freebsd-nq/sys/dev/ahb/ahb.c
Andrew Gallatin 4c672cfa18 Make this at least compile on 64 bit platforms. Its been breaking
the alpha tinderbox for far too long.
2003-07-30 20:09:22 +00:00

1355 lines
34 KiB
C

/*
* CAM SCSI device driver for the Adaptec 174X SCSI Host adapter
*
* Copyright (c) 1998 Justin T. Gibbs
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice immediately at the beginning of the file, without modification,
* this list of conditions, and the following disclaimer.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/bus.h>
#include <machine/bus_pio.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
#include <cam/cam_debug.h>
#include <cam/scsi/scsi_message.h>
#include <dev/eisa/eisaconf.h>
#include <dev/ahb/ahbreg.h>
#define ccb_ecb_ptr spriv_ptr0
#define ccb_ahb_ptr spriv_ptr1
#define ahb_inb(ahb, port) \
bus_space_read_1((ahb)->tag, (ahb)->bsh, port)
#define ahb_inl(ahb, port) \
bus_space_read_4((ahb)->tag, (ahb)->bsh, port)
#define ahb_outb(ahb, port, value) \
bus_space_write_1((ahb)->tag, (ahb)->bsh, port, value)
#define ahb_outl(ahb, port, value) \
bus_space_write_4((ahb)->tag, (ahb)->bsh, port, value)
static const char *ahbmatch(eisa_id_t type);
static struct ahb_softc *ahballoc(u_long unit, struct resource *res);
static void ahbfree(struct ahb_softc *ahb);
static int ahbreset(struct ahb_softc *ahb);
static void ahbmapecbs(void *arg, bus_dma_segment_t *segs,
int nseg, int error);
static int ahbxptattach(struct ahb_softc *ahb);
static void ahbhandleimmed(struct ahb_softc *ahb,
u_int32_t mbox, u_int intstat);
static void ahbcalcresid(struct ahb_softc *ahb,
struct ecb *ecb, union ccb *ccb);
static __inline void ahbdone(struct ahb_softc *ahb, u_int32_t mbox,
u_int intstat);
static void ahbintr(void *arg);
static bus_dmamap_callback_t ahbexecuteecb;
static void ahbaction(struct cam_sim *sim, union ccb *ccb);
static void ahbpoll(struct cam_sim *sim);
/* Our timeout handler */
static timeout_t ahbtimeout;
static __inline struct ecb* ahbecbget(struct ahb_softc *ahb);
static __inline void ahbecbfree(struct ahb_softc* ahb,
struct ecb* ecb);
static __inline u_int32_t ahbecbvtop(struct ahb_softc *ahb,
struct ecb *ecb);
static __inline struct ecb* ahbecbptov(struct ahb_softc *ahb,
u_int32_t ecb_addr);
static __inline u_int32_t ahbstatuspaddr(u_int32_t ecb_paddr);
static __inline u_int32_t ahbsensepaddr(u_int32_t ecb_paddr);
static __inline u_int32_t ahbsgpaddr(u_int32_t ecb_paddr);
static __inline void ahbqueuembox(struct ahb_softc *ahb,
u_int32_t mboxval,
u_int attn_code);
static __inline struct ecb*
ahbecbget(struct ahb_softc *ahb)
{
struct ecb* ecb;
int s;
s = splcam();
if ((ecb = SLIST_FIRST(&ahb->free_ecbs)) != NULL)
SLIST_REMOVE_HEAD(&ahb->free_ecbs, links);
splx(s);
return (ecb);
}
static __inline void
ahbecbfree(struct ahb_softc* ahb, struct ecb* ecb)
{
int s;
s = splcam();
ecb->state = ECB_FREE;
SLIST_INSERT_HEAD(&ahb->free_ecbs, ecb, links);
splx(s);
}
static __inline u_int32_t
ahbecbvtop(struct ahb_softc *ahb, struct ecb *ecb)
{
return (ahb->ecb_physbase
+ (u_int32_t)((caddr_t)ecb - (caddr_t)ahb->ecb_array));
}
static __inline struct ecb*
ahbecbptov(struct ahb_softc *ahb, u_int32_t ecb_addr)
{
return (ahb->ecb_array
+ ((struct ecb*)(uintptr_t)ecb_addr
- (struct ecb*)(uintptr_t)ahb->ecb_physbase));
}
static __inline u_int32_t
ahbstatuspaddr(u_int32_t ecb_paddr)
{
return (ecb_paddr + offsetof(struct ecb, status));
}
static __inline u_int32_t
ahbsensepaddr(u_int32_t ecb_paddr)
{
return (ecb_paddr + offsetof(struct ecb, sense));
}
static __inline u_int32_t
ahbsgpaddr(u_int32_t ecb_paddr)
{
return (ecb_paddr + offsetof(struct ecb, sg_list));
}
static __inline void
ahbqueuembox(struct ahb_softc *ahb, u_int32_t mboxval, u_int attn_code)
{
u_int loopmax = 300;
while (--loopmax) {
u_int status;
status = ahb_inb(ahb, HOSTSTAT);
if ((status & (HOSTSTAT_MBOX_EMPTY|HOSTSTAT_BUSY))
== HOSTSTAT_MBOX_EMPTY)
break;
DELAY(20);
}
if (loopmax == 0)
panic("ahb%ld: adapter not taking commands\n", ahb->unit);
ahb_outl(ahb, MBOXOUT0, mboxval);
ahb_outb(ahb, ATTN, attn_code);
}
static const char *
ahbmatch(eisa_id_t type)
{
switch(type & 0xfffffe00) {
case EISA_DEVICE_ID_ADAPTEC_1740:
return ("Adaptec 174x SCSI host adapter");
break;
default:
break;
}
return (NULL);
}
static int
ahbprobe(device_t dev)
{
const char *desc;
u_int32_t iobase;
u_int32_t irq;
u_int8_t intdef;
int shared;
desc = ahbmatch(eisa_get_id(dev));
if (!desc)
return (ENXIO);
device_set_desc(dev, desc);
iobase = (eisa_get_slot(dev) * EISA_SLOT_SIZE) +
AHB_EISA_SLOT_OFFSET;
eisa_add_iospace(dev, iobase, AHB_EISA_IOSIZE, RESVADDR_NONE);
intdef = inb(INTDEF + iobase);
switch (intdef & 0x7) {
case INT9:
irq = 9;
break;
case INT10:
irq = 10;
break;
case INT11:
irq = 11;
break;
case INT12:
irq = 12;
break;
case INT14:
irq = 14;
break;
case INT15:
irq = 15;
break;
default:
printf("Adaptec 174X at slot %d: illegal "
"irq setting %d\n", eisa_get_slot(dev),
(intdef & 0x7));
irq = 0;
break;
}
if (irq == 0)
return ENXIO;
shared = (inb(INTDEF + iobase) & INTLEVEL) ?
EISA_TRIGGER_LEVEL : EISA_TRIGGER_EDGE;
eisa_add_intr(dev, irq, shared);
return 0;
}
static int
ahbattach(device_t dev)
{
/*
* find unit and check we have that many defined
*/
struct ahb_softc *ahb;
struct ecb* next_ecb;
struct resource *io = 0;
struct resource *irq = 0;
int rid;
void *ih;
rid = 0;
io = bus_alloc_resource(dev, SYS_RES_IOPORT, &rid,
0, ~0, 1, RF_ACTIVE);
if (!io) {
device_printf(dev, "No I/O space?!\n");
return ENOMEM;
}
if ((ahb = ahballoc(device_get_unit(dev), io)) == NULL) {
goto error_exit2;
}
if (ahbreset(ahb) != 0)
goto error_exit;
rid = 0;
irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
0, ~0, 1, RF_ACTIVE);
if (!irq) {
device_printf(dev, "Can't allocate interrupt\n");
goto error_exit;
}
/*
* Create our DMA tags. These tags define the kinds of device
* accessible memory allocations and memory mappings we will
* need to perform during normal operation.
*/
/* DMA tag for mapping buffers into device visible space. */
/* XXX Should be a child of the EISA bus dma tag */
if (bus_dma_tag_create( /* parent */ NULL,
/* alignment */ 1,
/* boundary */ 0,
/* lowaddr */ BUS_SPACE_MAXADDR_32BIT,
/* highaddr */ BUS_SPACE_MAXADDR,
/* filter */ NULL,
/* filterarg */ NULL,
/* maxsize */ MAXBSIZE,
/* nsegments */ AHB_NSEG,
/* maxsegsz */ BUS_SPACE_MAXSIZE_32BIT,
/* flags */ BUS_DMA_ALLOCNOW,
/* lockfunc */ busdma_lock_mutex,
/* lockarg */ &Giant,
&ahb->buffer_dmat) != 0)
goto error_exit;
ahb->init_level++;
/* DMA tag for our ccb structures and ha inquiry data */
if (bus_dma_tag_create( /* parent */ NULL,
/* alignment */ 1,
/* boundary */ 0,
/* lowaddr */ BUS_SPACE_MAXADDR_32BIT,
/* highaddr */ BUS_SPACE_MAXADDR,
/* filter */ NULL,
/* filterarg */ NULL,
/* maxsize */ (AHB_NECB *
sizeof(struct ecb))
+ sizeof(*ahb->ha_inq_data),
/* nsegments */ 1,
/* maxsegsz */ BUS_SPACE_MAXSIZE_32BIT,
/* flags */ 0,
/* lockfunc */ busdma_lock_mutex,
/* lockarg */ &Giant,
&ahb->ecb_dmat) != 0)
goto error_exit;
ahb->init_level++;
/* Allocation for our ccbs */
if (bus_dmamem_alloc(ahb->ecb_dmat, (void **)&ahb->ecb_array,
BUS_DMA_NOWAIT, &ahb->ecb_dmamap) != 0)
goto error_exit;
ahb->ha_inq_data = (struct ha_inquiry_data *)&ahb->ecb_array[AHB_NECB];
ahb->init_level++;
/* And permanently map them */
bus_dmamap_load(ahb->ecb_dmat, ahb->ecb_dmamap,
ahb->ecb_array, AHB_NSEG * sizeof(struct ecb),
ahbmapecbs, ahb, /*flags*/0);
ahb->init_level++;
/* Allocate the buffer dmamaps for each of our ECBs */
bzero(ahb->ecb_array, (AHB_NECB * sizeof(struct ecb))
+ sizeof(*ahb->ha_inq_data));
next_ecb = ahb->ecb_array;
while (ahb->num_ecbs < AHB_NECB) {
u_int32_t ecb_paddr;
if (bus_dmamap_create(ahb->buffer_dmat, /*flags*/0,
&next_ecb->dmamap))
break;
ecb_paddr = ahbecbvtop(ahb, next_ecb);
next_ecb->hecb.status_ptr = ahbstatuspaddr(ecb_paddr);
next_ecb->hecb.sense_ptr = ahbsensepaddr(ecb_paddr);
ahb->num_ecbs++;
ahbecbfree(ahb, next_ecb);
next_ecb++;
}
if (ahb->num_ecbs == 0)
goto error_exit;
ahb->init_level++;
/*
* Now that we know we own the resources we need, register
* our bus with the XPT.
*/
if (ahbxptattach(ahb))
goto error_exit;
/* Enable our interrupt */
bus_setup_intr(dev, irq, INTR_TYPE_CAM|INTR_ENTROPY, ahbintr, ahb, &ih);
return (0);
error_exit:
/*
* The board's IRQ line will not be left enabled
* if we can't intialize correctly, so its safe
* to release the irq.
*/
ahbfree(ahb);
error_exit2:
if (io)
bus_release_resource(dev, SYS_RES_IOPORT, 0, io);
if (irq)
bus_release_resource(dev, SYS_RES_IRQ, 0, irq);
return (-1);
}
static struct ahb_softc *
ahballoc(u_long unit, struct resource *res)
{
struct ahb_softc *ahb;
/*
* Allocate a storage area for us
*/
ahb = malloc(sizeof(struct ahb_softc), M_DEVBUF, M_NOWAIT | M_ZERO);
if (!ahb) {
printf("ahb%ld: cannot malloc!\n", unit);
return (NULL);
}
SLIST_INIT(&ahb->free_ecbs);
LIST_INIT(&ahb->pending_ccbs);
ahb->unit = unit;
ahb->tag = rman_get_bustag(res);
ahb->bsh = rman_get_bushandle(res);
ahb->disc_permitted = ~0;
ahb->tags_permitted = ~0;
return (ahb);
}
static void
ahbfree(struct ahb_softc *ahb)
{
switch (ahb->init_level) {
default:
case 4:
bus_dmamap_unload(ahb->ecb_dmat, ahb->ecb_dmamap);
case 3:
bus_dmamem_free(ahb->ecb_dmat, ahb->ecb_array,
ahb->ecb_dmamap);
bus_dmamap_destroy(ahb->ecb_dmat, ahb->ecb_dmamap);
case 2:
bus_dma_tag_destroy(ahb->ecb_dmat);
case 1:
bus_dma_tag_destroy(ahb->buffer_dmat);
case 0:
break;
}
free(ahb, M_DEVBUF);
}
/*
* reset board, If it doesn't respond, return failure
*/
static int
ahbreset(struct ahb_softc *ahb)
{
int wait = 1000; /* 1 sec enough? */
int test;
if ((ahb_inb(ahb, PORTADDR) & PORTADDR_ENHANCED) == 0) {
printf("ahb_reset: Controller not in enhanced mode\n");
return (-1);
}
ahb_outb(ahb, CONTROL, CNTRL_HARD_RST);
DELAY(1000);
ahb_outb(ahb, CONTROL, 0);
while (--wait) {
DELAY(1000);
if ((ahb_inb(ahb, HOSTSTAT) & HOSTSTAT_BUSY) == 0)
break;
}
if (wait == 0) {
printf("ahbreset: No answer from aha1742 board\n");
return (-1);
}
if ((test = ahb_inb(ahb, MBOXIN0)) != 0) {
printf("ahb_reset: self test failed, val = 0x%x\n", test);
return (-1);
}
while (ahb_inb(ahb, HOSTSTAT) & HOSTSTAT_INTPEND) {
ahb_outb(ahb, CONTROL, CNTRL_CLRINT);
DELAY(10000);
}
return (0);
}
static void
ahbmapecbs(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct ahb_softc* ahb;
ahb = (struct ahb_softc*)arg;
ahb->ecb_physbase = segs->ds_addr;
/*
* Space for adapter inquiry information is on the
* tail of the ecb array.
*/
ahb->ha_inq_physbase = ahbecbvtop(ahb, &ahb->ecb_array[AHB_NECB]);
}
static int
ahbxptattach(struct ahb_softc *ahb)
{
struct cam_devq *devq;
struct ecb *ecb;
u_int i;
/* Remeber who are we on the scsi bus */
ahb->scsi_id = ahb_inb(ahb, SCSIDEF) & HSCSIID;
/* Use extended translation?? */
ahb->extended_trans = ahb_inb(ahb, RESV1) & EXTENDED_TRANS;
/* Fetch adapter inquiry data */
ecb = ahbecbget(ahb); /* Always succeeds - no outstanding commands */
ecb->hecb.opcode = ECBOP_READ_HA_INQDATA;
ecb->hecb.flag_word1 = FW1_SUPPRESS_URUN_ERR|FW1_ERR_STATUS_BLK_ONLY;
ecb->hecb.data_ptr = ahb->ha_inq_physbase;
ecb->hecb.data_len = sizeof(struct ha_inquiry_data);
ecb->hecb.sense_ptr = 0;
ecb->state = ECB_ACTIVE;
/* Tell the adapter about this command */
ahbqueuembox(ahb, ahbecbvtop(ahb, ecb),
ATTN_STARTECB|ahb->scsi_id);
/* Poll for interrupt completion */
for (i = 1000; ecb->state != ECB_FREE && i != 0; i--) {
ahbintr(ahb);
DELAY(1000);
}
ahb->num_ecbs = MIN(ahb->num_ecbs,
ahb->ha_inq_data->scsi_data.reserved[1]);
printf("ahb%ld: %.8s %s SCSI Adapter, FW Rev. %.4s, ID=%d, %d ECBs\n",
ahb->unit, ahb->ha_inq_data->scsi_data.product,
(ahb->ha_inq_data->scsi_data.flags & 0x4) ? "Differential"
: "Single Ended",
ahb->ha_inq_data->scsi_data.revision,
ahb->scsi_id, ahb->num_ecbs);
/* Restore sense paddr for future CCB clients */
ecb->hecb.sense_ptr = ahbsensepaddr(ahbecbvtop(ahb, ecb));
ahbecbfree(ahb, ecb);
/*
* Create the device queue for our SIM.
*/
devq = cam_simq_alloc(ahb->num_ecbs);
if (devq == NULL)
return (ENOMEM);
/*
* Construct our SIM entry
*/
ahb->sim = cam_sim_alloc(ahbaction, ahbpoll, "ahb", ahb, ahb->unit,
2, ahb->num_ecbs, devq);
if (ahb->sim == NULL) {
cam_simq_free(devq);
return (ENOMEM);
}
if (xpt_bus_register(ahb->sim, 0) != CAM_SUCCESS) {
cam_sim_free(ahb->sim, /*free_devq*/TRUE);
return (ENXIO);
}
if (xpt_create_path(&ahb->path, /*periph*/NULL,
cam_sim_path(ahb->sim), CAM_TARGET_WILDCARD,
CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
xpt_bus_deregister(cam_sim_path(ahb->sim));
cam_sim_free(ahb->sim, /*free_devq*/TRUE);
return (ENXIO);
}
/*
* Allow the board to generate interrupts.
*/
ahb_outb(ahb, INTDEF, ahb_inb(ahb, INTDEF) | INTEN);
return (0);
}
static void
ahbhandleimmed(struct ahb_softc *ahb, u_int32_t mbox, u_int intstat)
{
struct ccb_hdr *ccb_h;
u_int target_id;
if (ahb->immed_cmd == 0) {
printf("ahb%ld: Immediate Command complete with no "
" pending command\n", ahb->unit);
return;
}
target_id = intstat & INTSTAT_TARGET_MASK;
ccb_h = LIST_FIRST(&ahb->pending_ccbs);
while (ccb_h != NULL) {
struct ecb *pending_ecb;
union ccb *ccb;
pending_ecb = (struct ecb *)ccb_h->ccb_ecb_ptr;
ccb = pending_ecb->ccb;
ccb_h = LIST_NEXT(ccb_h, sim_links.le);
if (ccb->ccb_h.target_id == target_id
|| target_id == ahb->scsi_id) {
untimeout(ahbtimeout, pending_ecb,
ccb->ccb_h.timeout_ch);
LIST_REMOVE(&ccb->ccb_h, sim_links.le);
if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE)
bus_dmamap_unload(ahb->buffer_dmat,
pending_ecb->dmamap);
if (pending_ecb == ahb->immed_ecb)
ccb->ccb_h.status =
CAM_CMD_TIMEOUT|CAM_RELEASE_SIMQ;
else if (target_id == ahb->scsi_id)
ccb->ccb_h.status = CAM_SCSI_BUS_RESET;
else
ccb->ccb_h.status = CAM_BDR_SENT;
ahbecbfree(ahb, pending_ecb);
xpt_done(ccb);
} else if (ahb->immed_ecb != NULL) {
/* Re-instate timeout */
ccb->ccb_h.timeout_ch =
timeout(ahbtimeout, (caddr_t)pending_ecb,
(ccb->ccb_h.timeout * hz) / 1000);
}
}
if (ahb->immed_ecb != NULL) {
ahb->immed_ecb = NULL;
printf("ahb%ld: No longer in timeout\n", ahb->unit);
} else if (target_id == ahb->scsi_id)
printf("ahb%ld: SCSI Bus Reset Delivered\n", ahb->unit);
else
printf("ahb%ld: Bus Device Reset Delibered to target %d\n",
ahb->unit, target_id);
ahb->immed_cmd = 0;
}
static void
ahbcalcresid(struct ahb_softc *ahb, struct ecb *ecb, union ccb *ccb)
{
if (ecb->status.data_overrun != 0) {
/*
* Overrun Condition. The hardware doesn't
* provide a meaningful byte count in this case
* (the residual is always 0). Tell the XPT
* layer about the error.
*/
ccb->ccb_h.status = CAM_DATA_RUN_ERR;
} else {
ccb->csio.resid = ecb->status.resid_count;
if ((ecb->hecb.flag_word1 & FW1_SG_ECB) != 0) {
/*
* For S/G transfers, the adapter provides a pointer
* to the address in the last S/G element used and a
* residual for that element. So, we need to sum up
* the elements that follow it in order to get a real
* residual number. If we have an overrun, the residual
* reported will be 0 and we already know that all S/G
* segments have been exhausted, so we can skip this
* step.
*/
ahb_sg_t *sg;
int num_sg;
num_sg = ecb->hecb.data_len / sizeof(ahb_sg_t);
/* Find the S/G the adapter was working on */
for (sg = ecb->sg_list;
num_sg != 0 && sg->addr != ecb->status.resid_addr;
num_sg--, sg++)
;
/* Skip it */
num_sg--;
sg++;
/* Sum the rest */
for (; num_sg != 0; num_sg--, sg++)
ccb->csio.resid += sg->len;
}
/* Underruns are not errors */
ccb->ccb_h.status = CAM_REQ_CMP;
}
}
static void
ahbprocesserror(struct ahb_softc *ahb, struct ecb *ecb, union ccb *ccb)
{
struct hardware_ecb *hecb;
struct ecb_status *status;
hecb = &ecb->hecb;
status = &ecb->status;
switch (status->ha_status) {
case HS_OK:
ccb->csio.scsi_status = status->scsi_status;
if (status->scsi_status != 0) {
ccb->ccb_h.status = CAM_SCSI_STATUS_ERROR;
if (status->sense_stored) {
ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
ccb->csio.sense_resid =
ccb->csio.sense_len - status->sense_len;
bcopy(&ecb->sense, &ccb->csio.sense_data,
status->sense_len);
}
}
break;
case HS_TARGET_NOT_ASSIGNED:
ccb->ccb_h.status = CAM_PATH_INVALID;
break;
case HS_SEL_TIMEOUT:
ccb->ccb_h.status = CAM_SEL_TIMEOUT;
break;
case HS_DATA_RUN_ERR:
ahbcalcresid(ahb, ecb, ccb);
break;
case HS_UNEXPECTED_BUSFREE:
ccb->ccb_h.status = CAM_UNEXP_BUSFREE;
break;
case HS_INVALID_PHASE:
ccb->ccb_h.status = CAM_SEQUENCE_FAIL;
break;
case HS_REQUEST_SENSE_FAILED:
ccb->ccb_h.status = CAM_AUTOSENSE_FAIL;
break;
case HS_TAG_MSG_REJECTED:
{
struct ccb_trans_settings neg;
xpt_print_path(ccb->ccb_h.path);
printf("refuses tagged commands. Performing "
"non-tagged I/O\n");
neg.flags = 0;
neg.valid = CCB_TRANS_TQ_VALID;
xpt_setup_ccb(&neg.ccb_h, ccb->ccb_h.path, /*priority*/1);
xpt_async(AC_TRANSFER_NEG, ccb->ccb_h.path, &neg);
ahb->tags_permitted &= ~(0x01 << ccb->ccb_h.target_id);
ccb->ccb_h.status = CAM_MSG_REJECT_REC;
break;
}
case HS_FIRMWARE_LOAD_REQ:
case HS_HARDWARE_ERR:
/*
* Tell the system that the Adapter
* is no longer functional.
*/
ccb->ccb_h.status = CAM_NO_HBA;
break;
case HS_CMD_ABORTED_HOST:
case HS_CMD_ABORTED_ADAPTER:
case HS_ATN_TARGET_FAILED:
case HS_SCSI_RESET_ADAPTER:
case HS_SCSI_RESET_INCOMING:
ccb->ccb_h.status = CAM_SCSI_BUS_RESET;
break;
case HS_INVALID_ECB_PARAM:
printf("ahb%ld: opcode 0x%02x, flag_word1 0x%02x, flag_word2 0x%02x\n",
ahb->unit, hecb->opcode, hecb->flag_word1, hecb->flag_word2);
ccb->ccb_h.status = CAM_SCSI_BUS_RESET;
break;
case HS_DUP_TCB_RECEIVED:
case HS_INVALID_OPCODE:
case HS_INVALID_CMD_LINK:
case HS_PROGRAM_CKSUM_ERROR:
panic("ahb%ld: Can't happen host status %x occurred",
ahb->unit, status->ha_status);
break;
}
if (ccb->ccb_h.status != CAM_REQ_CMP) {
xpt_freeze_devq(ccb->ccb_h.path, /*count*/1);
ccb->ccb_h.status |= CAM_DEV_QFRZN;
}
}
static void
ahbdone(struct ahb_softc *ahb, u_int32_t mbox, u_int intstat)
{
struct ecb *ecb;
union ccb *ccb;
ecb = ahbecbptov(ahb, mbox);
if ((ecb->state & ECB_ACTIVE) == 0)
panic("ecb not active");
ccb = ecb->ccb;
if (ccb != NULL) {
untimeout(ahbtimeout, ecb, ccb->ccb_h.timeout_ch);
LIST_REMOVE(&ccb->ccb_h, sim_links.le);
if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
bus_dmasync_op_t op;
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN)
op = BUS_DMASYNC_POSTREAD;
else
op = BUS_DMASYNC_POSTWRITE;
bus_dmamap_sync(ahb->buffer_dmat, ecb->dmamap, op);
bus_dmamap_unload(ahb->buffer_dmat, ecb->dmamap);
}
if ((intstat & INTSTAT_MASK) == INTSTAT_ECB_OK) {
ccb->ccb_h.status = CAM_REQ_CMP;
ccb->csio.resid = 0;
} else {
ahbprocesserror(ahb, ecb, ccb);
}
ahbecbfree(ahb, ecb);
xpt_done(ccb);
} else {
/* Non CCB Command */
if ((intstat & INTSTAT_MASK) != INTSTAT_ECB_OK) {
printf("ahb%ld: Command 0%x Failed %x:%x:%x\n",
ahb->unit, ecb->hecb.opcode,
*((u_int16_t*)&ecb->status),
ecb->status.ha_status, ecb->status.resid_count);
}
/* Client owns this ECB and will release it. */
}
}
/*
* Catch an interrupt from the adaptor
*/
static void
ahbintr(void *arg)
{
struct ahb_softc *ahb;
u_int intstat;
u_int32_t mbox;
ahb = (struct ahb_softc *)arg;
while (ahb_inb(ahb, HOSTSTAT) & HOSTSTAT_INTPEND) {
/*
* Fetch information about this interrupt.
*/
intstat = ahb_inb(ahb, INTSTAT);
mbox = ahb_inl(ahb, MBOXIN0);
/*
* Reset interrupt latch.
*/
ahb_outb(ahb, CONTROL, CNTRL_CLRINT);
/*
* Process the completed operation
*/
switch (intstat & INTSTAT_MASK) {
case INTSTAT_ECB_OK:
case INTSTAT_ECB_CMPWRETRY:
case INTSTAT_ECB_CMPWERR:
ahbdone(ahb, mbox, intstat);
break;
case INTSTAT_AEN_OCCURED:
if ((intstat & INTSTAT_TARGET_MASK) == ahb->scsi_id) {
/* Bus Reset */
xpt_print_path(ahb->path);
switch (mbox) {
case HS_SCSI_RESET_ADAPTER:
printf("Host Adapter Initiated "
"Bus Reset occurred\n");
break;
case HS_SCSI_RESET_INCOMING:
printf("Bus Reset Initiated "
"by another device occurred\n");
break;
}
/* Notify the XPT */
xpt_async(AC_BUS_RESET, ahb->path, NULL);
break;
}
printf("Unsupported initiator selection AEN occured\n");
break;
case INTSTAT_IMMED_OK:
case INTSTAT_IMMED_ERR:
ahbhandleimmed(ahb, mbox, intstat);
break;
case INTSTAT_HW_ERR:
panic("Unrecoverable hardware Error Occurred\n");
}
}
}
static void
ahbexecuteecb(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
{
struct ecb *ecb;
union ccb *ccb;
struct ahb_softc *ahb;
u_int32_t ecb_paddr;
int s;
ecb = (struct ecb *)arg;
ccb = ecb->ccb;
ahb = (struct ahb_softc *)ccb->ccb_h.ccb_ahb_ptr;
if (error != 0) {
if (error != EFBIG)
printf("ahb%ld: Unexepected error 0x%x returned from "
"bus_dmamap_load\n", ahb->unit, error);
if (ccb->ccb_h.status == CAM_REQ_INPROG) {
xpt_freeze_devq(ccb->ccb_h.path, /*count*/1);
ccb->ccb_h.status = CAM_REQ_TOO_BIG|CAM_DEV_QFRZN;
}
ahbecbfree(ahb, ecb);
xpt_done(ccb);
return;
}
ecb_paddr = ahbecbvtop(ahb, ecb);
if (nseg != 0) {
ahb_sg_t *sg;
bus_dma_segment_t *end_seg;
bus_dmasync_op_t op;
end_seg = dm_segs + nseg;
/* Copy the segments into our SG list */
sg = ecb->sg_list;
while (dm_segs < end_seg) {
sg->addr = dm_segs->ds_addr;
sg->len = dm_segs->ds_len;
sg++;
dm_segs++;
}
if (nseg > 1) {
ecb->hecb.flag_word1 |= FW1_SG_ECB;
ecb->hecb.data_ptr = ahbsgpaddr(ecb_paddr);
ecb->hecb.data_len = sizeof(ahb_sg_t) * nseg;
} else {
ecb->hecb.data_ptr = ecb->sg_list->addr;
ecb->hecb.data_len = ecb->sg_list->len;
}
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
/* ecb->hecb.flag_word2 |= FW2_DATA_DIR_IN; */
op = BUS_DMASYNC_PREREAD;
} else {
op = BUS_DMASYNC_PREWRITE;
}
/* ecb->hecb.flag_word2 |= FW2_CHECK_DATA_DIR; */
bus_dmamap_sync(ahb->buffer_dmat, ecb->dmamap, op);
} else {
ecb->hecb.data_ptr = 0;
ecb->hecb.data_len = 0;
}
s = splcam();
/*
* Last time we need to check if this CCB needs to
* be aborted.
*/
if (ccb->ccb_h.status != CAM_REQ_INPROG) {
if (nseg != 0)
bus_dmamap_unload(ahb->buffer_dmat, ecb->dmamap);
ahbecbfree(ahb, ecb);
xpt_done(ccb);
splx(s);
return;
}
ecb->state = ECB_ACTIVE;
ccb->ccb_h.status |= CAM_SIM_QUEUED;
LIST_INSERT_HEAD(&ahb->pending_ccbs, &ccb->ccb_h, sim_links.le);
/* Tell the adapter about this command */
ahbqueuembox(ahb, ecb_paddr, ATTN_STARTECB|ccb->ccb_h.target_id);
ccb->ccb_h.timeout_ch = timeout(ahbtimeout, (caddr_t)ecb,
(ccb->ccb_h.timeout * hz) / 1000);
splx(s);
}
static void
ahbaction(struct cam_sim *sim, union ccb *ccb)
{
struct ahb_softc *ahb;
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("ahbaction\n"));
ahb = (struct ahb_softc *)cam_sim_softc(sim);
switch (ccb->ccb_h.func_code) {
/* Common cases first */
case XPT_SCSI_IO: /* Execute the requested I/O operation */
{
struct ecb *ecb;
struct hardware_ecb *hecb;
/*
* get an ecb to use.
*/
if ((ecb = ahbecbget(ahb)) == NULL) {
/* Should never occur */
panic("Failed to get an ecb");
}
/*
* So we can find the ECB when an abort is requested
*/
ecb->ccb = ccb;
ccb->ccb_h.ccb_ecb_ptr = ecb;
ccb->ccb_h.ccb_ahb_ptr = ahb;
/*
* Put all the arguments for the xfer in the ecb
*/
hecb = &ecb->hecb;
hecb->opcode = ECBOP_INITIATOR_SCSI_CMD;
hecb->flag_word1 = FW1_AUTO_REQUEST_SENSE
| FW1_ERR_STATUS_BLK_ONLY;
hecb->flag_word2 = ccb->ccb_h.target_lun
| FW2_NO_RETRY_ON_BUSY;
if ((ccb->ccb_h.flags & CAM_TAG_ACTION_VALID) != 0) {
hecb->flag_word2 |= FW2_TAG_ENB
| ((ccb->csio.tag_action & 0x3)
<< FW2_TAG_TYPE_SHIFT);
}
if ((ccb->ccb_h.flags & CAM_DIS_DISCONNECT) != 0)
hecb->flag_word2 |= FW2_DISABLE_DISC;
hecb->sense_len = ccb->csio.sense_len;
hecb->cdb_len = ccb->csio.cdb_len;
if ((ccb->ccb_h.flags & CAM_CDB_POINTER) != 0) {
if ((ccb->ccb_h.flags & CAM_CDB_PHYS) == 0) {
bcopy(ccb->csio.cdb_io.cdb_ptr,
hecb->cdb, hecb->cdb_len);
} else {
/* I guess I could map it in... */
ccb->ccb_h.status = CAM_REQ_INVALID;
ahbecbfree(ahb, ecb);
xpt_done(ccb);
return;
}
} else {
bcopy(ccb->csio.cdb_io.cdb_bytes,
hecb->cdb, hecb->cdb_len);
}
/*
* If we have any data to send with this command,
* map it into bus space.
*/
if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
if ((ccb->ccb_h.flags & CAM_SCATTER_VALID) == 0) {
/*
* We've been given a pointer
* to a single buffer.
*/
if ((ccb->ccb_h.flags & CAM_DATA_PHYS)==0) {
int s;
int error;
s = splsoftvm();
error = bus_dmamap_load(
ahb->buffer_dmat,
ecb->dmamap,
ccb->csio.data_ptr,
ccb->csio.dxfer_len,
ahbexecuteecb,
ecb, /*flags*/0);
if (error == EINPROGRESS) {
/*
* So as to maintain ordering,
* freeze the controller queue
* until our mapping is
* returned.
*/
xpt_freeze_simq(ahb->sim, 1);
ccb->ccb_h.status |=
CAM_RELEASE_SIMQ;
}
splx(s);
} else {
struct bus_dma_segment seg;
/* Pointer to physical buffer */
seg.ds_addr =
(bus_addr_t)ccb->csio.data_ptr;
seg.ds_len = ccb->csio.dxfer_len;
ahbexecuteecb(ecb, &seg, 1, 0);
}
} else {
struct bus_dma_segment *segs;
if ((ccb->ccb_h.flags & CAM_DATA_PHYS) != 0)
panic("ahbaction - Physical segment "
"pointers unsupported");
if ((ccb->ccb_h.flags & CAM_SG_LIST_PHYS) == 0)
panic("btaction - Virtual segment "
"addresses unsupported");
/* Just use the segments provided */
segs = (struct bus_dma_segment *)
ccb->csio.data_ptr;
ahbexecuteecb(ecb, segs, ccb->csio.sglist_cnt,
0);
}
} else {
ahbexecuteecb(ecb, NULL, 0, 0);
}
break;
}
case XPT_EN_LUN: /* Enable LUN as a target */
case XPT_TARGET_IO: /* Execute target I/O request */
case XPT_ACCEPT_TARGET_IO: /* Accept Host Target Mode CDB */
case XPT_CONT_TARGET_IO: /* Continue Host Target I/O Connection*/
case XPT_ABORT: /* Abort the specified CCB */
/* XXX Implement */
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
case XPT_SET_TRAN_SETTINGS:
{
ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
xpt_done(ccb);
break;
}
case XPT_GET_TRAN_SETTINGS:
/* Get default/user set transfer settings for the target */
{
struct ccb_trans_settings *cts;
u_int target_mask;
cts = &ccb->cts;
target_mask = 0x01 << ccb->ccb_h.target_id;
if ((cts->flags & CCB_TRANS_USER_SETTINGS) != 0) {
cts->flags = 0;
if ((ahb->disc_permitted & target_mask) != 0)
cts->flags |= CCB_TRANS_DISC_ENB;
if ((ahb->tags_permitted & target_mask) != 0)
cts->flags |= CCB_TRANS_TAG_ENB;
cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
cts->sync_period = 25; /* 10MHz */
if (cts->sync_period != 0)
cts->sync_offset = 15;
cts->valid = CCB_TRANS_SYNC_RATE_VALID
| CCB_TRANS_SYNC_OFFSET_VALID
| CCB_TRANS_BUS_WIDTH_VALID
| CCB_TRANS_DISC_VALID
| CCB_TRANS_TQ_VALID;
ccb->ccb_h.status = CAM_REQ_CMP;
} else {
ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
}
xpt_done(ccb);
break;
}
case XPT_RESET_DEV: /* Bus Device Reset the specified SCSI device */
{
int i;
int s;
s = splcam();
ahb->immed_cmd = IMMED_RESET;
ahbqueuembox(ahb, IMMED_RESET, ATTN_IMMED|ccb->ccb_h.target_id);
/* Poll for interrupt completion */
for (i = 1000; ahb->immed_cmd != 0 && i != 0; i--) {
DELAY(1000);
ahbintr(cam_sim_softc(sim));
}
splx(s);
break;
}
case XPT_CALC_GEOMETRY:
{
cam_calc_geometry(&ccb->ccg, ahb->extended_trans);
xpt_done(ccb);
break;
}
case XPT_RESET_BUS: /* Reset the specified SCSI bus */
{
int i;
ahb->immed_cmd = IMMED_RESET;
ahbqueuembox(ahb, IMMED_RESET, ATTN_IMMED|ahb->scsi_id);
/* Poll for interrupt completion */
for (i = 1000; ahb->immed_cmd != 0 && i != 0; i--)
DELAY(1000);
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
case XPT_TERM_IO: /* Terminate the I/O process */
/* XXX Implement */
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
case XPT_PATH_INQ: /* Path routing inquiry */
{
struct ccb_pathinq *cpi = &ccb->cpi;
cpi->version_num = 1; /* XXX??? */
cpi->hba_inquiry = PI_SDTR_ABLE|PI_TAG_ABLE;
cpi->target_sprt = 0;
cpi->hba_misc = 0;
cpi->hba_eng_cnt = 0;
cpi->max_target = 7;
cpi->max_lun = 7;
cpi->initiator_id = ahb->scsi_id;
cpi->bus_id = cam_sim_bus(sim);
cpi->base_transfer_speed = 3300;
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "Adaptec", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
cpi->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
#if 0
/* Need these??? */
case XPT_IMMED_NOTIFY: /* Notify Host Target driver of event */
case XPT_NOTIFY_ACK: /* Acknowledgement of event */
#endif
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
}
}
static void
ahbpoll(struct cam_sim *sim)
{
ahbintr(cam_sim_softc(sim));
}
static void
ahbtimeout(void *arg)
{
struct ecb *ecb;
union ccb *ccb;
struct ahb_softc *ahb;
int s;
ecb = (struct ecb *)arg;
ccb = ecb->ccb;
ahb = (struct ahb_softc *)ccb->ccb_h.ccb_ahb_ptr;
xpt_print_path(ccb->ccb_h.path);
printf("ECB %p - timed out\n", (void *)ecb);
s = splcam();
if ((ecb->state & ECB_ACTIVE) == 0) {
xpt_print_path(ccb->ccb_h.path);
printf("ECB %p - timed out ECB already completed\n",
(void *)ecb);
splx(s);
return;
}
/*
* In order to simplify the recovery process, we ask the XPT
* layer to halt the queue of new transactions and we traverse
* the list of pending CCBs and remove their timeouts. This
* means that the driver attempts to clear only one error
* condition at a time. In general, timeouts that occur
* close together are related anyway, so there is no benefit
* in attempting to handle errors in parrallel. Timeouts will
* be reinstated when the recovery process ends.
*/
if ((ecb->state & ECB_DEVICE_RESET) == 0) {
struct ccb_hdr *ccb_h;
if ((ecb->state & ECB_RELEASE_SIMQ) == 0) {
xpt_freeze_simq(ahb->sim, /*count*/1);
ecb->state |= ECB_RELEASE_SIMQ;
}
ccb_h = LIST_FIRST(&ahb->pending_ccbs);
while (ccb_h != NULL) {
struct ecb *pending_ecb;
pending_ecb = (struct ecb *)ccb_h->ccb_ecb_ptr;
untimeout(ahbtimeout, pending_ecb, ccb_h->timeout_ch);
ccb_h = LIST_NEXT(ccb_h, sim_links.le);
}
/* Store for our interrupt handler */
ahb->immed_ecb = ecb;
/*
* Send a Bus Device Reset message:
* The target that is holding up the bus may not
* be the same as the one that triggered this timeout
* (different commands have different timeout lengths),
* but we have no way of determining this from our
* timeout handler. Our strategy here is to queue a
* BDR message to the target of the timed out command.
* If this fails, we'll get another timeout 2 seconds
* later which will attempt a bus reset.
*/
xpt_print_path(ccb->ccb_h.path);
printf("Queuing BDR\n");
ecb->state |= ECB_DEVICE_RESET;
ccb->ccb_h.timeout_ch =
timeout(ahbtimeout, (caddr_t)ecb, 2 * hz);
ahb->immed_cmd = IMMED_RESET;
ahbqueuembox(ahb, IMMED_RESET, ATTN_IMMED|ccb->ccb_h.target_id);
} else if ((ecb->state & ECB_SCSIBUS_RESET) != 0) {
/*
* Try a SCSI bus reset. We do this only if we
* have already attempted to clear the condition with a BDR.
*/
xpt_print_path(ccb->ccb_h.path);
printf("Attempting SCSI Bus reset\n");
ecb->state |= ECB_SCSIBUS_RESET;
ccb->ccb_h.timeout_ch =
timeout(ahbtimeout, (caddr_t)ecb, 2 * hz);
ahb->immed_cmd = IMMED_RESET;
ahbqueuembox(ahb, IMMED_RESET, ATTN_IMMED|ahb->scsi_id);
} else {
/* Bring out the hammer... */
ahbreset(ahb);
/* Simulate the reset complete interrupt */
ahbhandleimmed(ahb, 0, ahb->scsi_id|INTSTAT_IMMED_OK);
}
splx(s);
}
static device_method_t ahb_eisa_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, ahbprobe),
DEVMETHOD(device_attach, ahbattach),
{ 0, 0 }
};
static driver_t ahb_eisa_driver = {
"ahb",
ahb_eisa_methods,
1, /* unused */
};
static devclass_t ahb_devclass;
DRIVER_MODULE(ahb, eisa, ahb_eisa_driver, ahb_devclass, 0, 0);