038ffd3e43
regression manages to do it)... We use a packed struct to coerce gcc/clang into producing unaligned loads (there is not packed pointer attribute, otherwise this would be easier)... use _storeu_ and _loadu_ when using the structure is overkill... be better at using types properly... Since we allocate our own key schedule and make sure it's aligned, use the __m128i type in various arguments to functions... clang ignores __aligned on prototypes and gcc errors on them, leave them in comments to document that these function arguments are require to be aligned... about all that changes is movdqa -> movdqu from reading the diff of the disassembly output... Noticed by: symbolics at gmx.com MFC after: 3 days
479 lines
13 KiB
C
479 lines
13 KiB
C
/*-
|
|
* Copyright (C) 2008 Damien Miller <djm@mindrot.org>
|
|
* Copyright (c) 2010 Konstantin Belousov <kib@FreeBSD.org>
|
|
* Copyright (c) 2010-2011 Pawel Jakub Dawidek <pawel@dawidek.net>
|
|
* Copyright 2012-2013 John-Mark Gurney <jmg@FreeBSD.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/libkern.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/systm.h>
|
|
#include <crypto/aesni/aesni.h>
|
|
|
|
#include "aesencdec.h"
|
|
|
|
MALLOC_DECLARE(M_AESNI);
|
|
|
|
struct blocks8 {
|
|
__m128i blk[8];
|
|
} __packed;
|
|
|
|
void
|
|
aesni_encrypt_cbc(int rounds, const void *key_schedule, size_t len,
|
|
const uint8_t *from, uint8_t *to, const uint8_t iv[AES_BLOCK_LEN])
|
|
{
|
|
__m128i tot, ivreg;
|
|
size_t i;
|
|
|
|
len /= AES_BLOCK_LEN;
|
|
ivreg = _mm_loadu_si128((const __m128i *)iv);
|
|
for (i = 0; i < len; i++) {
|
|
tot = aesni_enc(rounds - 1, key_schedule,
|
|
_mm_loadu_si128((const __m128i *)from) ^ ivreg);
|
|
ivreg = tot;
|
|
_mm_storeu_si128((__m128i *)to, tot);
|
|
from += AES_BLOCK_LEN;
|
|
to += AES_BLOCK_LEN;
|
|
}
|
|
}
|
|
|
|
void
|
|
aesni_decrypt_cbc(int rounds, const void *key_schedule, size_t len,
|
|
uint8_t *buf, const uint8_t iv[AES_BLOCK_LEN])
|
|
{
|
|
__m128i blocks[8];
|
|
struct blocks8 *blks;
|
|
__m128i ivreg, nextiv;
|
|
size_t i, j, cnt;
|
|
|
|
ivreg = _mm_loadu_si128((const __m128i *)iv);
|
|
cnt = len / AES_BLOCK_LEN / 8;
|
|
for (i = 0; i < cnt; i++) {
|
|
blks = (struct blocks8 *)buf;
|
|
aesni_dec8(rounds - 1, key_schedule, blks->blk[0], blks->blk[1],
|
|
blks->blk[2], blks->blk[3], blks->blk[4], blks->blk[5],
|
|
blks->blk[6], blks->blk[7], &blocks[0]);
|
|
for (j = 0; j < 8; j++) {
|
|
nextiv = blks->blk[j];
|
|
blks->blk[j] = blocks[j] ^ ivreg;
|
|
ivreg = nextiv;
|
|
}
|
|
buf += AES_BLOCK_LEN * 8;
|
|
}
|
|
i *= 8;
|
|
cnt = len / AES_BLOCK_LEN;
|
|
for (; i < cnt; i++) {
|
|
nextiv = _mm_loadu_si128((void *)buf);
|
|
_mm_storeu_si128((void *)buf,
|
|
aesni_dec(rounds - 1, key_schedule, nextiv) ^ ivreg);
|
|
ivreg = nextiv;
|
|
buf += AES_BLOCK_LEN;
|
|
}
|
|
}
|
|
|
|
void
|
|
aesni_encrypt_ecb(int rounds, const void *key_schedule, size_t len,
|
|
const uint8_t *from, uint8_t *to)
|
|
{
|
|
__m128i tot;
|
|
__m128i tout[8];
|
|
struct blocks8 *top;
|
|
const struct blocks8 *blks;
|
|
size_t i, cnt;
|
|
|
|
cnt = len / AES_BLOCK_LEN / 8;
|
|
for (i = 0; i < cnt; i++) {
|
|
blks = (const struct blocks8 *)from;
|
|
top = (struct blocks8 *)to;
|
|
aesni_enc8(rounds - 1, key_schedule, blks->blk[0], blks->blk[1],
|
|
blks->blk[2], blks->blk[3], blks->blk[4], blks->blk[5],
|
|
blks->blk[6], blks->blk[7], tout);
|
|
top->blk[0] = tout[0];
|
|
top->blk[1] = tout[1];
|
|
top->blk[2] = tout[2];
|
|
top->blk[3] = tout[3];
|
|
top->blk[4] = tout[4];
|
|
top->blk[5] = tout[5];
|
|
top->blk[6] = tout[6];
|
|
top->blk[7] = tout[7];
|
|
from += AES_BLOCK_LEN * 8;
|
|
to += AES_BLOCK_LEN * 8;
|
|
}
|
|
i *= 8;
|
|
cnt = len / AES_BLOCK_LEN;
|
|
for (; i < cnt; i++) {
|
|
tot = aesni_enc(rounds - 1, key_schedule,
|
|
_mm_loadu_si128((const __m128i *)from));
|
|
_mm_storeu_si128((__m128i *)to, tot);
|
|
from += AES_BLOCK_LEN;
|
|
to += AES_BLOCK_LEN;
|
|
}
|
|
}
|
|
|
|
void
|
|
aesni_decrypt_ecb(int rounds, const void *key_schedule, size_t len,
|
|
const uint8_t from[AES_BLOCK_LEN], uint8_t to[AES_BLOCK_LEN])
|
|
{
|
|
__m128i tot;
|
|
__m128i tout[8];
|
|
const struct blocks8 *blks;
|
|
struct blocks8 *top;
|
|
size_t i, cnt;
|
|
|
|
cnt = len / AES_BLOCK_LEN / 8;
|
|
for (i = 0; i < cnt; i++) {
|
|
blks = (const struct blocks8 *)from;
|
|
top = (struct blocks8 *)to;
|
|
aesni_dec8(rounds - 1, key_schedule, blks->blk[0], blks->blk[1],
|
|
blks->blk[2], blks->blk[3], blks->blk[4], blks->blk[5],
|
|
blks->blk[6], blks->blk[7], tout);
|
|
top->blk[0] = tout[0];
|
|
top->blk[1] = tout[1];
|
|
top->blk[2] = tout[2];
|
|
top->blk[3] = tout[3];
|
|
top->blk[4] = tout[4];
|
|
top->blk[5] = tout[5];
|
|
top->blk[6] = tout[6];
|
|
top->blk[7] = tout[7];
|
|
from += AES_BLOCK_LEN * 8;
|
|
to += AES_BLOCK_LEN * 8;
|
|
}
|
|
i *= 8;
|
|
cnt = len / AES_BLOCK_LEN;
|
|
for (; i < cnt; i++) {
|
|
tot = aesni_dec(rounds - 1, key_schedule,
|
|
_mm_loadu_si128((const __m128i *)from));
|
|
_mm_storeu_si128((__m128i *)to, tot);
|
|
from += AES_BLOCK_LEN;
|
|
to += AES_BLOCK_LEN;
|
|
}
|
|
}
|
|
|
|
#define AES_XTS_BLOCKSIZE 16
|
|
#define AES_XTS_IVSIZE 8
|
|
#define AES_XTS_ALPHA 0x87 /* GF(2^128) generator polynomial */
|
|
|
|
static inline __m128i
|
|
xts_crank_lfsr(__m128i inp)
|
|
{
|
|
const __m128i alphamask = _mm_set_epi32(1, 1, 1, AES_XTS_ALPHA);
|
|
__m128i xtweak, ret;
|
|
|
|
/* set up xor mask */
|
|
xtweak = _mm_shuffle_epi32(inp, 0x93);
|
|
xtweak = _mm_srai_epi32(xtweak, 31);
|
|
xtweak &= alphamask;
|
|
|
|
/* next term */
|
|
ret = _mm_slli_epi32(inp, 1);
|
|
ret ^= xtweak;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
aesni_crypt_xts_block(int rounds, const __m128i *key_schedule, __m128i *tweak,
|
|
const uint8_t *from, uint8_t *to, int do_encrypt)
|
|
{
|
|
__m128i block;
|
|
|
|
block = _mm_loadu_si128((const __m128i *)from) ^ *tweak;
|
|
|
|
if (do_encrypt)
|
|
block = aesni_enc(rounds - 1, key_schedule, block);
|
|
else
|
|
block = aesni_dec(rounds - 1, key_schedule, block);
|
|
|
|
_mm_storeu_si128((__m128i *)to, block ^ *tweak);
|
|
|
|
*tweak = xts_crank_lfsr(*tweak);
|
|
}
|
|
|
|
static void
|
|
aesni_crypt_xts_block8(int rounds, const __m128i *key_schedule, __m128i *tweak,
|
|
const uint8_t *from, uint8_t *to, int do_encrypt)
|
|
{
|
|
__m128i tmptweak;
|
|
__m128i a, b, c, d, e, f, g, h;
|
|
__m128i tweaks[8];
|
|
__m128i tmp[8];
|
|
__m128i *top;
|
|
const __m128i *fromp;
|
|
|
|
tmptweak = *tweak;
|
|
|
|
/*
|
|
* unroll the loop. This lets gcc put values directly in the
|
|
* register and saves memory accesses.
|
|
*/
|
|
fromp = (const __m128i *)from;
|
|
#define PREPINP(v, pos) \
|
|
do { \
|
|
tweaks[(pos)] = tmptweak; \
|
|
(v) = _mm_loadu_si128(&fromp[pos]) ^ \
|
|
tmptweak; \
|
|
tmptweak = xts_crank_lfsr(tmptweak); \
|
|
} while (0)
|
|
PREPINP(a, 0);
|
|
PREPINP(b, 1);
|
|
PREPINP(c, 2);
|
|
PREPINP(d, 3);
|
|
PREPINP(e, 4);
|
|
PREPINP(f, 5);
|
|
PREPINP(g, 6);
|
|
PREPINP(h, 7);
|
|
*tweak = tmptweak;
|
|
|
|
if (do_encrypt)
|
|
aesni_enc8(rounds - 1, key_schedule, a, b, c, d, e, f, g, h,
|
|
tmp);
|
|
else
|
|
aesni_dec8(rounds - 1, key_schedule, a, b, c, d, e, f, g, h,
|
|
tmp);
|
|
|
|
top = (__m128i *)to;
|
|
_mm_storeu_si128(&top[0], tmp[0] ^ tweaks[0]);
|
|
_mm_storeu_si128(&top[1], tmp[1] ^ tweaks[1]);
|
|
_mm_storeu_si128(&top[2], tmp[2] ^ tweaks[2]);
|
|
_mm_storeu_si128(&top[3], tmp[3] ^ tweaks[3]);
|
|
_mm_storeu_si128(&top[4], tmp[4] ^ tweaks[4]);
|
|
_mm_storeu_si128(&top[5], tmp[5] ^ tweaks[5]);
|
|
_mm_storeu_si128(&top[6], tmp[6] ^ tweaks[6]);
|
|
_mm_storeu_si128(&top[7], tmp[7] ^ tweaks[7]);
|
|
}
|
|
|
|
static void
|
|
aesni_crypt_xts(int rounds, const __m128i *data_schedule,
|
|
const __m128i *tweak_schedule, size_t len, const uint8_t *from,
|
|
uint8_t *to, const uint8_t iv[AES_BLOCK_LEN], int do_encrypt)
|
|
{
|
|
__m128i tweakreg;
|
|
uint8_t tweak[AES_XTS_BLOCKSIZE] __aligned(16);
|
|
size_t i, cnt;
|
|
|
|
/*
|
|
* Prepare tweak as E_k2(IV). IV is specified as LE representation
|
|
* of a 64-bit block number which we allow to be passed in directly.
|
|
*/
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
bcopy(iv, tweak, AES_XTS_IVSIZE);
|
|
/* Last 64 bits of IV are always zero. */
|
|
bzero(tweak + AES_XTS_IVSIZE, AES_XTS_IVSIZE);
|
|
#else
|
|
#error Only LITTLE_ENDIAN architectures are supported.
|
|
#endif
|
|
tweakreg = _mm_loadu_si128((__m128i *)&tweak[0]);
|
|
tweakreg = aesni_enc(rounds - 1, tweak_schedule, tweakreg);
|
|
|
|
cnt = len / AES_XTS_BLOCKSIZE / 8;
|
|
for (i = 0; i < cnt; i++) {
|
|
aesni_crypt_xts_block8(rounds, data_schedule, &tweakreg,
|
|
from, to, do_encrypt);
|
|
from += AES_XTS_BLOCKSIZE * 8;
|
|
to += AES_XTS_BLOCKSIZE * 8;
|
|
}
|
|
i *= 8;
|
|
cnt = len / AES_XTS_BLOCKSIZE;
|
|
for (; i < cnt; i++) {
|
|
aesni_crypt_xts_block(rounds, data_schedule, &tweakreg,
|
|
from, to, do_encrypt);
|
|
from += AES_XTS_BLOCKSIZE;
|
|
to += AES_XTS_BLOCKSIZE;
|
|
}
|
|
}
|
|
|
|
void
|
|
aesni_encrypt_xts(int rounds, const void *data_schedule,
|
|
const void *tweak_schedule, size_t len, const uint8_t *from, uint8_t *to,
|
|
const uint8_t iv[AES_BLOCK_LEN])
|
|
{
|
|
|
|
aesni_crypt_xts(rounds, data_schedule, tweak_schedule, len, from, to,
|
|
iv, 1);
|
|
}
|
|
|
|
void
|
|
aesni_decrypt_xts(int rounds, const void *data_schedule,
|
|
const void *tweak_schedule, size_t len, const uint8_t *from, uint8_t *to,
|
|
const uint8_t iv[AES_BLOCK_LEN])
|
|
{
|
|
|
|
aesni_crypt_xts(rounds, data_schedule, tweak_schedule, len, from, to,
|
|
iv, 0);
|
|
}
|
|
|
|
static int
|
|
aesni_cipher_setup_common(struct aesni_session *ses, const uint8_t *key,
|
|
int keylen)
|
|
{
|
|
|
|
switch (ses->algo) {
|
|
case CRYPTO_AES_CBC:
|
|
switch (keylen) {
|
|
case 128:
|
|
ses->rounds = AES128_ROUNDS;
|
|
break;
|
|
case 192:
|
|
ses->rounds = AES192_ROUNDS;
|
|
break;
|
|
case 256:
|
|
ses->rounds = AES256_ROUNDS;
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
break;
|
|
case CRYPTO_AES_XTS:
|
|
switch (keylen) {
|
|
case 256:
|
|
ses->rounds = AES128_ROUNDS;
|
|
break;
|
|
case 512:
|
|
ses->rounds = AES256_ROUNDS;
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
aesni_set_enckey(key, ses->enc_schedule, ses->rounds);
|
|
aesni_set_deckey(ses->enc_schedule, ses->dec_schedule, ses->rounds);
|
|
if (ses->algo == CRYPTO_AES_CBC)
|
|
arc4rand(ses->iv, sizeof(ses->iv), 0);
|
|
else /* if (ses->algo == CRYPTO_AES_XTS) */ {
|
|
aesni_set_enckey(key + keylen / 16, ses->xts_schedule,
|
|
ses->rounds);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
aesni_cipher_setup(struct aesni_session *ses, struct cryptoini *encini)
|
|
{
|
|
struct thread *td;
|
|
int error, saved_ctx;
|
|
|
|
td = curthread;
|
|
if (!is_fpu_kern_thread(0)) {
|
|
error = fpu_kern_enter(td, ses->fpu_ctx, FPU_KERN_NORMAL);
|
|
saved_ctx = 1;
|
|
} else {
|
|
error = 0;
|
|
saved_ctx = 0;
|
|
}
|
|
if (error == 0) {
|
|
error = aesni_cipher_setup_common(ses, encini->cri_key,
|
|
encini->cri_klen);
|
|
if (saved_ctx)
|
|
fpu_kern_leave(td, ses->fpu_ctx);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
aesni_cipher_process(struct aesni_session *ses, struct cryptodesc *enccrd,
|
|
struct cryptop *crp)
|
|
{
|
|
struct thread *td;
|
|
uint8_t *buf;
|
|
int error, allocated, saved_ctx;
|
|
|
|
buf = aesni_cipher_alloc(enccrd, crp, &allocated);
|
|
if (buf == NULL)
|
|
return (ENOMEM);
|
|
|
|
td = curthread;
|
|
if (!is_fpu_kern_thread(0)) {
|
|
error = fpu_kern_enter(td, ses->fpu_ctx, FPU_KERN_NORMAL);
|
|
if (error != 0)
|
|
goto out;
|
|
saved_ctx = 1;
|
|
} else {
|
|
saved_ctx = 0;
|
|
error = 0;
|
|
}
|
|
|
|
if ((enccrd->crd_flags & CRD_F_KEY_EXPLICIT) != 0) {
|
|
error = aesni_cipher_setup_common(ses, enccrd->crd_key,
|
|
enccrd->crd_klen);
|
|
if (error != 0)
|
|
goto out;
|
|
}
|
|
|
|
if ((enccrd->crd_flags & CRD_F_ENCRYPT) != 0) {
|
|
if ((enccrd->crd_flags & CRD_F_IV_EXPLICIT) != 0)
|
|
bcopy(enccrd->crd_iv, ses->iv, AES_BLOCK_LEN);
|
|
if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0)
|
|
crypto_copyback(crp->crp_flags, crp->crp_buf,
|
|
enccrd->crd_inject, AES_BLOCK_LEN, ses->iv);
|
|
if (ses->algo == CRYPTO_AES_CBC) {
|
|
aesni_encrypt_cbc(ses->rounds, ses->enc_schedule,
|
|
enccrd->crd_len, buf, buf, ses->iv);
|
|
} else /* if (ses->algo == CRYPTO_AES_XTS) */ {
|
|
aesni_encrypt_xts(ses->rounds, ses->enc_schedule,
|
|
ses->xts_schedule, enccrd->crd_len, buf, buf,
|
|
ses->iv);
|
|
}
|
|
} else {
|
|
if ((enccrd->crd_flags & CRD_F_IV_EXPLICIT) != 0)
|
|
bcopy(enccrd->crd_iv, ses->iv, AES_BLOCK_LEN);
|
|
else
|
|
crypto_copydata(crp->crp_flags, crp->crp_buf,
|
|
enccrd->crd_inject, AES_BLOCK_LEN, ses->iv);
|
|
if (ses->algo == CRYPTO_AES_CBC) {
|
|
aesni_decrypt_cbc(ses->rounds, ses->dec_schedule,
|
|
enccrd->crd_len, buf, ses->iv);
|
|
} else /* if (ses->algo == CRYPTO_AES_XTS) */ {
|
|
aesni_decrypt_xts(ses->rounds, ses->dec_schedule,
|
|
ses->xts_schedule, enccrd->crd_len, buf, buf,
|
|
ses->iv);
|
|
}
|
|
}
|
|
if (saved_ctx)
|
|
fpu_kern_leave(td, ses->fpu_ctx);
|
|
if (allocated)
|
|
crypto_copyback(crp->crp_flags, crp->crp_buf, enccrd->crd_skip,
|
|
enccrd->crd_len, buf);
|
|
if ((enccrd->crd_flags & CRD_F_ENCRYPT) != 0)
|
|
crypto_copydata(crp->crp_flags, crp->crp_buf,
|
|
enccrd->crd_skip + enccrd->crd_len - AES_BLOCK_LEN,
|
|
AES_BLOCK_LEN, ses->iv);
|
|
out:
|
|
if (allocated) {
|
|
bzero(buf, enccrd->crd_len);
|
|
free(buf, M_AESNI);
|
|
}
|
|
return (error);
|
|
}
|