freebsd-nq/sys/pci/agp.c
Alfred Perlstein 2395531439 Introduce a global lock for the vm subsystem (vm_mtx).
vm_mtx does not recurse and is required for most low level
vm operations.

faults can not be taken without holding Giant.

Memory subsystems can now call the base page allocators safely.

Almost all atomic ops were removed as they are covered under the
vm mutex.

Alpha and ia64 now need to catch up to i386's trap handlers.

FFS and NFS have been tested, other filesystems will need minor
changes (grabbing the vm lock when twiddling page properties).

Reviewed (partially) by: jake, jhb
2001-05-19 01:28:09 +00:00

805 lines
18 KiB
C

/*-
* Copyright (c) 2000 Doug Rabson
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include "opt_bus.h"
#include "opt_pci.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/ioccom.h>
#include <sys/agpio.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <pci/pcivar.h>
#include <pci/pcireg.h>
#include <pci/agppriv.h>
#include <pci/agpvar.h>
#include <pci/agpreg.h>
#include <vm/vm.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
#include <vm/pmap.h>
#include <machine/md_var.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
MODULE_VERSION(agp, 1);
MALLOC_DEFINE(M_AGP, "agp", "AGP data structures");
#define CDEV_MAJOR 148
/* agp_drv.c */
static d_open_t agp_open;
static d_close_t agp_close;
static d_ioctl_t agp_ioctl;
static d_mmap_t agp_mmap;
static struct cdevsw agp_cdevsw = {
/* open */ agp_open,
/* close */ agp_close,
/* read */ noread,
/* write */ nowrite,
/* ioctl */ agp_ioctl,
/* poll */ nopoll,
/* mmap */ agp_mmap,
/* strategy */ nostrategy,
/* name */ "agp",
/* maj */ CDEV_MAJOR,
/* dump */ nodump,
/* psize */ nopsize,
/* flags */ D_TTY,
};
static devclass_t agp_devclass;
#define KDEV2DEV(kdev) devclass_get_device(agp_devclass, minor(kdev))
/* Helper functions for implementing chipset mini drivers. */
void
agp_flush_cache()
{
#ifdef __i386__
wbinvd();
#endif
}
u_int8_t
agp_find_caps(device_t dev)
{
u_int32_t status;
u_int8_t ptr, next;
/*
* Check the CAP_LIST bit of the PCI status register first.
*/
status = pci_read_config(dev, PCIR_STATUS, 2);
if (!(status & 0x10))
return 0;
/*
* Traverse the capabilities list.
*/
for (ptr = pci_read_config(dev, AGP_CAPPTR, 1);
ptr != 0;
ptr = next) {
u_int32_t capid = pci_read_config(dev, ptr, 4);
next = AGP_CAPID_GET_NEXT_PTR(capid);
/*
* If this capability entry ID is 2, then we are done.
*/
if (AGP_CAPID_GET_CAP_ID(capid) == 2)
return ptr;
}
return 0;
}
/*
* Find an AGP display device (if any).
*/
static device_t
agp_find_display(void)
{
devclass_t pci = devclass_find("pci");
device_t bus, dev = 0;
device_t *kids;
int busnum, numkids, i;
for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
bus = devclass_get_device(pci, busnum);
if (!bus)
continue;
device_get_children(bus, &kids, &numkids);
for (i = 0; i < numkids; i++) {
dev = kids[i];
if (pci_get_class(dev) == PCIC_DISPLAY
&& pci_get_subclass(dev) == PCIS_DISPLAY_VGA)
if (agp_find_caps(dev)) {
free(kids, M_TEMP);
return dev;
}
}
free(kids, M_TEMP);
}
return 0;
}
struct agp_gatt *
agp_alloc_gatt(device_t dev)
{
u_int32_t apsize = AGP_GET_APERTURE(dev);
u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
struct agp_gatt *gatt;
if (bootverbose)
device_printf(dev,
"allocating GATT for aperture of size %dM\n",
apsize / (1024*1024));
gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
if (!gatt)
return 0;
gatt->ag_entries = entries;
gatt->ag_virtual = contigmalloc(entries * sizeof(u_int32_t), M_AGP, 0,
0, ~0, PAGE_SIZE, 0);
if (!gatt->ag_virtual) {
if (bootverbose)
device_printf(dev, "contiguous allocation failed\n");
free(gatt, M_AGP);
return 0;
}
bzero(gatt->ag_virtual, entries * sizeof(u_int32_t));
gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual);
agp_flush_cache();
return gatt;
}
void
agp_free_gatt(struct agp_gatt *gatt)
{
contigfree(gatt->ag_virtual,
gatt->ag_entries * sizeof(u_int32_t), M_AGP);
free(gatt, M_AGP);
}
static int agp_max[][2] = {
{0, 0},
{32, 4},
{64, 28},
{128, 96},
{256, 204},
{512, 440},
{1024, 942},
{2048, 1920},
{4096, 3932}
};
#define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0]))
int
agp_generic_attach(device_t dev)
{
struct agp_softc *sc = device_get_softc(dev);
int rid, memsize, i;
/*
* Find and map the aperture.
*/
rid = AGP_APBASE;
sc->as_aperture = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
0, ~0, 1, RF_ACTIVE);
if (!sc->as_aperture)
return ENOMEM;
/*
* Work out an upper bound for agp memory allocation. This
* uses a heurisitc table from the Linux driver.
*/
memsize = ptoa(Maxmem) >> 20;
for (i = 0; i < agp_max_size; i++) {
if (memsize <= agp_max[i][0])
break;
}
if (i == agp_max_size) i = agp_max_size - 1;
sc->as_maxmem = agp_max[i][1] << 20U;
/*
* The lock is used to prevent re-entry to
* agp_generic_bind_memory() since that function can sleep.
*/
lockinit(&sc->as_lock, PZERO|PCATCH, "agplk", 0, 0);
/*
* Initialise stuff for the userland device.
*/
agp_devclass = devclass_find("agp");
TAILQ_INIT(&sc->as_memory);
sc->as_nextid = 1;
sc->as_devnode = make_dev(&agp_cdevsw,
device_get_unit(dev),
UID_ROOT,
GID_WHEEL,
0600,
"agpgart");
return 0;
}
int
agp_generic_detach(device_t dev)
{
struct agp_softc *sc = device_get_softc(dev);
bus_release_resource(dev, SYS_RES_MEMORY, AGP_APBASE, sc->as_aperture);
lockmgr(&sc->as_lock, LK_DRAIN, 0, curproc);
lockdestroy(&sc->as_lock);
destroy_dev(sc->as_devnode);
agp_flush_cache();
return 0;
}
int
agp_generic_enable(device_t dev, u_int32_t mode)
{
device_t mdev = agp_find_display();
u_int32_t tstatus, mstatus;
u_int32_t command;
int rq, sba, fw, rate;;
if (!mdev) {
AGP_DPF("can't find display\n");
return ENXIO;
}
tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
/* Set RQ to the min of mode, tstatus and mstatus */
rq = AGP_MODE_GET_RQ(mode);
if (AGP_MODE_GET_RQ(tstatus) < rq)
rq = AGP_MODE_GET_RQ(tstatus);
if (AGP_MODE_GET_RQ(mstatus) < rq)
rq = AGP_MODE_GET_RQ(mstatus);
/* Set SBA if all three can deal with SBA */
sba = (AGP_MODE_GET_SBA(tstatus)
& AGP_MODE_GET_SBA(mstatus)
& AGP_MODE_GET_SBA(mode));
/* Similar for FW */
fw = (AGP_MODE_GET_FW(tstatus)
& AGP_MODE_GET_FW(mstatus)
& AGP_MODE_GET_FW(mode));
/* Figure out the max rate */
rate = (AGP_MODE_GET_RATE(tstatus)
& AGP_MODE_GET_RATE(mstatus)
& AGP_MODE_GET_RATE(mode));
if (rate & AGP_MODE_RATE_4x)
rate = AGP_MODE_RATE_4x;
else if (rate & AGP_MODE_RATE_2x)
rate = AGP_MODE_RATE_2x;
else
rate = AGP_MODE_RATE_1x;
/* Construct the new mode word and tell the hardware */
command = AGP_MODE_SET_RQ(0, rq);
command = AGP_MODE_SET_SBA(command, sba);
command = AGP_MODE_SET_FW(command, fw);
command = AGP_MODE_SET_RATE(command, rate);
command = AGP_MODE_SET_AGP(command, 1);
pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4);
pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4);
return 0;
}
struct agp_memory *
agp_generic_alloc_memory(device_t dev, int type, vm_size_t size)
{
struct agp_softc *sc = device_get_softc(dev);
struct agp_memory *mem;
if ((size & (AGP_PAGE_SIZE - 1)) != 0)
return 0;
if (sc->as_allocated + size > sc->as_maxmem)
return 0;
if (type != 0) {
printf("agp_generic_alloc_memory: unsupported type %d\n",
type);
return 0;
}
mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
mem->am_id = sc->as_nextid++;
mem->am_size = size;
mem->am_type = 0;
mem->am_obj = vm_object_allocate(OBJT_DEFAULT, atop(round_page(size)));
mem->am_physical = 0;
mem->am_offset = 0;
mem->am_is_bound = 0;
TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
sc->as_allocated += size;
return mem;
}
int
agp_generic_free_memory(device_t dev, struct agp_memory *mem)
{
struct agp_softc *sc = device_get_softc(dev);
if (mem->am_is_bound)
return EBUSY;
sc->as_allocated -= mem->am_size;
TAILQ_REMOVE(&sc->as_memory, mem, am_link);
vm_object_deallocate(mem->am_obj);
free(mem, M_AGP);
return 0;
}
int
agp_generic_bind_memory(device_t dev, struct agp_memory *mem,
vm_offset_t offset)
{
struct agp_softc *sc = device_get_softc(dev);
vm_offset_t i, j, k;
vm_page_t m;
int error;
lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0, curproc);
if (mem->am_is_bound) {
device_printf(dev, "memory already bound\n");
return EINVAL;
}
if (offset < 0
|| (offset & (AGP_PAGE_SIZE - 1)) != 0
|| offset + mem->am_size > AGP_GET_APERTURE(dev)) {
device_printf(dev, "binding memory at bad offset %#x\n",
(int) offset);
return EINVAL;
}
/*
* Bind the individual pages and flush the chipset's
* TLB.
*
* XXX Presumably, this needs to be the pci address on alpha
* (i.e. use alpha_XXX_dmamap()). I don't have access to any
* alpha AGP hardware to check.
*/
for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
/*
* Find a page from the object and wire it
* down. This page will be mapped using one or more
* entries in the GATT (assuming that PAGE_SIZE >=
* AGP_PAGE_SIZE. If this is the first call to bind,
* the pages will be allocated and zeroed.
*/
m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i),
VM_ALLOC_ZERO | VM_ALLOC_RETRY);
AGP_DPF("found page pa=%#x\n", VM_PAGE_TO_PHYS(m));
vm_page_wire(m);
/*
* Install entries in the GATT, making sure that if
* AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
* aligned to PAGE_SIZE, we don't modify too many GATT
* entries.
*/
for (j = 0; j < PAGE_SIZE && i + j < mem->am_size;
j += AGP_PAGE_SIZE) {
vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j;
AGP_DPF("binding offset %#x to pa %#x\n",
offset + i + j, pa);
error = AGP_BIND_PAGE(dev, offset + i + j, pa);
if (error) {
/*
* Bail out. Reverse all the mappings
* and unwire the pages.
*/
vm_page_wakeup(m);
for (k = 0; k < i + j; k += AGP_PAGE_SIZE)
AGP_UNBIND_PAGE(dev, offset + k);
for (k = 0; k <= i; k += PAGE_SIZE) {
m = vm_page_lookup(mem->am_obj,
OFF_TO_IDX(k));
vm_page_unwire(m, 0);
}
lockmgr(&sc->as_lock, LK_RELEASE, 0, curproc);
return error;
}
}
vm_page_wakeup(m);
}
/*
* Flush the cpu cache since we are providing a new mapping
* for these pages.
*/
agp_flush_cache();
/*
* Make sure the chipset gets the new mappings.
*/
AGP_FLUSH_TLB(dev);
mem->am_offset = offset;
mem->am_is_bound = 1;
lockmgr(&sc->as_lock, LK_RELEASE, 0, curproc);
return 0;
}
int
agp_generic_unbind_memory(device_t dev, struct agp_memory *mem)
{
struct agp_softc *sc = device_get_softc(dev);
vm_page_t m;
int i;
lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0, curproc);
if (!mem->am_is_bound) {
device_printf(dev, "memory is not bound\n");
return EINVAL;
}
/*
* Unbind the individual pages and flush the chipset's
* TLB. Unwire the pages so they can be swapped.
*/
for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
AGP_UNBIND_PAGE(dev, mem->am_offset + i);
for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
m = vm_page_lookup(mem->am_obj, atop(i));
vm_page_unwire(m, 0);
}
agp_flush_cache();
AGP_FLUSH_TLB(dev);
mem->am_offset = 0;
mem->am_is_bound = 0;
lockmgr(&sc->as_lock, LK_RELEASE, 0, curproc);
return 0;
}
/* Helper functions for implementing user/kernel api */
static int
agp_acquire_helper(device_t dev, enum agp_acquire_state state)
{
struct agp_softc *sc = device_get_softc(dev);
if (sc->as_state != AGP_ACQUIRE_FREE)
return EBUSY;
sc->as_state = state;
return 0;
}
static int
agp_release_helper(device_t dev, enum agp_acquire_state state)
{
struct agp_softc *sc = device_get_softc(dev);
struct agp_memory *mem;
if (sc->as_state == AGP_ACQUIRE_FREE)
return 0;
if (sc->as_state != state)
return EBUSY;
/*
* Clear out the aperture and free any outstanding memory blocks.
*/
while ((mem = TAILQ_FIRST(&sc->as_memory)) != 0) {
if (mem->am_is_bound)
AGP_UNBIND_MEMORY(dev, mem);
AGP_FREE_MEMORY(dev, mem);
}
sc->as_state = AGP_ACQUIRE_FREE;
return 0;
}
static struct agp_memory *
agp_find_memory(device_t dev, int id)
{
struct agp_softc *sc = device_get_softc(dev);
struct agp_memory *mem;
AGP_DPF("searching for memory block %d\n", id);
TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
AGP_DPF("considering memory block %d\n", mem->am_id);
if (mem->am_id == id)
return mem;
}
return 0;
}
/* Implementation of the userland ioctl api */
static int
agp_info_user(device_t dev, agp_info *info)
{
struct agp_softc *sc = device_get_softc(dev);
bzero(info, sizeof *info);
info->bridge_id = pci_get_devid(dev);
info->agp_mode =
pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
info->aper_base = rman_get_start(sc->as_aperture);
info->aper_size = AGP_GET_APERTURE(dev) >> 20;
info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
return 0;
}
static int
agp_setup_user(device_t dev, agp_setup *setup)
{
return AGP_ENABLE(dev, setup->agp_mode);
}
static int
agp_allocate_user(device_t dev, agp_allocate *alloc)
{
struct agp_memory *mem;
mem = AGP_ALLOC_MEMORY(dev,
alloc->type,
alloc->pg_count << AGP_PAGE_SHIFT);
if (mem) {
alloc->key = mem->am_id;
alloc->physical = mem->am_physical;
return 0;
} else {
return ENOMEM;
}
}
static int
agp_deallocate_user(device_t dev, int id)
{
struct agp_memory *mem = agp_find_memory(dev, id);;
if (mem) {
AGP_FREE_MEMORY(dev, mem);
return 0;
} else {
return ENOENT;
}
}
static int
agp_bind_user(device_t dev, agp_bind *bind)
{
struct agp_memory *mem = agp_find_memory(dev, bind->key);
if (!mem)
return ENOENT;
return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT);
}
static int
agp_unbind_user(device_t dev, agp_unbind *unbind)
{
struct agp_memory *mem = agp_find_memory(dev, unbind->key);
if (!mem)
return ENOENT;
return AGP_UNBIND_MEMORY(dev, mem);
}
static int
agp_open(dev_t kdev, int oflags, int devtype, struct proc *p)
{
device_t dev = KDEV2DEV(kdev);
struct agp_softc *sc = device_get_softc(dev);
if (!sc->as_isopen) {
sc->as_isopen = 1;
device_busy(dev);
}
return 0;
}
static int
agp_close(dev_t kdev, int fflag, int devtype, struct proc *p)
{
device_t dev = KDEV2DEV(kdev);
struct agp_softc *sc = device_get_softc(dev);
/*
* Clear the GATT and force release on last close
*/
if (sc->as_state == AGP_ACQUIRE_USER)
agp_release_helper(dev, AGP_ACQUIRE_USER);
sc->as_isopen = 0;
device_unbusy(dev);
return 0;
}
static int
agp_ioctl(dev_t kdev, u_long cmd, caddr_t data, int fflag, struct proc *p)
{
device_t dev = KDEV2DEV(kdev);
switch (cmd) {
case AGPIOC_INFO:
return agp_info_user(dev, (agp_info *) data);
case AGPIOC_ACQUIRE:
return agp_acquire_helper(dev, AGP_ACQUIRE_USER);
case AGPIOC_RELEASE:
return agp_release_helper(dev, AGP_ACQUIRE_USER);
case AGPIOC_SETUP:
return agp_setup_user(dev, (agp_setup *)data);
case AGPIOC_ALLOCATE:
return agp_allocate_user(dev, (agp_allocate *)data);
case AGPIOC_DEALLOCATE:
return agp_deallocate_user(dev, *(int *) data);
case AGPIOC_BIND:
return agp_bind_user(dev, (agp_bind *)data);
case AGPIOC_UNBIND:
return agp_unbind_user(dev, (agp_unbind *)data);
}
return EINVAL;
}
static int
agp_mmap(dev_t kdev, vm_offset_t offset, int prot)
{
device_t dev = KDEV2DEV(kdev);
struct agp_softc *sc = device_get_softc(dev);
if (offset > AGP_GET_APERTURE(dev))
return -1;
return atop(rman_get_start(sc->as_aperture) + offset);
}
/* Implementation of the kernel api */
device_t
agp_find_device()
{
if (!agp_devclass)
return 0;
return devclass_get_device(agp_devclass, 0);
}
enum agp_acquire_state
agp_state(device_t dev)
{
struct agp_softc *sc = device_get_softc(dev);
return sc->as_state;
}
void
agp_get_info(device_t dev, struct agp_info *info)
{
struct agp_softc *sc = device_get_softc(dev);
info->ai_mode =
pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
info->ai_aperture_base = rman_get_start(sc->as_aperture);
info->ai_aperture_size = rman_get_size(sc->as_aperture);
info->ai_memory_allowed = sc->as_maxmem;
info->ai_memory_used = sc->as_allocated;
}
int
agp_acquire(device_t dev)
{
return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
}
int
agp_release(device_t dev)
{
return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
}
int
agp_enable(device_t dev, u_int32_t mode)
{
return AGP_ENABLE(dev, mode);
}
void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes)
{
return (void *) AGP_ALLOC_MEMORY(dev, type, bytes);
}
void agp_free_memory(device_t dev, void *handle)
{
struct agp_memory *mem = (struct agp_memory *) handle;
AGP_FREE_MEMORY(dev, mem);
}
int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset)
{
struct agp_memory *mem = (struct agp_memory *) handle;
return AGP_BIND_MEMORY(dev, mem, offset);
}
int agp_unbind_memory(device_t dev, void *handle)
{
struct agp_memory *mem = (struct agp_memory *) handle;
return AGP_UNBIND_MEMORY(dev, mem);
}
void agp_memory_info(device_t dev, void *handle, struct
agp_memory_info *mi)
{
struct agp_memory *mem = (struct agp_memory *) handle;
mi->ami_size = mem->am_size;
mi->ami_physical = mem->am_physical;
mi->ami_offset = mem->am_offset;
mi->ami_is_bound = mem->am_is_bound;
}