freebsd-nq/sys/dev/ste/if_ste.c
Marius Strobl 8c1093fc50 - Import the common MII bitbang'ing code from NetBSD and convert drivers to
take advantage of it instead of duplicating it. This reduces the size of
  the i386 GENERIC kernel by about 4k. The only potential in-tree user left
  unconverted is xe(4), which generally should be changed to use miibus(4)
  instead of implementing PHY handling on its own, as otherwise it makes not
  much sense to add a dependency on miibus(4)/mii_bitbang(4) to xe(4) just
  for the MII bitbang'ing code. The common MII bitbang'ing code also is
  useful in the embedded space for using GPIO pins to implement MII access.
- Based on lessons learnt with dc(4) (see r185750), add bus barriers to the
  MII bitbang read and write functions of the other drivers converted in
  order to ensure the intended ordering. Given that register access via an
  index register as well as register bank/window switching is subject to the
  same problem, also add bus barriers to the respective functions of smc(4),
  tl(4) and xl(4).
- Sprinkle some const.

Thanks to the following testers:
Andrew Bliznak (nge(4)), nwhitehorn@ (bm(4)), yongari@ (sis(4) and ste(4))
Thanks to Hans-Joerg Sirtl for supplying hardware to test stge(4).

Reviewed by:	yongari (subset of drivers)
Obtained from:	NetBSD (partially)
2011-11-01 16:13:59 +00:00

2138 lines
57 KiB
C

/*-
* Copyright (c) 1997, 1998, 1999
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_device_polling.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/rman.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <dev/mii/mii.h>
#include <dev/mii/mii_bitbang.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/ste/if_stereg.h>
/* "device miibus" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
MODULE_DEPEND(ste, pci, 1, 1, 1);
MODULE_DEPEND(ste, ether, 1, 1, 1);
MODULE_DEPEND(ste, miibus, 1, 1, 1);
/* Define to show Tx error status. */
#define STE_SHOW_TXERRORS
/*
* Various supported device vendors/types and their names.
*/
static const struct ste_type const ste_devs[] = {
{ ST_VENDORID, ST_DEVICEID_ST201_1, "Sundance ST201 10/100BaseTX" },
{ ST_VENDORID, ST_DEVICEID_ST201_2, "Sundance ST201 10/100BaseTX" },
{ DL_VENDORID, DL_DEVICEID_DL10050, "D-Link DL10050 10/100BaseTX" },
{ 0, 0, NULL }
};
static int ste_attach(device_t);
static int ste_detach(device_t);
static int ste_probe(device_t);
static int ste_resume(device_t);
static int ste_shutdown(device_t);
static int ste_suspend(device_t);
static int ste_dma_alloc(struct ste_softc *);
static void ste_dma_free(struct ste_softc *);
static void ste_dmamap_cb(void *, bus_dma_segment_t *, int, int);
static int ste_eeprom_wait(struct ste_softc *);
static int ste_encap(struct ste_softc *, struct mbuf **,
struct ste_chain *);
static int ste_ifmedia_upd(struct ifnet *);
static void ste_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static void ste_init(void *);
static void ste_init_locked(struct ste_softc *);
static int ste_init_rx_list(struct ste_softc *);
static void ste_init_tx_list(struct ste_softc *);
static void ste_intr(void *);
static int ste_ioctl(struct ifnet *, u_long, caddr_t);
static uint32_t ste_mii_bitbang_read(device_t);
static void ste_mii_bitbang_write(device_t, uint32_t);
static int ste_miibus_readreg(device_t, int, int);
static void ste_miibus_statchg(device_t);
static int ste_miibus_writereg(device_t, int, int, int);
static int ste_newbuf(struct ste_softc *, struct ste_chain_onefrag *);
static int ste_read_eeprom(struct ste_softc *, uint16_t *, int, int);
static void ste_reset(struct ste_softc *);
static void ste_restart_tx(struct ste_softc *);
static int ste_rxeof(struct ste_softc *, int);
static void ste_rxfilter(struct ste_softc *);
static void ste_setwol(struct ste_softc *);
static void ste_start(struct ifnet *);
static void ste_start_locked(struct ifnet *);
static void ste_stats_clear(struct ste_softc *);
static void ste_stats_update(struct ste_softc *);
static void ste_stop(struct ste_softc *);
static void ste_sysctl_node(struct ste_softc *);
static void ste_tick(void *);
static void ste_txeoc(struct ste_softc *);
static void ste_txeof(struct ste_softc *);
static void ste_wait(struct ste_softc *);
static void ste_watchdog(struct ste_softc *);
/*
* MII bit-bang glue
*/
static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
ste_mii_bitbang_read,
ste_mii_bitbang_write,
{
STE_PHYCTL_MDATA, /* MII_BIT_MDO */
STE_PHYCTL_MDATA, /* MII_BIT_MDI */
STE_PHYCTL_MCLK, /* MII_BIT_MDC */
STE_PHYCTL_MDIR, /* MII_BIT_DIR_HOST_PHY */
0, /* MII_BIT_DIR_PHY_HOST */
}
};
static device_method_t ste_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, ste_probe),
DEVMETHOD(device_attach, ste_attach),
DEVMETHOD(device_detach, ste_detach),
DEVMETHOD(device_shutdown, ste_shutdown),
DEVMETHOD(device_suspend, ste_suspend),
DEVMETHOD(device_resume, ste_resume),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
/* MII interface */
DEVMETHOD(miibus_readreg, ste_miibus_readreg),
DEVMETHOD(miibus_writereg, ste_miibus_writereg),
DEVMETHOD(miibus_statchg, ste_miibus_statchg),
{ 0, 0 }
};
static driver_t ste_driver = {
"ste",
ste_methods,
sizeof(struct ste_softc)
};
static devclass_t ste_devclass;
DRIVER_MODULE(ste, pci, ste_driver, ste_devclass, 0, 0);
DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, 0, 0);
#define STE_SETBIT4(sc, reg, x) \
CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
#define STE_CLRBIT4(sc, reg, x) \
CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
#define STE_SETBIT2(sc, reg, x) \
CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | (x))
#define STE_CLRBIT2(sc, reg, x) \
CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~(x))
#define STE_SETBIT1(sc, reg, x) \
CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | (x))
#define STE_CLRBIT1(sc, reg, x) \
CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~(x))
/*
* Read the MII serial port for the MII bit-bang module.
*/
static uint32_t
ste_mii_bitbang_read(device_t dev)
{
struct ste_softc *sc;
uint32_t val;
sc = device_get_softc(dev);
val = CSR_READ_1(sc, STE_PHYCTL);
CSR_BARRIER(sc, STE_PHYCTL, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
return (val);
}
/*
* Write the MII serial port for the MII bit-bang module.
*/
static void
ste_mii_bitbang_write(device_t dev, uint32_t val)
{
struct ste_softc *sc;
sc = device_get_softc(dev);
CSR_WRITE_1(sc, STE_PHYCTL, val);
CSR_BARRIER(sc, STE_PHYCTL, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
}
static int
ste_miibus_readreg(device_t dev, int phy, int reg)
{
return (mii_bitbang_readreg(dev, &ste_mii_bitbang_ops, phy, reg));
}
static int
ste_miibus_writereg(device_t dev, int phy, int reg, int data)
{
mii_bitbang_writereg(dev, &ste_mii_bitbang_ops, phy, reg, data);
return (0);
}
static void
ste_miibus_statchg(device_t dev)
{
struct ste_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
uint16_t cfg;
sc = device_get_softc(dev);
mii = device_get_softc(sc->ste_miibus);
ifp = sc->ste_ifp;
if (mii == NULL || ifp == NULL ||
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
return;
sc->ste_flags &= ~STE_FLAG_LINK;
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID)) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
case IFM_100_FX:
case IFM_100_T4:
sc->ste_flags |= STE_FLAG_LINK;
default:
break;
}
}
/* Program MACs with resolved speed/duplex/flow-control. */
if ((sc->ste_flags & STE_FLAG_LINK) != 0) {
cfg = CSR_READ_2(sc, STE_MACCTL0);
cfg &= ~(STE_MACCTL0_FLOWCTL_ENABLE | STE_MACCTL0_FULLDUPLEX);
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
/*
* ST201 data sheet says driver should enable receiving
* MAC control frames bit of receive mode register to
* receive flow-control frames but the register has no
* such bits. In addition the controller has no ability
* to send pause frames so it should be handled in
* driver. Implementing pause timer handling in driver
* layer is not trivial, so don't enable flow-control
* here.
*/
cfg |= STE_MACCTL0_FULLDUPLEX;
}
CSR_WRITE_2(sc, STE_MACCTL0, cfg);
}
}
static int
ste_ifmedia_upd(struct ifnet *ifp)
{
struct ste_softc *sc;
struct mii_data *mii;
struct mii_softc *miisc;
int error;
sc = ifp->if_softc;
STE_LOCK(sc);
mii = device_get_softc(sc->ste_miibus);
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
PHY_RESET(miisc);
error = mii_mediachg(mii);
STE_UNLOCK(sc);
return (error);
}
static void
ste_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct ste_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
mii = device_get_softc(sc->ste_miibus);
STE_LOCK(sc);
if ((ifp->if_flags & IFF_UP) == 0) {
STE_UNLOCK(sc);
return;
}
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
STE_UNLOCK(sc);
}
static void
ste_wait(struct ste_softc *sc)
{
int i;
for (i = 0; i < STE_TIMEOUT; i++) {
if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
break;
DELAY(1);
}
if (i == STE_TIMEOUT)
device_printf(sc->ste_dev, "command never completed!\n");
}
/*
* The EEPROM is slow: give it time to come ready after issuing
* it a command.
*/
static int
ste_eeprom_wait(struct ste_softc *sc)
{
int i;
DELAY(1000);
for (i = 0; i < 100; i++) {
if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
DELAY(1000);
else
break;
}
if (i == 100) {
device_printf(sc->ste_dev, "eeprom failed to come ready\n");
return (1);
}
return (0);
}
/*
* Read a sequence of words from the EEPROM. Note that ethernet address
* data is stored in the EEPROM in network byte order.
*/
static int
ste_read_eeprom(struct ste_softc *sc, uint16_t *dest, int off, int cnt)
{
int err = 0, i;
if (ste_eeprom_wait(sc))
return (1);
for (i = 0; i < cnt; i++) {
CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
err = ste_eeprom_wait(sc);
if (err)
break;
*dest = le16toh(CSR_READ_2(sc, STE_EEPROM_DATA));
dest++;
}
return (err ? 1 : 0);
}
static void
ste_rxfilter(struct ste_softc *sc)
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
uint32_t hashes[2] = { 0, 0 };
uint8_t rxcfg;
int h;
STE_LOCK_ASSERT(sc);
ifp = sc->ste_ifp;
rxcfg = CSR_READ_1(sc, STE_RX_MODE);
rxcfg |= STE_RXMODE_UNICAST;
rxcfg &= ~(STE_RXMODE_ALLMULTI | STE_RXMODE_MULTIHASH |
STE_RXMODE_BROADCAST | STE_RXMODE_PROMISC);
if (ifp->if_flags & IFF_BROADCAST)
rxcfg |= STE_RXMODE_BROADCAST;
if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
if ((ifp->if_flags & IFF_ALLMULTI) != 0)
rxcfg |= STE_RXMODE_ALLMULTI;
if ((ifp->if_flags & IFF_PROMISC) != 0)
rxcfg |= STE_RXMODE_PROMISC;
goto chipit;
}
rxcfg |= STE_RXMODE_MULTIHASH;
/* Now program new ones. */
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN) & 0x3F;
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
}
if_maddr_runlock(ifp);
chipit:
CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
CSR_WRITE_1(sc, STE_RX_MODE, rxcfg);
CSR_READ_1(sc, STE_RX_MODE);
}
#ifdef DEVICE_POLLING
static poll_handler_t ste_poll, ste_poll_locked;
static int
ste_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct ste_softc *sc = ifp->if_softc;
int rx_npkts = 0;
STE_LOCK(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
rx_npkts = ste_poll_locked(ifp, cmd, count);
STE_UNLOCK(sc);
return (rx_npkts);
}
static int
ste_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct ste_softc *sc = ifp->if_softc;
int rx_npkts;
STE_LOCK_ASSERT(sc);
rx_npkts = ste_rxeof(sc, count);
ste_txeof(sc);
ste_txeoc(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
ste_start_locked(ifp);
if (cmd == POLL_AND_CHECK_STATUS) {
uint16_t status;
status = CSR_READ_2(sc, STE_ISR_ACK);
if (status & STE_ISR_STATS_OFLOW)
ste_stats_update(sc);
if (status & STE_ISR_HOSTERR) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
ste_init_locked(sc);
}
}
return (rx_npkts);
}
#endif /* DEVICE_POLLING */
static void
ste_intr(void *xsc)
{
struct ste_softc *sc;
struct ifnet *ifp;
uint16_t intrs, status;
sc = xsc;
STE_LOCK(sc);
ifp = sc->ste_ifp;
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING) {
STE_UNLOCK(sc);
return;
}
#endif
/* Reading STE_ISR_ACK clears STE_IMR register. */
status = CSR_READ_2(sc, STE_ISR_ACK);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
STE_UNLOCK(sc);
return;
}
intrs = STE_INTRS;
if (status == 0xFFFF || (status & intrs) == 0)
goto done;
if (sc->ste_int_rx_act > 0) {
status &= ~STE_ISR_RX_DMADONE;
intrs &= ~STE_IMR_RX_DMADONE;
}
if ((status & (STE_ISR_SOFTINTR | STE_ISR_RX_DMADONE)) != 0) {
ste_rxeof(sc, -1);
/*
* The controller has no ability to Rx interrupt
* moderation feature. Receiving 64 bytes frames
* from wire generates too many interrupts which in
* turn make system useless to process other useful
* things. Fortunately ST201 supports single shot
* timer so use the timer to implement Rx interrupt
* moderation in driver. This adds more register
* access but it greatly reduces number of Rx
* interrupts under high network load.
*/
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
(sc->ste_int_rx_mod != 0)) {
if ((status & STE_ISR_RX_DMADONE) != 0) {
CSR_WRITE_2(sc, STE_COUNTDOWN,
STE_TIMER_USECS(sc->ste_int_rx_mod));
intrs &= ~STE_IMR_RX_DMADONE;
sc->ste_int_rx_act = 1;
} else {
intrs |= STE_IMR_RX_DMADONE;
sc->ste_int_rx_act = 0;
}
}
}
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
if ((status & STE_ISR_TX_DMADONE) != 0)
ste_txeof(sc);
if ((status & STE_ISR_TX_DONE) != 0)
ste_txeoc(sc);
if ((status & STE_ISR_STATS_OFLOW) != 0)
ste_stats_update(sc);
if ((status & STE_ISR_HOSTERR) != 0) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
ste_init_locked(sc);
STE_UNLOCK(sc);
return;
}
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
ste_start_locked(ifp);
done:
/* Re-enable interrupts */
CSR_WRITE_2(sc, STE_IMR, intrs);
}
STE_UNLOCK(sc);
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
static int
ste_rxeof(struct ste_softc *sc, int count)
{
struct mbuf *m;
struct ifnet *ifp;
struct ste_chain_onefrag *cur_rx;
uint32_t rxstat;
int total_len, rx_npkts;
ifp = sc->ste_ifp;
bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
sc->ste_cdata.ste_rx_list_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
cur_rx = sc->ste_cdata.ste_rx_head;
for (rx_npkts = 0; rx_npkts < STE_RX_LIST_CNT; rx_npkts++,
cur_rx = cur_rx->ste_next) {
rxstat = le32toh(cur_rx->ste_ptr->ste_status);
if ((rxstat & STE_RXSTAT_DMADONE) == 0)
break;
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING) {
if (count == 0)
break;
count--;
}
#endif
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
break;
/*
* If an error occurs, update stats, clear the
* status word and leave the mbuf cluster in place:
* it should simply get re-used next time this descriptor
* comes up in the ring.
*/
if (rxstat & STE_RXSTAT_FRAME_ERR) {
ifp->if_ierrors++;
cur_rx->ste_ptr->ste_status = 0;
continue;
}
/* No errors; receive the packet. */
m = cur_rx->ste_mbuf;
total_len = STE_RX_BYTES(rxstat);
/*
* Try to conjure up a new mbuf cluster. If that
* fails, it means we have an out of memory condition and
* should leave the buffer in place and continue. This will
* result in a lost packet, but there's little else we
* can do in this situation.
*/
if (ste_newbuf(sc, cur_rx) != 0) {
ifp->if_iqdrops++;
cur_rx->ste_ptr->ste_status = 0;
continue;
}
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = total_len;
ifp->if_ipackets++;
STE_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
STE_LOCK(sc);
}
if (rx_npkts > 0) {
sc->ste_cdata.ste_rx_head = cur_rx;
bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
sc->ste_cdata.ste_rx_list_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
return (rx_npkts);
}
static void
ste_txeoc(struct ste_softc *sc)
{
uint16_t txstat;
struct ifnet *ifp;
STE_LOCK_ASSERT(sc);
ifp = sc->ste_ifp;
/*
* STE_TX_STATUS register implements a queue of up to 31
* transmit status byte. Writing an arbitrary value to the
* register will advance the queue to the next transmit
* status byte. This means if driver does not read
* STE_TX_STATUS register after completing sending more
* than 31 frames the controller would be stalled so driver
* should re-wake the Tx MAC. This is the most severe
* limitation of ST201 based controller.
*/
for (;;) {
txstat = CSR_READ_2(sc, STE_TX_STATUS);
if ((txstat & STE_TXSTATUS_TXDONE) == 0)
break;
if ((txstat & (STE_TXSTATUS_UNDERRUN |
STE_TXSTATUS_EXCESSCOLLS | STE_TXSTATUS_RECLAIMERR |
STE_TXSTATUS_STATSOFLOW)) != 0) {
ifp->if_oerrors++;
#ifdef STE_SHOW_TXERRORS
device_printf(sc->ste_dev, "TX error : 0x%b\n",
txstat & 0xFF, STE_ERR_BITS);
#endif
if ((txstat & STE_TXSTATUS_UNDERRUN) != 0 &&
sc->ste_tx_thresh < STE_PACKET_SIZE) {
sc->ste_tx_thresh += STE_MIN_FRAMELEN;
if (sc->ste_tx_thresh > STE_PACKET_SIZE)
sc->ste_tx_thresh = STE_PACKET_SIZE;
device_printf(sc->ste_dev,
"TX underrun, increasing TX"
" start threshold to %d bytes\n",
sc->ste_tx_thresh);
/* Make sure to disable active DMA cycles. */
STE_SETBIT4(sc, STE_DMACTL,
STE_DMACTL_TXDMA_STALL);
ste_wait(sc);
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
ste_init_locked(sc);
break;
}
/* Restart Tx. */
ste_restart_tx(sc);
}
/*
* Advance to next status and ACK TxComplete
* interrupt. ST201 data sheet was wrong here, to
* get next Tx status, we have to write both
* STE_TX_STATUS and STE_TX_FRAMEID register.
* Otherwise controller returns the same status
* as well as not acknowledge Tx completion
* interrupt.
*/
CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
}
}
static void
ste_tick(void *arg)
{
struct ste_softc *sc;
struct mii_data *mii;
sc = (struct ste_softc *)arg;
STE_LOCK_ASSERT(sc);
mii = device_get_softc(sc->ste_miibus);
mii_tick(mii);
/*
* ukphy(4) does not seem to generate CB that reports
* resolved link state so if we know we lost a link,
* explicitly check the link state.
*/
if ((sc->ste_flags & STE_FLAG_LINK) == 0)
ste_miibus_statchg(sc->ste_dev);
/*
* Because we are not generating Tx completion
* interrupt for every frame, reclaim transmitted
* buffers here.
*/
ste_txeof(sc);
ste_txeoc(sc);
ste_stats_update(sc);
ste_watchdog(sc);
callout_reset(&sc->ste_callout, hz, ste_tick, sc);
}
static void
ste_txeof(struct ste_softc *sc)
{
struct ifnet *ifp;
struct ste_chain *cur_tx;
uint32_t txstat;
int idx;
STE_LOCK_ASSERT(sc);
ifp = sc->ste_ifp;
idx = sc->ste_cdata.ste_tx_cons;
if (idx == sc->ste_cdata.ste_tx_prod)
return;
bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
sc->ste_cdata.ste_tx_list_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
while (idx != sc->ste_cdata.ste_tx_prod) {
cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
txstat = le32toh(cur_tx->ste_ptr->ste_ctl);
if ((txstat & STE_TXCTL_DMADONE) == 0)
break;
bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map);
KASSERT(cur_tx->ste_mbuf != NULL,
("%s: freeing NULL mbuf!\n", __func__));
m_freem(cur_tx->ste_mbuf);
cur_tx->ste_mbuf = NULL;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
ifp->if_opackets++;
sc->ste_cdata.ste_tx_cnt--;
STE_INC(idx, STE_TX_LIST_CNT);
}
sc->ste_cdata.ste_tx_cons = idx;
if (sc->ste_cdata.ste_tx_cnt == 0)
sc->ste_timer = 0;
}
static void
ste_stats_clear(struct ste_softc *sc)
{
STE_LOCK_ASSERT(sc);
/* Rx stats. */
CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO);
CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI);
CSR_READ_2(sc, STE_STAT_RX_FRAMES);
CSR_READ_1(sc, STE_STAT_RX_BCAST);
CSR_READ_1(sc, STE_STAT_RX_MCAST);
CSR_READ_1(sc, STE_STAT_RX_LOST);
/* Tx stats. */
CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO);
CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI);
CSR_READ_2(sc, STE_STAT_TX_FRAMES);
CSR_READ_1(sc, STE_STAT_TX_BCAST);
CSR_READ_1(sc, STE_STAT_TX_MCAST);
CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
CSR_READ_1(sc, STE_STAT_LATE_COLLS);
CSR_READ_1(sc, STE_STAT_TX_DEFER);
CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
CSR_READ_1(sc, STE_STAT_TX_ABORT);
}
static void
ste_stats_update(struct ste_softc *sc)
{
struct ifnet *ifp;
struct ste_hw_stats *stats;
uint32_t val;
STE_LOCK_ASSERT(sc);
ifp = sc->ste_ifp;
stats = &sc->ste_stats;
/* Rx stats. */
val = (uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO) |
((uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI)) << 16;
val &= 0x000FFFFF;
stats->rx_bytes += val;
stats->rx_frames += CSR_READ_2(sc, STE_STAT_RX_FRAMES);
stats->rx_bcast_frames += CSR_READ_1(sc, STE_STAT_RX_BCAST);
stats->rx_mcast_frames += CSR_READ_1(sc, STE_STAT_RX_MCAST);
stats->rx_lost_frames += CSR_READ_1(sc, STE_STAT_RX_LOST);
/* Tx stats. */
val = (uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO) |
((uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI)) << 16;
val &= 0x000FFFFF;
stats->tx_bytes += val;
stats->tx_frames += CSR_READ_2(sc, STE_STAT_TX_FRAMES);
stats->tx_bcast_frames += CSR_READ_1(sc, STE_STAT_TX_BCAST);
stats->tx_mcast_frames += CSR_READ_1(sc, STE_STAT_TX_MCAST);
stats->tx_carrsense_errs += CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
val = CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
stats->tx_single_colls += val;
ifp->if_collisions += val;
val = CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
stats->tx_multi_colls += val;
ifp->if_collisions += val;
val += CSR_READ_1(sc, STE_STAT_LATE_COLLS);
stats->tx_late_colls += val;
ifp->if_collisions += val;
stats->tx_frames_defered += CSR_READ_1(sc, STE_STAT_TX_DEFER);
stats->tx_excess_defers += CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
stats->tx_abort += CSR_READ_1(sc, STE_STAT_TX_ABORT);
}
/*
* Probe for a Sundance ST201 chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
static int
ste_probe(device_t dev)
{
const struct ste_type *t;
t = ste_devs;
while (t->ste_name != NULL) {
if ((pci_get_vendor(dev) == t->ste_vid) &&
(pci_get_device(dev) == t->ste_did)) {
device_set_desc(dev, t->ste_name);
return (BUS_PROBE_DEFAULT);
}
t++;
}
return (ENXIO);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int
ste_attach(device_t dev)
{
struct ste_softc *sc;
struct ifnet *ifp;
uint16_t eaddr[ETHER_ADDR_LEN / 2];
int error = 0, phy, pmc, prefer_iomap, rid;
sc = device_get_softc(dev);
sc->ste_dev = dev;
/*
* Only use one PHY since this chip reports multiple
* Note on the DFE-550 the PHY is at 1 on the DFE-580
* it is at 0 & 1. It is rev 0x12.
*/
if (pci_get_vendor(dev) == DL_VENDORID &&
pci_get_device(dev) == DL_DEVICEID_DL10050 &&
pci_get_revid(dev) == 0x12 )
sc->ste_flags |= STE_FLAG_ONE_PHY;
mtx_init(&sc->ste_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
/*
* Map control/status registers.
*/
pci_enable_busmaster(dev);
/*
* Prefer memory space register mapping over IO space but use
* IO space for a device that is known to have issues on memory
* mapping.
*/
prefer_iomap = 0;
if (pci_get_device(dev) == ST_DEVICEID_ST201_1)
prefer_iomap = 1;
else
resource_int_value(device_get_name(sc->ste_dev),
device_get_unit(sc->ste_dev), "prefer_iomap",
&prefer_iomap);
if (prefer_iomap == 0) {
sc->ste_res_id = PCIR_BAR(1);
sc->ste_res_type = SYS_RES_MEMORY;
sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
&sc->ste_res_id, RF_ACTIVE);
}
if (prefer_iomap || sc->ste_res == NULL) {
sc->ste_res_id = PCIR_BAR(0);
sc->ste_res_type = SYS_RES_IOPORT;
sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
&sc->ste_res_id, RF_ACTIVE);
}
if (sc->ste_res == NULL) {
device_printf(dev, "couldn't map ports/memory\n");
error = ENXIO;
goto fail;
}
/* Allocate interrupt */
rid = 0;
sc->ste_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
if (sc->ste_irq == NULL) {
device_printf(dev, "couldn't map interrupt\n");
error = ENXIO;
goto fail;
}
callout_init_mtx(&sc->ste_callout, &sc->ste_mtx, 0);
/* Reset the adapter. */
ste_reset(sc);
/*
* Get station address from the EEPROM.
*/
if (ste_read_eeprom(sc, eaddr, STE_EEADDR_NODE0, ETHER_ADDR_LEN / 2)) {
device_printf(dev, "failed to read station address\n");
error = ENXIO;
goto fail;
}
ste_sysctl_node(sc);
if ((error = ste_dma_alloc(sc)) != 0)
goto fail;
ifp = sc->ste_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "can not if_alloc()\n");
error = ENOSPC;
goto fail;
}
/* Do MII setup. */
phy = MII_PHY_ANY;
if ((sc->ste_flags & STE_FLAG_ONE_PHY) != 0)
phy = 0;
error = mii_attach(dev, &sc->ste_miibus, ifp, ste_ifmedia_upd,
ste_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
if (error != 0) {
device_printf(dev, "attaching PHYs failed\n");
goto fail;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = ste_ioctl;
ifp->if_start = ste_start;
ifp->if_init = ste_init;
IFQ_SET_MAXLEN(&ifp->if_snd, STE_TX_LIST_CNT - 1);
ifp->if_snd.ifq_drv_maxlen = STE_TX_LIST_CNT - 1;
IFQ_SET_READY(&ifp->if_snd);
sc->ste_tx_thresh = STE_TXSTART_THRESH;
/*
* Call MI attach routine.
*/
ether_ifattach(ifp, (uint8_t *)eaddr);
/*
* Tell the upper layer(s) we support long frames.
*/
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
ifp->if_capabilities |= IFCAP_VLAN_MTU;
if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
ifp->if_capabilities |= IFCAP_WOL_MAGIC;
ifp->if_capenable = ifp->if_capabilities;
#ifdef DEVICE_POLLING
ifp->if_capabilities |= IFCAP_POLLING;
#endif
/* Hook interrupt last to avoid having to lock softc */
error = bus_setup_intr(dev, sc->ste_irq, INTR_TYPE_NET | INTR_MPSAFE,
NULL, ste_intr, sc, &sc->ste_intrhand);
if (error) {
device_printf(dev, "couldn't set up irq\n");
ether_ifdetach(ifp);
goto fail;
}
fail:
if (error)
ste_detach(dev);
return (error);
}
/*
* Shutdown hardware and free up resources. This can be called any
* time after the mutex has been initialized. It is called in both
* the error case in attach and the normal detach case so it needs
* to be careful about only freeing resources that have actually been
* allocated.
*/
static int
ste_detach(device_t dev)
{
struct ste_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
KASSERT(mtx_initialized(&sc->ste_mtx), ("ste mutex not initialized"));
ifp = sc->ste_ifp;
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING)
ether_poll_deregister(ifp);
#endif
/* These should only be active if attach succeeded */
if (device_is_attached(dev)) {
ether_ifdetach(ifp);
STE_LOCK(sc);
ste_stop(sc);
STE_UNLOCK(sc);
callout_drain(&sc->ste_callout);
}
if (sc->ste_miibus)
device_delete_child(dev, sc->ste_miibus);
bus_generic_detach(dev);
if (sc->ste_intrhand)
bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
if (sc->ste_irq)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
if (sc->ste_res)
bus_release_resource(dev, sc->ste_res_type, sc->ste_res_id,
sc->ste_res);
if (ifp)
if_free(ifp);
ste_dma_free(sc);
mtx_destroy(&sc->ste_mtx);
return (0);
}
struct ste_dmamap_arg {
bus_addr_t ste_busaddr;
};
static void
ste_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
struct ste_dmamap_arg *ctx;
if (error != 0)
return;
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
ctx = (struct ste_dmamap_arg *)arg;
ctx->ste_busaddr = segs[0].ds_addr;
}
static int
ste_dma_alloc(struct ste_softc *sc)
{
struct ste_chain *txc;
struct ste_chain_onefrag *rxc;
struct ste_dmamap_arg ctx;
int error, i;
/* Create parent DMA tag. */
error = bus_dma_tag_create(
bus_get_dma_tag(sc->ste_dev), /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
0, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->ste_cdata.ste_parent_tag);
if (error != 0) {
device_printf(sc->ste_dev,
"could not create parent DMA tag.\n");
goto fail;
}
/* Create DMA tag for Tx descriptor list. */
error = bus_dma_tag_create(
sc->ste_cdata.ste_parent_tag, /* parent */
STE_DESC_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
STE_TX_LIST_SZ, /* maxsize */
1, /* nsegments */
STE_TX_LIST_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->ste_cdata.ste_tx_list_tag);
if (error != 0) {
device_printf(sc->ste_dev,
"could not create Tx list DMA tag.\n");
goto fail;
}
/* Create DMA tag for Rx descriptor list. */
error = bus_dma_tag_create(
sc->ste_cdata.ste_parent_tag, /* parent */
STE_DESC_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
STE_RX_LIST_SZ, /* maxsize */
1, /* nsegments */
STE_RX_LIST_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->ste_cdata.ste_rx_list_tag);
if (error != 0) {
device_printf(sc->ste_dev,
"could not create Rx list DMA tag.\n");
goto fail;
}
/* Create DMA tag for Tx buffers. */
error = bus_dma_tag_create(
sc->ste_cdata.ste_parent_tag, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES * STE_MAXFRAGS, /* maxsize */
STE_MAXFRAGS, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->ste_cdata.ste_tx_tag);
if (error != 0) {
device_printf(sc->ste_dev, "could not create Tx DMA tag.\n");
goto fail;
}
/* Create DMA tag for Rx buffers. */
error = bus_dma_tag_create(
sc->ste_cdata.ste_parent_tag, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES, /* maxsize */
1, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->ste_cdata.ste_rx_tag);
if (error != 0) {
device_printf(sc->ste_dev, "could not create Rx DMA tag.\n");
goto fail;
}
/* Allocate DMA'able memory and load the DMA map for Tx list. */
error = bus_dmamem_alloc(sc->ste_cdata.ste_tx_list_tag,
(void **)&sc->ste_ldata.ste_tx_list,
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->ste_cdata.ste_tx_list_map);
if (error != 0) {
device_printf(sc->ste_dev,
"could not allocate DMA'able memory for Tx list.\n");
goto fail;
}
ctx.ste_busaddr = 0;
error = bus_dmamap_load(sc->ste_cdata.ste_tx_list_tag,
sc->ste_cdata.ste_tx_list_map, sc->ste_ldata.ste_tx_list,
STE_TX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.ste_busaddr == 0) {
device_printf(sc->ste_dev,
"could not load DMA'able memory for Tx list.\n");
goto fail;
}
sc->ste_ldata.ste_tx_list_paddr = ctx.ste_busaddr;
/* Allocate DMA'able memory and load the DMA map for Rx list. */
error = bus_dmamem_alloc(sc->ste_cdata.ste_rx_list_tag,
(void **)&sc->ste_ldata.ste_rx_list,
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->ste_cdata.ste_rx_list_map);
if (error != 0) {
device_printf(sc->ste_dev,
"could not allocate DMA'able memory for Rx list.\n");
goto fail;
}
ctx.ste_busaddr = 0;
error = bus_dmamap_load(sc->ste_cdata.ste_rx_list_tag,
sc->ste_cdata.ste_rx_list_map, sc->ste_ldata.ste_rx_list,
STE_RX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.ste_busaddr == 0) {
device_printf(sc->ste_dev,
"could not load DMA'able memory for Rx list.\n");
goto fail;
}
sc->ste_ldata.ste_rx_list_paddr = ctx.ste_busaddr;
/* Create DMA maps for Tx buffers. */
for (i = 0; i < STE_TX_LIST_CNT; i++) {
txc = &sc->ste_cdata.ste_tx_chain[i];
txc->ste_ptr = NULL;
txc->ste_mbuf = NULL;
txc->ste_next = NULL;
txc->ste_phys = 0;
txc->ste_map = NULL;
error = bus_dmamap_create(sc->ste_cdata.ste_tx_tag, 0,
&txc->ste_map);
if (error != 0) {
device_printf(sc->ste_dev,
"could not create Tx dmamap.\n");
goto fail;
}
}
/* Create DMA maps for Rx buffers. */
if ((error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
&sc->ste_cdata.ste_rx_sparemap)) != 0) {
device_printf(sc->ste_dev,
"could not create spare Rx dmamap.\n");
goto fail;
}
for (i = 0; i < STE_RX_LIST_CNT; i++) {
rxc = &sc->ste_cdata.ste_rx_chain[i];
rxc->ste_ptr = NULL;
rxc->ste_mbuf = NULL;
rxc->ste_next = NULL;
rxc->ste_map = NULL;
error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
&rxc->ste_map);
if (error != 0) {
device_printf(sc->ste_dev,
"could not create Rx dmamap.\n");
goto fail;
}
}
fail:
return (error);
}
static void
ste_dma_free(struct ste_softc *sc)
{
struct ste_chain *txc;
struct ste_chain_onefrag *rxc;
int i;
/* Tx buffers. */
if (sc->ste_cdata.ste_tx_tag != NULL) {
for (i = 0; i < STE_TX_LIST_CNT; i++) {
txc = &sc->ste_cdata.ste_tx_chain[i];
if (txc->ste_map != NULL) {
bus_dmamap_destroy(sc->ste_cdata.ste_tx_tag,
txc->ste_map);
txc->ste_map = NULL;
}
}
bus_dma_tag_destroy(sc->ste_cdata.ste_tx_tag);
sc->ste_cdata.ste_tx_tag = NULL;
}
/* Rx buffers. */
if (sc->ste_cdata.ste_rx_tag != NULL) {
for (i = 0; i < STE_RX_LIST_CNT; i++) {
rxc = &sc->ste_cdata.ste_rx_chain[i];
if (rxc->ste_map != NULL) {
bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
rxc->ste_map);
rxc->ste_map = NULL;
}
}
if (sc->ste_cdata.ste_rx_sparemap != NULL) {
bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
sc->ste_cdata.ste_rx_sparemap);
sc->ste_cdata.ste_rx_sparemap = NULL;
}
bus_dma_tag_destroy(sc->ste_cdata.ste_rx_tag);
sc->ste_cdata.ste_rx_tag = NULL;
}
/* Tx descriptor list. */
if (sc->ste_cdata.ste_tx_list_tag != NULL) {
if (sc->ste_cdata.ste_tx_list_map != NULL)
bus_dmamap_unload(sc->ste_cdata.ste_tx_list_tag,
sc->ste_cdata.ste_tx_list_map);
if (sc->ste_cdata.ste_tx_list_map != NULL &&
sc->ste_ldata.ste_tx_list != NULL)
bus_dmamem_free(sc->ste_cdata.ste_tx_list_tag,
sc->ste_ldata.ste_tx_list,
sc->ste_cdata.ste_tx_list_map);
sc->ste_ldata.ste_tx_list = NULL;
sc->ste_cdata.ste_tx_list_map = NULL;
bus_dma_tag_destroy(sc->ste_cdata.ste_tx_list_tag);
sc->ste_cdata.ste_tx_list_tag = NULL;
}
/* Rx descriptor list. */
if (sc->ste_cdata.ste_rx_list_tag != NULL) {
if (sc->ste_cdata.ste_rx_list_map != NULL)
bus_dmamap_unload(sc->ste_cdata.ste_rx_list_tag,
sc->ste_cdata.ste_rx_list_map);
if (sc->ste_cdata.ste_rx_list_map != NULL &&
sc->ste_ldata.ste_rx_list != NULL)
bus_dmamem_free(sc->ste_cdata.ste_rx_list_tag,
sc->ste_ldata.ste_rx_list,
sc->ste_cdata.ste_rx_list_map);
sc->ste_ldata.ste_rx_list = NULL;
sc->ste_cdata.ste_rx_list_map = NULL;
bus_dma_tag_destroy(sc->ste_cdata.ste_rx_list_tag);
sc->ste_cdata.ste_rx_list_tag = NULL;
}
if (sc->ste_cdata.ste_parent_tag != NULL) {
bus_dma_tag_destroy(sc->ste_cdata.ste_parent_tag);
sc->ste_cdata.ste_parent_tag = NULL;
}
}
static int
ste_newbuf(struct ste_softc *sc, struct ste_chain_onefrag *rxc)
{
struct mbuf *m;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
int error, nsegs;
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = MCLBYTES;
m_adj(m, ETHER_ALIGN);
if ((error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_rx_tag,
sc->ste_cdata.ste_rx_sparemap, m, segs, &nsegs, 0)) != 0) {
m_freem(m);
return (error);
}
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
if (rxc->ste_mbuf != NULL) {
bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->ste_cdata.ste_rx_tag, rxc->ste_map);
}
map = rxc->ste_map;
rxc->ste_map = sc->ste_cdata.ste_rx_sparemap;
sc->ste_cdata.ste_rx_sparemap = map;
bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
BUS_DMASYNC_PREREAD);
rxc->ste_mbuf = m;
rxc->ste_ptr->ste_status = 0;
rxc->ste_ptr->ste_frag.ste_addr = htole32(segs[0].ds_addr);
rxc->ste_ptr->ste_frag.ste_len = htole32(segs[0].ds_len |
STE_FRAG_LAST);
return (0);
}
static int
ste_init_rx_list(struct ste_softc *sc)
{
struct ste_chain_data *cd;
struct ste_list_data *ld;
int error, i;
sc->ste_int_rx_act = 0;
cd = &sc->ste_cdata;
ld = &sc->ste_ldata;
bzero(ld->ste_rx_list, STE_RX_LIST_SZ);
for (i = 0; i < STE_RX_LIST_CNT; i++) {
cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
error = ste_newbuf(sc, &cd->ste_rx_chain[i]);
if (error != 0)
return (error);
if (i == (STE_RX_LIST_CNT - 1)) {
cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[0];
ld->ste_rx_list[i].ste_next =
htole32(ld->ste_rx_list_paddr +
(sizeof(struct ste_desc_onefrag) * 0));
} else {
cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[i + 1];
ld->ste_rx_list[i].ste_next =
htole32(ld->ste_rx_list_paddr +
(sizeof(struct ste_desc_onefrag) * (i + 1)));
}
}
cd->ste_rx_head = &cd->ste_rx_chain[0];
bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
sc->ste_cdata.ste_rx_list_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
static void
ste_init_tx_list(struct ste_softc *sc)
{
struct ste_chain_data *cd;
struct ste_list_data *ld;
int i;
cd = &sc->ste_cdata;
ld = &sc->ste_ldata;
bzero(ld->ste_tx_list, STE_TX_LIST_SZ);
for (i = 0; i < STE_TX_LIST_CNT; i++) {
cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
cd->ste_tx_chain[i].ste_mbuf = NULL;
if (i == (STE_TX_LIST_CNT - 1)) {
cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[0];
cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
ld->ste_tx_list_paddr +
(sizeof(struct ste_desc) * 0)));
} else {
cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[i + 1];
cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
ld->ste_tx_list_paddr +
(sizeof(struct ste_desc) * (i + 1))));
}
}
cd->ste_last_tx = NULL;
cd->ste_tx_prod = 0;
cd->ste_tx_cons = 0;
cd->ste_tx_cnt = 0;
bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
sc->ste_cdata.ste_tx_list_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static void
ste_init(void *xsc)
{
struct ste_softc *sc;
sc = xsc;
STE_LOCK(sc);
ste_init_locked(sc);
STE_UNLOCK(sc);
}
static void
ste_init_locked(struct ste_softc *sc)
{
struct ifnet *ifp;
struct mii_data *mii;
uint8_t val;
int i;
STE_LOCK_ASSERT(sc);
ifp = sc->ste_ifp;
mii = device_get_softc(sc->ste_miibus);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
return;
ste_stop(sc);
/* Reset the chip to a known state. */
ste_reset(sc);
/* Init our MAC address */
for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
CSR_WRITE_2(sc, STE_PAR0 + i,
((IF_LLADDR(sc->ste_ifp)[i] & 0xff) |
IF_LLADDR(sc->ste_ifp)[i + 1] << 8));
}
/* Init RX list */
if (ste_init_rx_list(sc) != 0) {
device_printf(sc->ste_dev,
"initialization failed: no memory for RX buffers\n");
ste_stop(sc);
return;
}
/* Set RX polling interval */
CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 64);
/* Init TX descriptors */
ste_init_tx_list(sc);
/* Clear and disable WOL. */
val = CSR_READ_1(sc, STE_WAKE_EVENT);
val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
/* Set the TX freethresh value */
CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
/* Set the TX start threshold for best performance. */
CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
/* Set the TX reclaim threshold. */
CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
/* Accept VLAN length packets */
CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN);
/* Set up the RX filter. */
ste_rxfilter(sc);
/* Load the address of the RX list. */
STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
ste_wait(sc);
CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
STE_ADDR_LO(sc->ste_ldata.ste_rx_list_paddr));
STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
/* Set TX polling interval(defer until we TX first packet). */
CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
/* Load address of the TX list */
STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
ste_wait(sc);
CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
ste_wait(sc);
/* Select 3.2us timer. */
STE_CLRBIT4(sc, STE_DMACTL, STE_DMACTL_COUNTDOWN_SPEED |
STE_DMACTL_COUNTDOWN_MODE);
/* Enable receiver and transmitter */
CSR_WRITE_2(sc, STE_MACCTL0, 0);
CSR_WRITE_2(sc, STE_MACCTL1, 0);
STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
/* Enable stats counters. */
STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
/* Clear stats counters. */
ste_stats_clear(sc);
CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
#ifdef DEVICE_POLLING
/* Disable interrupts if we are polling. */
if (ifp->if_capenable & IFCAP_POLLING)
CSR_WRITE_2(sc, STE_IMR, 0);
else
#endif
/* Enable interrupts. */
CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
sc->ste_flags &= ~STE_FLAG_LINK;
/* Switch to the current media. */
mii_mediachg(mii);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
callout_reset(&sc->ste_callout, hz, ste_tick, sc);
}
static void
ste_stop(struct ste_softc *sc)
{
struct ifnet *ifp;
struct ste_chain_onefrag *cur_rx;
struct ste_chain *cur_tx;
uint32_t val;
int i;
STE_LOCK_ASSERT(sc);
ifp = sc->ste_ifp;
callout_stop(&sc->ste_callout);
sc->ste_timer = 0;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
CSR_WRITE_2(sc, STE_IMR, 0);
CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
/* Stop pending DMA. */
val = CSR_READ_4(sc, STE_DMACTL);
val |= STE_DMACTL_TXDMA_STALL | STE_DMACTL_RXDMA_STALL;
CSR_WRITE_4(sc, STE_DMACTL, val);
ste_wait(sc);
/* Disable auto-polling. */
CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 0);
CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
/* Nullify DMA address to stop any further DMA. */
CSR_WRITE_4(sc, STE_RX_DMALIST_PTR, 0);
CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
/* Stop TX/RX MAC. */
val = CSR_READ_2(sc, STE_MACCTL1);
val |= STE_MACCTL1_TX_DISABLE | STE_MACCTL1_RX_DISABLE |
STE_MACCTL1_STATS_DISABLE;
CSR_WRITE_2(sc, STE_MACCTL1, val);
for (i = 0; i < STE_TIMEOUT; i++) {
DELAY(10);
if ((CSR_READ_2(sc, STE_MACCTL1) & (STE_MACCTL1_TX_DISABLE |
STE_MACCTL1_RX_DISABLE | STE_MACCTL1_STATS_DISABLE)) == 0)
break;
}
if (i == STE_TIMEOUT)
device_printf(sc->ste_dev, "Stopping MAC timed out\n");
/* Acknowledge any pending interrupts. */
CSR_READ_2(sc, STE_ISR_ACK);
ste_stats_update(sc);
for (i = 0; i < STE_RX_LIST_CNT; i++) {
cur_rx = &sc->ste_cdata.ste_rx_chain[i];
if (cur_rx->ste_mbuf != NULL) {
bus_dmamap_sync(sc->ste_cdata.ste_rx_tag,
cur_rx->ste_map, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->ste_cdata.ste_rx_tag,
cur_rx->ste_map);
m_freem(cur_rx->ste_mbuf);
cur_rx->ste_mbuf = NULL;
}
}
for (i = 0; i < STE_TX_LIST_CNT; i++) {
cur_tx = &sc->ste_cdata.ste_tx_chain[i];
if (cur_tx->ste_mbuf != NULL) {
bus_dmamap_sync(sc->ste_cdata.ste_tx_tag,
cur_tx->ste_map, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->ste_cdata.ste_tx_tag,
cur_tx->ste_map);
m_freem(cur_tx->ste_mbuf);
cur_tx->ste_mbuf = NULL;
}
}
}
static void
ste_reset(struct ste_softc *sc)
{
uint32_t ctl;
int i;
ctl = CSR_READ_4(sc, STE_ASICCTL);
ctl |= STE_ASICCTL_GLOBAL_RESET | STE_ASICCTL_RX_RESET |
STE_ASICCTL_TX_RESET | STE_ASICCTL_DMA_RESET |
STE_ASICCTL_FIFO_RESET | STE_ASICCTL_NETWORK_RESET |
STE_ASICCTL_AUTOINIT_RESET |STE_ASICCTL_HOST_RESET |
STE_ASICCTL_EXTRESET_RESET;
CSR_WRITE_4(sc, STE_ASICCTL, ctl);
CSR_READ_4(sc, STE_ASICCTL);
/*
* Due to the need of accessing EEPROM controller can take
* up to 1ms to complete the global reset.
*/
DELAY(1000);
for (i = 0; i < STE_TIMEOUT; i++) {
if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
break;
DELAY(10);
}
if (i == STE_TIMEOUT)
device_printf(sc->ste_dev, "global reset never completed\n");
}
static void
ste_restart_tx(struct ste_softc *sc)
{
uint16_t mac;
int i;
for (i = 0; i < STE_TIMEOUT; i++) {
mac = CSR_READ_2(sc, STE_MACCTL1);
mac |= STE_MACCTL1_TX_ENABLE;
CSR_WRITE_2(sc, STE_MACCTL1, mac);
mac = CSR_READ_2(sc, STE_MACCTL1);
if ((mac & STE_MACCTL1_TX_ENABLED) != 0)
break;
DELAY(10);
}
if (i == STE_TIMEOUT)
device_printf(sc->ste_dev, "starting Tx failed");
}
static int
ste_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct ste_softc *sc;
struct ifreq *ifr;
struct mii_data *mii;
int error = 0, mask;
sc = ifp->if_softc;
ifr = (struct ifreq *)data;
switch (command) {
case SIOCSIFFLAGS:
STE_LOCK(sc);
if ((ifp->if_flags & IFF_UP) != 0) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
((ifp->if_flags ^ sc->ste_if_flags) &
(IFF_PROMISC | IFF_ALLMULTI)) != 0)
ste_rxfilter(sc);
else
ste_init_locked(sc);
} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
ste_stop(sc);
sc->ste_if_flags = ifp->if_flags;
STE_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
STE_LOCK(sc);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
ste_rxfilter(sc);
STE_UNLOCK(sc);
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
mii = device_get_softc(sc->ste_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
case SIOCSIFCAP:
STE_LOCK(sc);
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
#ifdef DEVICE_POLLING
if ((mask & IFCAP_POLLING) != 0 &&
(IFCAP_POLLING & ifp->if_capabilities) != 0) {
ifp->if_capenable ^= IFCAP_POLLING;
if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
error = ether_poll_register(ste_poll, ifp);
if (error != 0) {
STE_UNLOCK(sc);
break;
}
/* Disable interrupts. */
CSR_WRITE_2(sc, STE_IMR, 0);
} else {
error = ether_poll_deregister(ifp);
/* Enable interrupts. */
CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
}
}
#endif /* DEVICE_POLLING */
if ((mask & IFCAP_WOL_MAGIC) != 0 &&
(ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
ifp->if_capenable ^= IFCAP_WOL_MAGIC;
STE_UNLOCK(sc);
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
return (error);
}
static int
ste_encap(struct ste_softc *sc, struct mbuf **m_head, struct ste_chain *txc)
{
struct ste_frag *frag;
struct mbuf *m;
struct ste_desc *desc;
bus_dma_segment_t txsegs[STE_MAXFRAGS];
int error, i, nsegs;
STE_LOCK_ASSERT(sc);
M_ASSERTPKTHDR((*m_head));
error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
txc->ste_map, *m_head, txsegs, &nsegs, 0);
if (error == EFBIG) {
m = m_collapse(*m_head, M_DONTWAIT, STE_MAXFRAGS);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOMEM);
}
*m_head = m;
error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
txc->ste_map, *m_head, txsegs, &nsegs, 0);
if (error != 0) {
m_freem(*m_head);
*m_head = NULL;
return (error);
}
} else if (error != 0)
return (error);
if (nsegs == 0) {
m_freem(*m_head);
*m_head = NULL;
return (EIO);
}
bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, txc->ste_map,
BUS_DMASYNC_PREWRITE);
desc = txc->ste_ptr;
for (i = 0; i < nsegs; i++) {
frag = &desc->ste_frags[i];
frag->ste_addr = htole32(STE_ADDR_LO(txsegs[i].ds_addr));
frag->ste_len = htole32(txsegs[i].ds_len);
}
desc->ste_frags[i - 1].ste_len |= htole32(STE_FRAG_LAST);
/*
* Because we use Tx polling we can't chain multiple
* Tx descriptors here. Otherwise we race with controller.
*/
desc->ste_next = 0;
if ((sc->ste_cdata.ste_tx_prod % STE_TX_INTR_FRAMES) == 0)
desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS |
STE_TXCTL_DMAINTR);
else
desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS);
txc->ste_mbuf = *m_head;
STE_INC(sc->ste_cdata.ste_tx_prod, STE_TX_LIST_CNT);
sc->ste_cdata.ste_tx_cnt++;
return (0);
}
static void
ste_start(struct ifnet *ifp)
{
struct ste_softc *sc;
sc = ifp->if_softc;
STE_LOCK(sc);
ste_start_locked(ifp);
STE_UNLOCK(sc);
}
static void
ste_start_locked(struct ifnet *ifp)
{
struct ste_softc *sc;
struct ste_chain *cur_tx;
struct mbuf *m_head = NULL;
int enq;
sc = ifp->if_softc;
STE_LOCK_ASSERT(sc);
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING || (sc->ste_flags & STE_FLAG_LINK) == 0)
return;
for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
if (sc->ste_cdata.ste_tx_cnt == STE_TX_LIST_CNT - 1) {
/*
* Controller may have cached copy of the last used
* next ptr so we have to reserve one TFD to avoid
* TFD overruns.
*/
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
cur_tx = &sc->ste_cdata.ste_tx_chain[sc->ste_cdata.ste_tx_prod];
if (ste_encap(sc, &m_head, cur_tx) != 0) {
if (m_head == NULL)
break;
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
break;
}
if (sc->ste_cdata.ste_last_tx == NULL) {
bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
sc->ste_cdata.ste_tx_list_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
ste_wait(sc);
CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
STE_ADDR_LO(sc->ste_ldata.ste_tx_list_paddr));
CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
ste_wait(sc);
} else {
sc->ste_cdata.ste_last_tx->ste_ptr->ste_next =
sc->ste_cdata.ste_last_tx->ste_phys;
bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
sc->ste_cdata.ste_tx_list_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
sc->ste_cdata.ste_last_tx = cur_tx;
enq++;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
BPF_MTAP(ifp, m_head);
}
if (enq > 0)
sc->ste_timer = STE_TX_TIMEOUT;
}
static void
ste_watchdog(struct ste_softc *sc)
{
struct ifnet *ifp;
ifp = sc->ste_ifp;
STE_LOCK_ASSERT(sc);
if (sc->ste_timer == 0 || --sc->ste_timer)
return;
ifp->if_oerrors++;
if_printf(ifp, "watchdog timeout\n");
ste_txeof(sc);
ste_txeoc(sc);
ste_rxeof(sc, -1);
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
ste_init_locked(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
ste_start_locked(ifp);
}
static int
ste_shutdown(device_t dev)
{
return (ste_suspend(dev));
}
static int
ste_suspend(device_t dev)
{
struct ste_softc *sc;
sc = device_get_softc(dev);
STE_LOCK(sc);
ste_stop(sc);
ste_setwol(sc);
STE_UNLOCK(sc);
return (0);
}
static int
ste_resume(device_t dev)
{
struct ste_softc *sc;
struct ifnet *ifp;
int pmc;
uint16_t pmstat;
sc = device_get_softc(dev);
STE_LOCK(sc);
if (pci_find_cap(sc->ste_dev, PCIY_PMG, &pmc) == 0) {
/* Disable PME and clear PME status. */
pmstat = pci_read_config(sc->ste_dev,
pmc + PCIR_POWER_STATUS, 2);
if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
pmstat &= ~PCIM_PSTAT_PMEENABLE;
pci_write_config(sc->ste_dev,
pmc + PCIR_POWER_STATUS, pmstat, 2);
}
}
ifp = sc->ste_ifp;
if ((ifp->if_flags & IFF_UP) != 0) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
ste_init_locked(sc);
}
STE_UNLOCK(sc);
return (0);
}
#define STE_SYSCTL_STAT_ADD32(c, h, n, p, d) \
SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
#define STE_SYSCTL_STAT_ADD64(c, h, n, p, d) \
SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
static void
ste_sysctl_node(struct ste_softc *sc)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid_list *child, *parent;
struct sysctl_oid *tree;
struct ste_hw_stats *stats;
stats = &sc->ste_stats;
ctx = device_get_sysctl_ctx(sc->ste_dev);
child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ste_dev));
SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_rx_mod",
CTLFLAG_RW, &sc->ste_int_rx_mod, 0, "ste RX interrupt moderation");
/* Pull in device tunables. */
sc->ste_int_rx_mod = STE_IM_RX_TIMER_DEFAULT;
resource_int_value(device_get_name(sc->ste_dev),
device_get_unit(sc->ste_dev), "int_rx_mod", &sc->ste_int_rx_mod);
tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
NULL, "STE statistics");
parent = SYSCTL_CHILDREN(tree);
/* Rx statistics. */
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
NULL, "Rx MAC statistics");
child = SYSCTL_CHILDREN(tree);
STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
&stats->rx_bytes, "Good octets");
STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
&stats->rx_frames, "Good frames");
STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
&stats->rx_bcast_frames, "Good broadcast frames");
STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
&stats->rx_mcast_frames, "Good multicast frames");
STE_SYSCTL_STAT_ADD32(ctx, child, "lost_frames",
&stats->rx_lost_frames, "Lost frames");
/* Tx statistics. */
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
NULL, "Tx MAC statistics");
child = SYSCTL_CHILDREN(tree);
STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
&stats->tx_bytes, "Good octets");
STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
&stats->tx_frames, "Good frames");
STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
&stats->tx_bcast_frames, "Good broadcast frames");
STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
&stats->tx_mcast_frames, "Good multicast frames");
STE_SYSCTL_STAT_ADD32(ctx, child, "carrier_errs",
&stats->tx_carrsense_errs, "Carrier sense errors");
STE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
&stats->tx_single_colls, "Single collisions");
STE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
&stats->tx_multi_colls, "Multiple collisions");
STE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
&stats->tx_late_colls, "Late collisions");
STE_SYSCTL_STAT_ADD32(ctx, child, "defers",
&stats->tx_frames_defered, "Frames with deferrals");
STE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
&stats->tx_excess_defers, "Frames with excessive derferrals");
STE_SYSCTL_STAT_ADD32(ctx, child, "abort",
&stats->tx_abort, "Aborted frames due to Excessive collisions");
}
#undef STE_SYSCTL_STAT_ADD32
#undef STE_SYSCTL_STAT_ADD64
static void
ste_setwol(struct ste_softc *sc)
{
struct ifnet *ifp;
uint16_t pmstat;
uint8_t val;
int pmc;
STE_LOCK_ASSERT(sc);
if (pci_find_cap(sc->ste_dev, PCIY_PMG, &pmc) != 0) {
/* Disable WOL. */
CSR_READ_1(sc, STE_WAKE_EVENT);
CSR_WRITE_1(sc, STE_WAKE_EVENT, 0);
return;
}
ifp = sc->ste_ifp;
val = CSR_READ_1(sc, STE_WAKE_EVENT);
val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
val |= STE_WAKEEVENT_MAGICPKT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB;
CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
/* Request PME. */
pmstat = pci_read_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, 2);
pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
pci_write_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
}