freebsd-nq/usr.sbin/bhyve/pci_emul.c
Corvin Köhne 7d55d29508 bhyve: add more slop to 64 bit BARs
Bhyve allocates small 64 bit BARs below 4 GB and generates ACPI tables
based on this allocation. If the guest decides to relocate those BARs
above 4 GB, it could lead to mismatching ACPI tables. Especially
when using OVMF with enabled bus enumeration it could cause
issues. OVMF relocates all 64 bit BARs above 4 GB. The guest OS
may be unable to recover from this situation and disables some PCI
devices because their BARs are located outside of the MMIO space
reported by ACPI. Avoid this situation by giving the guest more
space for relocating BARs.

Let's be paranoid. The available space for BARs below 4 GB is 512 MB
large. Use a slop of 512 MB. It'll allow the guest to relocate all
BARs below 4 GB to an address above 4 GB. We could run into issues
when we exceeding the memlimit above 4 GB. However, this space has
a size of 32 GB. Even when using many PCI device with large BARs
like framebuffer or when using multiple PCI busses, it's very
unlikely that we run out of space due to the large slop.
Additionally, this situation will occur on startup and not at runtime
which is much better.

Reviewed by:    markj
MFC after:      2 weeks
Sponsored by:   Beckhoff Automation GmbH & Co. KG
Differential Revision:  https://reviews.freebsd.org/D33118
2022-01-03 16:32:55 +01:00

2518 lines
59 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2011 NetApp, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/linker_set.h>
#include <ctype.h>
#include <err.h>
#include <errno.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <assert.h>
#include <stdbool.h>
#include <sysexits.h>
#include <machine/vmm.h>
#include <machine/vmm_snapshot.h>
#include <vmmapi.h>
#include "acpi.h"
#include "bhyverun.h"
#include "config.h"
#include "debug.h"
#include "inout.h"
#include "ioapic.h"
#include "mem.h"
#include "pci_emul.h"
#include "pci_irq.h"
#include "pci_lpc.h"
#define CONF1_ADDR_PORT 0x0cf8
#define CONF1_DATA_PORT 0x0cfc
#define CONF1_ENABLE 0x80000000ul
#define MAXBUSES (PCI_BUSMAX + 1)
#define MAXSLOTS (PCI_SLOTMAX + 1)
#define MAXFUNCS (PCI_FUNCMAX + 1)
#define GB (1024 * 1024 * 1024UL)
struct funcinfo {
nvlist_t *fi_config;
struct pci_devemu *fi_pde;
struct pci_devinst *fi_devi;
};
struct intxinfo {
int ii_count;
int ii_pirq_pin;
int ii_ioapic_irq;
};
struct slotinfo {
struct intxinfo si_intpins[4];
struct funcinfo si_funcs[MAXFUNCS];
};
struct businfo {
uint16_t iobase, iolimit; /* I/O window */
uint32_t membase32, memlimit32; /* mmio window below 4GB */
uint64_t membase64, memlimit64; /* mmio window above 4GB */
struct slotinfo slotinfo[MAXSLOTS];
};
static struct businfo *pci_businfo[MAXBUSES];
SET_DECLARE(pci_devemu_set, struct pci_devemu);
static uint64_t pci_emul_iobase;
static uint64_t pci_emul_membase32;
static uint64_t pci_emul_membase64;
static uint64_t pci_emul_memlim64;
struct pci_bar_allocation {
TAILQ_ENTRY(pci_bar_allocation) chain;
struct pci_devinst *pdi;
int idx;
enum pcibar_type type;
uint64_t size;
};
TAILQ_HEAD(pci_bar_list, pci_bar_allocation) pci_bars = TAILQ_HEAD_INITIALIZER(
pci_bars);
#define PCI_EMUL_IOBASE 0x2000
#define PCI_EMUL_IOLIMIT 0x10000
#define PCI_EMUL_ECFG_BASE 0xE0000000 /* 3.5GB */
#define PCI_EMUL_ECFG_SIZE (MAXBUSES * 1024 * 1024) /* 1MB per bus */
SYSRES_MEM(PCI_EMUL_ECFG_BASE, PCI_EMUL_ECFG_SIZE);
/*
* OVMF always uses 0xC0000000 as base address for 32 bit PCI MMIO. Don't
* change this address without changing it in OVMF.
*/
#define PCI_EMUL_MEMBASE32 0xC0000000
#define PCI_EMUL_MEMLIMIT32 PCI_EMUL_ECFG_BASE
#define PCI_EMUL_MEMSIZE64 (32*GB)
static struct pci_devemu *pci_emul_finddev(const char *name);
static void pci_lintr_route(struct pci_devinst *pi);
static void pci_lintr_update(struct pci_devinst *pi);
static void pci_cfgrw(struct vmctx *ctx, int vcpu, int in, int bus, int slot,
int func, int coff, int bytes, uint32_t *val);
static __inline void
CFGWRITE(struct pci_devinst *pi, int coff, uint32_t val, int bytes)
{
if (bytes == 1)
pci_set_cfgdata8(pi, coff, val);
else if (bytes == 2)
pci_set_cfgdata16(pi, coff, val);
else
pci_set_cfgdata32(pi, coff, val);
}
static __inline uint32_t
CFGREAD(struct pci_devinst *pi, int coff, int bytes)
{
if (bytes == 1)
return (pci_get_cfgdata8(pi, coff));
else if (bytes == 2)
return (pci_get_cfgdata16(pi, coff));
else
return (pci_get_cfgdata32(pi, coff));
}
/*
* I/O access
*/
/*
* Slot options are in the form:
*
* <bus>:<slot>:<func>,<emul>[,<config>]
* <slot>[:<func>],<emul>[,<config>]
*
* slot is 0..31
* func is 0..7
* emul is a string describing the type of PCI device e.g. virtio-net
* config is an optional string, depending on the device, that can be
* used for configuration.
* Examples are:
* 1,virtio-net,tap0
* 3:0,dummy
*/
static void
pci_parse_slot_usage(char *aopt)
{
EPRINTLN("Invalid PCI slot info field \"%s\"", aopt);
}
/*
* Helper function to parse a list of comma-separated options where
* each option is formatted as "name[=value]". If no value is
* provided, the option is treated as a boolean and is given a value
* of true.
*/
int
pci_parse_legacy_config(nvlist_t *nvl, const char *opt)
{
char *config, *name, *tofree, *value;
if (opt == NULL)
return (0);
config = tofree = strdup(opt);
while ((name = strsep(&config, ",")) != NULL) {
value = strchr(name, '=');
if (value != NULL) {
*value = '\0';
value++;
set_config_value_node(nvl, name, value);
} else
set_config_bool_node(nvl, name, true);
}
free(tofree);
return (0);
}
/*
* PCI device configuration is stored in MIBs that encode the device's
* location:
*
* pci.<bus>.<slot>.<func>
*
* Where "bus", "slot", and "func" are all decimal values without
* leading zeroes. Each valid device must have a "device" node which
* identifies the driver model of the device.
*
* Device backends can provide a parser for the "config" string. If
* a custom parser is not provided, pci_parse_legacy_config() is used
* to parse the string.
*/
int
pci_parse_slot(char *opt)
{
char node_name[sizeof("pci.XXX.XX.X")];
struct pci_devemu *pde;
char *emul, *config, *str, *cp;
int error, bnum, snum, fnum;
nvlist_t *nvl;
error = -1;
str = strdup(opt);
emul = config = NULL;
if ((cp = strchr(str, ',')) != NULL) {
*cp = '\0';
emul = cp + 1;
if ((cp = strchr(emul, ',')) != NULL) {
*cp = '\0';
config = cp + 1;
}
} else {
pci_parse_slot_usage(opt);
goto done;
}
/* <bus>:<slot>:<func> */
if (sscanf(str, "%d:%d:%d", &bnum, &snum, &fnum) != 3) {
bnum = 0;
/* <slot>:<func> */
if (sscanf(str, "%d:%d", &snum, &fnum) != 2) {
fnum = 0;
/* <slot> */
if (sscanf(str, "%d", &snum) != 1) {
snum = -1;
}
}
}
if (bnum < 0 || bnum >= MAXBUSES || snum < 0 || snum >= MAXSLOTS ||
fnum < 0 || fnum >= MAXFUNCS) {
pci_parse_slot_usage(opt);
goto done;
}
pde = pci_emul_finddev(emul);
if (pde == NULL) {
EPRINTLN("pci slot %d:%d:%d: unknown device \"%s\"", bnum, snum,
fnum, emul);
goto done;
}
snprintf(node_name, sizeof(node_name), "pci.%d.%d.%d", bnum, snum,
fnum);
nvl = find_config_node(node_name);
if (nvl != NULL) {
EPRINTLN("pci slot %d:%d:%d already occupied!", bnum, snum,
fnum);
goto done;
}
nvl = create_config_node(node_name);
if (pde->pe_alias != NULL)
set_config_value_node(nvl, "device", pde->pe_alias);
else
set_config_value_node(nvl, "device", pde->pe_emu);
if (pde->pe_legacy_config != NULL)
error = pde->pe_legacy_config(nvl, config);
else
error = pci_parse_legacy_config(nvl, config);
done:
free(str);
return (error);
}
void
pci_print_supported_devices()
{
struct pci_devemu **pdpp, *pdp;
SET_FOREACH(pdpp, pci_devemu_set) {
pdp = *pdpp;
printf("%s\n", pdp->pe_emu);
}
}
static int
pci_valid_pba_offset(struct pci_devinst *pi, uint64_t offset)
{
if (offset < pi->pi_msix.pba_offset)
return (0);
if (offset >= pi->pi_msix.pba_offset + pi->pi_msix.pba_size) {
return (0);
}
return (1);
}
int
pci_emul_msix_twrite(struct pci_devinst *pi, uint64_t offset, int size,
uint64_t value)
{
int msix_entry_offset;
int tab_index;
char *dest;
/* support only 4 or 8 byte writes */
if (size != 4 && size != 8)
return (-1);
/*
* Return if table index is beyond what device supports
*/
tab_index = offset / MSIX_TABLE_ENTRY_SIZE;
if (tab_index >= pi->pi_msix.table_count)
return (-1);
msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
/* support only aligned writes */
if ((msix_entry_offset % size) != 0)
return (-1);
dest = (char *)(pi->pi_msix.table + tab_index);
dest += msix_entry_offset;
if (size == 4)
*((uint32_t *)dest) = value;
else
*((uint64_t *)dest) = value;
return (0);
}
uint64_t
pci_emul_msix_tread(struct pci_devinst *pi, uint64_t offset, int size)
{
char *dest;
int msix_entry_offset;
int tab_index;
uint64_t retval = ~0;
/*
* The PCI standard only allows 4 and 8 byte accesses to the MSI-X
* table but we also allow 1 byte access to accommodate reads from
* ddb.
*/
if (size != 1 && size != 4 && size != 8)
return (retval);
msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
/* support only aligned reads */
if ((msix_entry_offset % size) != 0) {
return (retval);
}
tab_index = offset / MSIX_TABLE_ENTRY_SIZE;
if (tab_index < pi->pi_msix.table_count) {
/* valid MSI-X Table access */
dest = (char *)(pi->pi_msix.table + tab_index);
dest += msix_entry_offset;
if (size == 1)
retval = *((uint8_t *)dest);
else if (size == 4)
retval = *((uint32_t *)dest);
else
retval = *((uint64_t *)dest);
} else if (pci_valid_pba_offset(pi, offset)) {
/* return 0 for PBA access */
retval = 0;
}
return (retval);
}
int
pci_msix_table_bar(struct pci_devinst *pi)
{
if (pi->pi_msix.table != NULL)
return (pi->pi_msix.table_bar);
else
return (-1);
}
int
pci_msix_pba_bar(struct pci_devinst *pi)
{
if (pi->pi_msix.table != NULL)
return (pi->pi_msix.pba_bar);
else
return (-1);
}
static int
pci_emul_io_handler(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
uint32_t *eax, void *arg)
{
struct pci_devinst *pdi = arg;
struct pci_devemu *pe = pdi->pi_d;
uint64_t offset;
int i;
for (i = 0; i <= PCI_BARMAX; i++) {
if (pdi->pi_bar[i].type == PCIBAR_IO &&
port >= pdi->pi_bar[i].addr &&
port + bytes <= pdi->pi_bar[i].addr + pdi->pi_bar[i].size) {
offset = port - pdi->pi_bar[i].addr;
if (in)
*eax = (*pe->pe_barread)(ctx, vcpu, pdi, i,
offset, bytes);
else
(*pe->pe_barwrite)(ctx, vcpu, pdi, i, offset,
bytes, *eax);
return (0);
}
}
return (-1);
}
static int
pci_emul_mem_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr,
int size, uint64_t *val, void *arg1, long arg2)
{
struct pci_devinst *pdi = arg1;
struct pci_devemu *pe = pdi->pi_d;
uint64_t offset;
int bidx = (int) arg2;
assert(bidx <= PCI_BARMAX);
assert(pdi->pi_bar[bidx].type == PCIBAR_MEM32 ||
pdi->pi_bar[bidx].type == PCIBAR_MEM64);
assert(addr >= pdi->pi_bar[bidx].addr &&
addr + size <= pdi->pi_bar[bidx].addr + pdi->pi_bar[bidx].size);
offset = addr - pdi->pi_bar[bidx].addr;
if (dir == MEM_F_WRITE) {
if (size == 8) {
(*pe->pe_barwrite)(ctx, vcpu, pdi, bidx, offset,
4, *val & 0xffffffff);
(*pe->pe_barwrite)(ctx, vcpu, pdi, bidx, offset + 4,
4, *val >> 32);
} else {
(*pe->pe_barwrite)(ctx, vcpu, pdi, bidx, offset,
size, *val);
}
} else {
if (size == 8) {
*val = (*pe->pe_barread)(ctx, vcpu, pdi, bidx,
offset, 4);
*val |= (*pe->pe_barread)(ctx, vcpu, pdi, bidx,
offset + 4, 4) << 32;
} else {
*val = (*pe->pe_barread)(ctx, vcpu, pdi, bidx,
offset, size);
}
}
return (0);
}
static int
pci_emul_alloc_resource(uint64_t *baseptr, uint64_t limit, uint64_t size,
uint64_t *addr)
{
uint64_t base;
assert((size & (size - 1)) == 0); /* must be a power of 2 */
base = roundup2(*baseptr, size);
if (base + size <= limit) {
*addr = base;
*baseptr = base + size;
return (0);
} else
return (-1);
}
/*
* Register (or unregister) the MMIO or I/O region associated with the BAR
* register 'idx' of an emulated pci device.
*/
static void
modify_bar_registration(struct pci_devinst *pi, int idx, int registration)
{
struct pci_devemu *pe;
int error;
struct inout_port iop;
struct mem_range mr;
pe = pi->pi_d;
switch (pi->pi_bar[idx].type) {
case PCIBAR_IO:
bzero(&iop, sizeof(struct inout_port));
iop.name = pi->pi_name;
iop.port = pi->pi_bar[idx].addr;
iop.size = pi->pi_bar[idx].size;
if (registration) {
iop.flags = IOPORT_F_INOUT;
iop.handler = pci_emul_io_handler;
iop.arg = pi;
error = register_inout(&iop);
} else
error = unregister_inout(&iop);
if (pe->pe_baraddr != NULL)
(*pe->pe_baraddr)(pi->pi_vmctx, pi, idx, registration,
pi->pi_bar[idx].addr);
break;
case PCIBAR_MEM32:
case PCIBAR_MEM64:
bzero(&mr, sizeof(struct mem_range));
mr.name = pi->pi_name;
mr.base = pi->pi_bar[idx].addr;
mr.size = pi->pi_bar[idx].size;
if (registration) {
mr.flags = MEM_F_RW;
mr.handler = pci_emul_mem_handler;
mr.arg1 = pi;
mr.arg2 = idx;
error = register_mem(&mr);
} else
error = unregister_mem(&mr);
if (pe->pe_baraddr != NULL)
(*pe->pe_baraddr)(pi->pi_vmctx, pi, idx, registration,
pi->pi_bar[idx].addr);
break;
default:
error = EINVAL;
break;
}
assert(error == 0);
}
static void
unregister_bar(struct pci_devinst *pi, int idx)
{
modify_bar_registration(pi, idx, 0);
}
static void
register_bar(struct pci_devinst *pi, int idx)
{
modify_bar_registration(pi, idx, 1);
}
/* Are we decoding i/o port accesses for the emulated pci device? */
static int
porten(struct pci_devinst *pi)
{
uint16_t cmd;
cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
return (cmd & PCIM_CMD_PORTEN);
}
/* Are we decoding memory accesses for the emulated pci device? */
static int
memen(struct pci_devinst *pi)
{
uint16_t cmd;
cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
return (cmd & PCIM_CMD_MEMEN);
}
/*
* Update the MMIO or I/O address that is decoded by the BAR register.
*
* If the pci device has enabled the address space decoding then intercept
* the address range decoded by the BAR register.
*/
static void
update_bar_address(struct pci_devinst *pi, uint64_t addr, int idx, int type)
{
int decode;
if (pi->pi_bar[idx].type == PCIBAR_IO)
decode = porten(pi);
else
decode = memen(pi);
if (decode)
unregister_bar(pi, idx);
switch (type) {
case PCIBAR_IO:
case PCIBAR_MEM32:
pi->pi_bar[idx].addr = addr;
break;
case PCIBAR_MEM64:
pi->pi_bar[idx].addr &= ~0xffffffffUL;
pi->pi_bar[idx].addr |= addr;
break;
case PCIBAR_MEMHI64:
pi->pi_bar[idx].addr &= 0xffffffff;
pi->pi_bar[idx].addr |= addr;
break;
default:
assert(0);
}
if (decode)
register_bar(pi, idx);
}
int
pci_emul_alloc_bar(struct pci_devinst *pdi, int idx, enum pcibar_type type,
uint64_t size)
{
assert(idx >= 0 && idx <= PCI_BARMAX);
if ((size & (size - 1)) != 0)
size = 1UL << flsl(size); /* round up to a power of 2 */
/* Enforce minimum BAR sizes required by the PCI standard */
if (type == PCIBAR_IO) {
if (size < 4)
size = 4;
} else {
if (size < 16)
size = 16;
}
/*
* To reduce fragmentation of the MMIO space, we allocate the BARs by
* size. Therefore, don't allocate the BAR yet. We create a list of all
* BAR allocation which is sorted by BAR size. When all PCI devices are
* initialized, we will assign an address to the BARs.
*/
/* create a new list entry */
struct pci_bar_allocation *const new_bar = malloc(sizeof(*new_bar));
memset(new_bar, 0, sizeof(*new_bar));
new_bar->pdi = pdi;
new_bar->idx = idx;
new_bar->type = type;
new_bar->size = size;
/*
* Search for a BAR which size is lower than the size of our newly
* allocated BAR.
*/
struct pci_bar_allocation *bar = NULL;
TAILQ_FOREACH(bar, &pci_bars, chain) {
if (bar->size < size) {
break;
}
}
if (bar == NULL) {
/*
* Either the list is empty or new BAR is the smallest BAR of
* the list. Append it to the end of our list.
*/
TAILQ_INSERT_TAIL(&pci_bars, new_bar, chain);
} else {
/*
* The found BAR is smaller than our new BAR. For that reason,
* insert our new BAR before the found BAR.
*/
TAILQ_INSERT_BEFORE(bar, new_bar, chain);
}
/*
* pci_passthru devices synchronize their physical and virtual command
* register on init. For that reason, the virtual cmd reg should be
* updated as early as possible.
*/
uint16_t enbit = 0;
switch (type) {
case PCIBAR_IO:
enbit = PCIM_CMD_PORTEN;
break;
case PCIBAR_MEM64:
case PCIBAR_MEM32:
enbit = PCIM_CMD_MEMEN;
break;
default:
enbit = 0;
break;
}
const uint16_t cmd = pci_get_cfgdata16(pdi, PCIR_COMMAND);
pci_set_cfgdata16(pdi, PCIR_COMMAND, cmd | enbit);
return (0);
}
static int
pci_emul_assign_bar(struct pci_devinst *const pdi, const int idx,
const enum pcibar_type type, const uint64_t size)
{
int error;
uint64_t *baseptr, limit, addr, mask, lobits, bar;
switch (type) {
case PCIBAR_NONE:
baseptr = NULL;
addr = mask = lobits = 0;
break;
case PCIBAR_IO:
baseptr = &pci_emul_iobase;
limit = PCI_EMUL_IOLIMIT;
mask = PCIM_BAR_IO_BASE;
lobits = PCIM_BAR_IO_SPACE;
break;
case PCIBAR_MEM64:
/*
* XXX
* Some drivers do not work well if the 64-bit BAR is allocated
* above 4GB. Allow for this by allocating small requests under
* 4GB unless then allocation size is larger than some arbitrary
* number (128MB currently).
*/
if (size > 128 * 1024 * 1024) {
baseptr = &pci_emul_membase64;
limit = pci_emul_memlim64;
mask = PCIM_BAR_MEM_BASE;
lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64 |
PCIM_BAR_MEM_PREFETCH;
} else {
baseptr = &pci_emul_membase32;
limit = PCI_EMUL_MEMLIMIT32;
mask = PCIM_BAR_MEM_BASE;
lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64;
}
break;
case PCIBAR_MEM32:
baseptr = &pci_emul_membase32;
limit = PCI_EMUL_MEMLIMIT32;
mask = PCIM_BAR_MEM_BASE;
lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32;
break;
default:
printf("pci_emul_alloc_base: invalid bar type %d\n", type);
assert(0);
}
if (baseptr != NULL) {
error = pci_emul_alloc_resource(baseptr, limit, size, &addr);
if (error != 0)
return (error);
}
pdi->pi_bar[idx].type = type;
pdi->pi_bar[idx].addr = addr;
pdi->pi_bar[idx].size = size;
/*
* passthru devices are using same lobits as physical device they set
* this property
*/
if (pdi->pi_bar[idx].lobits != 0) {
lobits = pdi->pi_bar[idx].lobits;
} else {
pdi->pi_bar[idx].lobits = lobits;
}
/* Initialize the BAR register in config space */
bar = (addr & mask) | lobits;
pci_set_cfgdata32(pdi, PCIR_BAR(idx), bar);
if (type == PCIBAR_MEM64) {
assert(idx + 1 <= PCI_BARMAX);
pdi->pi_bar[idx + 1].type = PCIBAR_MEMHI64;
pci_set_cfgdata32(pdi, PCIR_BAR(idx + 1), bar >> 32);
}
register_bar(pdi, idx);
return (0);
}
#define CAP_START_OFFSET 0x40
static int
pci_emul_add_capability(struct pci_devinst *pi, u_char *capdata, int caplen)
{
int i, capoff, reallen;
uint16_t sts;
assert(caplen > 0);
reallen = roundup2(caplen, 4); /* dword aligned */
sts = pci_get_cfgdata16(pi, PCIR_STATUS);
if ((sts & PCIM_STATUS_CAPPRESENT) == 0)
capoff = CAP_START_OFFSET;
else
capoff = pi->pi_capend + 1;
/* Check if we have enough space */
if (capoff + reallen > PCI_REGMAX + 1)
return (-1);
/* Set the previous capability pointer */
if ((sts & PCIM_STATUS_CAPPRESENT) == 0) {
pci_set_cfgdata8(pi, PCIR_CAP_PTR, capoff);
pci_set_cfgdata16(pi, PCIR_STATUS, sts|PCIM_STATUS_CAPPRESENT);
} else
pci_set_cfgdata8(pi, pi->pi_prevcap + 1, capoff);
/* Copy the capability */
for (i = 0; i < caplen; i++)
pci_set_cfgdata8(pi, capoff + i, capdata[i]);
/* Set the next capability pointer */
pci_set_cfgdata8(pi, capoff + 1, 0);
pi->pi_prevcap = capoff;
pi->pi_capend = capoff + reallen - 1;
return (0);
}
static struct pci_devemu *
pci_emul_finddev(const char *name)
{
struct pci_devemu **pdpp, *pdp;
SET_FOREACH(pdpp, pci_devemu_set) {
pdp = *pdpp;
if (!strcmp(pdp->pe_emu, name)) {
return (pdp);
}
}
return (NULL);
}
static int
pci_emul_init(struct vmctx *ctx, struct pci_devemu *pde, int bus, int slot,
int func, struct funcinfo *fi)
{
struct pci_devinst *pdi;
int err;
pdi = calloc(1, sizeof(struct pci_devinst));
pdi->pi_vmctx = ctx;
pdi->pi_bus = bus;
pdi->pi_slot = slot;
pdi->pi_func = func;
pthread_mutex_init(&pdi->pi_lintr.lock, NULL);
pdi->pi_lintr.pin = 0;
pdi->pi_lintr.state = IDLE;
pdi->pi_lintr.pirq_pin = 0;
pdi->pi_lintr.ioapic_irq = 0;
pdi->pi_d = pde;
snprintf(pdi->pi_name, PI_NAMESZ, "%s-pci-%d", pde->pe_emu, slot);
/* Disable legacy interrupts */
pci_set_cfgdata8(pdi, PCIR_INTLINE, 255);
pci_set_cfgdata8(pdi, PCIR_INTPIN, 0);
pci_set_cfgdata8(pdi, PCIR_COMMAND, PCIM_CMD_BUSMASTEREN);
err = (*pde->pe_init)(ctx, pdi, fi->fi_config);
if (err == 0)
fi->fi_devi = pdi;
else
free(pdi);
return (err);
}
void
pci_populate_msicap(struct msicap *msicap, int msgnum, int nextptr)
{
int mmc;
/* Number of msi messages must be a power of 2 between 1 and 32 */
assert((msgnum & (msgnum - 1)) == 0 && msgnum >= 1 && msgnum <= 32);
mmc = ffs(msgnum) - 1;
bzero(msicap, sizeof(struct msicap));
msicap->capid = PCIY_MSI;
msicap->nextptr = nextptr;
msicap->msgctrl = PCIM_MSICTRL_64BIT | (mmc << 1);
}
int
pci_emul_add_msicap(struct pci_devinst *pi, int msgnum)
{
struct msicap msicap;
pci_populate_msicap(&msicap, msgnum, 0);
return (pci_emul_add_capability(pi, (u_char *)&msicap, sizeof(msicap)));
}
static void
pci_populate_msixcap(struct msixcap *msixcap, int msgnum, int barnum,
uint32_t msix_tab_size)
{
assert(msix_tab_size % 4096 == 0);
bzero(msixcap, sizeof(struct msixcap));
msixcap->capid = PCIY_MSIX;
/*
* Message Control Register, all fields set to
* zero except for the Table Size.
* Note: Table size N is encoded as N-1
*/
msixcap->msgctrl = msgnum - 1;
/*
* MSI-X BAR setup:
* - MSI-X table start at offset 0
* - PBA table starts at a 4K aligned offset after the MSI-X table
*/
msixcap->table_info = barnum & PCIM_MSIX_BIR_MASK;
msixcap->pba_info = msix_tab_size | (barnum & PCIM_MSIX_BIR_MASK);
}
static void
pci_msix_table_init(struct pci_devinst *pi, int table_entries)
{
int i, table_size;
assert(table_entries > 0);
assert(table_entries <= MAX_MSIX_TABLE_ENTRIES);
table_size = table_entries * MSIX_TABLE_ENTRY_SIZE;
pi->pi_msix.table = calloc(1, table_size);
/* set mask bit of vector control register */
for (i = 0; i < table_entries; i++)
pi->pi_msix.table[i].vector_control |= PCIM_MSIX_VCTRL_MASK;
}
int
pci_emul_add_msixcap(struct pci_devinst *pi, int msgnum, int barnum)
{
uint32_t tab_size;
struct msixcap msixcap;
assert(msgnum >= 1 && msgnum <= MAX_MSIX_TABLE_ENTRIES);
assert(barnum >= 0 && barnum <= PCIR_MAX_BAR_0);
tab_size = msgnum * MSIX_TABLE_ENTRY_SIZE;
/* Align table size to nearest 4K */
tab_size = roundup2(tab_size, 4096);
pi->pi_msix.table_bar = barnum;
pi->pi_msix.pba_bar = barnum;
pi->pi_msix.table_offset = 0;
pi->pi_msix.table_count = msgnum;
pi->pi_msix.pba_offset = tab_size;
pi->pi_msix.pba_size = PBA_SIZE(msgnum);
pci_msix_table_init(pi, msgnum);
pci_populate_msixcap(&msixcap, msgnum, barnum, tab_size);
/* allocate memory for MSI-X Table and PBA */
pci_emul_alloc_bar(pi, barnum, PCIBAR_MEM32,
tab_size + pi->pi_msix.pba_size);
return (pci_emul_add_capability(pi, (u_char *)&msixcap,
sizeof(msixcap)));
}
static void
msixcap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
int bytes, uint32_t val)
{
uint16_t msgctrl, rwmask;
int off;
off = offset - capoff;
/* Message Control Register */
if (off == 2 && bytes == 2) {
rwmask = PCIM_MSIXCTRL_MSIX_ENABLE | PCIM_MSIXCTRL_FUNCTION_MASK;
msgctrl = pci_get_cfgdata16(pi, offset);
msgctrl &= ~rwmask;
msgctrl |= val & rwmask;
val = msgctrl;
pi->pi_msix.enabled = val & PCIM_MSIXCTRL_MSIX_ENABLE;
pi->pi_msix.function_mask = val & PCIM_MSIXCTRL_FUNCTION_MASK;
pci_lintr_update(pi);
}
CFGWRITE(pi, offset, val, bytes);
}
static void
msicap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
int bytes, uint32_t val)
{
uint16_t msgctrl, rwmask, msgdata, mme;
uint32_t addrlo;
/*
* If guest is writing to the message control register make sure
* we do not overwrite read-only fields.
*/
if ((offset - capoff) == 2 && bytes == 2) {
rwmask = PCIM_MSICTRL_MME_MASK | PCIM_MSICTRL_MSI_ENABLE;
msgctrl = pci_get_cfgdata16(pi, offset);
msgctrl &= ~rwmask;
msgctrl |= val & rwmask;
val = msgctrl;
}
CFGWRITE(pi, offset, val, bytes);
msgctrl = pci_get_cfgdata16(pi, capoff + 2);
addrlo = pci_get_cfgdata32(pi, capoff + 4);
if (msgctrl & PCIM_MSICTRL_64BIT)
msgdata = pci_get_cfgdata16(pi, capoff + 12);
else
msgdata = pci_get_cfgdata16(pi, capoff + 8);
mme = msgctrl & PCIM_MSICTRL_MME_MASK;
pi->pi_msi.enabled = msgctrl & PCIM_MSICTRL_MSI_ENABLE ? 1 : 0;
if (pi->pi_msi.enabled) {
pi->pi_msi.addr = addrlo;
pi->pi_msi.msg_data = msgdata;
pi->pi_msi.maxmsgnum = 1 << (mme >> 4);
} else {
pi->pi_msi.maxmsgnum = 0;
}
pci_lintr_update(pi);
}
void
pciecap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
int bytes, uint32_t val)
{
/* XXX don't write to the readonly parts */
CFGWRITE(pi, offset, val, bytes);
}
#define PCIECAP_VERSION 0x2
int
pci_emul_add_pciecap(struct pci_devinst *pi, int type)
{
int err;
struct pciecap pciecap;
bzero(&pciecap, sizeof(pciecap));
/*
* Use the integrated endpoint type for endpoints on a root complex bus.
*
* NB: bhyve currently only supports a single PCI bus that is the root
* complex bus, so all endpoints are integrated.
*/
if ((type == PCIEM_TYPE_ENDPOINT) && (pi->pi_bus == 0))
type = PCIEM_TYPE_ROOT_INT_EP;
pciecap.capid = PCIY_EXPRESS;
pciecap.pcie_capabilities = PCIECAP_VERSION | type;
if (type != PCIEM_TYPE_ROOT_INT_EP) {
pciecap.link_capabilities = 0x411; /* gen1, x1 */
pciecap.link_status = 0x11; /* gen1, x1 */
}
err = pci_emul_add_capability(pi, (u_char *)&pciecap, sizeof(pciecap));
return (err);
}
/*
* This function assumes that 'coff' is in the capabilities region of the
* config space. A capoff parameter of zero will force a search for the
* offset and type.
*/
void
pci_emul_capwrite(struct pci_devinst *pi, int offset, int bytes, uint32_t val,
uint8_t capoff, int capid)
{
uint8_t nextoff;
/* Do not allow un-aligned writes */
if ((offset & (bytes - 1)) != 0)
return;
if (capoff == 0) {
/* Find the capability that we want to update */
capoff = CAP_START_OFFSET;
while (1) {
nextoff = pci_get_cfgdata8(pi, capoff + 1);
if (nextoff == 0)
break;
if (offset >= capoff && offset < nextoff)
break;
capoff = nextoff;
}
assert(offset >= capoff);
capid = pci_get_cfgdata8(pi, capoff);
}
/*
* Capability ID and Next Capability Pointer are readonly.
* However, some o/s's do 4-byte writes that include these.
* For this case, trim the write back to 2 bytes and adjust
* the data.
*/
if (offset == capoff || offset == capoff + 1) {
if (offset == capoff && bytes == 4) {
bytes = 2;
offset += 2;
val >>= 16;
} else
return;
}
switch (capid) {
case PCIY_MSI:
msicap_cfgwrite(pi, capoff, offset, bytes, val);
break;
case PCIY_MSIX:
msixcap_cfgwrite(pi, capoff, offset, bytes, val);
break;
case PCIY_EXPRESS:
pciecap_cfgwrite(pi, capoff, offset, bytes, val);
break;
default:
break;
}
}
static int
pci_emul_iscap(struct pci_devinst *pi, int offset)
{
uint16_t sts;
sts = pci_get_cfgdata16(pi, PCIR_STATUS);
if ((sts & PCIM_STATUS_CAPPRESENT) != 0) {
if (offset >= CAP_START_OFFSET && offset <= pi->pi_capend)
return (1);
}
return (0);
}
static int
pci_emul_fallback_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr,
int size, uint64_t *val, void *arg1, long arg2)
{
/*
* Ignore writes; return 0xff's for reads. The mem read code
* will take care of truncating to the correct size.
*/
if (dir == MEM_F_READ) {
*val = 0xffffffffffffffff;
}
return (0);
}
static int
pci_emul_ecfg_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr,
int bytes, uint64_t *val, void *arg1, long arg2)
{
int bus, slot, func, coff, in;
coff = addr & 0xfff;
func = (addr >> 12) & 0x7;
slot = (addr >> 15) & 0x1f;
bus = (addr >> 20) & 0xff;
in = (dir == MEM_F_READ);
if (in)
*val = ~0UL;
pci_cfgrw(ctx, vcpu, in, bus, slot, func, coff, bytes, (uint32_t *)val);
return (0);
}
uint64_t
pci_ecfg_base(void)
{
return (PCI_EMUL_ECFG_BASE);
}
#define BUSIO_ROUNDUP 32
#define BUSMEM32_ROUNDUP (1024 * 1024)
#define BUSMEM64_ROUNDUP (512 * 1024 * 1024)
int
init_pci(struct vmctx *ctx)
{
char node_name[sizeof("pci.XXX.XX.X")];
struct mem_range mr;
struct pci_devemu *pde;
struct businfo *bi;
struct slotinfo *si;
struct funcinfo *fi;
nvlist_t *nvl;
const char *emul;
size_t lowmem;
int bus, slot, func;
int error;
if (vm_get_lowmem_limit(ctx) > PCI_EMUL_MEMBASE32)
errx(EX_OSERR, "Invalid lowmem limit");
pci_emul_iobase = PCI_EMUL_IOBASE;
pci_emul_membase32 = PCI_EMUL_MEMBASE32;
pci_emul_membase64 = 4*GB + vm_get_highmem_size(ctx);
pci_emul_membase64 = roundup2(pci_emul_membase64, PCI_EMUL_MEMSIZE64);
pci_emul_memlim64 = pci_emul_membase64 + PCI_EMUL_MEMSIZE64;
for (bus = 0; bus < MAXBUSES; bus++) {
snprintf(node_name, sizeof(node_name), "pci.%d", bus);
nvl = find_config_node(node_name);
if (nvl == NULL)
continue;
pci_businfo[bus] = calloc(1, sizeof(struct businfo));
bi = pci_businfo[bus];
/*
* Keep track of the i/o and memory resources allocated to
* this bus.
*/
bi->iobase = pci_emul_iobase;
bi->membase32 = pci_emul_membase32;
bi->membase64 = pci_emul_membase64;
/* first run: init devices */
for (slot = 0; slot < MAXSLOTS; slot++) {
si = &bi->slotinfo[slot];
for (func = 0; func < MAXFUNCS; func++) {
fi = &si->si_funcs[func];
snprintf(node_name, sizeof(node_name),
"pci.%d.%d.%d", bus, slot, func);
nvl = find_config_node(node_name);
if (nvl == NULL)
continue;
fi->fi_config = nvl;
emul = get_config_value_node(nvl, "device");
if (emul == NULL) {
EPRINTLN("pci slot %d:%d:%d: missing "
"\"device\" value", bus, slot, func);
return (EINVAL);
}
pde = pci_emul_finddev(emul);
if (pde == NULL) {
EPRINTLN("pci slot %d:%d:%d: unknown "
"device \"%s\"", bus, slot, func,
emul);
return (EINVAL);
}
if (pde->pe_alias != NULL) {
EPRINTLN("pci slot %d:%d:%d: legacy "
"device \"%s\", use \"%s\" instead",
bus, slot, func, emul,
pde->pe_alias);
return (EINVAL);
}
fi->fi_pde = pde;
error = pci_emul_init(ctx, pde, bus, slot,
func, fi);
if (error)
return (error);
}
}
/* second run: assign BARs and free list */
struct pci_bar_allocation *bar;
struct pci_bar_allocation *bar_tmp;
TAILQ_FOREACH_SAFE(bar, &pci_bars, chain, bar_tmp) {
pci_emul_assign_bar(bar->pdi, bar->idx, bar->type,
bar->size);
free(bar);
}
TAILQ_INIT(&pci_bars);
/*
* Add some slop to the I/O and memory resources decoded by
* this bus to give a guest some flexibility if it wants to
* reprogram the BARs.
*/
pci_emul_iobase += BUSIO_ROUNDUP;
pci_emul_iobase = roundup2(pci_emul_iobase, BUSIO_ROUNDUP);
bi->iolimit = pci_emul_iobase;
pci_emul_membase32 += BUSMEM32_ROUNDUP;
pci_emul_membase32 = roundup2(pci_emul_membase32,
BUSMEM32_ROUNDUP);
bi->memlimit32 = pci_emul_membase32;
pci_emul_membase64 += BUSMEM64_ROUNDUP;
pci_emul_membase64 = roundup2(pci_emul_membase64,
BUSMEM64_ROUNDUP);
bi->memlimit64 = pci_emul_membase64;
}
/*
* PCI backends are initialized before routing INTx interrupts
* so that LPC devices are able to reserve ISA IRQs before
* routing PIRQ pins.
*/
for (bus = 0; bus < MAXBUSES; bus++) {
if ((bi = pci_businfo[bus]) == NULL)
continue;
for (slot = 0; slot < MAXSLOTS; slot++) {
si = &bi->slotinfo[slot];
for (func = 0; func < MAXFUNCS; func++) {
fi = &si->si_funcs[func];
if (fi->fi_devi == NULL)
continue;
pci_lintr_route(fi->fi_devi);
}
}
}
lpc_pirq_routed();
/*
* The guest physical memory map looks like the following:
* [0, lowmem) guest system memory
* [lowmem, 0xC0000000) memory hole (may be absent)
* [0xC0000000, 0xE0000000) PCI hole (32-bit BAR allocation)
* [0xE0000000, 0xF0000000) PCI extended config window
* [0xF0000000, 4GB) LAPIC, IOAPIC, HPET, firmware
* [4GB, 4GB + highmem)
*/
/*
* Accesses to memory addresses that are not allocated to system
* memory or PCI devices return 0xff's.
*/
lowmem = vm_get_lowmem_size(ctx);
bzero(&mr, sizeof(struct mem_range));
mr.name = "PCI hole";
mr.flags = MEM_F_RW | MEM_F_IMMUTABLE;
mr.base = lowmem;
mr.size = (4ULL * 1024 * 1024 * 1024) - lowmem;
mr.handler = pci_emul_fallback_handler;
error = register_mem_fallback(&mr);
assert(error == 0);
/* PCI extended config space */
bzero(&mr, sizeof(struct mem_range));
mr.name = "PCI ECFG";
mr.flags = MEM_F_RW | MEM_F_IMMUTABLE;
mr.base = PCI_EMUL_ECFG_BASE;
mr.size = PCI_EMUL_ECFG_SIZE;
mr.handler = pci_emul_ecfg_handler;
error = register_mem(&mr);
assert(error == 0);
return (0);
}
static void
pci_apic_prt_entry(int bus, int slot, int pin, int pirq_pin, int ioapic_irq,
void *arg)
{
dsdt_line(" Package ()");
dsdt_line(" {");
dsdt_line(" 0x%X,", slot << 16 | 0xffff);
dsdt_line(" 0x%02X,", pin - 1);
dsdt_line(" Zero,");
dsdt_line(" 0x%X", ioapic_irq);
dsdt_line(" },");
}
static void
pci_pirq_prt_entry(int bus, int slot, int pin, int pirq_pin, int ioapic_irq,
void *arg)
{
char *name;
name = lpc_pirq_name(pirq_pin);
if (name == NULL)
return;
dsdt_line(" Package ()");
dsdt_line(" {");
dsdt_line(" 0x%X,", slot << 16 | 0xffff);
dsdt_line(" 0x%02X,", pin - 1);
dsdt_line(" %s,", name);
dsdt_line(" 0x00");
dsdt_line(" },");
free(name);
}
/*
* A bhyve virtual machine has a flat PCI hierarchy with a root port
* corresponding to each PCI bus.
*/
static void
pci_bus_write_dsdt(int bus)
{
struct businfo *bi;
struct slotinfo *si;
struct pci_devinst *pi;
int count, func, slot;
/*
* If there are no devices on this 'bus' then just return.
*/
if ((bi = pci_businfo[bus]) == NULL) {
/*
* Bus 0 is special because it decodes the I/O ports used
* for PCI config space access even if there are no devices
* on it.
*/
if (bus != 0)
return;
}
dsdt_line(" Device (PC%02X)", bus);
dsdt_line(" {");
dsdt_line(" Name (_HID, EisaId (\"PNP0A03\"))");
dsdt_line(" Method (_BBN, 0, NotSerialized)");
dsdt_line(" {");
dsdt_line(" Return (0x%08X)", bus);
dsdt_line(" }");
dsdt_line(" Name (_CRS, ResourceTemplate ()");
dsdt_line(" {");
dsdt_line(" WordBusNumber (ResourceProducer, MinFixed, "
"MaxFixed, PosDecode,");
dsdt_line(" 0x0000, // Granularity");
dsdt_line(" 0x%04X, // Range Minimum", bus);
dsdt_line(" 0x%04X, // Range Maximum", bus);
dsdt_line(" 0x0000, // Translation Offset");
dsdt_line(" 0x0001, // Length");
dsdt_line(" ,, )");
if (bus == 0) {
dsdt_indent(3);
dsdt_fixed_ioport(0xCF8, 8);
dsdt_unindent(3);
dsdt_line(" WordIO (ResourceProducer, MinFixed, MaxFixed, "
"PosDecode, EntireRange,");
dsdt_line(" 0x0000, // Granularity");
dsdt_line(" 0x0000, // Range Minimum");
dsdt_line(" 0x0CF7, // Range Maximum");
dsdt_line(" 0x0000, // Translation Offset");
dsdt_line(" 0x0CF8, // Length");
dsdt_line(" ,, , TypeStatic)");
dsdt_line(" WordIO (ResourceProducer, MinFixed, MaxFixed, "
"PosDecode, EntireRange,");
dsdt_line(" 0x0000, // Granularity");
dsdt_line(" 0x0D00, // Range Minimum");
dsdt_line(" 0x%04X, // Range Maximum",
PCI_EMUL_IOBASE - 1);
dsdt_line(" 0x0000, // Translation Offset");
dsdt_line(" 0x%04X, // Length",
PCI_EMUL_IOBASE - 0x0D00);
dsdt_line(" ,, , TypeStatic)");
if (bi == NULL) {
dsdt_line(" })");
goto done;
}
}
assert(bi != NULL);
/* i/o window */
dsdt_line(" WordIO (ResourceProducer, MinFixed, MaxFixed, "
"PosDecode, EntireRange,");
dsdt_line(" 0x0000, // Granularity");
dsdt_line(" 0x%04X, // Range Minimum", bi->iobase);
dsdt_line(" 0x%04X, // Range Maximum",
bi->iolimit - 1);
dsdt_line(" 0x0000, // Translation Offset");
dsdt_line(" 0x%04X, // Length",
bi->iolimit - bi->iobase);
dsdt_line(" ,, , TypeStatic)");
/* mmio window (32-bit) */
dsdt_line(" DWordMemory (ResourceProducer, PosDecode, "
"MinFixed, MaxFixed, NonCacheable, ReadWrite,");
dsdt_line(" 0x00000000, // Granularity");
dsdt_line(" 0x%08X, // Range Minimum\n", bi->membase32);
dsdt_line(" 0x%08X, // Range Maximum\n",
bi->memlimit32 - 1);
dsdt_line(" 0x00000000, // Translation Offset");
dsdt_line(" 0x%08X, // Length\n",
bi->memlimit32 - bi->membase32);
dsdt_line(" ,, , AddressRangeMemory, TypeStatic)");
/* mmio window (64-bit) */
dsdt_line(" QWordMemory (ResourceProducer, PosDecode, "
"MinFixed, MaxFixed, NonCacheable, ReadWrite,");
dsdt_line(" 0x0000000000000000, // Granularity");
dsdt_line(" 0x%016lX, // Range Minimum\n", bi->membase64);
dsdt_line(" 0x%016lX, // Range Maximum\n",
bi->memlimit64 - 1);
dsdt_line(" 0x0000000000000000, // Translation Offset");
dsdt_line(" 0x%016lX, // Length\n",
bi->memlimit64 - bi->membase64);
dsdt_line(" ,, , AddressRangeMemory, TypeStatic)");
dsdt_line(" })");
count = pci_count_lintr(bus);
if (count != 0) {
dsdt_indent(2);
dsdt_line("Name (PPRT, Package ()");
dsdt_line("{");
pci_walk_lintr(bus, pci_pirq_prt_entry, NULL);
dsdt_line("})");
dsdt_line("Name (APRT, Package ()");
dsdt_line("{");
pci_walk_lintr(bus, pci_apic_prt_entry, NULL);
dsdt_line("})");
dsdt_line("Method (_PRT, 0, NotSerialized)");
dsdt_line("{");
dsdt_line(" If (PICM)");
dsdt_line(" {");
dsdt_line(" Return (APRT)");
dsdt_line(" }");
dsdt_line(" Else");
dsdt_line(" {");
dsdt_line(" Return (PPRT)");
dsdt_line(" }");
dsdt_line("}");
dsdt_unindent(2);
}
dsdt_indent(2);
for (slot = 0; slot < MAXSLOTS; slot++) {
si = &bi->slotinfo[slot];
for (func = 0; func < MAXFUNCS; func++) {
pi = si->si_funcs[func].fi_devi;
if (pi != NULL && pi->pi_d->pe_write_dsdt != NULL)
pi->pi_d->pe_write_dsdt(pi);
}
}
dsdt_unindent(2);
done:
dsdt_line(" }");
}
void
pci_write_dsdt(void)
{
int bus;
dsdt_indent(1);
dsdt_line("Name (PICM, 0x00)");
dsdt_line("Method (_PIC, 1, NotSerialized)");
dsdt_line("{");
dsdt_line(" Store (Arg0, PICM)");
dsdt_line("}");
dsdt_line("");
dsdt_line("Scope (_SB)");
dsdt_line("{");
for (bus = 0; bus < MAXBUSES; bus++)
pci_bus_write_dsdt(bus);
dsdt_line("}");
dsdt_unindent(1);
}
int
pci_bus_configured(int bus)
{
assert(bus >= 0 && bus < MAXBUSES);
return (pci_businfo[bus] != NULL);
}
int
pci_msi_enabled(struct pci_devinst *pi)
{
return (pi->pi_msi.enabled);
}
int
pci_msi_maxmsgnum(struct pci_devinst *pi)
{
if (pi->pi_msi.enabled)
return (pi->pi_msi.maxmsgnum);
else
return (0);
}
int
pci_msix_enabled(struct pci_devinst *pi)
{
return (pi->pi_msix.enabled && !pi->pi_msi.enabled);
}
void
pci_generate_msix(struct pci_devinst *pi, int index)
{
struct msix_table_entry *mte;
if (!pci_msix_enabled(pi))
return;
if (pi->pi_msix.function_mask)
return;
if (index >= pi->pi_msix.table_count)
return;
mte = &pi->pi_msix.table[index];
if ((mte->vector_control & PCIM_MSIX_VCTRL_MASK) == 0) {
/* XXX Set PBA bit if interrupt is disabled */
vm_lapic_msi(pi->pi_vmctx, mte->addr, mte->msg_data);
}
}
void
pci_generate_msi(struct pci_devinst *pi, int index)
{
if (pci_msi_enabled(pi) && index < pci_msi_maxmsgnum(pi)) {
vm_lapic_msi(pi->pi_vmctx, pi->pi_msi.addr,
pi->pi_msi.msg_data + index);
}
}
static bool
pci_lintr_permitted(struct pci_devinst *pi)
{
uint16_t cmd;
cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
return (!(pi->pi_msi.enabled || pi->pi_msix.enabled ||
(cmd & PCIM_CMD_INTxDIS)));
}
void
pci_lintr_request(struct pci_devinst *pi)
{
struct businfo *bi;
struct slotinfo *si;
int bestpin, bestcount, pin;
bi = pci_businfo[pi->pi_bus];
assert(bi != NULL);
/*
* Just allocate a pin from our slot. The pin will be
* assigned IRQs later when interrupts are routed.
*/
si = &bi->slotinfo[pi->pi_slot];
bestpin = 0;
bestcount = si->si_intpins[0].ii_count;
for (pin = 1; pin < 4; pin++) {
if (si->si_intpins[pin].ii_count < bestcount) {
bestpin = pin;
bestcount = si->si_intpins[pin].ii_count;
}
}
si->si_intpins[bestpin].ii_count++;
pi->pi_lintr.pin = bestpin + 1;
pci_set_cfgdata8(pi, PCIR_INTPIN, bestpin + 1);
}
static void
pci_lintr_route(struct pci_devinst *pi)
{
struct businfo *bi;
struct intxinfo *ii;
if (pi->pi_lintr.pin == 0)
return;
bi = pci_businfo[pi->pi_bus];
assert(bi != NULL);
ii = &bi->slotinfo[pi->pi_slot].si_intpins[pi->pi_lintr.pin - 1];
/*
* Attempt to allocate an I/O APIC pin for this intpin if one
* is not yet assigned.
*/
if (ii->ii_ioapic_irq == 0)
ii->ii_ioapic_irq = ioapic_pci_alloc_irq(pi);
assert(ii->ii_ioapic_irq > 0);
/*
* Attempt to allocate a PIRQ pin for this intpin if one is
* not yet assigned.
*/
if (ii->ii_pirq_pin == 0)
ii->ii_pirq_pin = pirq_alloc_pin(pi);
assert(ii->ii_pirq_pin > 0);
pi->pi_lintr.ioapic_irq = ii->ii_ioapic_irq;
pi->pi_lintr.pirq_pin = ii->ii_pirq_pin;
pci_set_cfgdata8(pi, PCIR_INTLINE, pirq_irq(ii->ii_pirq_pin));
}
void
pci_lintr_assert(struct pci_devinst *pi)
{
assert(pi->pi_lintr.pin > 0);
pthread_mutex_lock(&pi->pi_lintr.lock);
if (pi->pi_lintr.state == IDLE) {
if (pci_lintr_permitted(pi)) {
pi->pi_lintr.state = ASSERTED;
pci_irq_assert(pi);
} else
pi->pi_lintr.state = PENDING;
}
pthread_mutex_unlock(&pi->pi_lintr.lock);
}
void
pci_lintr_deassert(struct pci_devinst *pi)
{
assert(pi->pi_lintr.pin > 0);
pthread_mutex_lock(&pi->pi_lintr.lock);
if (pi->pi_lintr.state == ASSERTED) {
pi->pi_lintr.state = IDLE;
pci_irq_deassert(pi);
} else if (pi->pi_lintr.state == PENDING)
pi->pi_lintr.state = IDLE;
pthread_mutex_unlock(&pi->pi_lintr.lock);
}
static void
pci_lintr_update(struct pci_devinst *pi)
{
pthread_mutex_lock(&pi->pi_lintr.lock);
if (pi->pi_lintr.state == ASSERTED && !pci_lintr_permitted(pi)) {
pci_irq_deassert(pi);
pi->pi_lintr.state = PENDING;
} else if (pi->pi_lintr.state == PENDING && pci_lintr_permitted(pi)) {
pi->pi_lintr.state = ASSERTED;
pci_irq_assert(pi);
}
pthread_mutex_unlock(&pi->pi_lintr.lock);
}
int
pci_count_lintr(int bus)
{
int count, slot, pin;
struct slotinfo *slotinfo;
count = 0;
if (pci_businfo[bus] != NULL) {
for (slot = 0; slot < MAXSLOTS; slot++) {
slotinfo = &pci_businfo[bus]->slotinfo[slot];
for (pin = 0; pin < 4; pin++) {
if (slotinfo->si_intpins[pin].ii_count != 0)
count++;
}
}
}
return (count);
}
void
pci_walk_lintr(int bus, pci_lintr_cb cb, void *arg)
{
struct businfo *bi;
struct slotinfo *si;
struct intxinfo *ii;
int slot, pin;
if ((bi = pci_businfo[bus]) == NULL)
return;
for (slot = 0; slot < MAXSLOTS; slot++) {
si = &bi->slotinfo[slot];
for (pin = 0; pin < 4; pin++) {
ii = &si->si_intpins[pin];
if (ii->ii_count != 0)
cb(bus, slot, pin + 1, ii->ii_pirq_pin,
ii->ii_ioapic_irq, arg);
}
}
}
/*
* Return 1 if the emulated device in 'slot' is a multi-function device.
* Return 0 otherwise.
*/
static int
pci_emul_is_mfdev(int bus, int slot)
{
struct businfo *bi;
struct slotinfo *si;
int f, numfuncs;
numfuncs = 0;
if ((bi = pci_businfo[bus]) != NULL) {
si = &bi->slotinfo[slot];
for (f = 0; f < MAXFUNCS; f++) {
if (si->si_funcs[f].fi_devi != NULL) {
numfuncs++;
}
}
}
return (numfuncs > 1);
}
/*
* Ensure that the PCIM_MFDEV bit is properly set (or unset) depending on
* whether or not is a multi-function being emulated in the pci 'slot'.
*/
static void
pci_emul_hdrtype_fixup(int bus, int slot, int off, int bytes, uint32_t *rv)
{
int mfdev;
if (off <= PCIR_HDRTYPE && off + bytes > PCIR_HDRTYPE) {
mfdev = pci_emul_is_mfdev(bus, slot);
switch (bytes) {
case 1:
case 2:
*rv &= ~PCIM_MFDEV;
if (mfdev) {
*rv |= PCIM_MFDEV;
}
break;
case 4:
*rv &= ~(PCIM_MFDEV << 16);
if (mfdev) {
*rv |= (PCIM_MFDEV << 16);
}
break;
}
}
}
/*
* Update device state in response to changes to the PCI command
* register.
*/
void
pci_emul_cmd_changed(struct pci_devinst *pi, uint16_t old)
{
int i;
uint16_t changed, new;
new = pci_get_cfgdata16(pi, PCIR_COMMAND);
changed = old ^ new;
/*
* If the MMIO or I/O address space decoding has changed then
* register/unregister all BARs that decode that address space.
*/
for (i = 0; i <= PCI_BARMAX; i++) {
switch (pi->pi_bar[i].type) {
case PCIBAR_NONE:
case PCIBAR_MEMHI64:
break;
case PCIBAR_IO:
/* I/O address space decoding changed? */
if (changed & PCIM_CMD_PORTEN) {
if (new & PCIM_CMD_PORTEN)
register_bar(pi, i);
else
unregister_bar(pi, i);
}
break;
case PCIBAR_MEM32:
case PCIBAR_MEM64:
/* MMIO address space decoding changed? */
if (changed & PCIM_CMD_MEMEN) {
if (new & PCIM_CMD_MEMEN)
register_bar(pi, i);
else
unregister_bar(pi, i);
}
break;
default:
assert(0);
}
}
/*
* If INTx has been unmasked and is pending, assert the
* interrupt.
*/
pci_lintr_update(pi);
}
static void
pci_emul_cmdsts_write(struct pci_devinst *pi, int coff, uint32_t new, int bytes)
{
int rshift;
uint32_t cmd, old, readonly;
cmd = pci_get_cfgdata16(pi, PCIR_COMMAND); /* stash old value */
/*
* From PCI Local Bus Specification 3.0 sections 6.2.2 and 6.2.3.
*
* XXX Bits 8, 11, 12, 13, 14 and 15 in the status register are
* 'write 1 to clear'. However these bits are not set to '1' by
* any device emulation so it is simpler to treat them as readonly.
*/
rshift = (coff & 0x3) * 8;
readonly = 0xFFFFF880 >> rshift;
old = CFGREAD(pi, coff, bytes);
new &= ~readonly;
new |= (old & readonly);
CFGWRITE(pi, coff, new, bytes); /* update config */
pci_emul_cmd_changed(pi, cmd);
}
static void
pci_cfgrw(struct vmctx *ctx, int vcpu, int in, int bus, int slot, int func,
int coff, int bytes, uint32_t *eax)
{
struct businfo *bi;
struct slotinfo *si;
struct pci_devinst *pi;
struct pci_devemu *pe;
int idx, needcfg;
uint64_t addr, bar, mask;
if ((bi = pci_businfo[bus]) != NULL) {
si = &bi->slotinfo[slot];
pi = si->si_funcs[func].fi_devi;
} else
pi = NULL;
/*
* Just return if there is no device at this slot:func or if the
* the guest is doing an un-aligned access.
*/
if (pi == NULL || (bytes != 1 && bytes != 2 && bytes != 4) ||
(coff & (bytes - 1)) != 0) {
if (in)
*eax = 0xffffffff;
return;
}
/*
* Ignore all writes beyond the standard config space and return all
* ones on reads.
*/
if (coff >= PCI_REGMAX + 1) {
if (in) {
*eax = 0xffffffff;
/*
* Extended capabilities begin at offset 256 in config
* space. Absence of extended capabilities is signaled
* with all 0s in the extended capability header at
* offset 256.
*/
if (coff <= PCI_REGMAX + 4)
*eax = 0x00000000;
}
return;
}
pe = pi->pi_d;
/*
* Config read
*/
if (in) {
/* Let the device emulation override the default handler */
if (pe->pe_cfgread != NULL) {
needcfg = pe->pe_cfgread(ctx, vcpu, pi, coff, bytes,
eax);
} else {
needcfg = 1;
}
if (needcfg)
*eax = CFGREAD(pi, coff, bytes);
pci_emul_hdrtype_fixup(bus, slot, coff, bytes, eax);
} else {
/* Let the device emulation override the default handler */
if (pe->pe_cfgwrite != NULL &&
(*pe->pe_cfgwrite)(ctx, vcpu, pi, coff, bytes, *eax) == 0)
return;
/*
* Special handling for write to BAR registers
*/
if (coff >= PCIR_BAR(0) && coff < PCIR_BAR(PCI_BARMAX + 1)) {
/*
* Ignore writes to BAR registers that are not
* 4-byte aligned.
*/
if (bytes != 4 || (coff & 0x3) != 0)
return;
idx = (coff - PCIR_BAR(0)) / 4;
mask = ~(pi->pi_bar[idx].size - 1);
switch (pi->pi_bar[idx].type) {
case PCIBAR_NONE:
pi->pi_bar[idx].addr = bar = 0;
break;
case PCIBAR_IO:
addr = *eax & mask;
addr &= 0xffff;
bar = addr | pi->pi_bar[idx].lobits;
/*
* Register the new BAR value for interception
*/
if (addr != pi->pi_bar[idx].addr) {
update_bar_address(pi, addr, idx,
PCIBAR_IO);
}
break;
case PCIBAR_MEM32:
addr = bar = *eax & mask;
bar |= pi->pi_bar[idx].lobits;
if (addr != pi->pi_bar[idx].addr) {
update_bar_address(pi, addr, idx,
PCIBAR_MEM32);
}
break;
case PCIBAR_MEM64:
addr = bar = *eax & mask;
bar |= pi->pi_bar[idx].lobits;
if (addr != (uint32_t)pi->pi_bar[idx].addr) {
update_bar_address(pi, addr, idx,
PCIBAR_MEM64);
}
break;
case PCIBAR_MEMHI64:
mask = ~(pi->pi_bar[idx - 1].size - 1);
addr = ((uint64_t)*eax << 32) & mask;
bar = addr >> 32;
if (bar != pi->pi_bar[idx - 1].addr >> 32) {
update_bar_address(pi, addr, idx - 1,
PCIBAR_MEMHI64);
}
break;
default:
assert(0);
}
pci_set_cfgdata32(pi, coff, bar);
} else if (pci_emul_iscap(pi, coff)) {
pci_emul_capwrite(pi, coff, bytes, *eax, 0, 0);
} else if (coff >= PCIR_COMMAND && coff < PCIR_REVID) {
pci_emul_cmdsts_write(pi, coff, *eax, bytes);
} else {
CFGWRITE(pi, coff, *eax, bytes);
}
}
}
static int cfgenable, cfgbus, cfgslot, cfgfunc, cfgoff;
static int
pci_emul_cfgaddr(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
uint32_t *eax, void *arg)
{
uint32_t x;
if (bytes != 4) {
if (in)
*eax = (bytes == 2) ? 0xffff : 0xff;
return (0);
}
if (in) {
x = (cfgbus << 16) | (cfgslot << 11) | (cfgfunc << 8) | cfgoff;
if (cfgenable)
x |= CONF1_ENABLE;
*eax = x;
} else {
x = *eax;
cfgenable = (x & CONF1_ENABLE) == CONF1_ENABLE;
cfgoff = (x & PCI_REGMAX) & ~0x03;
cfgfunc = (x >> 8) & PCI_FUNCMAX;
cfgslot = (x >> 11) & PCI_SLOTMAX;
cfgbus = (x >> 16) & PCI_BUSMAX;
}
return (0);
}
INOUT_PORT(pci_cfgaddr, CONF1_ADDR_PORT, IOPORT_F_INOUT, pci_emul_cfgaddr);
static int
pci_emul_cfgdata(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
uint32_t *eax, void *arg)
{
int coff;
assert(bytes == 1 || bytes == 2 || bytes == 4);
coff = cfgoff + (port - CONF1_DATA_PORT);
if (cfgenable) {
pci_cfgrw(ctx, vcpu, in, cfgbus, cfgslot, cfgfunc, coff, bytes,
eax);
} else {
/* Ignore accesses to cfgdata if not enabled by cfgaddr */
if (in)
*eax = 0xffffffff;
}
return (0);
}
INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+0, IOPORT_F_INOUT, pci_emul_cfgdata);
INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+1, IOPORT_F_INOUT, pci_emul_cfgdata);
INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+2, IOPORT_F_INOUT, pci_emul_cfgdata);
INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+3, IOPORT_F_INOUT, pci_emul_cfgdata);
#ifdef BHYVE_SNAPSHOT
/*
* Saves/restores PCI device emulated state. Returns 0 on success.
*/
static int
pci_snapshot_pci_dev(struct vm_snapshot_meta *meta)
{
struct pci_devinst *pi;
int i;
int ret;
pi = meta->dev_data;
SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.enabled, meta, ret, done);
SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.addr, meta, ret, done);
SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.msg_data, meta, ret, done);
SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.maxmsgnum, meta, ret, done);
SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.enabled, meta, ret, done);
SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table_bar, meta, ret, done);
SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.pba_bar, meta, ret, done);
SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table_offset, meta, ret, done);
SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table_count, meta, ret, done);
SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.pba_offset, meta, ret, done);
SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.pba_size, meta, ret, done);
SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.function_mask, meta, ret, done);
SNAPSHOT_BUF_OR_LEAVE(pi->pi_cfgdata, sizeof(pi->pi_cfgdata),
meta, ret, done);
for (i = 0; i < nitems(pi->pi_bar); i++) {
SNAPSHOT_VAR_OR_LEAVE(pi->pi_bar[i].type, meta, ret, done);
SNAPSHOT_VAR_OR_LEAVE(pi->pi_bar[i].size, meta, ret, done);
SNAPSHOT_VAR_OR_LEAVE(pi->pi_bar[i].addr, meta, ret, done);
}
/* Restore MSI-X table. */
for (i = 0; i < pi->pi_msix.table_count; i++) {
SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table[i].addr,
meta, ret, done);
SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table[i].msg_data,
meta, ret, done);
SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table[i].vector_control,
meta, ret, done);
}
done:
return (ret);
}
static int
pci_find_slotted_dev(const char *dev_name, struct pci_devemu **pde,
struct pci_devinst **pdi)
{
struct businfo *bi;
struct slotinfo *si;
struct funcinfo *fi;
int bus, slot, func;
assert(dev_name != NULL);
assert(pde != NULL);
assert(pdi != NULL);
for (bus = 0; bus < MAXBUSES; bus++) {
if ((bi = pci_businfo[bus]) == NULL)
continue;
for (slot = 0; slot < MAXSLOTS; slot++) {
si = &bi->slotinfo[slot];
for (func = 0; func < MAXFUNCS; func++) {
fi = &si->si_funcs[func];
if (fi->fi_pde == NULL)
continue;
if (strcmp(dev_name, fi->fi_pde->pe_emu) != 0)
continue;
*pde = fi->fi_pde;
*pdi = fi->fi_devi;
return (0);
}
}
}
return (EINVAL);
}
int
pci_snapshot(struct vm_snapshot_meta *meta)
{
struct pci_devemu *pde;
struct pci_devinst *pdi;
int ret;
assert(meta->dev_name != NULL);
ret = pci_find_slotted_dev(meta->dev_name, &pde, &pdi);
if (ret != 0) {
fprintf(stderr, "%s: no such name: %s\r\n",
__func__, meta->dev_name);
memset(meta->buffer.buf_start, 0, meta->buffer.buf_size);
return (0);
}
meta->dev_data = pdi;
if (pde->pe_snapshot == NULL) {
fprintf(stderr, "%s: not implemented yet for: %s\r\n",
__func__, meta->dev_name);
return (-1);
}
ret = pci_snapshot_pci_dev(meta);
if (ret != 0) {
fprintf(stderr, "%s: failed to snapshot pci dev\r\n",
__func__);
return (-1);
}
ret = (*pde->pe_snapshot)(meta);
return (ret);
}
int
pci_pause(struct vmctx *ctx, const char *dev_name)
{
struct pci_devemu *pde;
struct pci_devinst *pdi;
int ret;
assert(dev_name != NULL);
ret = pci_find_slotted_dev(dev_name, &pde, &pdi);
if (ret != 0) {
/*
* It is possible to call this function without
* checking that the device is inserted first.
*/
fprintf(stderr, "%s: no such name: %s\n", __func__, dev_name);
return (0);
}
if (pde->pe_pause == NULL) {
/* The pause/resume functionality is optional. */
fprintf(stderr, "%s: not implemented for: %s\n",
__func__, dev_name);
return (0);
}
return (*pde->pe_pause)(ctx, pdi);
}
int
pci_resume(struct vmctx *ctx, const char *dev_name)
{
struct pci_devemu *pde;
struct pci_devinst *pdi;
int ret;
assert(dev_name != NULL);
ret = pci_find_slotted_dev(dev_name, &pde, &pdi);
if (ret != 0) {
/*
* It is possible to call this function without
* checking that the device is inserted first.
*/
fprintf(stderr, "%s: no such name: %s\n", __func__, dev_name);
return (0);
}
if (pde->pe_resume == NULL) {
/* The pause/resume functionality is optional. */
fprintf(stderr, "%s: not implemented for: %s\n",
__func__, dev_name);
return (0);
}
return (*pde->pe_resume)(ctx, pdi);
}
#endif
#define PCI_EMUL_TEST
#ifdef PCI_EMUL_TEST
/*
* Define a dummy test device
*/
#define DIOSZ 8
#define DMEMSZ 4096
struct pci_emul_dsoftc {
uint8_t ioregs[DIOSZ];
uint8_t memregs[2][DMEMSZ];
};
#define PCI_EMUL_MSI_MSGS 4
#define PCI_EMUL_MSIX_MSGS 16
static int
pci_emul_dinit(struct vmctx *ctx, struct pci_devinst *pi, nvlist_t *nvl)
{
int error;
struct pci_emul_dsoftc *sc;
sc = calloc(1, sizeof(struct pci_emul_dsoftc));
pi->pi_arg = sc;
pci_set_cfgdata16(pi, PCIR_DEVICE, 0x0001);
pci_set_cfgdata16(pi, PCIR_VENDOR, 0x10DD);
pci_set_cfgdata8(pi, PCIR_CLASS, 0x02);
error = pci_emul_add_msicap(pi, PCI_EMUL_MSI_MSGS);
assert(error == 0);
error = pci_emul_alloc_bar(pi, 0, PCIBAR_IO, DIOSZ);
assert(error == 0);
error = pci_emul_alloc_bar(pi, 1, PCIBAR_MEM32, DMEMSZ);
assert(error == 0);
error = pci_emul_alloc_bar(pi, 2, PCIBAR_MEM32, DMEMSZ);
assert(error == 0);
return (0);
}
static void
pci_emul_diow(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
uint64_t offset, int size, uint64_t value)
{
int i;
struct pci_emul_dsoftc *sc = pi->pi_arg;
if (baridx == 0) {
if (offset + size > DIOSZ) {
printf("diow: iow too large, offset %ld size %d\n",
offset, size);
return;
}
if (size == 1) {
sc->ioregs[offset] = value & 0xff;
} else if (size == 2) {
*(uint16_t *)&sc->ioregs[offset] = value & 0xffff;
} else if (size == 4) {
*(uint32_t *)&sc->ioregs[offset] = value;
} else {
printf("diow: iow unknown size %d\n", size);
}
/*
* Special magic value to generate an interrupt
*/
if (offset == 4 && size == 4 && pci_msi_enabled(pi))
pci_generate_msi(pi, value % pci_msi_maxmsgnum(pi));
if (value == 0xabcdef) {
for (i = 0; i < pci_msi_maxmsgnum(pi); i++)
pci_generate_msi(pi, i);
}
}
if (baridx == 1 || baridx == 2) {
if (offset + size > DMEMSZ) {
printf("diow: memw too large, offset %ld size %d\n",
offset, size);
return;
}
i = baridx - 1; /* 'memregs' index */
if (size == 1) {
sc->memregs[i][offset] = value;
} else if (size == 2) {
*(uint16_t *)&sc->memregs[i][offset] = value;
} else if (size == 4) {
*(uint32_t *)&sc->memregs[i][offset] = value;
} else if (size == 8) {
*(uint64_t *)&sc->memregs[i][offset] = value;
} else {
printf("diow: memw unknown size %d\n", size);
}
/*
* magic interrupt ??
*/
}
if (baridx > 2 || baridx < 0) {
printf("diow: unknown bar idx %d\n", baridx);
}
}
static uint64_t
pci_emul_dior(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
uint64_t offset, int size)
{
struct pci_emul_dsoftc *sc = pi->pi_arg;
uint32_t value;
int i;
if (baridx == 0) {
if (offset + size > DIOSZ) {
printf("dior: ior too large, offset %ld size %d\n",
offset, size);
return (0);
}
value = 0;
if (size == 1) {
value = sc->ioregs[offset];
} else if (size == 2) {
value = *(uint16_t *) &sc->ioregs[offset];
} else if (size == 4) {
value = *(uint32_t *) &sc->ioregs[offset];
} else {
printf("dior: ior unknown size %d\n", size);
}
}
if (baridx == 1 || baridx == 2) {
if (offset + size > DMEMSZ) {
printf("dior: memr too large, offset %ld size %d\n",
offset, size);
return (0);
}
i = baridx - 1; /* 'memregs' index */
if (size == 1) {
value = sc->memregs[i][offset];
} else if (size == 2) {
value = *(uint16_t *) &sc->memregs[i][offset];
} else if (size == 4) {
value = *(uint32_t *) &sc->memregs[i][offset];
} else if (size == 8) {
value = *(uint64_t *) &sc->memregs[i][offset];
} else {
printf("dior: ior unknown size %d\n", size);
}
}
if (baridx > 2 || baridx < 0) {
printf("dior: unknown bar idx %d\n", baridx);
return (0);
}
return (value);
}
#ifdef BHYVE_SNAPSHOT
int
pci_emul_snapshot(struct vm_snapshot_meta *meta)
{
return (0);
}
#endif
struct pci_devemu pci_dummy = {
.pe_emu = "dummy",
.pe_init = pci_emul_dinit,
.pe_barwrite = pci_emul_diow,
.pe_barread = pci_emul_dior,
#ifdef BHYVE_SNAPSHOT
.pe_snapshot = pci_emul_snapshot,
#endif
};
PCI_EMUL_SET(pci_dummy);
#endif /* PCI_EMUL_TEST */