freebsd-nq/module/zfs/space_map.c
George Wilson f3a7f6610f Illumos 4976-4984 - metaslab improvements
4976 zfs should only avoid writing to a failing non-redundant top-level vdev
4978 ztest fails in get_metaslab_refcount()
4979 extend free space histogram to device and pool
4980 metaslabs should have a fragmentation metric
4981 remove fragmented ops vector from block allocator
4982 space_map object should proactively upgrade when feature is enabled
4983 need to collect metaslab information via mdb
4984 device selection should use fragmentation metric
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <adam.leventhal@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>

References:
  https://www.illumos.org/issues/4976
  https://www.illumos.org/issues/4978
  https://www.illumos.org/issues/4979
  https://www.illumos.org/issues/4980
  https://www.illumos.org/issues/4981
  https://www.illumos.org/issues/4982
  https://www.illumos.org/issues/4983
  https://www.illumos.org/issues/4984
  https://github.com/illumos/illumos-gate/commit/2e4c998

Notes:
    The "zdb -M" option has been re-tasked to display the new metaslab
    fragmentation metric and the new "zdb -I" option is used to control
    the maximum number of in-flight I/Os.

    The new fragmentation metric is derived from the space map histogram
    which has been rolled up to the vdev and pool level and is presented
    to the user via "zpool list".

    Add a number of module parameters related to the new metaslab weighting
    logic.

Ported by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2595
2014-08-18 08:40:49 -07:00

612 lines
16 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright (c) 2012, 2014 by Delphix. All rights reserved.
*/
#include <sys/zfs_context.h>
#include <sys/spa.h>
#include <sys/dmu.h>
#include <sys/dmu_tx.h>
#include <sys/dnode.h>
#include <sys/dsl_pool.h>
#include <sys/zio.h>
#include <sys/space_map.h>
#include <sys/refcount.h>
#include <sys/zfeature.h>
/*
* This value controls how the space map's block size is allowed to grow.
* If the value is set to the same size as SPACE_MAP_INITIAL_BLOCKSIZE then
* the space map block size will remain fixed. Setting this value to something
* greater than SPACE_MAP_INITIAL_BLOCKSIZE will allow the space map to
* increase its block size as needed. To maintain backwards compatibilty the
* space map's block size must be a power of 2 and SPACE_MAP_INITIAL_BLOCKSIZE
* or larger.
*/
int space_map_max_blksz = (1 << 12);
/*
* Load the space map disk into the specified range tree. Segments of maptype
* are added to the range tree, other segment types are removed.
*
* Note: space_map_load() will drop sm_lock across dmu_read() calls.
* The caller must be OK with this.
*/
int
space_map_load(space_map_t *sm, range_tree_t *rt, maptype_t maptype)
{
uint64_t *entry, *entry_map, *entry_map_end;
uint64_t bufsize, size, offset, end, space;
int error = 0;
ASSERT(MUTEX_HELD(sm->sm_lock));
end = space_map_length(sm);
space = space_map_allocated(sm);
VERIFY0(range_tree_space(rt));
if (maptype == SM_FREE) {
range_tree_add(rt, sm->sm_start, sm->sm_size);
space = sm->sm_size - space;
}
bufsize = MAX(sm->sm_blksz, SPA_MINBLOCKSIZE);
entry_map = zio_buf_alloc(bufsize);
mutex_exit(sm->sm_lock);
if (end > bufsize) {
dmu_prefetch(sm->sm_os, space_map_object(sm), bufsize,
end - bufsize);
}
mutex_enter(sm->sm_lock);
for (offset = 0; offset < end; offset += bufsize) {
size = MIN(end - offset, bufsize);
VERIFY(P2PHASE(size, sizeof (uint64_t)) == 0);
VERIFY(size != 0);
ASSERT3U(sm->sm_blksz, !=, 0);
dprintf("object=%llu offset=%llx size=%llx\n",
space_map_object(sm), offset, size);
mutex_exit(sm->sm_lock);
error = dmu_read(sm->sm_os, space_map_object(sm), offset, size,
entry_map, DMU_READ_PREFETCH);
mutex_enter(sm->sm_lock);
if (error != 0)
break;
entry_map_end = entry_map + (size / sizeof (uint64_t));
for (entry = entry_map; entry < entry_map_end; entry++) {
uint64_t e = *entry;
uint64_t offset, size;
if (SM_DEBUG_DECODE(e)) /* Skip debug entries */
continue;
offset = (SM_OFFSET_DECODE(e) << sm->sm_shift) +
sm->sm_start;
size = SM_RUN_DECODE(e) << sm->sm_shift;
VERIFY0(P2PHASE(offset, 1ULL << sm->sm_shift));
VERIFY0(P2PHASE(size, 1ULL << sm->sm_shift));
VERIFY3U(offset, >=, sm->sm_start);
VERIFY3U(offset + size, <=, sm->sm_start + sm->sm_size);
if (SM_TYPE_DECODE(e) == maptype) {
VERIFY3U(range_tree_space(rt) + size, <=,
sm->sm_size);
range_tree_add(rt, offset, size);
} else {
range_tree_remove(rt, offset, size);
}
}
}
if (error == 0)
VERIFY3U(range_tree_space(rt), ==, space);
else
range_tree_vacate(rt, NULL, NULL);
zio_buf_free(entry_map, bufsize);
return (error);
}
void
space_map_histogram_clear(space_map_t *sm)
{
if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
return;
bzero(sm->sm_phys->smp_histogram, sizeof (sm->sm_phys->smp_histogram));
}
boolean_t
space_map_histogram_verify(space_map_t *sm, range_tree_t *rt)
{
int i;
/*
* Verify that the in-core range tree does not have any
* ranges smaller than our sm_shift size.
*/
for (i = 0; i < sm->sm_shift; i++) {
if (rt->rt_histogram[i] != 0)
return (B_FALSE);
}
return (B_TRUE);
}
void
space_map_histogram_add(space_map_t *sm, range_tree_t *rt, dmu_tx_t *tx)
{
int idx = 0;
int i;
ASSERT(MUTEX_HELD(rt->rt_lock));
ASSERT(dmu_tx_is_syncing(tx));
VERIFY3U(space_map_object(sm), !=, 0);
if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
return;
dmu_buf_will_dirty(sm->sm_dbuf, tx);
ASSERT(space_map_histogram_verify(sm, rt));
/*
* Transfer the content of the range tree histogram to the space
* map histogram. The space map histogram contains 32 buckets ranging
* between 2^sm_shift to 2^(32+sm_shift-1). The range tree,
* however, can represent ranges from 2^0 to 2^63. Since the space
* map only cares about allocatable blocks (minimum of sm_shift) we
* can safely ignore all ranges in the range tree smaller than sm_shift.
*/
for (i = sm->sm_shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
/*
* Since the largest histogram bucket in the space map is
* 2^(32+sm_shift-1), we need to normalize the values in
* the range tree for any bucket larger than that size. For
* example given an sm_shift of 9, ranges larger than 2^40
* would get normalized as if they were 1TB ranges. Assume
* the range tree had a count of 5 in the 2^44 (16TB) bucket,
* the calculation below would normalize this to 5 * 2^4 (16).
*/
ASSERT3U(i, >=, idx + sm->sm_shift);
sm->sm_phys->smp_histogram[idx] +=
rt->rt_histogram[i] << (i - idx - sm->sm_shift);
/*
* Increment the space map's index as long as we haven't
* reached the maximum bucket size. Accumulate all ranges
* larger than the max bucket size into the last bucket.
*/
if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
ASSERT3U(idx + sm->sm_shift, ==, i);
idx++;
ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
}
}
}
uint64_t
space_map_entries(space_map_t *sm, range_tree_t *rt)
{
avl_tree_t *t = &rt->rt_root;
range_seg_t *rs;
uint64_t size, entries;
/*
* All space_maps always have a debug entry so account for it here.
*/
entries = 1;
/*
* Traverse the range tree and calculate the number of space map
* entries that would be required to write out the range tree.
*/
for (rs = avl_first(t); rs != NULL; rs = AVL_NEXT(t, rs)) {
size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
entries += howmany(size, SM_RUN_MAX);
}
return (entries);
}
void
space_map_set_blocksize(space_map_t *sm, uint64_t size, dmu_tx_t *tx)
{
uint32_t blksz;
u_longlong_t blocks;
ASSERT3U(sm->sm_blksz, !=, 0);
ASSERT3U(space_map_object(sm), !=, 0);
ASSERT(sm->sm_dbuf != NULL);
VERIFY(ISP2(space_map_max_blksz));
if (sm->sm_blksz >= space_map_max_blksz)
return;
/*
* The object contains more than one block so we can't adjust
* its size.
*/
if (sm->sm_phys->smp_objsize > sm->sm_blksz)
return;
if (size > sm->sm_blksz) {
uint64_t newsz;
/*
* Older software versions treat space map blocks as fixed
* entities. The DMU is capable of handling different block
* sizes making it possible for us to increase the
* block size and maintain backwards compatibility. The
* caveat is that the new block sizes must be a
* power of 2 so that old software can append to the file,
* adding more blocks. The block size can grow until it
* reaches space_map_max_blksz.
*/
newsz = ISP2(size) ? size : 1ULL << highbit64(size);
if (newsz > space_map_max_blksz)
newsz = space_map_max_blksz;
VERIFY0(dmu_object_set_blocksize(sm->sm_os,
space_map_object(sm), newsz, 0, tx));
dmu_object_size_from_db(sm->sm_dbuf, &blksz, &blocks);
zfs_dbgmsg("txg %llu, spa %s, increasing blksz from %d to %d",
dmu_tx_get_txg(tx), spa_name(dmu_objset_spa(sm->sm_os)),
sm->sm_blksz, blksz);
VERIFY3U(newsz, ==, blksz);
VERIFY3U(sm->sm_blksz, <, blksz);
sm->sm_blksz = blksz;
}
}
/*
* Note: space_map_write() will drop sm_lock across dmu_write() calls.
*/
void
space_map_write(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
dmu_tx_t *tx)
{
objset_t *os = sm->sm_os;
spa_t *spa = dmu_objset_spa(os);
avl_tree_t *t = &rt->rt_root;
range_seg_t *rs;
uint64_t size, total, rt_space, nodes;
uint64_t *entry, *entry_map, *entry_map_end;
uint64_t newsz, expected_entries, actual_entries = 1;
ASSERT(MUTEX_HELD(rt->rt_lock));
ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
VERIFY3U(space_map_object(sm), !=, 0);
dmu_buf_will_dirty(sm->sm_dbuf, tx);
/*
* This field is no longer necessary since the in-core space map
* now contains the object number but is maintained for backwards
* compatibility.
*/
sm->sm_phys->smp_object = sm->sm_object;
if (range_tree_space(rt) == 0) {
VERIFY3U(sm->sm_object, ==, sm->sm_phys->smp_object);
return;
}
if (maptype == SM_ALLOC)
sm->sm_phys->smp_alloc += range_tree_space(rt);
else
sm->sm_phys->smp_alloc -= range_tree_space(rt);
expected_entries = space_map_entries(sm, rt);
/*
* Calculate the new size for the space map on-disk and see if
* we can grow the block size to accommodate the new size.
*/
newsz = sm->sm_phys->smp_objsize + expected_entries * sizeof (uint64_t);
space_map_set_blocksize(sm, newsz, tx);
entry_map = zio_buf_alloc(sm->sm_blksz);
entry_map_end = entry_map + (sm->sm_blksz / sizeof (uint64_t));
entry = entry_map;
*entry++ = SM_DEBUG_ENCODE(1) |
SM_DEBUG_ACTION_ENCODE(maptype) |
SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(spa)) |
SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx));
total = 0;
nodes = avl_numnodes(&rt->rt_root);
rt_space = range_tree_space(rt);
for (rs = avl_first(t); rs != NULL; rs = AVL_NEXT(t, rs)) {
uint64_t start;
size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
start = (rs->rs_start - sm->sm_start) >> sm->sm_shift;
total += size << sm->sm_shift;
while (size != 0) {
uint64_t run_len;
run_len = MIN(size, SM_RUN_MAX);
if (entry == entry_map_end) {
mutex_exit(rt->rt_lock);
dmu_write(os, space_map_object(sm),
sm->sm_phys->smp_objsize, sm->sm_blksz,
entry_map, tx);
mutex_enter(rt->rt_lock);
sm->sm_phys->smp_objsize += sm->sm_blksz;
entry = entry_map;
}
*entry++ = SM_OFFSET_ENCODE(start) |
SM_TYPE_ENCODE(maptype) |
SM_RUN_ENCODE(run_len);
start += run_len;
size -= run_len;
actual_entries++;
}
}
if (entry != entry_map) {
size = (entry - entry_map) * sizeof (uint64_t);
mutex_exit(rt->rt_lock);
dmu_write(os, space_map_object(sm), sm->sm_phys->smp_objsize,
size, entry_map, tx);
mutex_enter(rt->rt_lock);
sm->sm_phys->smp_objsize += size;
}
ASSERT3U(expected_entries, ==, actual_entries);
/*
* Ensure that the space_map's accounting wasn't changed
* while we were in the middle of writing it out.
*/
VERIFY3U(nodes, ==, avl_numnodes(&rt->rt_root));
VERIFY3U(range_tree_space(rt), ==, rt_space);
VERIFY3U(range_tree_space(rt), ==, total);
zio_buf_free(entry_map, sm->sm_blksz);
}
static int
space_map_open_impl(space_map_t *sm)
{
int error;
u_longlong_t blocks;
error = dmu_bonus_hold(sm->sm_os, sm->sm_object, sm, &sm->sm_dbuf);
if (error)
return (error);
dmu_object_size_from_db(sm->sm_dbuf, &sm->sm_blksz, &blocks);
sm->sm_phys = sm->sm_dbuf->db_data;
return (0);
}
int
space_map_open(space_map_t **smp, objset_t *os, uint64_t object,
uint64_t start, uint64_t size, uint8_t shift, kmutex_t *lp)
{
space_map_t *sm;
int error;
ASSERT(*smp == NULL);
ASSERT(os != NULL);
ASSERT(object != 0);
sm = kmem_alloc(sizeof (space_map_t), KM_PUSHPAGE);
sm->sm_start = start;
sm->sm_size = size;
sm->sm_shift = shift;
sm->sm_lock = lp;
sm->sm_os = os;
sm->sm_object = object;
sm->sm_length = 0;
sm->sm_alloc = 0;
sm->sm_blksz = 0;
sm->sm_dbuf = NULL;
sm->sm_phys = NULL;
error = space_map_open_impl(sm);
if (error != 0) {
space_map_close(sm);
return (error);
}
*smp = sm;
return (0);
}
void
space_map_close(space_map_t *sm)
{
if (sm == NULL)
return;
if (sm->sm_dbuf != NULL)
dmu_buf_rele(sm->sm_dbuf, sm);
sm->sm_dbuf = NULL;
sm->sm_phys = NULL;
kmem_free(sm, sizeof (*sm));
}
static void
space_map_reallocate(space_map_t *sm, dmu_tx_t *tx)
{
ASSERT(dmu_tx_is_syncing(tx));
space_map_free(sm, tx);
dmu_buf_rele(sm->sm_dbuf, sm);
sm->sm_object = space_map_alloc(sm->sm_os, tx);
VERIFY0(space_map_open_impl(sm));
}
void
space_map_truncate(space_map_t *sm, dmu_tx_t *tx)
{
objset_t *os = sm->sm_os;
spa_t *spa = dmu_objset_spa(os);
dmu_object_info_t doi;
int bonuslen;
ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
ASSERT(dmu_tx_is_syncing(tx));
VERIFY0(dmu_free_range(os, space_map_object(sm), 0, -1ULL, tx));
dmu_object_info_from_db(sm->sm_dbuf, &doi);
if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
bonuslen = sizeof (space_map_phys_t);
ASSERT3U(bonuslen, <=, dmu_bonus_max());
} else {
bonuslen = SPACE_MAP_SIZE_V0;
}
if (bonuslen != doi.doi_bonus_size ||
doi.doi_data_block_size != SPACE_MAP_INITIAL_BLOCKSIZE) {
zfs_dbgmsg("txg %llu, spa %s, reallocating: "
"old bonus %u, old blocksz %u", dmu_tx_get_txg(tx),
spa_name(spa), doi.doi_bonus_size, doi.doi_data_block_size);
space_map_reallocate(sm, tx);
VERIFY3U(sm->sm_blksz, ==, SPACE_MAP_INITIAL_BLOCKSIZE);
}
dmu_buf_will_dirty(sm->sm_dbuf, tx);
sm->sm_phys->smp_objsize = 0;
sm->sm_phys->smp_alloc = 0;
}
/*
* Update the in-core space_map allocation and length values.
*/
void
space_map_update(space_map_t *sm)
{
if (sm == NULL)
return;
ASSERT(MUTEX_HELD(sm->sm_lock));
sm->sm_alloc = sm->sm_phys->smp_alloc;
sm->sm_length = sm->sm_phys->smp_objsize;
}
uint64_t
space_map_alloc(objset_t *os, dmu_tx_t *tx)
{
spa_t *spa = dmu_objset_spa(os);
uint64_t object;
int bonuslen;
if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
spa_feature_incr(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
bonuslen = sizeof (space_map_phys_t);
ASSERT3U(bonuslen, <=, dmu_bonus_max());
} else {
bonuslen = SPACE_MAP_SIZE_V0;
}
object = dmu_object_alloc(os,
DMU_OT_SPACE_MAP, SPACE_MAP_INITIAL_BLOCKSIZE,
DMU_OT_SPACE_MAP_HEADER, bonuslen, tx);
return (object);
}
void
space_map_free(space_map_t *sm, dmu_tx_t *tx)
{
spa_t *spa;
if (sm == NULL)
return;
spa = dmu_objset_spa(sm->sm_os);
if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
dmu_object_info_t doi;
dmu_object_info_from_db(sm->sm_dbuf, &doi);
if (doi.doi_bonus_size != SPACE_MAP_SIZE_V0) {
VERIFY(spa_feature_is_active(spa,
SPA_FEATURE_SPACEMAP_HISTOGRAM));
spa_feature_decr(spa,
SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
}
}
VERIFY3U(dmu_object_free(sm->sm_os, space_map_object(sm), tx), ==, 0);
sm->sm_object = 0;
}
uint64_t
space_map_object(space_map_t *sm)
{
return (sm != NULL ? sm->sm_object : 0);
}
/*
* Returns the already synced, on-disk allocated space.
*/
uint64_t
space_map_allocated(space_map_t *sm)
{
return (sm != NULL ? sm->sm_alloc : 0);
}
/*
* Returns the already synced, on-disk length;
*/
uint64_t
space_map_length(space_map_t *sm)
{
return (sm != NULL ? sm->sm_length : 0);
}
/*
* Returns the allocated space that is currently syncing.
*/
int64_t
space_map_alloc_delta(space_map_t *sm)
{
if (sm == NULL)
return (0);
ASSERT(sm->sm_dbuf != NULL);
return (sm->sm_phys->smp_alloc - space_map_allocated(sm));
}