuslen, dn_slots, tx);
rw_exit(&dn->dn_struct_rwlock);
dmu_tx_add_new_object(tx, dn);
dnode_rele(dn, FTAG);
(void) atomic_swap_64(cpuobj,
object + dn_slots);
return (object);
}
rw_exit(&dn->dn_struct_rwlock);
dnode_rele(dn, FTAG);
}
if (dmu_object_next(os, &object, B_TRUE, 0) != 0) {
/*
* Skip to next known valid starting point for a
* dnode.
*/
object = P2ROUNDUP(object + 1, DNODES_PER_BLOCK);
}
(void) atomic_swap_64(cpuobj, object);
}
}
int
dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
{
return (dmu_object_claim_dnsize(os, object, ot, blocksize, bonustype,
bonuslen, 0, tx));
}
int
dmu_object_claim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot,
int blocksize, dmu_object_type_t bonustype, int bonuslen,
int dnodesize, dmu_tx_t *tx)
{
dnode_t *dn;
int dn_slots = dnodesize >> DNODE_SHIFT;
int err;
if (dn_slots == 0)
dn_slots = DNODE_MIN_SLOTS;
ASSERT3S(dn_slots, >=, DNODE_MIN_SLOTS);
ASSERT3S(dn_slots, <=, DNODE_MAX_SLOTS);
if (object == DMU_META_DNODE_OBJECT && !dmu_tx_private_ok(tx))
return (SET_ERROR(EBADF));
err = dnode_hold_impl(os, object, DNODE_MUST_BE_FREE, dn_slots,
FTAG, &dn);
if (err)
return (err);
dnode_allocate(dn, ot, blocksize, 0, bonustype, bonuslen, dn_slots, tx);
dmu_tx_add_new_object(tx, dn);
dnode_rele(dn, FTAG);
return (0);
}
int
dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
{
return (dmu_object_reclaim_dnsize(os, object, ot, blocksize, bonustype,
bonuslen, 0, tx));
}
int
dmu_object_reclaim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot,
int blocksize, dmu_object_type_t bonustype, int bonuslen, int dnodesize,
dmu_tx_t *tx)
{
dnode_t *dn;
int dn_slots = dnodesize >> DNODE_SHIFT;
int err;
if (object == DMU_META_DNODE_OBJECT)
return (SET_ERROR(EBADF));
err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0,
FTAG, &dn);
if (err)
return (err);
dnode_reallocate(dn, ot, blocksize, bonustype, bonuslen, dn_slots, tx);
dnode_rele(dn, FTAG);
return (err);
}
int
dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx)
{
dnode_t *dn;
int err;
ASSERT(object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0,
FTAG, &dn);
if (err)
return (err);
ASSERT(dn->dn_type != DMU_OT_NONE);
dnode_free_range(dn, 0, DMU_OBJECT_END, tx);
dnode_free(dn, tx);
dnode_rele(dn, FTAG);
return (0);
}
/*
* Return (in *objectp) the next object which is allocated (or a hole)
* after *object, taking into account only objects that may have been modified
* after the specified txg.
*/
int
dmu_object_next(objset_t *os, uint64_t *objectp, boolean_t hole, uint64_t txg)
{
uint64_t offset;
uint64_t start_obj;
struct dsl_dataset *ds = os->os_dsl_dataset;
int error;
if (*objectp == 0) {
start_obj = 1;
} else if (ds && ds->ds_feature_inuse[SPA_FEATURE_LARGE_DNODE]) {
/*
* For large_dnode datasets, scan from the beginning of the
* dnode block to find the starting offset. This is needed
* because objectp could be part of a large dnode so we can't
* assume it's a hole even if dmu_object_info() returns ENOENT.
*/
int epb = DNODE_BLOCK_SIZE >> DNODE_SHIFT;
int skip;
uint64_t i;
for (i = *objectp & ~(epb - 1); i <= *objectp; i += skip) {
dmu_object_info_t doi;
error = dmu_object_info(os, i, &doi);
if (error)
skip = 1;
else
skip = doi.doi_dnodesize >> DNODE_SHIFT;
}
start_obj = i;
} else {
start_obj = *objectp + 1;
}
offset = start_obj << DNODE_SHIFT;
error = dnode_next_offset(DMU_META_DNODE(os),
(hole ? DNODE_FIND_HOLE : 0), &offset, 0, DNODES_PER_BLOCK, txg);
*objectp = offset >> DNODE_SHIFT;
return (error);
}
/*
* Turn this object from old_type into DMU_OTN_ZAP_METADATA, and bump the
* refcount on SPA_FEATURE_EXTENSIBLE_DATASET.
*
* Only for use from syncing context, on MOS objects.
*/
void
dmu_object_zapify(objset_t *mos, uint64_t object, dmu_object_type_t old_type,
dmu_tx_t *tx)
{
dnode_t *dn;
ASSERT(dmu_tx_is_syncing(tx));
VERIFY0(dnode_hold(mos, object, FTAG, &dn));
if (dn->dn_type == DMU_OTN_ZAP_METADATA) {
dnode_rele(dn, FTAG);
return;
}
ASSERT3U(dn->dn_type, ==, old_type);
ASSERT0(dn->dn_maxblkid);
dn->dn_next_type[tx->tx_txg & TXG_MASK] = dn->dn_type =
DMU_OTN_ZAP_METADATA;
dnode_setdirty(dn, tx);
dnode_rele(dn, FTAG);
mzap_create_impl(mos, object, 0, 0, tx);
spa_feature_incr(dmu_objset_spa(mos),
SPA_FEATURE_EXTENSIBLE_DATASET, tx);
}
void
dmu_object_free_zapified(objset_t *mos, uint64_t object, dmu_tx_t *tx)
{
dnode_t *dn;
dmu_object_type_t t;
ASSERT(dmu_tx_is_syncing(tx));
VERIFY0(dnode_hold(mos, object, FTAG, &dn));
t = dn->dn_type;
dnode_rele(dn, FTAG);
if (t == DMU_OTN_ZAP_METADATA) {
spa_feature_decr(dmu_objset_spa(mos),
SPA_FEATURE_EXTENSIBLE_DATASET, tx);
}
VERIFY0(dmu_object_free(mos, object, tx));
}
#if defined(_KERNEL) && defined(HAVE_SPL)
EXPORT_SYMBOL(dmu_object_alloc);
EXPORT_SYMBOL(dmu_object_alloc_dnsize);
EXPORT_SYMBOL(dmu_object_claim);
EXPORT_SYMBOL(dmu_object_claim_dnsize);
EXPORT_SYMBOL(dmu_object_reclaim);
EXPORT_SYMBOL(dmu_object_reclaim_dnsize);
EXPORT_SYMBOL(dmu_object_free);
EXPORT_SYMBOL(dmu_object_next);
EXPORT_SYMBOL(dmu_object_zapify);
EXPORT_SYMBOL(dmu_object_free_zapified);
/* BEGIN CSTYLED */
module_param(dmu_object_alloc_chunk_shift, int, 0644);
MODULE_PARM_DESC(dmu_object_alloc_chunk_shift,
"CPU-specific allocator grabs 2^N objects at once");
/* END CSTYLED */
#endif