freebsd-nq/sys/contrib/dev/oltr/if_oltr.c
Poul-Henning Kamp 46783fb897 Remove NBPF conditionality of bpf calls in most of our network drivers.
This means that we will not have to have a bpf and a non-bpf version
of our driver modules.

This does not open any security hole, because the bpf core isn't loadable

The drivers left unchanged are the "cross platform" drivers where the respective
maintainers are urged to DTRT, whatever that may be.

Add a couple of missing FreeBSD tags.
1999-09-25 12:06:01 +00:00

1507 lines
51 KiB
C

/*
* Copyright (c) 1998, Larry Lile
* All rights reserved.
*
* For latest sources and information on this driver, please
* go to http://anarchy.stdio.com.
*
* Questions, comments or suggestions should be directed to
* Larry Lile <lile@stdio.com>.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include "pci.h"
#include "oltr.h"
#include "opt_inet.h"
#if (NOLTR + NPCI) > 0
/*#define TRlldInlineIO*/
#define ISA_ADAPTERS (OC_3115 | OC_3117 | OC_3118)
#define PCI_ADAPTERS (OC_3133 | OC_3136 | OC_3137 | \
OC_3139 | OC_3140 | OC_3141 | \
OC_3250 | OC_3540 )
#define PCI_VENDOR_OLICOM 0x108D
char *AdapterName[] = {
/* 0 */ "Olicom XT Adapter [unsupported]",
/* 1 */ "Olicom OC-3115",
/* 2 */ "Olicom ISA 16/4 Adapter (OC-3117)",
/* 3 */ "Olicom ISA 16/4 Adapter (OC-3118)",
/* 4 */ "Olicom MCA 16/4 Adapter (OC-3129) [unsupported]",
/* 5 */ "Olicom MCA 16/4 Adapter (OC-3129) [unsupported]",
/* 6 */ "Olicom MCA 16/4 Adapter (OC-3129) [unsupported]",
/* 7 */ "Olicom EISA 16/4 Adapter (OC-3133)",
/* 8 */ "Olicom EISA 16/4 Adapter (OC-3133)",
/* 9 */ "Olicom EISA 16/4 Server Adapter (OC-3135)",
/* 10 */ "Olicom PCI 16/4 Adapter (OC-3136)",
/* 11 */ "Olicom PCI 16/4 Adapter (OC-3136)",
/* 12 */ "Olicom PCI/II 16/4 Adapter (OC-3137)",
/* 13 */ "Olicom PCI 16/4 Adapter (OC-3139)",
/* 14 */ "Olicom RapidFire 3140 16/4 PCI Adapter (OC-3140)",
/* 15 */ "Olicom RapidFire 3141 Fiber Adapter (OC-3141)",
/* 16 */ "Olicom PCMCIA 16/4 Adapter (OC-3220) [unsupported]",
/* 17 */ "Olicom PCMCIA 16/4 Adapter (OC-3121, OC-3230, OC-3232) [unsupported]",
/* 18 */ "Olicom PCMCIA 16/4 Adapter (OC-3250)",
/* 19 */ "Olicom RapidFire 3540 4/16/100 Adapter (OC-3540)"
};
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/sockio.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/syslog.h>
#include <sys/kernel.h>
#include <sys/interrupt.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/iso88025.h>
#include <net/if_media.h>
#include <net/bpf.h>
#if NPNP > 0
#include <i386/isa/pnp.h>
#endif
#include <machine/clock.h>
#include <machine/md_var.h>
#include <i386/isa/isa_device.h>
#if NPCI > 0
#include <pci/pcivar.h>
#include <pci/pcireg.h>
#endif
#include "contrib/dev/oltr/trlld.h"
#ifndef TRLLD_SPEED_AUTO
#define TRLLD_SPEED_AUTO 0
#endif
#define MIN(A,B) (((A) < (B)) ? (A) : (B))
#define MIN3(A,B,C) (MIN(A, (MIN(B, C))))
void *oltr_malloc(ssize_t, TRlldAdapterConfig_t *);
/*
* Glue functions prototypes for PMW kit IO
*/
#ifndef TRlldInlineIO
static void DriverOutByte __P((unsigned short, unsigned char));
static void DriverOutWord __P((unsigned short, unsigned short));
static void DriverOutDword __P((unsigned short, unsigned long));
static void DriverRepOutByte __P((unsigned short, unsigned char *, int));
static void DriverRepOutWord __P((unsigned short, unsigned short *, int));
static void DriverRepOutDword __P((unsigned short, unsigned long *, int));
static unsigned char DriverInByte __P((unsigned short));
static unsigned short DriverInWord __P((unsigned short));
static unsigned long DriverInDword __P((unsigned short));
static void DriverRepInByte __P((unsigned short, unsigned char *, int));
static void DriverRepInWord __P((unsigned short, unsigned short *, int));
static void DriverRepInDword __P((unsigned short, unsigned long *, int));
#endif /*TRlldInlineIO*/
static void DriverSuspend __P((unsigned short));
static void DriverStatus __P((void *, TRlldStatus_t *));
static void DriverCloseCompleted __P((void *));
static void DriverStatistics __P((void *, TRlldStatistics_t *));
static void DriverTransmitFrameCompleted __P((void *, void *, int));
static void DriverReceiveFrameCompleted __P((void *, int, int, void *, int));
typedef struct tx_buf {
int index;
int count;
char *buf;
struct mbuf *m;
} tx_buf_t;
typedef struct rx_buf {
int index;
char *buf;
} rx_buf_t;
#ifndef EXTRA_OLTR
#if NPCI > 0
#define EXTRA_OLTR 8
#else
#define EXTRA_OLTR 0
#endif /* NPCI */
#endif /* EXTRA_OLTR */
#ifndef OLTR_PROMISC_MODE
#define OLTR_PROMISC_MODE (TRLLD_PROM_LLC)
#endif
#define ALL_OPTIONS (IFM_TOK_ETR | IFM_TOK_SRCRT | IFM_TOK_ALLR | IFM_TOK_DTR | IFM_TOK_CLASSIC | IFM_TOK_AUTO)
/* List sizes MUST be a power of 2 */
#define TX_LIST_SIZE 16
#define RX_LIST_SIZE 16
#define TX_LIST_MASK (TX_LIST_SIZE - 1)
#define RX_LIST_MASK (RX_LIST_SIZE - 1)
#define RX_BUFFER_LEN (8*1024)
#define TX_BUFFER_LEN (8*1024)
struct oltr_softc {
struct arpcom arpcom;
struct ifmedia ifmedia;
TRlldAdapterConfig_t *config;
TRlldAdapter_t *TRlldAdapter;
int unit;
u_short PromiscMode;
u_short AdapterMode;
int hw_state;
#define HW_UNKNOWN 0 /* initial/absent state */
#define HW_FOUND 1 /* found, not initialized */
#define HW_BAD 2 /* fatal error */
#define HW_FAILED 3 /* closed eg. by remove, allow manual reopen */
#define HW_LOADING 4
#define HW_CLOSING 5
#define HW_CLOSING2 6
#define HW_CLOSED 7
#define HW_OPENING 8
#define HW_OPEN 9
#define HW_ERROR 10 /* temporary error */
u_long GroupAddress;
u_long FunctionalAddress;
int poll_adapter;
int tx_next;
int tx_avail;
tx_buf_t tx_buffer[TX_LIST_SIZE];
TRlldTransmit_t tx_frame;
int rx_next;
int rx_avail;
rx_buf_t rx_buffer[RX_LIST_SIZE];
struct callout_handle oltr_ch;
struct callout_handle poll_ch;
};
static struct oltr_softc oltr_softc[NOLTR + EXTRA_OLTR];
/*
* Driver function prototypes
*/
static int oltr_probe __P((struct isa_device *));
static int oltr_attach __P((struct isa_device *));
static void oltr_init __P((struct oltr_softc *));
static void oltr_intr __P((int));
static void oltr_start __P((struct ifnet *));
static void oltr_stop __P((struct oltr_softc *));
static int oltr_ioctl __P((struct ifnet *, u_long, caddr_t));
static int oltr_attach_common __P((struct oltr_softc *));
void oltr_timeout __P((void *));
void adapter_poll __P((void *));
struct isa_driver oltrdriver = {
oltr_probe,
oltr_attach,
"oltr",
0
};
int isa_cards = 0;
#if NPCI > 0
static u_long oltr_count = NOLTR;
static const char *oltr_pci_probe __P((pcici_t, pcidi_t));
static void oltr_pci_attach __P((pcici_t, int));
static void oltr_pci_intr __P((void *));
static void oltr_pci_shutdown __P((int, void *));
static struct pci_device oltr_device = {
"oltr",
oltr_pci_probe,
oltr_pci_attach,
&oltr_count,
NULL
};
COMPAT_PCI_DRIVER(oltr_pci, oltr_device);
int pci_cards = 0;
#endif /* NPCI */
static int oltr_ifmedia_upd __P((struct ifnet *));
static void oltr_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
static TRlldDriver_t oltrLldDriver = {
TRLLD_VERSION,
#ifndef TRlldInlineIO
DriverOutByte,
DriverOutWord,
DriverOutDword,
DriverRepOutByte,
DriverRepOutWord,
DriverRepOutDword,
DriverInByte,
DriverInWord,
DriverInDword,
DriverRepInByte,
DriverRepInWord,
DriverRepInDword,
#endif /*TRlldInlineIO*/
DriverSuspend,
DriverStatus,
DriverCloseCompleted,
DriverStatistics,
DriverTransmitFrameCompleted,
DriverReceiveFrameCompleted,
};
TRlldAdapterConfig_t oltr_config[NOLTR + EXTRA_OLTR];
void *
oltr_malloc(Size, Adapter)
ssize_t Size;
TRlldAdapterConfig_t *Adapter;
{
/* If the adapter needs memory below 16M for DMA then use contigmalloc */
if (Adapter->mode & TRLLD_MODE_16M) /* Adapter using ISA DMA buffer below 16M */
return(contigmalloc(Size, M_DEVBUF, M_NOWAIT, 0ul, 0xfffffful, 1ul, 0x10000ul));
else
return(malloc(Size, M_DEVBUF, M_NOWAIT));
}
/*
* Driver Functions
*/
static int
oltr_probe(is)
struct isa_device *is;
{
static int find_completed = 0, assigned[NOLTR];
struct oltr_softc *sc = &oltr_softc[is->id_unit];
int i;
printf("oltr%d: oltr_probe\n", is->id_unit);
/* Make life easy, use the Olicom supplied find function on the first probe
* to probe all of the ISA adapters. Then give them to each unit as requested.
* Try to match the adapters to units based on the iobase, but if iobase? then
* just give out the next available adapter.
*/
if (!find_completed) {
isa_cards = TRlldFind(&oltrLldDriver, &oltr_config[0], ISA_ADAPTERS, NOLTR);
/*for (i = 0; i < isa_cards; i++) {
printf("TRlldFind: card %d - %s MAC %6D\n", i + 1, AdapterName[oltr_config[i].type], oltr_config[i].macaddress, ":");
}*/
for (i = 0; i < NOLTR; i++)
assigned[i] = 0;
find_completed = 1;
}
sc->unit = is->id_unit;
sc->hw_state = HW_UNKNOWN;
if (find_completed && ((isa_cards == 0) || (is->id_unit > isa_cards)))
return(0);
if (((is->id_iobase < 0xa00) || (is->id_iobase > 0xbe0)) && (is->id_iobase != 0xffffffff)) {
printf("oltr%d: port address impossible (0x%X)\n", is->id_unit, is->id_iobase);
return(0);
}
/* Auto assign lowest available card not already in use */
if (is->id_iobase == 0xffffffff) {
printf("oltr%d: auto assigning card.\n", is->id_unit);
for (i = 0; assigned[i]; i++);
assigned[i] = 1;
sc->config = &oltr_config[i];
is->id_iobase = sc->config->iobase0; /* Claim our port space */
if (!is->id_irq)
is->id_irq = (1 << sc->config->interruptlevel); /* Claim our interrupt */
is->id_intr = (inthand2_t *)oltr_intr;
if ((is->id_drq == 0xffffffff) && (sc->config->dmalevel != TRLLD_DMA_PIO))
is->id_drq = sc->config->dmalevel; /* Claim our dma channel */
printf("oltr%d: <%s> [%6D]\n", is->id_unit, AdapterName[sc->config->type], sc->config->macaddress, ":");
sc->hw_state = HW_FOUND;
return(1);
} else {
/* Assign based on iobase address provided in kernel config */
for (i = 0; i < NOLTR; i++) {
if (is->id_iobase == oltr_config[i].iobase0) {
if (assigned[i]) {
printf("oltr%d: adapter (0x%X) already assigned.\n", is->id_unit, is->id_iobase);
return(0);
}
assigned[i] = 1;
sc->config = &oltr_config[i];
if (is->id_irq == 0)
is->id_irq = (1 << sc->config->interruptlevel); /* Claim our interrupt */
is->id_intr = (inthand2_t *)oltr_intr;
if ((is->id_drq == 0xffffffff) && (sc->config->dmalevel != TRLLD_DMA_PIO))
is->id_drq = sc->config->dmalevel; /* Claim our dma channel */
printf("oltr%d: <%s> [%6D]\n", is->id_unit, AdapterName[sc->config->type], sc->config->macaddress, ":");
sc->hw_state = HW_FOUND;
return(1);
}
}
}
return(0); /* Card was not found */
}
#if NPCI > 0
static const char *
oltr_pci_probe(config_id, device_id)
pcici_t config_id;
pcidi_t device_id;
{
u_char PCIConfigurationSpace[64];
u_long command;
int i, j, rc;
printf("oltr: oltr_pci_probe\n");
j = NOLTR + pci_cards;
if (pci_cards == EXTRA_OLTR)
return(NULL);
if (((device_id & 0xffff) == PCI_VENDOR_OLICOM) &&
((((device_id >> 16) & 0xffff) == 0x0001) ||
(((device_id >> 16) & 0xffff) == 0x0004) ||
(((device_id >> 16) & 0xffff) == 0x0005) ||
(((device_id >> 16) & 0xffff) == 0x0007) ||
(((device_id >> 16) & 0xffff) == 0x0008))) {
for (i = 0; i < 64; i++)
PCIConfigurationSpace[i] = pci_cfgread(config_id, i, /*bytes*/1);
rc = TRlldPCIConfig(&oltrLldDriver, &oltr_config[j], PCIConfigurationSpace);
if ((rc == TRLLD_PCICONFIG_OK) || (rc == TRLLD_PCICONFIG_SET_COMMAND)) {
if (rc == TRLLD_PCICONFIG_SET_COMMAND) {
printf("oltr: setting bus-master mode\n");
command = pci_conf_read(config_id, PCIR_COMMAND);
pci_conf_write(config_id, PCIR_COMMAND, (command | PCIM_CMD_BUSMASTEREN));
}
pci_cards++;
return (AdapterName[oltr_config[j].type]);
} else {
if (rc == TRLLD_PCICONFIG_FAIL)
printf("oltr: TRlldPCIConfig failed!\n");
if (rc == TRLLD_PCICONFIG_VERSION)
printf("oltr: wrong LLD version\n");
}
}
return(NULL);
}
#endif /* NPCI */
static int
oltr_attach(is)
struct isa_device *is;
{
struct oltr_softc *sc = &oltr_softc[is->id_unit];
int rc;
sc->unit = is->id_unit;
if (!oltr_attach_common(sc))
return(0);
/* If the kernel config does not match the current card configuration then
* adjust the card settings to match the kernel.
*/
if ((ffs(is->id_irq) - 1) != sc->config->interruptlevel) {
rc = TRlldSetInterrupt(sc->TRlldAdapter, is->id_irq);
if (rc != TRLLD_CONFIG_OK) {
printf("oltr%d: Unable to change adapter interrupt level (%x)\n", sc->unit, rc);
return(0);
}
}
/* Set dma level, fall back to pio if possible. (following SCO driver example) */
if (is->id_drq != sc->config->dmalevel) {
rc = TRlldSetDMA(sc->TRlldAdapter, is->id_drq, &sc->config->mode);
if (rc != TRLLD_CONFIG_OK) {
if ((sc->config->dmalevel != TRLLD_DMA_PIO) &&
(TRlldSetDMA(sc->TRlldAdapter, TRLLD_DMA_PIO, &sc->config->mode) != TRLLD_CONFIG_OK)) {
printf("oltr%d: unable to change dma level from %d to %d (%x)\n", sc->unit,
sc->config->dmalevel, is->id_drq, rc);
}
printf("oltr%d: Unable to change adapter dma level, using PIO mode (%x)\n", sc->unit, rc);
sc->config->dmalevel = TRLLD_DMA_PIO;
rc = TRlldSetDMA(sc->TRlldAdapter, is->id_drq, &sc->config->mode);
}
is->id_irq = sc->config->dmalevel;
}
return(1);
}
#if NPCI > 0
static void
oltr_pci_attach(config_id, unit)
pcici_t config_id;
int unit;
{
struct oltr_softc *sc = &oltr_softc[unit];
sc->unit = unit;
sc->config = &oltr_config[unit];
sc->hw_state = HW_FOUND;
printf("oltr%d: mac address [%6D]\n", sc->unit, sc->config->macaddress, ":");
if (!oltr_attach_common(sc))
return;
/* Map our interrupt */
if (!pci_map_int(config_id, oltr_pci_intr, sc, &net_imask)) {
printf("oltr%d: couldn't map interrupt\n", unit);
return;
}
}
#endif /* NPCI */
static int
oltr_attach_common(sc)
struct oltr_softc *sc;
{
struct ifnet *ifp = &sc->arpcom.ac_if;
u_int bufsize;
int rc, i, j;
/*printf("oltr%d: attach_common called\n", sc->unit);*/
/* Allocate adapter memory buffer */
bufsize = TRlldAdapterSize();
sc->TRlldAdapter = (TRlldAdapter_t *)oltr_malloc(bufsize, sc->config);
if (sc->TRlldAdapter == NULL) {
printf("oltr%d: Unable to allocate adapter memory block (%d bytes)\n", sc->unit, bufsize);
}
/*printf("oltr%d: Adapter memory block (%p %d bytes)\n", sc->unit, sc->TRlldAdapter, bufsize);*/
/* Setup transmit pool */
for (i = 0; i < TX_LIST_SIZE; i++) {
sc->tx_buffer[i].index = i;
sc->tx_buffer[i].buf = (char *)oltr_malloc(TX_BUFFER_LEN, sc->config);
/* If we have a failure then free everything and get out */
if (!sc->tx_buffer[i].buf) {
printf("oltr%d: Unable to allocate transmit buffers.\n", sc->unit);
for (j = 0; j < i; j++)
free(sc->tx_buffer[j].buf, M_DEVBUF);
return(0);
}
}
sc->tx_next = 0;
sc->tx_avail = TX_LIST_SIZE;
sc->tx_frame.FragmentCount = 0;
/* Setup receive pool */
for (i = 0; i < RX_LIST_SIZE; i++) {
sc->rx_buffer[i].index = i;
sc->rx_buffer[i].buf = (char *)oltr_malloc(RX_BUFFER_LEN, sc->config);
/* If we have a failure then free everything and get out */
if (!sc->rx_buffer[i].buf) {
printf("oltr%d: Unable to allocate receive buffers.\n", sc->unit);
for (j = 0; j < i; j++)
free(sc->rx_buffer[j].buf, M_DEVBUF);
return(0);
}
}
sc->rx_next = 0;
sc->rx_avail = RX_LIST_SIZE;
/*printf("oltr%d: Allocated receive buffers\n", sc->unit); */
/* Set up adapter polling mechanism */
sc->poll_adapter = 1;
callout_handle_init(&sc->poll_ch);
sc->poll_ch = timeout(adapter_poll, (void *)sc->unit, (1*hz)/1000);
callout_handle_init(&sc->oltr_ch);
/* Initialize adapter */
rc = TRlldAdapterInit(&oltrLldDriver, sc->TRlldAdapter, kvtop(sc->TRlldAdapter),
(void *)sc->unit, sc->config);
if (rc != TRLLD_INIT_OK) {
switch (rc) {
case TRLLD_INIT_NOT_FOUND:
printf("oltr%d: Adapter not found or malfunctioning.\n", sc->unit);
sc->hw_state = HW_BAD;
return(0);
case TRLLD_INIT_UNSUPPORTED:
printf("oltr%d: Adapter not supported by low level driver.\n", sc->unit);
sc->hw_state = HW_UNKNOWN;
return(0);
case TRLLD_INIT_PHYS16:
printf("oltr%d: Adapter memory block above 16M, must be below 16M.\n", sc->unit);
return(0);
case TRLLD_INIT_VERSION:
printf("oltr%d: Low level driver version mismatch.\n", sc->unit);
return(0);
default:
printf("oltr%d: Unknown initilization error occoured (%x).\n", sc->unit, rc);
return(0);
}
}
/* Download Adapter Microcode */
/*printf("oltr%d: Downloading adapter microcode...", sc->unit);*/
sc->hw_state = HW_LOADING;
switch(sc->config->mactype) {
case TRLLD_MAC_TMS: /* TMS microcode */
rc = TRlldDownload(sc->TRlldAdapter, TRlldMacCode);
break;
case TRLLD_MAC_HAWKEYE: /* Hawkeye microcode */
rc = TRlldDownload(sc->TRlldAdapter, TRlldHawkeyeMac);
break;
case TRLLD_MAC_BULLSEYE: /* Bullseye microcode */
rc = TRlldDownload(sc->TRlldAdapter, TRlldBullseyeMac);
break;
default:
printf("oltr%d: unknown mactype %d\n", sc->unit, sc->config->mactype);
return(0);
}
/*if (rc == TRLLD_DOWNLOAD_OK)
printf("done\n");*/
if ((rc == TRLLD_DOWNLOAD_ERROR) || (rc == TRLLD_STATE)) {
printf("oltr%d: Adapter microcode download failed! (rc = %x)\n", sc->unit, rc);
sc->hw_state = HW_BAD;
return(0);
}
TRlldSetSpeed(sc->TRlldAdapter, TRLLD_SPEED_AUTO);
sc->PromiscMode = 0;
sc->AdapterMode = 0;
/* Do the ifnet initialization */
ifp->if_softc = sc;
ifp->if_unit = sc->unit;
ifp->if_name = "oltr";
ifp->if_output = iso88025_output;
ifp->if_init = (if_init_f_t *)oltr_init;
ifp->if_start = oltr_start;
ifp->if_ioctl = oltr_ioctl;
ifp->if_flags = IFF_BROADCAST | IFF_MULTICAST | IFF_SIMPLEX;
bcopy(sc->config->macaddress, sc->arpcom.ac_enaddr, sizeof(sc->config->macaddress));
/* Set up common ifmedia options */
ifmedia_init(&sc->ifmedia, 0, oltr_ifmedia_upd, oltr_ifmedia_sts);
ifmedia_add(&sc->ifmedia, IFM_TOKEN | IFM_AUTO, 0 , NULL);
ifmedia_add(&sc->ifmedia, IFM_TOKEN | IFM_TOK_UTP4, 0 , NULL);
ifmedia_add(&sc->ifmedia, IFM_TOKEN | IFM_TOK_UTP16, 0 , NULL);
ifmedia_set(&sc->ifmedia, IFM_TOKEN | IFM_AUTO);
if_attach(ifp);
iso88025_ifattach(ifp);
bpfattach(ifp, DLT_IEEE802, sizeof(struct iso88025_header));
printf("oltr%d: Adapter modes - ", sc->unit);
if (sc->config->mode & TRLLD_MODE_16M) printf("TRLLD_MODE_16M ");
if (sc->config->mode & TRLLD_MODE_PHYSICAL) printf("TRLLD_MODE_PHYSICAL ");
if (sc->config->mode & TRLLD_MODE_FIXED_CFG) printf("TRLLD_MODE_FIXED_CFG ");
if (sc->config->mode & TRLLD_MODE_SHORT_SLOT) printf("TRLLD_MODE_SHORT_SLOT ");
if (sc->config->mode & TRLLD_MODE_CANNOT_DISABLE) printf("TRLLD_MODE_CANNOT_DISABLE ");
if (sc->config->mode & TRLLD_MODE_SHARE_INTERRUPT) printf("TRLLD_MODE_SHARE_INTERRUPT ");
if (sc->config->mode & TRLLD_MODE_MEMORY) printf("TRLLD_MODE_MEMORY ");
printf("\n");
return(1);
}
#if NPCI > 0
static void
oltr_pci_shutdown(howto, sc)
int howto;
void *sc;
{
printf("oltr: oltr_pci_shutdown called\n");
}
#endif /* NPCI */
static int
oltr_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct oltr_softc *sc = ifp->if_softc;
struct ifmedia *ifm = &sc->ifmedia;
if (IFM_TYPE(ifm->ifm_media) != IFM_TOKEN)
return(EINVAL);
switch(IFM_SUBTYPE(ifm->ifm_media)) {
case IFM_AUTO:
TRlldSetSpeed(sc->TRlldAdapter, TRLLD_SPEED_AUTO);
break;
case IFM_TOK_UTP4:
TRlldSetSpeed(sc->TRlldAdapter, TRLLD_SPEED_4MBPS);
break;
case IFM_TOK_UTP16:
TRlldSetSpeed(sc->TRlldAdapter, TRLLD_SPEED_16MBPS);
break;
default:
return(EINVAL);
}
if (IFM_TYPE_OPTIONS(ifm->ifm_media) & IFM_TOK_ETR)
printf("oltr%d: ETR not implemented\n", sc->unit);
if (IFM_TYPE_OPTIONS(ifm->ifm_media) & IFM_TOK_SRCRT)
printf("oltr%d: source-routing not implemented\n", sc->unit);
if (IFM_TYPE_OPTIONS(ifm->ifm_media) & IFM_TOK_ALLR)
printf("oltr%d: all source routes not implemented\n", sc->unit);
if (IFM_TYPE_OPTIONS(ifm->ifm_media) & IFM_TOK_DTR) {
sc->AdapterMode |= TRLLD_MODE_FORCE_TXI;
sc->AdapterMode &= ~TRLLD_MODE_FORCE_TKP;
}
if (IFM_TYPE_OPTIONS(ifm->ifm_media) & IFM_TOK_CLASSIC) {
sc->AdapterMode |= TRLLD_MODE_FORCE_TKP;
sc->AdapterMode &= ~TRLLD_MODE_FORCE_TXI;
}
if (IFM_TYPE_OPTIONS(ifm->ifm_media) & IFM_TOK_AUTO)
sc->AdapterMode &= ~(TRLLD_MODE_FORCE_TXI | TRLLD_MODE_FORCE_TKP);
if (IFM_TYPE_OPTIONS(ifm->ifm_media) & ~ALL_OPTIONS)
return(EINVAL);
return(0);
}
static void
oltr_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct oltr_softc *sc = ifp->if_softc;
struct ifmedia *ifm = &sc->ifmedia;
ifmr->ifm_active = IFM_TYPE(ifm->ifm_media)|IFM_SUBTYPE(ifm->ifm_media)|IFM_TYPE_OPTIONS(ifm->ifm_media);
return;
}
void
oltr_timeout(token)
void *token;
{
struct oltr_softc *sc = &oltr_softc[(int)token];
int unit = (int)token, s;
s = splimp();
printf("oltr%d: adapter timed out (%x)\n", unit, sc->hw_state);
splx(s);
}
void
adapter_poll(token)
void *token;
{
int unit = (int)token, poll_timeout = 0, s;
struct oltr_softc *sc = &oltr_softc[unit];
#if 0
static int rx_buffers = 0, tx_buffers = 0, rc;
#endif
s = splimp();
/* Check to make sure we are not polling a dead card */
if ((sc->hw_state == HW_BAD) || (sc->hw_state == HW_UNKNOWN)) {
sc->poll_adapter = -1;
splx(s);
return;
}
/*printf("oltr%d: adapter poll.\n", unit);*/
/* If the adapter is to be polled again, then set up
* next timeout poll
*/
if (sc->poll_adapter) {
poll_timeout = TRlldPoll(sc->TRlldAdapter);
sc->poll_ch = timeout(adapter_poll, (void *)unit, (poll_timeout * hz)/1000);
}
#if 0
rc = TRlldReceiveFree(sc->TRlldAdapter);
if (rx_buffers != rc) {
printf("oltr%d: %d receive buffers available\n", sc->unit, rc);
rx_buffers = rc;
}
rc = TRlldTransmitFree(sc->TRlldAdapter);
if (tx_buffers != rc) {
printf("oltr%d: %d transmit buffers available\n", sc->unit, rc);
tx_buffers = rc;
}
#endif
splx(s);
}
static void
oltr_init(sc)
struct oltr_softc *sc;
{
struct ifnet *ifp = &sc->arpcom.ac_if;
int i, rc;
/*printf("oltr%d: oltr_init\n", sc->unit);*/
/*
* Adapter should be freshly downloaded or previously closed before
* bringing it back on line.
*/
if ((sc->hw_state != HW_CLOSED) && (sc->hw_state != HW_LOADING) && (sc->hw_state != HW_CLOSING2)) {
printf("oltr%d: adapter not ready to be opened (%d).\n", sc->unit, sc->hw_state);
return;
}
/* Allocate and set up the DMA channel */
if (sc->config->dmalevel != TRLLD_DMA_PIO) {
rc = isa_dma_acquire(sc->config->dmalevel);
isa_dmacascade(sc->config->dmalevel);
}
/* Open the adapter */
sc->hw_state = HW_OPENING;
rc = TRlldOpen(sc->TRlldAdapter, sc->arpcom.ac_enaddr, sc->GroupAddress,
sc->FunctionalAddress, ifp->if_mtu + 52, sc->AdapterMode);
if (rc != TRLLD_OPEN_OK) {
printf("oltr%d: Adapter failed to open (rc = %x)\n", sc->unit, rc);
sc->hw_state = HW_FAILED;
} else {
/*printf("oltr%d: adapter opening...\n", sc->unit);*/
/*ifp->if_flags |= (IFF_UP | IFF_RUNNING);*/
ifp->if_flags &= ~IFF_OACTIVE;
}
sc->oltr_ch = timeout(oltr_timeout, (void *)sc->unit, 30*hz);
tsleep((void *)sc->unit, 1, "oltrop", 30*hz);
/* Give the receive buffers to the adapter */
for (i = 0; i < RX_LIST_SIZE; i++) {
rc = TRlldReceiveFragment(sc->TRlldAdapter,
(void *)sc->rx_buffer[sc->rx_next & RX_LIST_MASK].buf,
kvtop(sc->rx_buffer[sc->rx_next & RX_LIST_MASK].buf),
RX_BUFFER_LEN,
(void *)sc->rx_buffer[sc->rx_next & RX_LIST_MASK].index);
if (rc != TRLLD_RECEIVE_OK) {
printf("oltr%d: Adapter refused fragment %d (rc = %d).\n", sc->unit, i, rc);
break;
} else {
sc->rx_avail--;
}
sc->rx_next++;
}
sc->tx_frame.FragmentCount = 0;
return;
}
static void
oltr_intr(unit)
int unit;
{
struct oltr_softc *sc = &oltr_softc[unit];
int rc;
/*printf("oltr%d: oltr_intr\n", unit);*/ /* Too noisy */
rc= TRlldInterruptService(sc->TRlldAdapter);
if (rc == TRLLD_NO_INTERRUPT)
printf("oltr%d: interrupt not serviced.\n", unit);
}
#if NPCI > 0
static void
oltr_pci_intr(psc)
void *psc;
{
struct oltr_softc *sc = (struct oltr_softc *)psc;
int rc = 0;
/*printf("oltr%d: oltr_pci_intr\n", sc->unit);*/ /* Too noisy */
rc = TRlldInterruptService(sc->TRlldAdapter);
if (rc == TRLLD_NO_INTERRUPT)
printf("oltr%d: pci interrupt not serviced.\n", sc->unit);
}
#endif /* NPCI */
static void
oltr_start(ifp)
struct ifnet *ifp;
{
struct oltr_softc *sc = &oltr_softc[ifp->if_unit];
struct mbuf *m0, *m;
int len, i, k, rc;
/*printf("oltr%d: oltr_start\n", sc->unit);*/
outloop:
i = (sc->tx_next & TX_LIST_MASK); /* Just to shorten thing up */
/* Check to see if we have enough room to transmit */
if (sc->tx_avail <= 0) {
/* No free buffers, hold off the upper layers */
/*printf("oltr%d: transmit queue full.\n", sc->unit);*/
ifp->if_flags |= IFF_OACTIVE;
return;
}
if (sc->tx_frame.FragmentCount > 0) {
if (!(sc->config->mode & TRLLD_MODE_16M)) {
sc->tx_next++;
m0 = sc->tx_buffer[i].m;
goto restart;
}
}
IF_DEQUEUE(&ifp->if_snd, m);
if (m == 0) {
/*printf("oltr%d: oltr_start NULL packet dequeued.\n", sc->unit);*/
ifp->if_flags &= ~IFF_OACTIVE;
return;
}
/* Keep a pointer to the head of the packet */
m0 = m;
if (sc->config->mode & TRLLD_MODE_16M) { /* ISA Adapters - bounce buffers */
for (len = 0; m != 0; m = m->m_next) {
sc->tx_frame.TransmitFragment[0].VirtualAddress = sc->tx_buffer[i].buf;
sc->tx_frame.TransmitFragment[0].PhysicalAddress = kvtop(sc->tx_buffer[i].buf);
bcopy(mtod(m, caddr_t), sc->tx_buffer[i].buf + len, m->m_len);
len += m->m_len;
}
sc->tx_frame.FragmentCount = 1;
sc->tx_frame.TransmitFragment[0].count = len;
sc->tx_next++;
sc->tx_avail--;
} else { /* PCI Adapters w/DMA */
for (k = 0; m!= 0; m = m->m_next) {
sc->tx_frame.TransmitFragment[k].VirtualAddress = mtod(m, caddr_t);
sc->tx_frame.TransmitFragment[k].PhysicalAddress = kvtop(mtod(m, caddr_t));
sc->tx_frame.TransmitFragment[k].count = m->m_len;
k++;
sc->tx_avail--;
}
sc->tx_frame.FragmentCount = k;
sc->tx_buffer[i].count = k;
sc->tx_buffer[i].m = m0;
if (sc->tx_avail < 0) {
/*printf("oltr%d: transmit buffers exhausted.\n", sc->unit);*/
goto nobuffers;
}
sc->tx_next++;
}
restart:
rc = TRlldTransmitFrame(sc->TRlldAdapter, &sc->tx_frame, (void *)sc->tx_buffer[i].index);
sc->tx_frame.FragmentCount = 0;
if (rc != TRLLD_TRANSMIT_OK) {
printf("oltr%d: TRlldTransmitFrame returned (%x)\n", sc->unit, rc);
ifp->if_oerrors++;
goto bad;
}
if (ifp->if_bpf)
bpf_mtap(ifp, m0);
bad:
if (sc->config->mode & TRLLD_MODE_16M) {
m_freem(m0);
}
goto outloop;
nobuffers:
ifp->if_flags |= IFF_OACTIVE;
return;
}
static void
oltr_stop(sc)
struct oltr_softc *sc;
{
struct ifnet *ifp = &sc->arpcom.ac_if;
printf("oltr%d: otlr_stop\n", sc->unit);
ifp->if_flags &= ~(IFF_UP | IFF_RUNNING | IFF_OACTIVE);
sc->hw_state = HW_CLOSING;
TRlldClose(sc->TRlldAdapter, 0);
sc->oltr_ch = timeout(oltr_timeout, (void *)sc->unit, 30*hz);
tsleep((void *)sc->unit, 1, "oltrcl", 30*hz);
}
static int
oltr_ioctl(ifp, cmd, data)
struct ifnet *ifp;
u_long cmd;
caddr_t data;
{
struct oltr_softc *sc = &oltr_softc[ifp->if_unit];
struct ifreq *ifr = (struct ifreq *)data;
int error = 0, s;
/*printf("oltr%d: oltr_ioctl\n", ifp->if_unit);*/
s = splimp();
switch (cmd) {
case SIOCSIFADDR:
case SIOCGIFADDR:
case SIOCSIFMTU:
error = iso88025_ioctl(ifp, cmd, data);
break;
case SIOCSIFFLAGS:
/*
* If the interface is marked up and stopped, then start it.
* If it is marked down and running, then stop it.
*/
if (ifp->if_flags & IFF_UP) {
if ((ifp->if_flags & IFF_RUNNING) == 0)
oltr_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING) {
oltr_stop(sc);
ifp->if_flags &= ~IFF_RUNNING;
}
}
if ((ifp->if_flags & IFF_PROMISC) != sc->PromiscMode) {
if (ifp->if_flags & IFF_PROMISC)
TRlldSetPromiscuousMode(sc->TRlldAdapter, OLTR_PROMISC_MODE);
else
TRlldSetPromiscuousMode(sc->TRlldAdapter, 0);
sc->PromiscMode = (ifp->if_flags & IFF_PROMISC);
}
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, cmd);
break;
default:
error = EINVAL;
}
splx(s);
return(error);
}
/*
* PMW Callback functions ----------------------------------------------------
*/
static void
DriverSuspend(MicroSeconds)
unsigned short MicroSeconds;
{
DELAY(MicroSeconds);
}
static void
DriverStatus(DriverHandle, Status)
void *DriverHandle;
TRlldStatus_t *Status;
{
struct oltr_softc *sc = &oltr_softc[(int)DriverHandle];
struct ifnet *ifp = &sc->arpcom.ac_if;
switch (Status->Type) {
case TRLLD_STS_ON_WIRE:
if (sc->hw_state == HW_OPENING) {
sc->hw_state = HW_OPEN;
ifp->if_flags |= (IFF_UP | IFF_RUNNING);
/*printf("oltr%d: Adapter inserted.\n", sc->unit);*/
untimeout(oltr_timeout, (void *)sc->unit, sc->oltr_ch);
wakeup_one((void *)sc->unit);
}
break;
case TRLLD_STS_SELFTEST_STATUS:
if (Status->Specification.SelftestStatus == TRLLD_ST_OK) {
printf("oltr%d: adapter status good. (close completed/self-test)\n", sc->unit);
if ((sc->hw_state == HW_LOADING) || (sc->hw_state == HW_CLOSING) || (sc->hw_state == HW_CLOSING2)) {
sc->hw_state = HW_CLOSED;
break;
}
} else {
printf("oltr%d: Self test failed: ", sc->unit);
switch (Status->Specification.SelftestStatus) {
case TRLLD_ST_ERROR + 0: printf("Initial Test Error\n"); break;
case TRLLD_ST_ERROR + 1: printf("Adapter Software Checksum Error\n"); break;
case TRLLD_ST_ERROR + 2: printf("Adapter RAM Error\n"); break;
case TRLLD_ST_ERROR + 4: printf("Instruction Test Error\n"); break;
case TRLLD_ST_ERROR + 5: printf("Protocol Handler/RI Hw Error\n"); break;
case TRLLD_ST_ERROR + 6: printf("System Interface Register Error\n"); break;
case TRLLD_ST_TIMEOUT: printf("Selftest did not complete\n"); break;
default: printf("Unknown error (%x)\n", Status->Specification.SelftestStatus);
}
}
break;
case TRLLD_STS_INIT_STATUS:
printf("oltr%d: Adapter initialization failed: ", sc->unit);
switch(Status->Specification.InitStatus) {
case TRLLD_INIT_ERROR + 0x01: printf("Invalid init block (LLD error)\n"); break;
case TRLLD_INIT_ERROR + 0x02: printf("Invalid options (LLD error)\n"); break;
case TRLLD_INIT_ERROR + 0x03: printf("Invalid rcv burst (LLD error)\n"); break;
case TRLLD_INIT_ERROR + 0x04: printf("Invalid xmt burst (LLD error)\n"); break;
case TRLLD_INIT_ERROR + 0x05: printf("Invalid DMA threshold (LLD error)\n"); break;
case TRLLD_INIT_ERROR + 0x06: printf("Invalid scb addr\n"); break;
case TRLLD_INIT_ERROR + 0x07: printf("Invalid ssb addr\n"); break;
case TRLLD_INIT_ERROR + 0x08: printf("DIO parity error (HW error)\n"); break;
case TRLLD_INIT_ERROR + 0x09: printf("DMA timeout (May be interrupt failing if PIO mode or PCI2)\n"); break;
case TRLLD_INIT_ERROR + 0x0A: printf("DMA parity error (HW error)\n"); break;
case TRLLD_INIT_ERROR + 0x0B: printf("DMA bus error (HW error)\n"); break;
case TRLLD_INIT_ERROR + 0x0C: printf("DMA data error\n"); break;
case TRLLD_INIT_ERROR + 0x0D: printf("Adapter Check\n"); break;
case TRLLD_INIT_TIMEOUT: printf("Adapter initialization did not complete\n"); break;
case TRLLD_INIT_DMA_ERROR: printf("Adapter cannot access system memory\n"); break;
case TRLLD_INIT_INTR_ERROR: printf("Adapter cannot interrupt\n"); break;
case TRLLD_OPEN_TIMEOUT: printf("Adapter did not complete open within 30 seconds\n"); break;
case TRLLD_OPEN_ERROR + 0x01: printf("Invalid open options (LLD error)\n"); break;
case TRLLD_OPEN_ERROR + 0x04: printf("TxBuffer count error (LLD error)\n"); break;
case TRLLD_OPEN_ERROR + 0x10: printf("Buffer size error (LLD error)\n"); break;
case TRLLD_OPEN_ERROR + 0x20: printf("List size error (LLD error)\n"); break;
default:
if (Status->Specification.InitStatus & 0x700) {
switch (Status->Specification.InitStatus & 0x70F) {
case TRLLD_OPEN_REPEAT + 0x01: printf("Lobe media test - "); break;
case TRLLD_OPEN_REPEAT + 0x02: printf("Physical insertion - "); break;
case TRLLD_OPEN_REPEAT + 0x03: printf("Address verification - "); break;
case TRLLD_OPEN_REPEAT + 0x04: printf("Participation in ring poll - "); break;
case TRLLD_OPEN_REPEAT + 0x05: printf("Request initialization - "); break;
case TRLLD_OPEN_REPEAT + 0x09: printf("Request registration (TXI) - "); break;
case TRLLD_OPEN_REPEAT + 0x0A: printf("Lobe media test (TXI) - "); break;
default: printf("Unknown phase (%x) - ", Status->Specification.InitStatus & 0x00F);
}
switch (Status->Specification.InitStatus & 0x7F0) {
case TRLLD_OPEN_REPEAT + 0x10: printf("Function failure (No cable?)\n"); break;
case TRLLD_OPEN_REPEAT + 0x20: printf("Signal loss\n"); break;
case TRLLD_OPEN_REPEAT + 0x50: printf("Timeout\n"); break;
case TRLLD_OPEN_REPEAT + 0x60: printf("Ring failure (TKP) / Protocol error (TXI)\n"); break;
case TRLLD_OPEN_REPEAT + 0x70: printf("Ring beaconing\n"); break;
case TRLLD_OPEN_REPEAT + 0x80: printf("Duplicate node address (TKP) / Insert denied (TXI)\n"); break;
case TRLLD_OPEN_REPEAT + 0x90: printf("Request initialization (TKP)\n"); break;
case TRLLD_OPEN_REPEAT + 0xa0: printf("Remove received\n"); break;
case TRLLD_OPEN_REPEAT + 0xb0: printf("C-port address changed (TXI)\n"); break;
default: printf("Unknown type (%x)\n", Status->Specification.InitStatus & 0x0F0);
}
} else {
printf("Unknown error (%x)\n", Status->Specification.InitStatus);
}
}
break;
case TRLLD_STS_RING_STATUS:
if (Status->Specification.RingStatus != 0) {
printf("oltr%d: Ring status change: ", sc->unit);
if (Status->Specification.RingStatus & TRLLD_RS_HARD_ERROR) printf("[Hard error] ");
if (Status->Specification.RingStatus & TRLLD_RS_SOFT_ERROR) printf("[Soft error] ");
if (Status->Specification.RingStatus & TRLLD_RS_TRANSMIT_BEACON) printf("[Transmit beacon] ");
if (Status->Specification.RingStatus & TRLLD_RS_LOBE_WIRE_FAULT) printf("[Wire fault] ");
if (Status->Specification.RingStatus & TRLLD_RS_AUTO_REMOVAL_ERROR) printf("[Auto removal] ");
if (Status->Specification.RingStatus & TRLLD_RS_REMOVE_RECEIVED) printf("[Remove received] ");
if (Status->Specification.RingStatus & TRLLD_RS_COUNTER_OVERFLOW) printf("[Counter overflow] ");
if (Status->Specification.RingStatus & TRLLD_RS_SINGLE_STATION) printf("[Single station] ");
if (Status->Specification.RingStatus & TRLLD_RS_RING_RECOVERY) printf("[Ring recovery] ");
printf("\n");
}
break;
case TRLLD_STS_ADAPTER_CHECK:
printf("oltr%d: Adapter check (%x %x %x %x)\n", sc->unit, Status->Specification.AdapterCheck[0],
Status->Specification.AdapterCheck[1], Status->Specification.AdapterCheck[2],
Status->Specification.AdapterCheck[3]);
break;
case TRLLD_STS_PROMISCUOUS_STOPPED:
printf("oltr%d: Promiscuous mode stopped: ", sc->unit);
switch(Status->Specification.PromRemovedCause) {
case TRLLD_PROM_REMOVE_RECEIVED: printf("Remove received\n"); break;
case TRLLD_PROM_POLL_FAILURE: printf("Poll failure\n"); break;
default: printf("Unknown (%x)\n", Status->Specification.PromRemovedCause);
}
break;
case TRLLD_STS_LLD_ERROR:
printf("oltr%d: LLD error (%x %x %x %x) ", sc->unit, Status->Specification.InternalError[0],
Status->Specification.InternalError[1], Status->Specification.InternalError[2],
Status->Specification.InternalError[3]);
break;
case TRLLD_STS_ADAPTER_TIMEOUT:
printf("oltr%d: Adapter operation timed out: ", sc->unit);
switch(Status->Specification.AdapterTimeout) {
case TRLLD_COMMAND_TIMEOUT: printf("Command\n");
case TRLLD_TRANSMIT_TIMEOUT: printf("Transmit\n");
case TRLLD_INTERRUPT_TIMEOUT: printf("Interrupt\n");
default: printf("Unknown (%x)\n", Status->Specification.AdapterTimeout);
}
break;
default:
printf("oltr%d: Unknown status type (%x)\n", sc->unit, Status->Type);
}
if (Status->Closed) {
if (sc->hw_state > HW_BAD) {
sc->hw_state = HW_FAILED;
printf("oltr%d: closing adapter due to failure.\n", sc->unit);
oltr_stop(sc);
}
}
}
static void
DriverCloseCompleted(DriverHandle)
void *DriverHandle;
{
struct oltr_softc *sc = &oltr_softc[(int)DriverHandle];
printf("oltr%d: DriverCloseCompleted\n", sc->unit);
untimeout(oltr_timeout, (void *)sc->unit, sc->oltr_ch);
wakeup_one((void *)sc->unit);
if ((sc->hw_state != HW_CLOSING) && (sc->hw_state != HW_CLOSING2) && (sc->hw_state != HW_CLOSED)) {
printf("oltr%d: adapter close complete called in wrong state (%d)\n", sc->unit, sc->hw_state);
return;
}
sc->hw_state = HW_CLOSING2;
if (sc->config->dmalevel != TRLLD_DMA_PIO)
isa_dma_release(sc->config->dmalevel);
}
static void
DriverStatistics(DriverHandle, Statistics)
void *DriverHandle;
TRlldStatistics_t *Statistics;
{
printf("oltr: DriverStatistics\n");
}
static void
DriverTransmitFrameCompleted(DriverHandle, FrameHandle, TransmitStatus)
void *DriverHandle;
void *FrameHandle;
int TransmitStatus;
{
int frame = (int)FrameHandle;
struct oltr_softc *sc = &oltr_softc[(int)DriverHandle];
struct ifnet *ifp = &sc->arpcom.ac_if;
/*printf("oltr%d: transmit complete frame %d\n", sc->unit, frame);*/
if (TransmitStatus == TRLLD_TRANSMIT_OK) {
ifp->if_opackets++;
} else {
printf("oltr%d: DriverTransmitFrameCompleted (frame %d status %x)\n", sc->unit, frame, TransmitStatus);
ifp->if_oerrors++;
}
if ((frame < 0) || (frame > TX_LIST_SIZE)) {
printf("oltr%d: bogus transmit frame. (%d)\n", sc->unit, frame);
return;
}
if (sc->config->mode & TRLLD_MODE_16M) {
sc->tx_avail++;
} else {
m_freem(sc->tx_buffer[frame].m);
sc->tx_avail += sc->tx_buffer[frame].count;
}
if ((ifp->if_flags & IFF_OACTIVE) && (sc->tx_avail > 0)) {
ifp->if_flags &= ~(IFF_OACTIVE);
oltr_start(ifp);
}
}
static void
DriverReceiveFrameCompleted(DriverHandle, ByteCount, FragmentCount, FragmentHandle, ReceiveStatus)
void *DriverHandle;
int ByteCount;
int FragmentCount;
void *FragmentHandle;
int ReceiveStatus;
{
struct oltr_softc *sc = &oltr_softc[(int)DriverHandle];
struct ifnet *ifp = &sc->arpcom.ac_if;
struct iso88025_header *th;
struct mbuf *m0, *m1, *m;
int j = (int)FragmentHandle, rc, frame_len = ByteCount, mac_hdr_len;
int mbuf_offset, mbuf_size, frag_offset, length;
char *frag = sc->rx_buffer[j].buf;
/*printf("oltr%d: ReceiveFrameCompleted (Size %d Count %d Start %d)\n", sc->unit, ByteCount, FragmentCount, j);*/
if (sc->hw_state >= HW_OPEN) { /* Hardware operating normally */
if (frag != sc->rx_buffer[sc->rx_next & RX_LIST_MASK].buf) {
printf("oltr%d: ring buffer pointer blown\n", sc->unit);
oltr_stop(sc);
return;
}
if (ReceiveStatus == TRLLD_RCV_OK) { /* Receive good frame */
MGETHDR(m0, M_DONTWAIT, MT_DATA);
mbuf_size = MHLEN;
if (m0 == NULL) {
ifp->if_ierrors++;
goto out;
}
if (ByteCount + 2 > MHLEN) {
MCLGET(m0, M_DONTWAIT);
mbuf_size = MCLBYTES;
if ((m0->m_flags & M_EXT) == 0) {
m_freem(m0);
ifp->if_ierrors++;
goto out;
}
}
m0->m_pkthdr.rcvif = &sc->arpcom.ac_if;
m0->m_pkthdr.len = ByteCount;
m0->m_len = 0;
m0->m_data += 2;
mbuf_size -=2;
th = mtod(m0, struct iso88025_header *);
m0->m_pkthdr.header = (void *)th;
m = m0; mbuf_offset = 0; frag_offset = 0;
while (frame_len > 0) {
length = MIN3(frame_len, (RX_BUFFER_LEN - frag_offset), (mbuf_size - mbuf_offset));
bcopy(frag + frag_offset, mtod(m, char *) + mbuf_offset, length);
m->m_len += length;
mbuf_offset += length;
frag_offset += length;
frame_len -= length;
if (frag_offset == RX_BUFFER_LEN) {
frag = sc->rx_buffer[++j].buf;
frag_offset = 0;
}
if ((mbuf_offset == mbuf_size) && (frame_len > 0)) {
MGET(m1, M_DONTWAIT, MT_DATA);
mbuf_size = MHLEN;
if (m1 == NULL) {
ifp->if_ierrors++;
m_freem(m0);
goto out;
}
if (frame_len > MHLEN) {
MCLGET(m1, M_DONTWAIT);
mbuf_size = MCLBYTES;
if ((m1->m_flags & M_EXT) == 0) {
m_freem(m0);
m_freem(m1);
ifp->if_ierrors++;
goto out;
}
}
m->m_next = m1;
m = m1;
mbuf_offset = 0;
m->m_len = 0;
}
}
ifp->if_ipackets++;
if (ifp->if_bpf)
bpf_mtap(ifp, m0);
if (ifp->if_flags & IFF_PROMISC)
if (bcmp(th->iso88025_dhost, etherbroadcastaddr, sizeof(th->iso88025_dhost)) != 0) {
if (((th->iso88025_dhost[0] & 0x7f) != sc->arpcom.ac_enaddr[0]) ||
(bcmp(th->iso88025_dhost + 1, sc->arpcom.ac_enaddr + 1, ISO88025_ADDR_LEN - 1))) {
m_freem(m0);
goto out;
}
}
mac_hdr_len = ISO88025_HDR_LEN;
if (th->iso88025_shost[0] & 0x80) /* Check for source routing info */
mac_hdr_len += (ntohs(th->rcf) & 0x1f00) >> 8;
m0->m_pkthdr.len -= mac_hdr_len;
m0->m_len -= mac_hdr_len;
m0->m_data += mac_hdr_len;
iso88025_input(&sc->arpcom.ac_if, th, m0);
} else {
if (ReceiveStatus != TRLLD_RCV_NO_DATA) {
printf("oltr%d: receive error. (ReceiveStatus=%d)\n", sc->unit, ReceiveStatus);
ifp->if_ierrors++;
}
}
out:
while (FragmentCount > 0) {
rc = TRlldReceiveFragment(sc->TRlldAdapter,
(void *)sc->rx_buffer[sc->rx_next & RX_LIST_MASK].buf,
kvtop(sc->rx_buffer[sc->rx_next & RX_LIST_MASK].buf),
RX_BUFFER_LEN,
(void *)sc->rx_buffer[sc->rx_next & RX_LIST_MASK].index);
if (rc == TRLLD_RECEIVE_OK) {
sc->rx_next++;
FragmentCount--;
} else {
printf("oltr%d: Adapter refused fragment (%d).\n", sc->unit, sc->rx_next - 1);
sc->rx_avail += FragmentCount;
break;
}
}
} else { /* Hardware being closed */
if (frag != sc->rx_buffer[sc->rx_next++ & RX_LIST_MASK].buf) {
printf("oltr%d: ring buffer pointer blown\n", sc->unit);
}
sc->rx_avail += FragmentCount;
}
}
/*
* ---------------------------- PMW Glue -------------------------------
*/
#ifndef TRlldInlineIO
static void
DriverOutByte(IOAddress, value)
unsigned short IOAddress;
unsigned char value;
{
outb(IOAddress, value);
}
static void
DriverOutWord(IOAddress, value)
unsigned short IOAddress;
unsigned short value;
{
outw(IOAddress, value);
}
static void
DriverOutDword(IOAddress, value)
unsigned short IOAddress;
unsigned long value;
{
outl(IOAddress, value);
}
static void
DriverRepOutByte(IOAddress, DataPointer, ByteCount)
unsigned short IOAddress;
unsigned char *DataPointer;
int ByteCount;
{
outsb(IOAddress, (void *)DataPointer, ByteCount);
}
static void
DriverRepOutWord(IOAddress, DataPointer, WordCount)
unsigned short IOAddress;
unsigned short *DataPointer;
int WordCount;
{
outsw(IOAddress, (void *)DataPointer, WordCount);
}
static void
DriverRepOutDword(IOAddress, DataPointer, DWordCount)
unsigned short IOAddress;
unsigned long *DataPointer;
int DWordCount;
{
outsl(IOAddress, (void *)DataPointer, DWordCount);
}
static unsigned char
DriverInByte(IOAddress)
unsigned short IOAddress;
{
return(inb(IOAddress));
}
static unsigned short
DriverInWord(IOAddress)
unsigned short IOAddress;
{
return(inw(IOAddress));
}
static unsigned long
DriverInDword(IOAddress)
unsigned short IOAddress;
{
return(inl(IOAddress));
}
static void
DriverRepInByte(IOAddress, DataPointer, ByteCount)
unsigned short IOAddress;
unsigned char *DataPointer;
int ByteCount;
{
insb(IOAddress, (void *)DataPointer, ByteCount);
}
static void
DriverRepInWord(IOAddress, DataPointer, WordCount)
unsigned short IOAddress;
unsigned short *DataPointer;
int WordCount;
{
insw(IOAddress, (void *)DataPointer, WordCount);
}
static void
DriverRepInDword(IOAddress, DataPointer, DWordCount)
unsigned short IOAddress;
unsigned long *DataPointer;
int DWordCount;
{
insl(IOAddress, (void *)DataPointer, DWordCount);
}
#endif /* TRlldInlineIO */
#endif /* NOLTR */