freebsd-nq/sys/opencrypto/crypto.c
John Baldwin 883a0196b6 crypto: Add a new type of crypto buffer for a single mbuf.
This is intended for use in KTLS transmit where each TLS record is
described by a single mbuf that is itself queued in the socket buffer.
Using the existing CRYPTO_BUF_MBUF would result in
bus_dmamap_load_crp() walking additional mbufs in the socket buffer
that are not relevant, but generating a S/G list that potentially
exceeds the limit of the tag (while also wasting CPU cycles).

Reviewed by:	markj
Sponsored by:	Netflix
Differential Revision:	https://reviews.freebsd.org/D30136
2021-05-25 16:59:18 -07:00

1919 lines
49 KiB
C

/*-
* Copyright (c) 2002-2006 Sam Leffler. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Cryptographic Subsystem.
*
* This code is derived from the Openbsd Cryptographic Framework (OCF)
* that has the copyright shown below. Very little of the original
* code remains.
*/
/*-
* The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
*
* This code was written by Angelos D. Keromytis in Athens, Greece, in
* February 2000. Network Security Technologies Inc. (NSTI) kindly
* supported the development of this code.
*
* Copyright (c) 2000, 2001 Angelos D. Keromytis
*
* Permission to use, copy, and modify this software with or without fee
* is hereby granted, provided that this entire notice is included in
* all source code copies of any software which is or includes a copy or
* modification of this software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
* MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
* PURPOSE.
*/
#include "opt_compat.h"
#include "opt_ddb.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/counter.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/linker.h>
#include <sys/lock.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/proc.h>
#include <sys/refcount.h>
#include <sys/sdt.h>
#include <sys/smp.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <sys/uio.h>
#include <ddb/ddb.h>
#include <machine/vmparam.h>
#include <vm/uma.h>
#include <crypto/intake.h>
#include <opencrypto/cryptodev.h>
#include <opencrypto/xform_auth.h>
#include <opencrypto/xform_enc.h>
#include <sys/kobj.h>
#include <sys/bus.h>
#include "cryptodev_if.h"
#if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
#include <machine/pcb.h>
#endif
SDT_PROVIDER_DEFINE(opencrypto);
/*
* Crypto drivers register themselves by allocating a slot in the
* crypto_drivers table with crypto_get_driverid().
*/
static struct mtx crypto_drivers_mtx; /* lock on driver table */
#define CRYPTO_DRIVER_LOCK() mtx_lock(&crypto_drivers_mtx)
#define CRYPTO_DRIVER_UNLOCK() mtx_unlock(&crypto_drivers_mtx)
#define CRYPTO_DRIVER_ASSERT() mtx_assert(&crypto_drivers_mtx, MA_OWNED)
/*
* Crypto device/driver capabilities structure.
*
* Synchronization:
* (d) - protected by CRYPTO_DRIVER_LOCK()
* (q) - protected by CRYPTO_Q_LOCK()
* Not tagged fields are read-only.
*/
struct cryptocap {
device_t cc_dev;
uint32_t cc_hid;
uint32_t cc_sessions; /* (d) # of sessions */
int cc_flags; /* (d) flags */
#define CRYPTOCAP_F_CLEANUP 0x80000000 /* needs resource cleanup */
int cc_qblocked; /* (q) symmetric q blocked */
size_t cc_session_size;
volatile int cc_refs;
};
static struct cryptocap **crypto_drivers = NULL;
static int crypto_drivers_size = 0;
struct crypto_session {
struct cryptocap *cap;
struct crypto_session_params csp;
uint64_t id;
/* Driver softc follows. */
};
static int crp_sleep = 0;
static TAILQ_HEAD(cryptop_q ,cryptop) crp_q; /* request queues */
static struct mtx crypto_q_mtx;
#define CRYPTO_Q_LOCK() mtx_lock(&crypto_q_mtx)
#define CRYPTO_Q_UNLOCK() mtx_unlock(&crypto_q_mtx)
SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0,
"In-kernel cryptography");
/*
* Taskqueue used to dispatch the crypto requests
* that have the CRYPTO_F_ASYNC flag
*/
static struct taskqueue *crypto_tq;
/*
* Crypto seq numbers are operated on with modular arithmetic
*/
#define CRYPTO_SEQ_GT(a,b) ((int)((a)-(b)) > 0)
struct crypto_ret_worker {
struct mtx crypto_ret_mtx;
TAILQ_HEAD(,cryptop) crp_ordered_ret_q; /* ordered callback queue for symetric jobs */
TAILQ_HEAD(,cryptop) crp_ret_q; /* callback queue for symetric jobs */
uint32_t reorder_ops; /* total ordered sym jobs received */
uint32_t reorder_cur_seq; /* current sym job dispatched */
struct proc *cryptoretproc;
};
static struct crypto_ret_worker *crypto_ret_workers = NULL;
#define CRYPTO_RETW(i) (&crypto_ret_workers[i])
#define CRYPTO_RETW_ID(w) ((w) - crypto_ret_workers)
#define FOREACH_CRYPTO_RETW(w) \
for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w)
#define CRYPTO_RETW_LOCK(w) mtx_lock(&w->crypto_ret_mtx)
#define CRYPTO_RETW_UNLOCK(w) mtx_unlock(&w->crypto_ret_mtx)
static int crypto_workers_num = 0;
SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN,
&crypto_workers_num, 0,
"Number of crypto workers used to dispatch crypto jobs");
#ifdef COMPAT_FREEBSD12
SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN,
&crypto_workers_num, 0,
"Number of crypto workers used to dispatch crypto jobs");
#endif
static uma_zone_t cryptop_zone;
int crypto_devallowsoft = 0;
SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RW,
&crypto_devallowsoft, 0,
"Enable use of software crypto by /dev/crypto");
#ifdef COMPAT_FREEBSD12
SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW,
&crypto_devallowsoft, 0,
"Enable/disable use of software crypto by /dev/crypto");
#endif
MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
static void crypto_proc(void);
static struct proc *cryptoproc;
static void crypto_ret_proc(struct crypto_ret_worker *ret_worker);
static void crypto_destroy(void);
static int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
static void crypto_task_invoke(void *ctx, int pending);
static void crypto_batch_enqueue(struct cryptop *crp);
static counter_u64_t cryptostats[sizeof(struct cryptostats) / sizeof(uint64_t)];
SYSCTL_COUNTER_U64_ARRAY(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW,
cryptostats, nitems(cryptostats),
"Crypto system statistics");
#define CRYPTOSTAT_INC(stat) do { \
counter_u64_add( \
cryptostats[offsetof(struct cryptostats, stat) / sizeof(uint64_t)],\
1); \
} while (0)
static void
cryptostats_init(void *arg __unused)
{
COUNTER_ARRAY_ALLOC(cryptostats, nitems(cryptostats), M_WAITOK);
}
SYSINIT(cryptostats_init, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_init, NULL);
static void
cryptostats_fini(void *arg __unused)
{
COUNTER_ARRAY_FREE(cryptostats, nitems(cryptostats));
}
SYSUNINIT(cryptostats_fini, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_fini,
NULL);
/* Try to avoid directly exposing the key buffer as a symbol */
static struct keybuf *keybuf;
static struct keybuf empty_keybuf = {
.kb_nents = 0
};
/* Obtain the key buffer from boot metadata */
static void
keybuf_init(void)
{
caddr_t kmdp;
kmdp = preload_search_by_type("elf kernel");
if (kmdp == NULL)
kmdp = preload_search_by_type("elf64 kernel");
keybuf = (struct keybuf *)preload_search_info(kmdp,
MODINFO_METADATA | MODINFOMD_KEYBUF);
if (keybuf == NULL)
keybuf = &empty_keybuf;
}
/* It'd be nice if we could store these in some kind of secure memory... */
struct keybuf *
get_keybuf(void)
{
return (keybuf);
}
static struct cryptocap *
cap_ref(struct cryptocap *cap)
{
refcount_acquire(&cap->cc_refs);
return (cap);
}
static void
cap_rele(struct cryptocap *cap)
{
if (refcount_release(&cap->cc_refs) == 0)
return;
KASSERT(cap->cc_sessions == 0,
("freeing crypto driver with active sessions"));
free(cap, M_CRYPTO_DATA);
}
static int
crypto_init(void)
{
struct crypto_ret_worker *ret_worker;
int error;
mtx_init(&crypto_drivers_mtx, "crypto", "crypto driver table",
MTX_DEF|MTX_QUIET);
TAILQ_INIT(&crp_q);
mtx_init(&crypto_q_mtx, "crypto", "crypto op queues", MTX_DEF);
cryptop_zone = uma_zcreate("cryptop",
sizeof(struct cryptop), NULL, NULL, NULL, NULL,
UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
crypto_drivers_size = CRYPTO_DRIVERS_INITIAL;
crypto_drivers = malloc(crypto_drivers_size *
sizeof(struct cryptocap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus)
crypto_workers_num = mp_ncpus;
crypto_tq = taskqueue_create("crypto", M_WAITOK | M_ZERO,
taskqueue_thread_enqueue, &crypto_tq);
taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN,
"crypto");
error = kproc_create((void (*)(void *)) crypto_proc, NULL,
&cryptoproc, 0, 0, "crypto");
if (error) {
printf("crypto_init: cannot start crypto thread; error %d",
error);
goto bad;
}
crypto_ret_workers = mallocarray(crypto_workers_num,
sizeof(struct crypto_ret_worker), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
FOREACH_CRYPTO_RETW(ret_worker) {
TAILQ_INIT(&ret_worker->crp_ordered_ret_q);
TAILQ_INIT(&ret_worker->crp_ret_q);
ret_worker->reorder_ops = 0;
ret_worker->reorder_cur_seq = 0;
mtx_init(&ret_worker->crypto_ret_mtx, "crypto", "crypto return queues", MTX_DEF);
error = kproc_create((void (*)(void *)) crypto_ret_proc, ret_worker,
&ret_worker->cryptoretproc, 0, 0, "crypto returns %td", CRYPTO_RETW_ID(ret_worker));
if (error) {
printf("crypto_init: cannot start cryptoret thread; error %d",
error);
goto bad;
}
}
keybuf_init();
return 0;
bad:
crypto_destroy();
return error;
}
/*
* Signal a crypto thread to terminate. We use the driver
* table lock to synchronize the sleep/wakeups so that we
* are sure the threads have terminated before we release
* the data structures they use. See crypto_finis below
* for the other half of this song-and-dance.
*/
static void
crypto_terminate(struct proc **pp, void *q)
{
struct proc *p;
mtx_assert(&crypto_drivers_mtx, MA_OWNED);
p = *pp;
*pp = NULL;
if (p) {
wakeup_one(q);
PROC_LOCK(p); /* NB: insure we don't miss wakeup */
CRYPTO_DRIVER_UNLOCK(); /* let crypto_finis progress */
msleep(p, &p->p_mtx, PWAIT, "crypto_destroy", 0);
PROC_UNLOCK(p);
CRYPTO_DRIVER_LOCK();
}
}
static void
hmac_init_pad(const struct auth_hash *axf, const char *key, int klen,
void *auth_ctx, uint8_t padval)
{
uint8_t hmac_key[HMAC_MAX_BLOCK_LEN];
u_int i;
KASSERT(axf->blocksize <= sizeof(hmac_key),
("Invalid HMAC block size %d", axf->blocksize));
/*
* If the key is larger than the block size, use the digest of
* the key as the key instead.
*/
memset(hmac_key, 0, sizeof(hmac_key));
if (klen > axf->blocksize) {
axf->Init(auth_ctx);
axf->Update(auth_ctx, key, klen);
axf->Final(hmac_key, auth_ctx);
klen = axf->hashsize;
} else
memcpy(hmac_key, key, klen);
for (i = 0; i < axf->blocksize; i++)
hmac_key[i] ^= padval;
axf->Init(auth_ctx);
axf->Update(auth_ctx, hmac_key, axf->blocksize);
explicit_bzero(hmac_key, sizeof(hmac_key));
}
void
hmac_init_ipad(const struct auth_hash *axf, const char *key, int klen,
void *auth_ctx)
{
hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL);
}
void
hmac_init_opad(const struct auth_hash *axf, const char *key, int klen,
void *auth_ctx)
{
hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL);
}
static void
crypto_destroy(void)
{
struct crypto_ret_worker *ret_worker;
int i;
/*
* Terminate any crypto threads.
*/
if (crypto_tq != NULL)
taskqueue_drain_all(crypto_tq);
CRYPTO_DRIVER_LOCK();
crypto_terminate(&cryptoproc, &crp_q);
FOREACH_CRYPTO_RETW(ret_worker)
crypto_terminate(&ret_worker->cryptoretproc, &ret_worker->crp_ret_q);
CRYPTO_DRIVER_UNLOCK();
/* XXX flush queues??? */
/*
* Reclaim dynamically allocated resources.
*/
for (i = 0; i < crypto_drivers_size; i++) {
if (crypto_drivers[i] != NULL)
cap_rele(crypto_drivers[i]);
}
free(crypto_drivers, M_CRYPTO_DATA);
if (cryptop_zone != NULL)
uma_zdestroy(cryptop_zone);
mtx_destroy(&crypto_q_mtx);
FOREACH_CRYPTO_RETW(ret_worker)
mtx_destroy(&ret_worker->crypto_ret_mtx);
free(crypto_ret_workers, M_CRYPTO_DATA);
if (crypto_tq != NULL)
taskqueue_free(crypto_tq);
mtx_destroy(&crypto_drivers_mtx);
}
uint32_t
crypto_ses2hid(crypto_session_t crypto_session)
{
return (crypto_session->cap->cc_hid);
}
uint32_t
crypto_ses2caps(crypto_session_t crypto_session)
{
return (crypto_session->cap->cc_flags & 0xff000000);
}
void *
crypto_get_driver_session(crypto_session_t crypto_session)
{
return (crypto_session + 1);
}
const struct crypto_session_params *
crypto_get_params(crypto_session_t crypto_session)
{
return (&crypto_session->csp);
}
struct auth_hash *
crypto_auth_hash(const struct crypto_session_params *csp)
{
switch (csp->csp_auth_alg) {
case CRYPTO_SHA1_HMAC:
return (&auth_hash_hmac_sha1);
case CRYPTO_SHA2_224_HMAC:
return (&auth_hash_hmac_sha2_224);
case CRYPTO_SHA2_256_HMAC:
return (&auth_hash_hmac_sha2_256);
case CRYPTO_SHA2_384_HMAC:
return (&auth_hash_hmac_sha2_384);
case CRYPTO_SHA2_512_HMAC:
return (&auth_hash_hmac_sha2_512);
case CRYPTO_NULL_HMAC:
return (&auth_hash_null);
case CRYPTO_RIPEMD160_HMAC:
return (&auth_hash_hmac_ripemd_160);
case CRYPTO_SHA1:
return (&auth_hash_sha1);
case CRYPTO_SHA2_224:
return (&auth_hash_sha2_224);
case CRYPTO_SHA2_256:
return (&auth_hash_sha2_256);
case CRYPTO_SHA2_384:
return (&auth_hash_sha2_384);
case CRYPTO_SHA2_512:
return (&auth_hash_sha2_512);
case CRYPTO_AES_NIST_GMAC:
switch (csp->csp_auth_klen) {
case 128 / 8:
return (&auth_hash_nist_gmac_aes_128);
case 192 / 8:
return (&auth_hash_nist_gmac_aes_192);
case 256 / 8:
return (&auth_hash_nist_gmac_aes_256);
default:
return (NULL);
}
case CRYPTO_BLAKE2B:
return (&auth_hash_blake2b);
case CRYPTO_BLAKE2S:
return (&auth_hash_blake2s);
case CRYPTO_POLY1305:
return (&auth_hash_poly1305);
case CRYPTO_AES_CCM_CBC_MAC:
switch (csp->csp_auth_klen) {
case 128 / 8:
return (&auth_hash_ccm_cbc_mac_128);
case 192 / 8:
return (&auth_hash_ccm_cbc_mac_192);
case 256 / 8:
return (&auth_hash_ccm_cbc_mac_256);
default:
return (NULL);
}
default:
return (NULL);
}
}
struct enc_xform *
crypto_cipher(const struct crypto_session_params *csp)
{
switch (csp->csp_cipher_alg) {
case CRYPTO_RIJNDAEL128_CBC:
return (&enc_xform_rijndael128);
case CRYPTO_AES_XTS:
return (&enc_xform_aes_xts);
case CRYPTO_AES_ICM:
return (&enc_xform_aes_icm);
case CRYPTO_AES_NIST_GCM_16:
return (&enc_xform_aes_nist_gcm);
case CRYPTO_CAMELLIA_CBC:
return (&enc_xform_camellia);
case CRYPTO_NULL_CBC:
return (&enc_xform_null);
case CRYPTO_CHACHA20:
return (&enc_xform_chacha20);
case CRYPTO_AES_CCM_16:
return (&enc_xform_ccm);
case CRYPTO_CHACHA20_POLY1305:
return (&enc_xform_chacha20_poly1305);
default:
return (NULL);
}
}
static struct cryptocap *
crypto_checkdriver(uint32_t hid)
{
return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]);
}
/*
* Select a driver for a new session that supports the specified
* algorithms and, optionally, is constrained according to the flags.
*/
static struct cryptocap *
crypto_select_driver(const struct crypto_session_params *csp, int flags)
{
struct cryptocap *cap, *best;
int best_match, error, hid;
CRYPTO_DRIVER_ASSERT();
best = NULL;
for (hid = 0; hid < crypto_drivers_size; hid++) {
/*
* If there is no driver for this slot, or the driver
* is not appropriate (hardware or software based on
* match), then skip.
*/
cap = crypto_drivers[hid];
if (cap == NULL ||
(cap->cc_flags & flags) == 0)
continue;
error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp);
if (error >= 0)
continue;
/*
* Use the driver with the highest probe value.
* Hardware drivers use a higher probe value than
* software. In case of a tie, prefer the driver with
* the fewest active sessions.
*/
if (best == NULL || error > best_match ||
(error == best_match &&
cap->cc_sessions < best->cc_sessions)) {
best = cap;
best_match = error;
}
}
return best;
}
static enum alg_type {
ALG_NONE = 0,
ALG_CIPHER,
ALG_DIGEST,
ALG_KEYED_DIGEST,
ALG_COMPRESSION,
ALG_AEAD
} alg_types[] = {
[CRYPTO_SHA1_HMAC] = ALG_KEYED_DIGEST,
[CRYPTO_RIPEMD160_HMAC] = ALG_KEYED_DIGEST,
[CRYPTO_AES_CBC] = ALG_CIPHER,
[CRYPTO_SHA1] = ALG_DIGEST,
[CRYPTO_NULL_HMAC] = ALG_DIGEST,
[CRYPTO_NULL_CBC] = ALG_CIPHER,
[CRYPTO_DEFLATE_COMP] = ALG_COMPRESSION,
[CRYPTO_SHA2_256_HMAC] = ALG_KEYED_DIGEST,
[CRYPTO_SHA2_384_HMAC] = ALG_KEYED_DIGEST,
[CRYPTO_SHA2_512_HMAC] = ALG_KEYED_DIGEST,
[CRYPTO_CAMELLIA_CBC] = ALG_CIPHER,
[CRYPTO_AES_XTS] = ALG_CIPHER,
[CRYPTO_AES_ICM] = ALG_CIPHER,
[CRYPTO_AES_NIST_GMAC] = ALG_KEYED_DIGEST,
[CRYPTO_AES_NIST_GCM_16] = ALG_AEAD,
[CRYPTO_BLAKE2B] = ALG_KEYED_DIGEST,
[CRYPTO_BLAKE2S] = ALG_KEYED_DIGEST,
[CRYPTO_CHACHA20] = ALG_CIPHER,
[CRYPTO_SHA2_224_HMAC] = ALG_KEYED_DIGEST,
[CRYPTO_RIPEMD160] = ALG_DIGEST,
[CRYPTO_SHA2_224] = ALG_DIGEST,
[CRYPTO_SHA2_256] = ALG_DIGEST,
[CRYPTO_SHA2_384] = ALG_DIGEST,
[CRYPTO_SHA2_512] = ALG_DIGEST,
[CRYPTO_POLY1305] = ALG_KEYED_DIGEST,
[CRYPTO_AES_CCM_CBC_MAC] = ALG_KEYED_DIGEST,
[CRYPTO_AES_CCM_16] = ALG_AEAD,
[CRYPTO_CHACHA20_POLY1305] = ALG_AEAD,
};
static enum alg_type
alg_type(int alg)
{
if (alg < nitems(alg_types))
return (alg_types[alg]);
return (ALG_NONE);
}
static bool
alg_is_compression(int alg)
{
return (alg_type(alg) == ALG_COMPRESSION);
}
static bool
alg_is_cipher(int alg)
{
return (alg_type(alg) == ALG_CIPHER);
}
static bool
alg_is_digest(int alg)
{
return (alg_type(alg) == ALG_DIGEST ||
alg_type(alg) == ALG_KEYED_DIGEST);
}
static bool
alg_is_keyed_digest(int alg)
{
return (alg_type(alg) == ALG_KEYED_DIGEST);
}
static bool
alg_is_aead(int alg)
{
return (alg_type(alg) == ALG_AEAD);
}
#define SUPPORTED_SES (CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD | CSP_F_ESN)
/* Various sanity checks on crypto session parameters. */
static bool
check_csp(const struct crypto_session_params *csp)
{
struct auth_hash *axf;
/* Mode-independent checks. */
if ((csp->csp_flags & ~(SUPPORTED_SES)) != 0)
return (false);
if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 ||
csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0)
return (false);
if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0)
return (false);
if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0)
return (false);
switch (csp->csp_mode) {
case CSP_MODE_COMPRESS:
if (!alg_is_compression(csp->csp_cipher_alg))
return (false);
if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT)
return (false);
if (csp->csp_flags & CSP_F_SEPARATE_AAD)
return (false);
if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 ||
csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
csp->csp_auth_mlen != 0)
return (false);
break;
case CSP_MODE_CIPHER:
if (!alg_is_cipher(csp->csp_cipher_alg))
return (false);
if (csp->csp_flags & CSP_F_SEPARATE_AAD)
return (false);
if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
if (csp->csp_cipher_klen == 0)
return (false);
if (csp->csp_ivlen == 0)
return (false);
}
if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
return (false);
if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
csp->csp_auth_mlen != 0)
return (false);
break;
case CSP_MODE_DIGEST:
if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0)
return (false);
if (csp->csp_flags & CSP_F_SEPARATE_AAD)
return (false);
/* IV is optional for digests (e.g. GMAC). */
if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
return (false);
if (!alg_is_digest(csp->csp_auth_alg))
return (false);
/* Key is optional for BLAKE2 digests. */
if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
csp->csp_auth_alg == CRYPTO_BLAKE2S)
;
else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
if (csp->csp_auth_klen == 0)
return (false);
} else {
if (csp->csp_auth_klen != 0)
return (false);
}
if (csp->csp_auth_mlen != 0) {
axf = crypto_auth_hash(csp);
if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
return (false);
}
break;
case CSP_MODE_AEAD:
if (!alg_is_aead(csp->csp_cipher_alg))
return (false);
if (csp->csp_cipher_klen == 0)
return (false);
if (csp->csp_ivlen == 0 ||
csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
return (false);
if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0)
return (false);
/*
* XXX: Would be nice to have a better way to get this
* value.
*/
switch (csp->csp_cipher_alg) {
case CRYPTO_AES_NIST_GCM_16:
case CRYPTO_AES_CCM_16:
case CRYPTO_CHACHA20_POLY1305:
if (csp->csp_auth_mlen > 16)
return (false);
break;
}
break;
case CSP_MODE_ETA:
if (!alg_is_cipher(csp->csp_cipher_alg))
return (false);
if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
if (csp->csp_cipher_klen == 0)
return (false);
if (csp->csp_ivlen == 0)
return (false);
}
if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
return (false);
if (!alg_is_digest(csp->csp_auth_alg))
return (false);
/* Key is optional for BLAKE2 digests. */
if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
csp->csp_auth_alg == CRYPTO_BLAKE2S)
;
else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
if (csp->csp_auth_klen == 0)
return (false);
} else {
if (csp->csp_auth_klen != 0)
return (false);
}
if (csp->csp_auth_mlen != 0) {
axf = crypto_auth_hash(csp);
if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
return (false);
}
break;
default:
return (false);
}
return (true);
}
/*
* Delete a session after it has been detached from its driver.
*/
static void
crypto_deletesession(crypto_session_t cses)
{
struct cryptocap *cap;
cap = cses->cap;
zfree(cses, M_CRYPTO_DATA);
CRYPTO_DRIVER_LOCK();
cap->cc_sessions--;
if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP)
wakeup(cap);
CRYPTO_DRIVER_UNLOCK();
cap_rele(cap);
}
/*
* Create a new session. The crid argument specifies a crypto
* driver to use or constraints on a driver to select (hardware
* only, software only, either). Whatever driver is selected
* must be capable of the requested crypto algorithms.
*/
int
crypto_newsession(crypto_session_t *cses,
const struct crypto_session_params *csp, int crid)
{
static uint64_t sessid = 0;
crypto_session_t res;
struct cryptocap *cap;
int err;
if (!check_csp(csp))
return (EINVAL);
res = NULL;
CRYPTO_DRIVER_LOCK();
if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
/*
* Use specified driver; verify it is capable.
*/
cap = crypto_checkdriver(crid);
if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0)
cap = NULL;
} else {
/*
* No requested driver; select based on crid flags.
*/
cap = crypto_select_driver(csp, crid);
}
if (cap == NULL) {
CRYPTO_DRIVER_UNLOCK();
CRYPTDEB("no driver");
return (EOPNOTSUPP);
}
cap_ref(cap);
cap->cc_sessions++;
CRYPTO_DRIVER_UNLOCK();
/* Allocate a single block for the generic session and driver softc. */
res = malloc(sizeof(*res) + cap->cc_session_size, M_CRYPTO_DATA,
M_WAITOK | M_ZERO);
res->cap = cap;
res->csp = *csp;
res->id = atomic_fetchadd_64(&sessid, 1);
/* Call the driver initialization routine. */
err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp);
if (err != 0) {
CRYPTDEB("dev newsession failed: %d", err);
crypto_deletesession(res);
return (err);
}
*cses = res;
return (0);
}
/*
* Delete an existing session (or a reserved session on an unregistered
* driver).
*/
void
crypto_freesession(crypto_session_t cses)
{
struct cryptocap *cap;
if (cses == NULL)
return;
cap = cses->cap;
/* Call the driver cleanup routine, if available. */
CRYPTODEV_FREESESSION(cap->cc_dev, cses);
crypto_deletesession(cses);
}
/*
* Return a new driver id. Registers a driver with the system so that
* it can be probed by subsequent sessions.
*/
int32_t
crypto_get_driverid(device_t dev, size_t sessionsize, int flags)
{
struct cryptocap *cap, **newdrv;
int i;
if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
device_printf(dev,
"no flags specified when registering driver\n");
return -1;
}
cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
cap->cc_dev = dev;
cap->cc_session_size = sessionsize;
cap->cc_flags = flags;
refcount_init(&cap->cc_refs, 1);
CRYPTO_DRIVER_LOCK();
for (;;) {
for (i = 0; i < crypto_drivers_size; i++) {
if (crypto_drivers[i] == NULL)
break;
}
if (i < crypto_drivers_size)
break;
/* Out of entries, allocate some more. */
if (2 * crypto_drivers_size <= crypto_drivers_size) {
CRYPTO_DRIVER_UNLOCK();
printf("crypto: driver count wraparound!\n");
cap_rele(cap);
return (-1);
}
CRYPTO_DRIVER_UNLOCK();
newdrv = malloc(2 * crypto_drivers_size *
sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
CRYPTO_DRIVER_LOCK();
memcpy(newdrv, crypto_drivers,
crypto_drivers_size * sizeof(*crypto_drivers));
crypto_drivers_size *= 2;
free(crypto_drivers, M_CRYPTO_DATA);
crypto_drivers = newdrv;
}
cap->cc_hid = i;
crypto_drivers[i] = cap;
CRYPTO_DRIVER_UNLOCK();
if (bootverbose)
printf("crypto: assign %s driver id %u, flags 0x%x\n",
device_get_nameunit(dev), i, flags);
return i;
}
/*
* Lookup a driver by name. We match against the full device
* name and unit, and against just the name. The latter gives
* us a simple widlcarding by device name. On success return the
* driver/hardware identifier; otherwise return -1.
*/
int
crypto_find_driver(const char *match)
{
struct cryptocap *cap;
int i, len = strlen(match);
CRYPTO_DRIVER_LOCK();
for (i = 0; i < crypto_drivers_size; i++) {
if (crypto_drivers[i] == NULL)
continue;
cap = crypto_drivers[i];
if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 ||
strncmp(match, device_get_name(cap->cc_dev), len) == 0) {
CRYPTO_DRIVER_UNLOCK();
return (i);
}
}
CRYPTO_DRIVER_UNLOCK();
return (-1);
}
/*
* Return the device_t for the specified driver or NULL
* if the driver identifier is invalid.
*/
device_t
crypto_find_device_byhid(int hid)
{
struct cryptocap *cap;
device_t dev;
dev = NULL;
CRYPTO_DRIVER_LOCK();
cap = crypto_checkdriver(hid);
if (cap != NULL)
dev = cap->cc_dev;
CRYPTO_DRIVER_UNLOCK();
return (dev);
}
/*
* Return the device/driver capabilities.
*/
int
crypto_getcaps(int hid)
{
struct cryptocap *cap;
int flags;
flags = 0;
CRYPTO_DRIVER_LOCK();
cap = crypto_checkdriver(hid);
if (cap != NULL)
flags = cap->cc_flags;
CRYPTO_DRIVER_UNLOCK();
return (flags);
}
/*
* Unregister all algorithms associated with a crypto driver.
* If there are pending sessions using it, leave enough information
* around so that subsequent calls using those sessions will
* correctly detect the driver has been unregistered and reroute
* requests.
*/
int
crypto_unregister_all(uint32_t driverid)
{
struct cryptocap *cap;
CRYPTO_DRIVER_LOCK();
cap = crypto_checkdriver(driverid);
if (cap == NULL) {
CRYPTO_DRIVER_UNLOCK();
return (EINVAL);
}
cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
crypto_drivers[driverid] = NULL;
/*
* XXX: This doesn't do anything to kick sessions that
* have no pending operations.
*/
while (cap->cc_sessions != 0)
mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0);
CRYPTO_DRIVER_UNLOCK();
cap_rele(cap);
return (0);
}
/*
* Clear blockage on a driver. The what parameter indicates whether
* the driver is now ready for cryptop's and/or cryptokop's.
*/
int
crypto_unblock(uint32_t driverid, int what)
{
struct cryptocap *cap;
int err;
CRYPTO_Q_LOCK();
cap = crypto_checkdriver(driverid);
if (cap != NULL) {
if (what & CRYPTO_SYMQ)
cap->cc_qblocked = 0;
if (crp_sleep)
wakeup_one(&crp_q);
err = 0;
} else
err = EINVAL;
CRYPTO_Q_UNLOCK();
return err;
}
size_t
crypto_buffer_len(struct crypto_buffer *cb)
{
switch (cb->cb_type) {
case CRYPTO_BUF_CONTIG:
return (cb->cb_buf_len);
case CRYPTO_BUF_MBUF:
if (cb->cb_mbuf->m_flags & M_PKTHDR)
return (cb->cb_mbuf->m_pkthdr.len);
return (m_length(cb->cb_mbuf, NULL));
case CRYPTO_BUF_SINGLE_MBUF:
return (cb->cb_mbuf->m_len);
case CRYPTO_BUF_VMPAGE:
return (cb->cb_vm_page_len);
case CRYPTO_BUF_UIO:
return (cb->cb_uio->uio_resid);
default:
return (0);
}
}
#ifdef INVARIANTS
/* Various sanity checks on crypto requests. */
static void
cb_sanity(struct crypto_buffer *cb, const char *name)
{
KASSERT(cb->cb_type > CRYPTO_BUF_NONE && cb->cb_type <= CRYPTO_BUF_LAST,
("incoming crp with invalid %s buffer type", name));
switch (cb->cb_type) {
case CRYPTO_BUF_CONTIG:
KASSERT(cb->cb_buf_len >= 0,
("incoming crp with -ve %s buffer length", name));
break;
case CRYPTO_BUF_VMPAGE:
KASSERT(CRYPTO_HAS_VMPAGE,
("incoming crp uses dmap on supported arch"));
KASSERT(cb->cb_vm_page_len >= 0,
("incoming crp with -ve %s buffer length", name));
KASSERT(cb->cb_vm_page_offset >= 0,
("incoming crp with -ve %s buffer offset", name));
KASSERT(cb->cb_vm_page_offset < PAGE_SIZE,
("incoming crp with %s buffer offset greater than page size"
, name));
break;
default:
break;
}
}
static void
crp_sanity(struct cryptop *crp)
{
struct crypto_session_params *csp;
struct crypto_buffer *out;
size_t ilen, len, olen;
KASSERT(crp->crp_session != NULL, ("incoming crp without a session"));
KASSERT(crp->crp_obuf.cb_type >= CRYPTO_BUF_NONE &&
crp->crp_obuf.cb_type <= CRYPTO_BUF_LAST,
("incoming crp with invalid output buffer type"));
KASSERT(crp->crp_etype == 0, ("incoming crp with error"));
KASSERT(!(crp->crp_flags & CRYPTO_F_DONE),
("incoming crp already done"));
csp = &crp->crp_session->csp;
cb_sanity(&crp->crp_buf, "input");
ilen = crypto_buffer_len(&crp->crp_buf);
olen = ilen;
out = NULL;
if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) {
if (crp->crp_obuf.cb_type != CRYPTO_BUF_NONE) {
cb_sanity(&crp->crp_obuf, "output");
out = &crp->crp_obuf;
olen = crypto_buffer_len(out);
}
} else
KASSERT(crp->crp_obuf.cb_type == CRYPTO_BUF_NONE,
("incoming crp with separate output buffer "
"but no session support"));
switch (csp->csp_mode) {
case CSP_MODE_COMPRESS:
KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS ||
crp->crp_op == CRYPTO_OP_DECOMPRESS,
("invalid compression op %x", crp->crp_op));
break;
case CSP_MODE_CIPHER:
KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT ||
crp->crp_op == CRYPTO_OP_DECRYPT,
("invalid cipher op %x", crp->crp_op));
break;
case CSP_MODE_DIGEST:
KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST ||
crp->crp_op == CRYPTO_OP_VERIFY_DIGEST,
("invalid digest op %x", crp->crp_op));
break;
case CSP_MODE_AEAD:
KASSERT(crp->crp_op ==
(CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
crp->crp_op ==
(CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
("invalid AEAD op %x", crp->crp_op));
KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE,
("AEAD without a separate IV"));
break;
case CSP_MODE_ETA:
KASSERT(crp->crp_op ==
(CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
crp->crp_op ==
(CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
("invalid ETA op %x", crp->crp_op));
break;
}
if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
if (crp->crp_aad == NULL) {
KASSERT(crp->crp_aad_start == 0 ||
crp->crp_aad_start < ilen,
("invalid AAD start"));
KASSERT(crp->crp_aad_length != 0 ||
crp->crp_aad_start == 0,
("AAD with zero length and non-zero start"));
KASSERT(crp->crp_aad_length == 0 ||
crp->crp_aad_start + crp->crp_aad_length <= ilen,
("AAD outside input length"));
} else {
KASSERT(csp->csp_flags & CSP_F_SEPARATE_AAD,
("session doesn't support separate AAD buffer"));
KASSERT(crp->crp_aad_start == 0,
("separate AAD buffer with non-zero AAD start"));
KASSERT(crp->crp_aad_length != 0,
("separate AAD buffer with zero length"));
}
} else {
KASSERT(crp->crp_aad == NULL && crp->crp_aad_start == 0 &&
crp->crp_aad_length == 0,
("AAD region in request not supporting AAD"));
}
if (csp->csp_ivlen == 0) {
KASSERT((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0,
("IV_SEPARATE set when IV isn't used"));
KASSERT(crp->crp_iv_start == 0,
("crp_iv_start set when IV isn't used"));
} else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) {
KASSERT(crp->crp_iv_start == 0,
("IV_SEPARATE used with non-zero IV start"));
} else {
KASSERT(crp->crp_iv_start < ilen,
("invalid IV start"));
KASSERT(crp->crp_iv_start + csp->csp_ivlen <= ilen,
("IV outside buffer length"));
}
/* XXX: payload_start of 0 should always be < ilen? */
KASSERT(crp->crp_payload_start == 0 ||
crp->crp_payload_start < ilen,
("invalid payload start"));
KASSERT(crp->crp_payload_start + crp->crp_payload_length <=
ilen, ("payload outside input buffer"));
if (out == NULL) {
KASSERT(crp->crp_payload_output_start == 0,
("payload output start non-zero without output buffer"));
} else {
KASSERT(crp->crp_payload_output_start < olen,
("invalid payload output start"));
KASSERT(crp->crp_payload_output_start +
crp->crp_payload_length <= olen,
("payload outside output buffer"));
}
if (csp->csp_mode == CSP_MODE_DIGEST ||
csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST)
len = ilen;
else
len = olen;
KASSERT(crp->crp_digest_start == 0 ||
crp->crp_digest_start < len,
("invalid digest start"));
/* XXX: For the mlen == 0 case this check isn't perfect. */
KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <= len,
("digest outside buffer"));
} else {
KASSERT(crp->crp_digest_start == 0,
("non-zero digest start for request without a digest"));
}
if (csp->csp_cipher_klen != 0)
KASSERT(csp->csp_cipher_key != NULL ||
crp->crp_cipher_key != NULL,
("cipher request without a key"));
if (csp->csp_auth_klen != 0)
KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL,
("auth request without a key"));
KASSERT(crp->crp_callback != NULL, ("incoming crp without callback"));
}
#endif
static int
crypto_dispatch_one(struct cryptop *crp, int hint)
{
struct cryptocap *cap;
int result;
#ifdef INVARIANTS
crp_sanity(crp);
#endif
CRYPTOSTAT_INC(cs_ops);
crp->crp_retw_id = crp->crp_session->id % crypto_workers_num;
/*
* Caller marked the request to be processed immediately; dispatch it
* directly to the driver unless the driver is currently blocked, in
* which case it is queued for deferred dispatch.
*/
cap = crp->crp_session->cap;
if (!atomic_load_int(&cap->cc_qblocked)) {
result = crypto_invoke(cap, crp, hint);
if (result != ERESTART)
return (result);
/*
* The driver ran out of resources, put the request on the
* queue.
*/
}
crypto_batch_enqueue(crp);
return (0);
}
int
crypto_dispatch(struct cryptop *crp)
{
return (crypto_dispatch_one(crp, 0));
}
int
crypto_dispatch_async(struct cryptop *crp, int flags)
{
struct crypto_ret_worker *ret_worker;
if (!CRYPTO_SESS_SYNC(crp->crp_session)) {
/*
* The driver issues completions asynchonously, don't bother
* deferring dispatch to a worker thread.
*/
return (crypto_dispatch(crp));
}
#ifdef INVARIANTS
crp_sanity(crp);
#endif
CRYPTOSTAT_INC(cs_ops);
crp->crp_retw_id = crp->crp_session->id % crypto_workers_num;
if ((flags & CRYPTO_ASYNC_ORDERED) != 0) {
crp->crp_flags |= CRYPTO_F_ASYNC_ORDERED;
ret_worker = CRYPTO_RETW(crp->crp_retw_id);
CRYPTO_RETW_LOCK(ret_worker);
crp->crp_seq = ret_worker->reorder_ops++;
CRYPTO_RETW_UNLOCK(ret_worker);
}
TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp);
taskqueue_enqueue(crypto_tq, &crp->crp_task);
return (0);
}
void
crypto_dispatch_batch(struct cryptopq *crpq, int flags)
{
struct cryptop *crp;
int hint;
while ((crp = TAILQ_FIRST(crpq)) != NULL) {
hint = TAILQ_NEXT(crp, crp_next) != NULL ? CRYPTO_HINT_MORE : 0;
TAILQ_REMOVE(crpq, crp, crp_next);
if (crypto_dispatch_one(crp, hint) != 0)
crypto_batch_enqueue(crp);
}
}
static void
crypto_batch_enqueue(struct cryptop *crp)
{
CRYPTO_Q_LOCK();
TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
if (crp_sleep)
wakeup_one(&crp_q);
CRYPTO_Q_UNLOCK();
}
static void
crypto_task_invoke(void *ctx, int pending)
{
struct cryptocap *cap;
struct cryptop *crp;
int result;
crp = (struct cryptop *)ctx;
cap = crp->crp_session->cap;
result = crypto_invoke(cap, crp, 0);
if (result == ERESTART)
crypto_batch_enqueue(crp);
}
/*
* Dispatch a crypto request to the appropriate crypto devices.
*/
static int
crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
{
KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
KASSERT(crp->crp_callback != NULL,
("%s: crp->crp_callback == NULL", __func__));
KASSERT(crp->crp_session != NULL,
("%s: crp->crp_session == NULL", __func__));
if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
struct crypto_session_params csp;
crypto_session_t nses;
/*
* Driver has unregistered; migrate the session and return
* an error to the caller so they'll resubmit the op.
*
* XXX: What if there are more already queued requests for this
* session?
*
* XXX: Real solution is to make sessions refcounted
* and force callers to hold a reference when
* assigning to crp_session. Could maybe change
* crypto_getreq to accept a session pointer to make
* that work. Alternatively, we could abandon the
* notion of rewriting crp_session in requests forcing
* the caller to deal with allocating a new session.
* Perhaps provide a method to allow a crp's session to
* be swapped that callers could use.
*/
csp = crp->crp_session->csp;
crypto_freesession(crp->crp_session);
/*
* XXX: Key pointers may no longer be valid. If we
* really want to support this we need to define the
* KPI such that 'csp' is required to be valid for the
* duration of a session by the caller perhaps.
*
* XXX: If the keys have been changed this will reuse
* the old keys. This probably suggests making
* rekeying more explicit and updating the key
* pointers in 'csp' when the keys change.
*/
if (crypto_newsession(&nses, &csp,
CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
crp->crp_session = nses;
crp->crp_etype = EAGAIN;
crypto_done(crp);
return 0;
} else {
/*
* Invoke the driver to process the request.
*/
return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
}
}
void
crypto_destroyreq(struct cryptop *crp)
{
#ifdef DIAGNOSTIC
{
struct cryptop *crp2;
struct crypto_ret_worker *ret_worker;
CRYPTO_Q_LOCK();
TAILQ_FOREACH(crp2, &crp_q, crp_next) {
KASSERT(crp2 != crp,
("Freeing cryptop from the crypto queue (%p).",
crp));
}
CRYPTO_Q_UNLOCK();
FOREACH_CRYPTO_RETW(ret_worker) {
CRYPTO_RETW_LOCK(ret_worker);
TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) {
KASSERT(crp2 != crp,
("Freeing cryptop from the return queue (%p).",
crp));
}
CRYPTO_RETW_UNLOCK(ret_worker);
}
}
#endif
}
void
crypto_freereq(struct cryptop *crp)
{
if (crp == NULL)
return;
crypto_destroyreq(crp);
uma_zfree(cryptop_zone, crp);
}
static void
_crypto_initreq(struct cryptop *crp, crypto_session_t cses)
{
crp->crp_session = cses;
}
void
crypto_initreq(struct cryptop *crp, crypto_session_t cses)
{
memset(crp, 0, sizeof(*crp));
_crypto_initreq(crp, cses);
}
struct cryptop *
crypto_getreq(crypto_session_t cses, int how)
{
struct cryptop *crp;
MPASS(how == M_WAITOK || how == M_NOWAIT);
crp = uma_zalloc(cryptop_zone, how | M_ZERO);
if (crp != NULL)
_crypto_initreq(crp, cses);
return (crp);
}
/*
* Invoke the callback on behalf of the driver.
*/
void
crypto_done(struct cryptop *crp)
{
KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
("crypto_done: op already done, flags 0x%x", crp->crp_flags));
crp->crp_flags |= CRYPTO_F_DONE;
if (crp->crp_etype != 0)
CRYPTOSTAT_INC(cs_errs);
/*
* CBIMM means unconditionally do the callback immediately;
* CBIFSYNC means do the callback immediately only if the
* operation was done synchronously. Both are used to avoid
* doing extraneous context switches; the latter is mostly
* used with the software crypto driver.
*/
if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) == 0 &&
((crp->crp_flags & CRYPTO_F_CBIMM) != 0 ||
((crp->crp_flags & CRYPTO_F_CBIFSYNC) != 0 &&
CRYPTO_SESS_SYNC(crp->crp_session)))) {
/*
* Do the callback directly. This is ok when the
* callback routine does very little (e.g. the
* /dev/crypto callback method just does a wakeup).
*/
crp->crp_callback(crp);
} else {
struct crypto_ret_worker *ret_worker;
bool wake;
ret_worker = CRYPTO_RETW(crp->crp_retw_id);
/*
* Normal case; queue the callback for the thread.
*/
CRYPTO_RETW_LOCK(ret_worker);
if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) != 0) {
struct cryptop *tmp;
TAILQ_FOREACH_REVERSE(tmp,
&ret_worker->crp_ordered_ret_q, cryptop_q,
crp_next) {
if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) {
TAILQ_INSERT_AFTER(
&ret_worker->crp_ordered_ret_q, tmp,
crp, crp_next);
break;
}
}
if (tmp == NULL) {
TAILQ_INSERT_HEAD(
&ret_worker->crp_ordered_ret_q, crp,
crp_next);
}
wake = crp->crp_seq == ret_worker->reorder_cur_seq;
} else {
wake = TAILQ_EMPTY(&ret_worker->crp_ret_q);
TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp,
crp_next);
}
if (wake)
wakeup_one(&ret_worker->crp_ret_q); /* shared wait channel */
CRYPTO_RETW_UNLOCK(ret_worker);
}
}
/*
* Terminate a thread at module unload. The process that
* initiated this is waiting for us to signal that we're gone;
* wake it up and exit. We use the driver table lock to insure
* we don't do the wakeup before they're waiting. There is no
* race here because the waiter sleeps on the proc lock for the
* thread so it gets notified at the right time because of an
* extra wakeup that's done in exit1().
*/
static void
crypto_finis(void *chan)
{
CRYPTO_DRIVER_LOCK();
wakeup_one(chan);
CRYPTO_DRIVER_UNLOCK();
kproc_exit(0);
}
/*
* Crypto thread, dispatches crypto requests.
*/
static void
crypto_proc(void)
{
struct cryptop *crp, *submit;
struct cryptocap *cap;
int result, hint;
#if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
fpu_kern_thread(FPU_KERN_NORMAL);
#endif
CRYPTO_Q_LOCK();
for (;;) {
/*
* Find the first element in the queue that can be
* processed and look-ahead to see if multiple ops
* are ready for the same driver.
*/
submit = NULL;
hint = 0;
TAILQ_FOREACH(crp, &crp_q, crp_next) {
cap = crp->crp_session->cap;
/*
* Driver cannot disappeared when there is an active
* session.
*/
KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
__func__, __LINE__));
if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
/* Op needs to be migrated, process it. */
if (submit == NULL)
submit = crp;
break;
}
if (!cap->cc_qblocked) {
if (submit != NULL) {
/*
* We stop on finding another op,
* regardless whether its for the same
* driver or not. We could keep
* searching the queue but it might be
* better to just use a per-driver
* queue instead.
*/
if (submit->crp_session->cap == cap)
hint = CRYPTO_HINT_MORE;
} else {
submit = crp;
}
break;
}
}
if (submit != NULL) {
TAILQ_REMOVE(&crp_q, submit, crp_next);
cap = submit->crp_session->cap;
KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
__func__, __LINE__));
CRYPTO_Q_UNLOCK();
result = crypto_invoke(cap, submit, hint);
CRYPTO_Q_LOCK();
if (result == ERESTART) {
/*
* The driver ran out of resources, mark the
* driver ``blocked'' for cryptop's and put
* the request back in the queue. It would
* best to put the request back where we got
* it but that's hard so for now we put it
* at the front. This should be ok; putting
* it at the end does not work.
*/
cap->cc_qblocked = 1;
TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
CRYPTOSTAT_INC(cs_blocks);
}
} else {
/*
* Nothing more to be processed. Sleep until we're
* woken because there are more ops to process.
* This happens either by submission or by a driver
* becoming unblocked and notifying us through
* crypto_unblock. Note that when we wakeup we
* start processing each queue again from the
* front. It's not clear that it's important to
* preserve this ordering since ops may finish
* out of order if dispatched to different devices
* and some become blocked while others do not.
*/
crp_sleep = 1;
msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0);
crp_sleep = 0;
if (cryptoproc == NULL)
break;
CRYPTOSTAT_INC(cs_intrs);
}
}
CRYPTO_Q_UNLOCK();
crypto_finis(&crp_q);
}
/*
* Crypto returns thread, does callbacks for processed crypto requests.
* Callbacks are done here, rather than in the crypto drivers, because
* callbacks typically are expensive and would slow interrupt handling.
*/
static void
crypto_ret_proc(struct crypto_ret_worker *ret_worker)
{
struct cryptop *crpt;
CRYPTO_RETW_LOCK(ret_worker);
for (;;) {
/* Harvest return q's for completed ops */
crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q);
if (crpt != NULL) {
if (crpt->crp_seq == ret_worker->reorder_cur_seq) {
TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next);
ret_worker->reorder_cur_seq++;
} else {
crpt = NULL;
}
}
if (crpt == NULL) {
crpt = TAILQ_FIRST(&ret_worker->crp_ret_q);
if (crpt != NULL)
TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next);
}
if (crpt != NULL) {
CRYPTO_RETW_UNLOCK(ret_worker);
/*
* Run callbacks unlocked.
*/
if (crpt != NULL)
crpt->crp_callback(crpt);
CRYPTO_RETW_LOCK(ret_worker);
} else {
/*
* Nothing more to be processed. Sleep until we're
* woken because there are more returns to process.
*/
msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT,
"crypto_ret_wait", 0);
if (ret_worker->cryptoretproc == NULL)
break;
CRYPTOSTAT_INC(cs_rets);
}
}
CRYPTO_RETW_UNLOCK(ret_worker);
crypto_finis(&ret_worker->crp_ret_q);
}
#ifdef DDB
static void
db_show_drivers(void)
{
int hid;
db_printf("%12s %4s %8s %2s\n"
, "Device"
, "Ses"
, "Flags"
, "QB"
);
for (hid = 0; hid < crypto_drivers_size; hid++) {
const struct cryptocap *cap = crypto_drivers[hid];
if (cap == NULL)
continue;
db_printf("%-12s %4u %08x %2u\n"
, device_get_nameunit(cap->cc_dev)
, cap->cc_sessions
, cap->cc_flags
, cap->cc_qblocked
);
}
}
DB_SHOW_COMMAND(crypto, db_show_crypto)
{
struct cryptop *crp;
struct crypto_ret_worker *ret_worker;
db_show_drivers();
db_printf("\n");
db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
"HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
"Device", "Callback");
TAILQ_FOREACH(crp, &crp_q, crp_next) {
db_printf("%4u %08x %4u %4u %04x %8p %8p\n"
, crp->crp_session->cap->cc_hid
, (int) crypto_ses2caps(crp->crp_session)
, crp->crp_olen
, crp->crp_etype
, crp->crp_flags
, device_get_nameunit(crp->crp_session->cap->cc_dev)
, crp->crp_callback
);
}
FOREACH_CRYPTO_RETW(ret_worker) {
db_printf("\n%8s %4s %4s %4s %8s\n",
"ret_worker", "HID", "Etype", "Flags", "Callback");
if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) {
db_printf("%8td %4u %4u %04x %8p\n"
, CRYPTO_RETW_ID(ret_worker)
, crp->crp_session->cap->cc_hid
, crp->crp_etype
, crp->crp_flags
, crp->crp_callback
);
}
}
}
}
#endif
int crypto_modevent(module_t mod, int type, void *unused);
/*
* Initialization code, both for static and dynamic loading.
* Note this is not invoked with the usual MODULE_DECLARE
* mechanism but instead is listed as a dependency by the
* cryptosoft driver. This guarantees proper ordering of
* calls on module load/unload.
*/
int
crypto_modevent(module_t mod, int type, void *unused)
{
int error = EINVAL;
switch (type) {
case MOD_LOAD:
error = crypto_init();
if (error == 0 && bootverbose)
printf("crypto: <crypto core>\n");
break;
case MOD_UNLOAD:
/*XXX disallow if active sessions */
error = 0;
crypto_destroy();
return 0;
}
return error;
}
MODULE_VERSION(crypto, 1);
MODULE_DEPEND(crypto, zlib, 1, 1, 1);