freebsd-nq/module/zfs/dmu_object.c
LOLi 08f0510d87 Fix unallocated object detection for large_dnode datasets
Fix dmu_object_next() to correctly handle unallocated objects on
large_dnode datasets.

We implement this by scanning the dnode block until we find the correct
offset to be used in dnode_next_offset(). This is necessary because we
can't assume *objectp is a hole even if dmu_object_info() returns
ENOENT.

This fixes a couple of issues with zfs receive on large_dnode datasets.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: loli10K <ezomori.nozomu@gmail.com>
Closes #5027 
Closes #5532
2017-01-13 15:47:34 -08:00

345 lines
9.3 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2013, 2015 by Delphix. All rights reserved.
* Copyright 2014 HybridCluster. All rights reserved.
*/
#include <sys/dmu.h>
#include <sys/dmu_objset.h>
#include <sys/dmu_tx.h>
#include <sys/dnode.h>
#include <sys/zap.h>
#include <sys/zfeature.h>
#include <sys/dsl_dataset.h>
uint64_t
dmu_object_alloc(objset_t *os, dmu_object_type_t ot, int blocksize,
dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
{
return dmu_object_alloc_dnsize(os, ot, blocksize, bonustype, bonuslen,
0, tx);
}
uint64_t
dmu_object_alloc_dnsize(objset_t *os, dmu_object_type_t ot, int blocksize,
dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
{
uint64_t object;
uint64_t L1_dnode_count = DNODES_PER_BLOCK <<
(DMU_META_DNODE(os)->dn_indblkshift - SPA_BLKPTRSHIFT);
dnode_t *dn = NULL;
int dn_slots = dnodesize >> DNODE_SHIFT;
boolean_t restarted = B_FALSE;
if (dn_slots == 0) {
dn_slots = DNODE_MIN_SLOTS;
} else {
ASSERT3S(dn_slots, >=, DNODE_MIN_SLOTS);
ASSERT3S(dn_slots, <=, DNODE_MAX_SLOTS);
}
mutex_enter(&os->os_obj_lock);
for (;;) {
object = os->os_obj_next;
/*
* Each time we polish off a L1 bp worth of dnodes (2^12
* objects), move to another L1 bp that's still
* reasonably sparse (at most 1/4 full). Look from the
* beginning at most once per txg. If we still can't
* allocate from that L1 block, search for an empty L0
* block, which will quickly skip to the end of the
* metadnode if the no nearby L0 blocks are empty. This
* fallback avoids a pathology where full dnode blocks
* containing large dnodes appear sparse because they
* have a low blk_fill, leading to many failed
* allocation attempts. In the long term a better
* mechanism to search for sparse metadnode regions,
* such as spacemaps, could be implemented.
*
* os_scan_dnodes is set during txg sync if enough objects
* have been freed since the previous rescan to justify
* backfilling again.
*
* Note that dmu_traverse depends on the behavior that we use
* multiple blocks of the dnode object before going back to
* reuse objects. Any change to this algorithm should preserve
* that property or find another solution to the issues
* described in traverse_visitbp.
*/
if (P2PHASE(object, L1_dnode_count) == 0) {
uint64_t offset;
uint64_t blkfill;
int minlvl;
int error;
if (os->os_rescan_dnodes) {
offset = 0;
os->os_rescan_dnodes = B_FALSE;
} else {
offset = object << DNODE_SHIFT;
}
blkfill = restarted ? 1 : DNODES_PER_BLOCK >> 2;
minlvl = restarted ? 1 : 2;
restarted = B_TRUE;
error = dnode_next_offset(DMU_META_DNODE(os),
DNODE_FIND_HOLE, &offset, minlvl, blkfill, 0);
if (error == 0)
object = offset >> DNODE_SHIFT;
}
os->os_obj_next = object + dn_slots;
/*
* XXX We should check for an i/o error here and return
* up to our caller. Actually we should pre-read it in
* dmu_tx_assign(), but there is currently no mechanism
* to do so.
*/
(void) dnode_hold_impl(os, object, DNODE_MUST_BE_FREE, dn_slots,
FTAG, &dn);
if (dn)
break;
if (dmu_object_next(os, &object, B_TRUE, 0) == 0)
os->os_obj_next = object;
else
/*
* Skip to next known valid starting point for a dnode.
*/
os->os_obj_next = P2ROUNDUP(object + 1,
DNODES_PER_BLOCK);
}
dnode_allocate(dn, ot, blocksize, 0, bonustype, bonuslen, dn_slots, tx);
mutex_exit(&os->os_obj_lock);
dmu_tx_add_new_object(tx, os, dn);
dnode_rele(dn, FTAG);
return (object);
}
int
dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
{
return (dmu_object_claim_dnsize(os, object, ot, blocksize, bonustype,
bonuslen, 0, tx));
}
int
dmu_object_claim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot,
int blocksize, dmu_object_type_t bonustype, int bonuslen,
int dnodesize, dmu_tx_t *tx)
{
dnode_t *dn;
int dn_slots = dnodesize >> DNODE_SHIFT;
int err;
if (dn_slots == 0)
dn_slots = DNODE_MIN_SLOTS;
ASSERT3S(dn_slots, >=, DNODE_MIN_SLOTS);
ASSERT3S(dn_slots, <=, DNODE_MAX_SLOTS);
if (object == DMU_META_DNODE_OBJECT && !dmu_tx_private_ok(tx))
return (SET_ERROR(EBADF));
err = dnode_hold_impl(os, object, DNODE_MUST_BE_FREE, dn_slots,
FTAG, &dn);
if (err)
return (err);
dnode_allocate(dn, ot, blocksize, 0, bonustype, bonuslen, dn_slots, tx);
dmu_tx_add_new_object(tx, os, dn);
dnode_rele(dn, FTAG);
return (0);
}
int
dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
{
return (dmu_object_reclaim_dnsize(os, object, ot, blocksize, bonustype,
bonuslen, 0, tx));
}
int
dmu_object_reclaim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot,
int blocksize, dmu_object_type_t bonustype, int bonuslen, int dnodesize,
dmu_tx_t *tx)
{
dnode_t *dn;
int dn_slots = dnodesize >> DNODE_SHIFT;
int err;
if (object == DMU_META_DNODE_OBJECT)
return (SET_ERROR(EBADF));
err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0,
FTAG, &dn);
if (err)
return (err);
dnode_reallocate(dn, ot, blocksize, bonustype, bonuslen, dn_slots, tx);
dnode_rele(dn, FTAG);
return (err);
}
int
dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx)
{
dnode_t *dn;
int err;
ASSERT(object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0,
FTAG, &dn);
if (err)
return (err);
ASSERT(dn->dn_type != DMU_OT_NONE);
dnode_free_range(dn, 0, DMU_OBJECT_END, tx);
dnode_free(dn, tx);
dnode_rele(dn, FTAG);
return (0);
}
/*
* Return (in *objectp) the next object which is allocated (or a hole)
* after *object, taking into account only objects that may have been modified
* after the specified txg.
*/
int
dmu_object_next(objset_t *os, uint64_t *objectp, boolean_t hole, uint64_t txg)
{
uint64_t offset;
uint64_t start_obj;
struct dsl_dataset *ds = os->os_dsl_dataset;
int error;
if (*objectp == 0) {
start_obj = 1;
} else if (ds && ds->ds_feature_inuse[SPA_FEATURE_LARGE_DNODE]) {
/*
* For large_dnode datasets, scan from the beginning of the
* dnode block to find the starting offset. This is needed
* because objectp could be part of a large dnode so we can't
* assume it's a hole even if dmu_object_info() returns ENOENT.
*/
int epb = DNODE_BLOCK_SIZE >> DNODE_SHIFT;
int skip;
uint64_t i;
for (i = *objectp & ~(epb - 1); i <= *objectp; i += skip) {
dmu_object_info_t doi;
error = dmu_object_info(os, i, &doi);
if (error)
skip = 1;
else
skip = doi.doi_dnodesize >> DNODE_SHIFT;
}
start_obj = i;
} else {
start_obj = *objectp + 1;
}
offset = start_obj << DNODE_SHIFT;
error = dnode_next_offset(DMU_META_DNODE(os),
(hole ? DNODE_FIND_HOLE : 0), &offset, 0, DNODES_PER_BLOCK, txg);
*objectp = offset >> DNODE_SHIFT;
return (error);
}
/*
* Turn this object from old_type into DMU_OTN_ZAP_METADATA, and bump the
* refcount on SPA_FEATURE_EXTENSIBLE_DATASET.
*
* Only for use from syncing context, on MOS objects.
*/
void
dmu_object_zapify(objset_t *mos, uint64_t object, dmu_object_type_t old_type,
dmu_tx_t *tx)
{
dnode_t *dn;
ASSERT(dmu_tx_is_syncing(tx));
VERIFY0(dnode_hold(mos, object, FTAG, &dn));
if (dn->dn_type == DMU_OTN_ZAP_METADATA) {
dnode_rele(dn, FTAG);
return;
}
ASSERT3U(dn->dn_type, ==, old_type);
ASSERT0(dn->dn_maxblkid);
dn->dn_next_type[tx->tx_txg & TXG_MASK] = dn->dn_type =
DMU_OTN_ZAP_METADATA;
dnode_setdirty(dn, tx);
dnode_rele(dn, FTAG);
mzap_create_impl(mos, object, 0, 0, tx);
spa_feature_incr(dmu_objset_spa(mos),
SPA_FEATURE_EXTENSIBLE_DATASET, tx);
}
void
dmu_object_free_zapified(objset_t *mos, uint64_t object, dmu_tx_t *tx)
{
dnode_t *dn;
dmu_object_type_t t;
ASSERT(dmu_tx_is_syncing(tx));
VERIFY0(dnode_hold(mos, object, FTAG, &dn));
t = dn->dn_type;
dnode_rele(dn, FTAG);
if (t == DMU_OTN_ZAP_METADATA) {
spa_feature_decr(dmu_objset_spa(mos),
SPA_FEATURE_EXTENSIBLE_DATASET, tx);
}
VERIFY0(dmu_object_free(mos, object, tx));
}
#if defined(_KERNEL) && defined(HAVE_SPL)
EXPORT_SYMBOL(dmu_object_alloc);
EXPORT_SYMBOL(dmu_object_alloc_dnsize);
EXPORT_SYMBOL(dmu_object_claim);
EXPORT_SYMBOL(dmu_object_claim_dnsize);
EXPORT_SYMBOL(dmu_object_reclaim);
EXPORT_SYMBOL(dmu_object_reclaim_dnsize);
EXPORT_SYMBOL(dmu_object_free);
EXPORT_SYMBOL(dmu_object_next);
EXPORT_SYMBOL(dmu_object_zapify);
EXPORT_SYMBOL(dmu_object_free_zapified);
#endif