freebsd-nq/sys/vm/vm_page.c
Alan Cox 6f0489c670 Strive for greater consistency among the places that implement real,
fictious, and contiguous page allocation.  Eliminate unnecessary
reinitialization of a page's fields.
2009-06-21 00:21:33 +00:00

2218 lines
56 KiB
C

/*-
* Copyright (c) 1991 Regents of the University of California.
* All rights reserved.
* Copyright (c) 1998 Matthew Dillon. All Rights Reserved.
*
* This code is derived from software contributed to Berkeley by
* The Mach Operating System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91
*/
/*-
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
* All rights reserved.
*
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/*
* GENERAL RULES ON VM_PAGE MANIPULATION
*
* - a pageq mutex is required when adding or removing a page from a
* page queue (vm_page_queue[]), regardless of other mutexes or the
* busy state of a page.
*
* - a hash chain mutex is required when associating or disassociating
* a page from the VM PAGE CACHE hash table (vm_page_buckets),
* regardless of other mutexes or the busy state of a page.
*
* - either a hash chain mutex OR a busied page is required in order
* to modify the page flags. A hash chain mutex must be obtained in
* order to busy a page. A page's flags cannot be modified by a
* hash chain mutex if the page is marked busy.
*
* - The object memq mutex is held when inserting or removing
* pages from an object (vm_page_insert() or vm_page_remove()). This
* is different from the object's main mutex.
*
* Generally speaking, you have to be aware of side effects when running
* vm_page ops. A vm_page_lookup() will return with the hash chain
* locked, whether it was able to lookup the page or not. vm_page_free(),
* vm_page_cache(), vm_page_activate(), and a number of other routines
* will release the hash chain mutex for you. Intermediate manipulation
* routines such as vm_page_flag_set() expect the hash chain to be held
* on entry and the hash chain will remain held on return.
*
* pageq scanning can only occur with the pageq in question locked.
* We have a known bottleneck with the active queue, but the cache
* and free queues are actually arrays already.
*/
/*
* Resident memory management module.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_vm.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/lock.h>
#include <sys/kernel.h>
#include <sys/limits.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/sysctl.h>
#include <sys/vmmeter.h>
#include <sys/vnode.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_kern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
#include <vm/vm_pager.h>
#include <vm/vm_phys.h>
#include <vm/vm_reserv.h>
#include <vm/vm_extern.h>
#include <vm/uma.h>
#include <vm/uma_int.h>
#include <machine/md_var.h>
/*
* Associated with page of user-allocatable memory is a
* page structure.
*/
struct vpgqueues vm_page_queues[PQ_COUNT];
struct mtx vm_page_queue_mtx;
struct mtx vm_page_queue_free_mtx;
vm_page_t vm_page_array = 0;
int vm_page_array_size = 0;
long first_page = 0;
int vm_page_zero_count = 0;
static int boot_pages = UMA_BOOT_PAGES;
TUNABLE_INT("vm.boot_pages", &boot_pages);
SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
"number of pages allocated for bootstrapping the VM system");
static void vm_page_enqueue(int queue, vm_page_t m);
/* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
#if PAGE_SIZE == 32768
#ifdef CTASSERT
CTASSERT(sizeof(u_long) >= 8);
#endif
#endif
/*
* vm_set_page_size:
*
* Sets the page size, perhaps based upon the memory
* size. Must be called before any use of page-size
* dependent functions.
*/
void
vm_set_page_size(void)
{
if (cnt.v_page_size == 0)
cnt.v_page_size = PAGE_SIZE;
if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
panic("vm_set_page_size: page size not a power of two");
}
/*
* vm_page_blacklist_lookup:
*
* See if a physical address in this page has been listed
* in the blacklist tunable. Entries in the tunable are
* separated by spaces or commas. If an invalid integer is
* encountered then the rest of the string is skipped.
*/
static int
vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
{
vm_paddr_t bad;
char *cp, *pos;
for (pos = list; *pos != '\0'; pos = cp) {
bad = strtoq(pos, &cp, 0);
if (*cp != '\0') {
if (*cp == ' ' || *cp == ',') {
cp++;
if (cp == pos)
continue;
} else
break;
}
if (pa == trunc_page(bad))
return (1);
}
return (0);
}
/*
* vm_page_startup:
*
* Initializes the resident memory module.
*
* Allocates memory for the page cells, and
* for the object/offset-to-page hash table headers.
* Each page cell is initialized and placed on the free list.
*/
vm_offset_t
vm_page_startup(vm_offset_t vaddr)
{
vm_offset_t mapped;
vm_paddr_t page_range;
vm_paddr_t new_end;
int i;
vm_paddr_t pa;
int nblocks;
vm_paddr_t last_pa;
char *list;
/* the biggest memory array is the second group of pages */
vm_paddr_t end;
vm_paddr_t biggestsize;
vm_paddr_t low_water, high_water;
int biggestone;
biggestsize = 0;
biggestone = 0;
nblocks = 0;
vaddr = round_page(vaddr);
for (i = 0; phys_avail[i + 1]; i += 2) {
phys_avail[i] = round_page(phys_avail[i]);
phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
}
low_water = phys_avail[0];
high_water = phys_avail[1];
for (i = 0; phys_avail[i + 1]; i += 2) {
vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
if (size > biggestsize) {
biggestone = i;
biggestsize = size;
}
if (phys_avail[i] < low_water)
low_water = phys_avail[i];
if (phys_avail[i + 1] > high_water)
high_water = phys_avail[i + 1];
++nblocks;
}
#ifdef XEN
low_water = 0;
#endif
end = phys_avail[biggestone+1];
/*
* Initialize the locks.
*/
mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
MTX_RECURSE);
mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
MTX_DEF);
/*
* Initialize the queue headers for the hold queue, the active queue,
* and the inactive queue.
*/
for (i = 0; i < PQ_COUNT; i++)
TAILQ_INIT(&vm_page_queues[i].pl);
vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
vm_page_queues[PQ_HOLD].cnt = &cnt.v_active_count;
/*
* Allocate memory for use when boot strapping the kernel memory
* allocator.
*/
new_end = end - (boot_pages * UMA_SLAB_SIZE);
new_end = trunc_page(new_end);
mapped = pmap_map(&vaddr, new_end, end,
VM_PROT_READ | VM_PROT_WRITE);
bzero((void *)mapped, end - new_end);
uma_startup((void *)mapped, boot_pages);
#if defined(__amd64__) || defined(__i386__) || defined(__arm__)
/*
* Allocate a bitmap to indicate that a random physical page
* needs to be included in a minidump.
*
* The amd64 port needs this to indicate which direct map pages
* need to be dumped, via calls to dump_add_page()/dump_drop_page().
*
* However, i386 still needs this workspace internally within the
* minidump code. In theory, they are not needed on i386, but are
* included should the sf_buf code decide to use them.
*/
page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
new_end -= vm_page_dump_size;
vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
bzero((void *)vm_page_dump, vm_page_dump_size);
#endif
/*
* Compute the number of pages of memory that will be available for
* use (taking into account the overhead of a page structure per
* page).
*/
first_page = low_water / PAGE_SIZE;
#ifdef VM_PHYSSEG_SPARSE
page_range = 0;
for (i = 0; phys_avail[i + 1] != 0; i += 2)
page_range += atop(phys_avail[i + 1] - phys_avail[i]);
#elif defined(VM_PHYSSEG_DENSE)
page_range = high_water / PAGE_SIZE - first_page;
#else
#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
#endif
end = new_end;
/*
* Reserve an unmapped guard page to trap access to vm_page_array[-1].
*/
vaddr += PAGE_SIZE;
/*
* Initialize the mem entry structures now, and put them in the free
* queue.
*/
new_end = trunc_page(end - page_range * sizeof(struct vm_page));
mapped = pmap_map(&vaddr, new_end, end,
VM_PROT_READ | VM_PROT_WRITE);
vm_page_array = (vm_page_t) mapped;
#if VM_NRESERVLEVEL > 0
/*
* Allocate memory for the reservation management system's data
* structures.
*/
new_end = vm_reserv_startup(&vaddr, new_end, high_water);
#endif
#ifdef __amd64__
/*
* pmap_map on amd64 comes out of the direct-map, not kvm like i386,
* so the pages must be tracked for a crashdump to include this data.
* This includes the vm_page_array and the early UMA bootstrap pages.
*/
for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
dump_add_page(pa);
#endif
phys_avail[biggestone + 1] = new_end;
/*
* Clear all of the page structures
*/
bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
for (i = 0; i < page_range; i++)
vm_page_array[i].order = VM_NFREEORDER;
vm_page_array_size = page_range;
/*
* Initialize the physical memory allocator.
*/
vm_phys_init();
/*
* Add every available physical page that is not blacklisted to
* the free lists.
*/
cnt.v_page_count = 0;
cnt.v_free_count = 0;
list = getenv("vm.blacklist");
for (i = 0; phys_avail[i + 1] != 0; i += 2) {
pa = phys_avail[i];
last_pa = phys_avail[i + 1];
while (pa < last_pa) {
if (list != NULL &&
vm_page_blacklist_lookup(list, pa))
printf("Skipping page with pa 0x%jx\n",
(uintmax_t)pa);
else
vm_phys_add_page(pa);
pa += PAGE_SIZE;
}
}
freeenv(list);
#if VM_NRESERVLEVEL > 0
/*
* Initialize the reservation management system.
*/
vm_reserv_init();
#endif
return (vaddr);
}
void
vm_page_flag_set(vm_page_t m, unsigned short bits)
{
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
m->flags |= bits;
}
void
vm_page_flag_clear(vm_page_t m, unsigned short bits)
{
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
m->flags &= ~bits;
}
void
vm_page_busy(vm_page_t m)
{
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
KASSERT((m->oflags & VPO_BUSY) == 0,
("vm_page_busy: page already busy!!!"));
m->oflags |= VPO_BUSY;
}
/*
* vm_page_flash:
*
* wakeup anyone waiting for the page.
*/
void
vm_page_flash(vm_page_t m)
{
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
if (m->oflags & VPO_WANTED) {
m->oflags &= ~VPO_WANTED;
wakeup(m);
}
}
/*
* vm_page_wakeup:
*
* clear the VPO_BUSY flag and wakeup anyone waiting for the
* page.
*
*/
void
vm_page_wakeup(vm_page_t m)
{
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
m->oflags &= ~VPO_BUSY;
vm_page_flash(m);
}
void
vm_page_io_start(vm_page_t m)
{
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
m->busy++;
}
void
vm_page_io_finish(vm_page_t m)
{
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
m->busy--;
if (m->busy == 0)
vm_page_flash(m);
}
/*
* Keep page from being freed by the page daemon
* much of the same effect as wiring, except much lower
* overhead and should be used only for *very* temporary
* holding ("wiring").
*/
void
vm_page_hold(vm_page_t mem)
{
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
mem->hold_count++;
}
void
vm_page_unhold(vm_page_t mem)
{
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
--mem->hold_count;
KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
if (mem->hold_count == 0 && VM_PAGE_INQUEUE2(mem, PQ_HOLD))
vm_page_free_toq(mem);
}
/*
* vm_page_free:
*
* Free a page.
*/
void
vm_page_free(vm_page_t m)
{
m->flags &= ~PG_ZERO;
vm_page_free_toq(m);
}
/*
* vm_page_free_zero:
*
* Free a page to the zerod-pages queue
*/
void
vm_page_free_zero(vm_page_t m)
{
m->flags |= PG_ZERO;
vm_page_free_toq(m);
}
/*
* vm_page_sleep:
*
* Sleep and release the page queues lock.
*
* The object containing the given page must be locked.
*/
void
vm_page_sleep(vm_page_t m, const char *msg)
{
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
if (!mtx_owned(&vm_page_queue_mtx))
vm_page_lock_queues();
vm_page_flag_set(m, PG_REFERENCED);
vm_page_unlock_queues();
/*
* It's possible that while we sleep, the page will get
* unbusied and freed. If we are holding the object
* lock, we will assume we hold a reference to the object
* such that even if m->object changes, we can re-lock
* it.
*/
m->oflags |= VPO_WANTED;
msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
}
/*
* vm_page_dirty:
*
* make page all dirty
*/
void
vm_page_dirty(vm_page_t m)
{
KASSERT((m->flags & PG_CACHED) == 0,
("vm_page_dirty: page in cache!"));
KASSERT(!VM_PAGE_IS_FREE(m),
("vm_page_dirty: page is free!"));
KASSERT(m->valid == VM_PAGE_BITS_ALL,
("vm_page_dirty: page is invalid!"));
m->dirty = VM_PAGE_BITS_ALL;
}
/*
* vm_page_splay:
*
* Implements Sleator and Tarjan's top-down splay algorithm. Returns
* the vm_page containing the given pindex. If, however, that
* pindex is not found in the vm_object, returns a vm_page that is
* adjacent to the pindex, coming before or after it.
*/
vm_page_t
vm_page_splay(vm_pindex_t pindex, vm_page_t root)
{
struct vm_page dummy;
vm_page_t lefttreemax, righttreemin, y;
if (root == NULL)
return (root);
lefttreemax = righttreemin = &dummy;
for (;; root = y) {
if (pindex < root->pindex) {
if ((y = root->left) == NULL)
break;
if (pindex < y->pindex) {
/* Rotate right. */
root->left = y->right;
y->right = root;
root = y;
if ((y = root->left) == NULL)
break;
}
/* Link into the new root's right tree. */
righttreemin->left = root;
righttreemin = root;
} else if (pindex > root->pindex) {
if ((y = root->right) == NULL)
break;
if (pindex > y->pindex) {
/* Rotate left. */
root->right = y->left;
y->left = root;
root = y;
if ((y = root->right) == NULL)
break;
}
/* Link into the new root's left tree. */
lefttreemax->right = root;
lefttreemax = root;
} else
break;
}
/* Assemble the new root. */
lefttreemax->right = root->left;
righttreemin->left = root->right;
root->left = dummy.right;
root->right = dummy.left;
return (root);
}
/*
* vm_page_insert: [ internal use only ]
*
* Inserts the given mem entry into the object and object list.
*
* The pagetables are not updated but will presumably fault the page
* in if necessary, or if a kernel page the caller will at some point
* enter the page into the kernel's pmap. We are not allowed to block
* here so we *can't* do this anyway.
*
* The object and page must be locked.
* This routine may not block.
*/
void
vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
{
vm_page_t root;
VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
if (m->object != NULL)
panic("vm_page_insert: page already inserted");
/*
* Record the object/offset pair in this page
*/
m->object = object;
m->pindex = pindex;
/*
* Now link into the object's ordered list of backed pages.
*/
root = object->root;
if (root == NULL) {
m->left = NULL;
m->right = NULL;
TAILQ_INSERT_TAIL(&object->memq, m, listq);
} else {
root = vm_page_splay(pindex, root);
if (pindex < root->pindex) {
m->left = root->left;
m->right = root;
root->left = NULL;
TAILQ_INSERT_BEFORE(root, m, listq);
} else if (pindex == root->pindex)
panic("vm_page_insert: offset already allocated");
else {
m->right = root->right;
m->left = root;
root->right = NULL;
TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
}
}
object->root = m;
object->generation++;
/*
* show that the object has one more resident page.
*/
object->resident_page_count++;
/*
* Hold the vnode until the last page is released.
*/
if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
vhold((struct vnode *)object->handle);
/*
* Since we are inserting a new and possibly dirty page,
* update the object's OBJ_MIGHTBEDIRTY flag.
*/
if (m->flags & PG_WRITEABLE)
vm_object_set_writeable_dirty(object);
}
/*
* vm_page_remove:
* NOTE: used by device pager as well -wfj
*
* Removes the given mem entry from the object/offset-page
* table and the object page list, but do not invalidate/terminate
* the backing store.
*
* The object and page must be locked.
* The underlying pmap entry (if any) is NOT removed here.
* This routine may not block.
*/
void
vm_page_remove(vm_page_t m)
{
vm_object_t object;
vm_page_t root;
if ((object = m->object) == NULL)
return;
VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
if (m->oflags & VPO_BUSY) {
m->oflags &= ~VPO_BUSY;
vm_page_flash(m);
}
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
/*
* Now remove from the object's list of backed pages.
*/
if (m != object->root)
vm_page_splay(m->pindex, object->root);
if (m->left == NULL)
root = m->right;
else {
root = vm_page_splay(m->pindex, m->left);
root->right = m->right;
}
object->root = root;
TAILQ_REMOVE(&object->memq, m, listq);
/*
* And show that the object has one fewer resident page.
*/
object->resident_page_count--;
object->generation++;
/*
* The vnode may now be recycled.
*/
if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
vdrop((struct vnode *)object->handle);
m->object = NULL;
}
/*
* vm_page_lookup:
*
* Returns the page associated with the object/offset
* pair specified; if none is found, NULL is returned.
*
* The object must be locked.
* This routine may not block.
* This is a critical path routine
*/
vm_page_t
vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
{
vm_page_t m;
VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
if ((m = object->root) != NULL && m->pindex != pindex) {
m = vm_page_splay(pindex, m);
if ((object->root = m)->pindex != pindex)
m = NULL;
}
return (m);
}
/*
* vm_page_rename:
*
* Move the given memory entry from its
* current object to the specified target object/offset.
*
* The object must be locked.
* This routine may not block.
*
* Note: swap associated with the page must be invalidated by the move. We
* have to do this for several reasons: (1) we aren't freeing the
* page, (2) we are dirtying the page, (3) the VM system is probably
* moving the page from object A to B, and will then later move
* the backing store from A to B and we can't have a conflict.
*
* Note: we *always* dirty the page. It is necessary both for the
* fact that we moved it, and because we may be invalidating
* swap. If the page is on the cache, we have to deactivate it
* or vm_page_dirty() will panic. Dirty pages are not allowed
* on the cache.
*/
void
vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
{
vm_page_remove(m);
vm_page_insert(m, new_object, new_pindex);
vm_page_dirty(m);
}
/*
* Convert all of the given object's cached pages that have a
* pindex within the given range into free pages. If the value
* zero is given for "end", then the range's upper bound is
* infinity. If the given object is backed by a vnode and it
* transitions from having one or more cached pages to none, the
* vnode's hold count is reduced.
*/
void
vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
{
vm_page_t m, m_next;
boolean_t empty;
mtx_lock(&vm_page_queue_free_mtx);
if (__predict_false(object->cache == NULL)) {
mtx_unlock(&vm_page_queue_free_mtx);
return;
}
m = object->cache = vm_page_splay(start, object->cache);
if (m->pindex < start) {
if (m->right == NULL)
m = NULL;
else {
m_next = vm_page_splay(start, m->right);
m_next->left = m;
m->right = NULL;
m = object->cache = m_next;
}
}
/*
* At this point, "m" is either (1) a reference to the page
* with the least pindex that is greater than or equal to
* "start" or (2) NULL.
*/
for (; m != NULL && (m->pindex < end || end == 0); m = m_next) {
/*
* Find "m"'s successor and remove "m" from the
* object's cache.
*/
if (m->right == NULL) {
object->cache = m->left;
m_next = NULL;
} else {
m_next = vm_page_splay(start, m->right);
m_next->left = m->left;
object->cache = m_next;
}
/* Convert "m" to a free page. */
m->object = NULL;
m->valid = 0;
/* Clear PG_CACHED and set PG_FREE. */
m->flags ^= PG_CACHED | PG_FREE;
KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
("vm_page_cache_free: page %p has inconsistent flags", m));
cnt.v_cache_count--;
cnt.v_free_count++;
}
empty = object->cache == NULL;
mtx_unlock(&vm_page_queue_free_mtx);
if (object->type == OBJT_VNODE && empty)
vdrop(object->handle);
}
/*
* Returns the cached page that is associated with the given
* object and offset. If, however, none exists, returns NULL.
*
* The free page queue must be locked.
*/
static inline vm_page_t
vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
{
vm_page_t m;
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
if ((m = object->cache) != NULL && m->pindex != pindex) {
m = vm_page_splay(pindex, m);
if ((object->cache = m)->pindex != pindex)
m = NULL;
}
return (m);
}
/*
* Remove the given cached page from its containing object's
* collection of cached pages.
*
* The free page queue must be locked.
*/
void
vm_page_cache_remove(vm_page_t m)
{
vm_object_t object;
vm_page_t root;
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
KASSERT((m->flags & PG_CACHED) != 0,
("vm_page_cache_remove: page %p is not cached", m));
object = m->object;
if (m != object->cache) {
root = vm_page_splay(m->pindex, object->cache);
KASSERT(root == m,
("vm_page_cache_remove: page %p is not cached in object %p",
m, object));
}
if (m->left == NULL)
root = m->right;
else if (m->right == NULL)
root = m->left;
else {
root = vm_page_splay(m->pindex, m->left);
root->right = m->right;
}
object->cache = root;
m->object = NULL;
cnt.v_cache_count--;
}
/*
* Transfer all of the cached pages with offset greater than or
* equal to 'offidxstart' from the original object's cache to the
* new object's cache. However, any cached pages with offset
* greater than or equal to the new object's size are kept in the
* original object. Initially, the new object's cache must be
* empty. Offset 'offidxstart' in the original object must
* correspond to offset zero in the new object.
*
* The new object must be locked.
*/
void
vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
vm_object_t new_object)
{
vm_page_t m, m_next;
/*
* Insertion into an object's collection of cached pages
* requires the object to be locked. In contrast, removal does
* not.
*/
VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
KASSERT(new_object->cache == NULL,
("vm_page_cache_transfer: object %p has cached pages",
new_object));
mtx_lock(&vm_page_queue_free_mtx);
if ((m = orig_object->cache) != NULL) {
/*
* Transfer all of the pages with offset greater than or
* equal to 'offidxstart' from the original object's
* cache to the new object's cache.
*/
m = vm_page_splay(offidxstart, m);
if (m->pindex < offidxstart) {
orig_object->cache = m;
new_object->cache = m->right;
m->right = NULL;
} else {
orig_object->cache = m->left;
new_object->cache = m;
m->left = NULL;
}
while ((m = new_object->cache) != NULL) {
if ((m->pindex - offidxstart) >= new_object->size) {
/*
* Return all of the cached pages with
* offset greater than or equal to the
* new object's size to the original
* object's cache.
*/
new_object->cache = m->left;
m->left = orig_object->cache;
orig_object->cache = m;
break;
}
m_next = vm_page_splay(m->pindex, m->right);
/* Update the page's object and offset. */
m->object = new_object;
m->pindex -= offidxstart;
if (m_next == NULL)
break;
m->right = NULL;
m_next->left = m;
new_object->cache = m_next;
}
KASSERT(new_object->cache == NULL ||
new_object->type == OBJT_SWAP,
("vm_page_cache_transfer: object %p's type is incompatible"
" with cached pages", new_object));
}
mtx_unlock(&vm_page_queue_free_mtx);
}
/*
* vm_page_alloc:
*
* Allocate and return a memory cell associated
* with this VM object/offset pair.
*
* page_req classes:
* VM_ALLOC_NORMAL normal process request
* VM_ALLOC_SYSTEM system *really* needs a page
* VM_ALLOC_INTERRUPT interrupt time request
* VM_ALLOC_ZERO zero page
*
* This routine may not block.
*/
vm_page_t
vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
{
struct vnode *vp = NULL;
vm_object_t m_object;
vm_page_t m;
int flags, page_req;
page_req = req & VM_ALLOC_CLASS_MASK;
KASSERT(curthread->td_intr_nesting_level == 0 ||
page_req == VM_ALLOC_INTERRUPT,
("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
if ((req & VM_ALLOC_NOOBJ) == 0) {
KASSERT(object != NULL,
("vm_page_alloc: NULL object."));
VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
}
/*
* The pager is allowed to eat deeper into the free page list.
*/
if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
page_req = VM_ALLOC_SYSTEM;
};
mtx_lock(&vm_page_queue_free_mtx);
if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
(page_req == VM_ALLOC_SYSTEM &&
cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
(page_req == VM_ALLOC_INTERRUPT &&
cnt.v_free_count + cnt.v_cache_count > 0)) {
/*
* Allocate from the free queue if the number of free pages
* exceeds the minimum for the request class.
*/
if (object != NULL &&
(m = vm_page_cache_lookup(object, pindex)) != NULL) {
if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
mtx_unlock(&vm_page_queue_free_mtx);
return (NULL);
}
if (vm_phys_unfree_page(m))
vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
#if VM_NRESERVLEVEL > 0
else if (!vm_reserv_reactivate_page(m))
#else
else
#endif
panic("vm_page_alloc: cache page %p is missing"
" from the free queue", m);
} else if ((req & VM_ALLOC_IFCACHED) != 0) {
mtx_unlock(&vm_page_queue_free_mtx);
return (NULL);
#if VM_NRESERVLEVEL > 0
} else if (object == NULL || object->type == OBJT_DEVICE ||
(object->flags & OBJ_COLORED) == 0 ||
(m = vm_reserv_alloc_page(object, pindex)) == NULL) {
#else
} else {
#endif
m = vm_phys_alloc_pages(object != NULL ?
VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
#if VM_NRESERVLEVEL > 0
if (m == NULL && vm_reserv_reclaim_inactive()) {
m = vm_phys_alloc_pages(object != NULL ?
VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
0);
}
#endif
}
} else {
/*
* Not allocatable, give up.
*/
mtx_unlock(&vm_page_queue_free_mtx);
atomic_add_int(&vm_pageout_deficit, 1);
pagedaemon_wakeup();
return (NULL);
}
/*
* At this point we had better have found a good page.
*/
KASSERT(m != NULL, ("vm_page_alloc: missing page"));
KASSERT(m->queue == PQ_NONE, ("vm_page_alloc: page %p has unexpected queue %d",
m, m->queue));
KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
KASSERT(m->busy == 0, ("vm_page_alloc: page %p is busy", m));
KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
if ((m->flags & PG_CACHED) != 0) {
KASSERT(m->valid != 0,
("vm_page_alloc: cached page %p is invalid", m));
if (m->object == object && m->pindex == pindex)
cnt.v_reactivated++;
else
m->valid = 0;
m_object = m->object;
vm_page_cache_remove(m);
if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
vp = m_object->handle;
} else {
KASSERT(VM_PAGE_IS_FREE(m),
("vm_page_alloc: page %p is not free", m));
KASSERT(m->valid == 0,
("vm_page_alloc: free page %p is valid", m));
cnt.v_free_count--;
}
/*
* Initialize structure. Only the PG_ZERO flag is inherited.
*/
flags = 0;
if (m->flags & PG_ZERO) {
vm_page_zero_count--;
if (req & VM_ALLOC_ZERO)
flags = PG_ZERO;
}
if (object == NULL || object->type == OBJT_PHYS)
flags |= PG_UNMANAGED;
m->flags = flags;
if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
m->oflags = 0;
else
m->oflags = VPO_BUSY;
if (req & VM_ALLOC_WIRED) {
atomic_add_int(&cnt.v_wire_count, 1);
m->wire_count = 1;
}
m->act_count = 0;
mtx_unlock(&vm_page_queue_free_mtx);
if ((req & VM_ALLOC_NOOBJ) == 0)
vm_page_insert(m, object, pindex);
else
m->pindex = pindex;
/*
* The following call to vdrop() must come after the above call
* to vm_page_insert() in case both affect the same object and
* vnode. Otherwise, the affected vnode's hold count could
* temporarily become zero.
*/
if (vp != NULL)
vdrop(vp);
/*
* Don't wakeup too often - wakeup the pageout daemon when
* we would be nearly out of memory.
*/
if (vm_paging_needed())
pagedaemon_wakeup();
return (m);
}
/*
* vm_wait: (also see VM_WAIT macro)
*
* Block until free pages are available for allocation
* - Called in various places before memory allocations.
*/
void
vm_wait(void)
{
mtx_lock(&vm_page_queue_free_mtx);
if (curproc == pageproc) {
vm_pageout_pages_needed = 1;
msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
PDROP | PSWP, "VMWait", 0);
} else {
if (!vm_pages_needed) {
vm_pages_needed = 1;
wakeup(&vm_pages_needed);
}
msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
"vmwait", 0);
}
}
/*
* vm_waitpfault: (also see VM_WAITPFAULT macro)
*
* Block until free pages are available for allocation
* - Called only in vm_fault so that processes page faulting
* can be easily tracked.
* - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
* processes will be able to grab memory first. Do not change
* this balance without careful testing first.
*/
void
vm_waitpfault(void)
{
mtx_lock(&vm_page_queue_free_mtx);
if (!vm_pages_needed) {
vm_pages_needed = 1;
wakeup(&vm_pages_needed);
}
msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
"pfault", 0);
}
/*
* vm_page_requeue:
*
* If the given page is contained within a page queue, move it to the tail
* of that queue.
*
* The page queues must be locked.
*/
void
vm_page_requeue(vm_page_t m)
{
int queue = VM_PAGE_GETQUEUE(m);
struct vpgqueues *vpq;
if (queue != PQ_NONE) {
vpq = &vm_page_queues[queue];
TAILQ_REMOVE(&vpq->pl, m, pageq);
TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
}
}
/*
* vm_pageq_remove:
*
* Remove a page from its queue.
*
* The queue containing the given page must be locked.
* This routine may not block.
*/
void
vm_pageq_remove(vm_page_t m)
{
int queue = VM_PAGE_GETQUEUE(m);
struct vpgqueues *pq;
if (queue != PQ_NONE) {
VM_PAGE_SETQUEUE2(m, PQ_NONE);
pq = &vm_page_queues[queue];
TAILQ_REMOVE(&pq->pl, m, pageq);
(*pq->cnt)--;
}
}
/*
* vm_page_enqueue:
*
* Add the given page to the specified queue.
*
* The page queues must be locked.
*/
static void
vm_page_enqueue(int queue, vm_page_t m)
{
struct vpgqueues *vpq;
vpq = &vm_page_queues[queue];
VM_PAGE_SETQUEUE2(m, queue);
TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
++*vpq->cnt;
}
/*
* vm_page_activate:
*
* Put the specified page on the active list (if appropriate).
* Ensure that act_count is at least ACT_INIT but do not otherwise
* mess with it.
*
* The page queues must be locked.
* This routine may not block.
*/
void
vm_page_activate(vm_page_t m)
{
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
if (VM_PAGE_GETKNOWNQUEUE2(m) != PQ_ACTIVE) {
vm_pageq_remove(m);
if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
if (m->act_count < ACT_INIT)
m->act_count = ACT_INIT;
vm_page_enqueue(PQ_ACTIVE, m);
}
} else {
if (m->act_count < ACT_INIT)
m->act_count = ACT_INIT;
}
}
/*
* vm_page_free_wakeup:
*
* Helper routine for vm_page_free_toq() and vm_page_cache(). This
* routine is called when a page has been added to the cache or free
* queues.
*
* The page queues must be locked.
* This routine may not block.
*/
static inline void
vm_page_free_wakeup(void)
{
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
/*
* if pageout daemon needs pages, then tell it that there are
* some free.
*/
if (vm_pageout_pages_needed &&
cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
wakeup(&vm_pageout_pages_needed);
vm_pageout_pages_needed = 0;
}
/*
* wakeup processes that are waiting on memory if we hit a
* high water mark. And wakeup scheduler process if we have
* lots of memory. this process will swapin processes.
*/
if (vm_pages_needed && !vm_page_count_min()) {
vm_pages_needed = 0;
wakeup(&cnt.v_free_count);
}
}
/*
* vm_page_free_toq:
*
* Returns the given page to the free list,
* disassociating it with any VM object.
*
* Object and page must be locked prior to entry.
* This routine may not block.
*/
void
vm_page_free_toq(vm_page_t m)
{
if (VM_PAGE_GETQUEUE(m) != PQ_NONE)
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
KASSERT(!pmap_page_is_mapped(m),
("vm_page_free_toq: freeing mapped page %p", m));
PCPU_INC(cnt.v_tfree);
if (m->busy || VM_PAGE_IS_FREE(m)) {
printf(
"vm_page_free: pindex(%lu), busy(%d), VPO_BUSY(%d), hold(%d)\n",
(u_long)m->pindex, m->busy, (m->oflags & VPO_BUSY) ? 1 : 0,
m->hold_count);
if (VM_PAGE_IS_FREE(m))
panic("vm_page_free: freeing free page");
else
panic("vm_page_free: freeing busy page");
}
/*
* unqueue, then remove page. Note that we cannot destroy
* the page here because we do not want to call the pager's
* callback routine until after we've put the page on the
* appropriate free queue.
*/
vm_pageq_remove(m);
vm_page_remove(m);
/*
* If fictitious remove object association and
* return, otherwise delay object association removal.
*/
if ((m->flags & PG_FICTITIOUS) != 0) {
return;
}
m->valid = 0;
vm_page_undirty(m);
if (m->wire_count != 0) {
if (m->wire_count > 1) {
panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
m->wire_count, (long)m->pindex);
}
panic("vm_page_free: freeing wired page");
}
if (m->hold_count != 0) {
m->flags &= ~PG_ZERO;
vm_page_enqueue(PQ_HOLD, m);
} else {
mtx_lock(&vm_page_queue_free_mtx);
m->flags |= PG_FREE;
cnt.v_free_count++;
#if VM_NRESERVLEVEL > 0
if (!vm_reserv_free_page(m))
#else
if (TRUE)
#endif
vm_phys_free_pages(m, 0);
if ((m->flags & PG_ZERO) != 0)
++vm_page_zero_count;
else
vm_page_zero_idle_wakeup();
vm_page_free_wakeup();
mtx_unlock(&vm_page_queue_free_mtx);
}
}
/*
* vm_page_wire:
*
* Mark this page as wired down by yet
* another map, removing it from paging queues
* as necessary.
*
* The page queues must be locked.
* This routine may not block.
*/
void
vm_page_wire(vm_page_t m)
{
/*
* Only bump the wire statistics if the page is not already wired,
* and only unqueue the page if it is on some queue (if it is unmanaged
* it is already off the queues).
*/
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
if (m->flags & PG_FICTITIOUS)
return;
if (m->wire_count == 0) {
if ((m->flags & PG_UNMANAGED) == 0)
vm_pageq_remove(m);
atomic_add_int(&cnt.v_wire_count, 1);
}
m->wire_count++;
KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
}
/*
* vm_page_unwire:
*
* Release one wiring of this page, potentially
* enabling it to be paged again.
*
* Many pages placed on the inactive queue should actually go
* into the cache, but it is difficult to figure out which. What
* we do instead, if the inactive target is well met, is to put
* clean pages at the head of the inactive queue instead of the tail.
* This will cause them to be moved to the cache more quickly and
* if not actively re-referenced, freed more quickly. If we just
* stick these pages at the end of the inactive queue, heavy filesystem
* meta-data accesses can cause an unnecessary paging load on memory bound
* processes. This optimization causes one-time-use metadata to be
* reused more quickly.
*
* BUT, if we are in a low-memory situation we have no choice but to
* put clean pages on the cache queue.
*
* A number of routines use vm_page_unwire() to guarantee that the page
* will go into either the inactive or active queues, and will NEVER
* be placed in the cache - for example, just after dirtying a page.
* dirty pages in the cache are not allowed.
*
* The page queues must be locked.
* This routine may not block.
*/
void
vm_page_unwire(vm_page_t m, int activate)
{
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
if (m->flags & PG_FICTITIOUS)
return;
if (m->wire_count > 0) {
m->wire_count--;
if (m->wire_count == 0) {
atomic_subtract_int(&cnt.v_wire_count, 1);
if (m->flags & PG_UNMANAGED) {
;
} else if (activate)
vm_page_enqueue(PQ_ACTIVE, m);
else {
vm_page_flag_clear(m, PG_WINATCFLS);
vm_page_enqueue(PQ_INACTIVE, m);
}
}
} else {
panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
}
}
/*
* Move the specified page to the inactive queue. If the page has
* any associated swap, the swap is deallocated.
*
* Normally athead is 0 resulting in LRU operation. athead is set
* to 1 if we want this page to be 'as if it were placed in the cache',
* except without unmapping it from the process address space.
*
* This routine may not block.
*/
static inline void
_vm_page_deactivate(vm_page_t m, int athead)
{
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
/*
* Ignore if already inactive.
*/
if (VM_PAGE_INQUEUE2(m, PQ_INACTIVE))
return;
if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
vm_page_flag_clear(m, PG_WINATCFLS);
vm_pageq_remove(m);
if (athead)
TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
else
TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
VM_PAGE_SETQUEUE2(m, PQ_INACTIVE);
cnt.v_inactive_count++;
}
}
void
vm_page_deactivate(vm_page_t m)
{
_vm_page_deactivate(m, 0);
}
/*
* vm_page_try_to_cache:
*
* Returns 0 on failure, 1 on success
*/
int
vm_page_try_to_cache(vm_page_t m)
{
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
if (m->dirty || m->hold_count || m->busy || m->wire_count ||
(m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
return (0);
}
pmap_remove_all(m);
if (m->dirty)
return (0);
vm_page_cache(m);
return (1);
}
/*
* vm_page_try_to_free()
*
* Attempt to free the page. If we cannot free it, we do nothing.
* 1 is returned on success, 0 on failure.
*/
int
vm_page_try_to_free(vm_page_t m)
{
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
if (m->object != NULL)
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
if (m->dirty || m->hold_count || m->busy || m->wire_count ||
(m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
return (0);
}
pmap_remove_all(m);
if (m->dirty)
return (0);
vm_page_free(m);
return (1);
}
/*
* vm_page_cache
*
* Put the specified page onto the page cache queue (if appropriate).
*
* This routine may not block.
*/
void
vm_page_cache(vm_page_t m)
{
vm_object_t object;
vm_page_t root;
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
object = m->object;
VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
if ((m->flags & PG_UNMANAGED) || (m->oflags & VPO_BUSY) || m->busy ||
m->hold_count || m->wire_count) {
panic("vm_page_cache: attempting to cache busy page");
}
pmap_remove_all(m);
if (m->dirty != 0)
panic("vm_page_cache: page %p is dirty", m);
if (m->valid == 0 || object->type == OBJT_DEFAULT ||
(object->type == OBJT_SWAP &&
!vm_pager_has_page(object, m->pindex, NULL, NULL))) {
/*
* Hypothesis: A cache-elgible page belonging to a
* default object or swap object but without a backing
* store must be zero filled.
*/
vm_page_free(m);
return;
}
KASSERT((m->flags & PG_CACHED) == 0,
("vm_page_cache: page %p is already cached", m));
cnt.v_tcached++;
/*
* Remove the page from the paging queues.
*/
vm_pageq_remove(m);
/*
* Remove the page from the object's collection of resident
* pages.
*/
if (m != object->root)
vm_page_splay(m->pindex, object->root);
if (m->left == NULL)
root = m->right;
else {
root = vm_page_splay(m->pindex, m->left);
root->right = m->right;
}
object->root = root;
TAILQ_REMOVE(&object->memq, m, listq);
object->resident_page_count--;
object->generation++;
/*
* Insert the page into the object's collection of cached pages
* and the physical memory allocator's cache/free page queues.
*/
vm_page_flag_clear(m, PG_ZERO);
mtx_lock(&vm_page_queue_free_mtx);
m->flags |= PG_CACHED;
cnt.v_cache_count++;
root = object->cache;
if (root == NULL) {
m->left = NULL;
m->right = NULL;
} else {
root = vm_page_splay(m->pindex, root);
if (m->pindex < root->pindex) {
m->left = root->left;
m->right = root;
root->left = NULL;
} else if (__predict_false(m->pindex == root->pindex))
panic("vm_page_cache: offset already cached");
else {
m->right = root->right;
m->left = root;
root->right = NULL;
}
}
object->cache = m;
#if VM_NRESERVLEVEL > 0
if (!vm_reserv_free_page(m)) {
#else
if (TRUE) {
#endif
vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
vm_phys_free_pages(m, 0);
}
vm_page_free_wakeup();
mtx_unlock(&vm_page_queue_free_mtx);
/*
* Increment the vnode's hold count if this is the object's only
* cached page. Decrement the vnode's hold count if this was
* the object's only resident page.
*/
if (object->type == OBJT_VNODE) {
if (root == NULL && object->resident_page_count != 0)
vhold(object->handle);
else if (root != NULL && object->resident_page_count == 0)
vdrop(object->handle);
}
}
/*
* vm_page_dontneed
*
* Cache, deactivate, or do nothing as appropriate. This routine
* is typically used by madvise() MADV_DONTNEED.
*
* Generally speaking we want to move the page into the cache so
* it gets reused quickly. However, this can result in a silly syndrome
* due to the page recycling too quickly. Small objects will not be
* fully cached. On the otherhand, if we move the page to the inactive
* queue we wind up with a problem whereby very large objects
* unnecessarily blow away our inactive and cache queues.
*
* The solution is to move the pages based on a fixed weighting. We
* either leave them alone, deactivate them, or move them to the cache,
* where moving them to the cache has the highest weighting.
* By forcing some pages into other queues we eventually force the
* system to balance the queues, potentially recovering other unrelated
* space from active. The idea is to not force this to happen too
* often.
*/
void
vm_page_dontneed(vm_page_t m)
{
static int dnweight;
int dnw;
int head;
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
dnw = ++dnweight;
/*
* occassionally leave the page alone
*/
if ((dnw & 0x01F0) == 0 ||
VM_PAGE_INQUEUE2(m, PQ_INACTIVE)) {
if (m->act_count >= ACT_INIT)
--m->act_count;
return;
}
/*
* Clear any references to the page. Otherwise, the page daemon will
* immediately reactivate the page.
*/
vm_page_flag_clear(m, PG_REFERENCED);
pmap_clear_reference(m);
if (m->dirty == 0 && pmap_is_modified(m))
vm_page_dirty(m);
if (m->dirty || (dnw & 0x0070) == 0) {
/*
* Deactivate the page 3 times out of 32.
*/
head = 0;
} else {
/*
* Cache the page 28 times out of every 32. Note that
* the page is deactivated instead of cached, but placed
* at the head of the queue instead of the tail.
*/
head = 1;
}
_vm_page_deactivate(m, head);
}
/*
* Grab a page, waiting until we are waken up due to the page
* changing state. We keep on waiting, if the page continues
* to be in the object. If the page doesn't exist, first allocate it
* and then conditionally zero it.
*
* This routine may block.
*/
vm_page_t
vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
{
vm_page_t m;
VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
retrylookup:
if ((m = vm_page_lookup(object, pindex)) != NULL) {
if (vm_page_sleep_if_busy(m, TRUE, "pgrbwt")) {
if ((allocflags & VM_ALLOC_RETRY) == 0)
return (NULL);
goto retrylookup;
} else {
if ((allocflags & VM_ALLOC_WIRED) != 0) {
vm_page_lock_queues();
vm_page_wire(m);
vm_page_unlock_queues();
}
if ((allocflags & VM_ALLOC_NOBUSY) == 0)
vm_page_busy(m);
return (m);
}
}
m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
if (m == NULL) {
VM_OBJECT_UNLOCK(object);
VM_WAIT;
VM_OBJECT_LOCK(object);
if ((allocflags & VM_ALLOC_RETRY) == 0)
return (NULL);
goto retrylookup;
} else if (m->valid != 0)
return (m);
if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
pmap_zero_page(m);
return (m);
}
/*
* Mapping function for valid bits or for dirty bits in
* a page. May not block.
*
* Inputs are required to range within a page.
*/
int
vm_page_bits(int base, int size)
{
int first_bit;
int last_bit;
KASSERT(
base + size <= PAGE_SIZE,
("vm_page_bits: illegal base/size %d/%d", base, size)
);
if (size == 0) /* handle degenerate case */
return (0);
first_bit = base >> DEV_BSHIFT;
last_bit = (base + size - 1) >> DEV_BSHIFT;
return ((2 << last_bit) - (1 << first_bit));
}
/*
* vm_page_set_valid:
*
* Sets portions of a page valid. The arguments are expected
* to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
* of any partial chunks touched by the range. The invalid portion of
* such chunks will be zeroed.
*
* (base + size) must be less then or equal to PAGE_SIZE.
*/
void
vm_page_set_valid(vm_page_t m, int base, int size)
{
int endoff, frag;
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
if (size == 0) /* handle degenerate case */
return;
/*
* If the base is not DEV_BSIZE aligned and the valid
* bit is clear, we have to zero out a portion of the
* first block.
*/
if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
(m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
pmap_zero_page_area(m, frag, base - frag);
/*
* If the ending offset is not DEV_BSIZE aligned and the
* valid bit is clear, we have to zero out a portion of
* the last block.
*/
endoff = base + size;
if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
(m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
pmap_zero_page_area(m, endoff,
DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
/*
* Assert that no previously invalid block that is now being validated
* is already dirty.
*/
KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
("vm_page_set_valid: page %p is dirty", m));
/*
* Set valid bits inclusive of any overlap.
*/
m->valid |= vm_page_bits(base, size);
}
/*
* vm_page_set_validclean:
*
* Sets portions of a page valid and clean. The arguments are expected
* to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
* of any partial chunks touched by the range. The invalid portion of
* such chunks will be zero'd.
*
* This routine may not block.
*
* (base + size) must be less then or equal to PAGE_SIZE.
*/
void
vm_page_set_validclean(vm_page_t m, int base, int size)
{
int pagebits;
int frag;
int endoff;
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
if (size == 0) /* handle degenerate case */
return;
/*
* If the base is not DEV_BSIZE aligned and the valid
* bit is clear, we have to zero out a portion of the
* first block.
*/
if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
(m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
pmap_zero_page_area(m, frag, base - frag);
/*
* If the ending offset is not DEV_BSIZE aligned and the
* valid bit is clear, we have to zero out a portion of
* the last block.
*/
endoff = base + size;
if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
(m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
pmap_zero_page_area(m, endoff,
DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
/*
* Set valid, clear dirty bits. If validating the entire
* page we can safely clear the pmap modify bit. We also
* use this opportunity to clear the VPO_NOSYNC flag. If a process
* takes a write fault on a MAP_NOSYNC memory area the flag will
* be set again.
*
* We set valid bits inclusive of any overlap, but we can only
* clear dirty bits for DEV_BSIZE chunks that are fully within
* the range.
*/
pagebits = vm_page_bits(base, size);
m->valid |= pagebits;
#if 0 /* NOT YET */
if ((frag = base & (DEV_BSIZE - 1)) != 0) {
frag = DEV_BSIZE - frag;
base += frag;
size -= frag;
if (size < 0)
size = 0;
}
pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
#endif
m->dirty &= ~pagebits;
if (base == 0 && size == PAGE_SIZE) {
pmap_clear_modify(m);
m->oflags &= ~VPO_NOSYNC;
}
}
void
vm_page_clear_dirty(vm_page_t m, int base, int size)
{
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
m->dirty &= ~vm_page_bits(base, size);
}
/*
* vm_page_set_invalid:
*
* Invalidates DEV_BSIZE'd chunks within a page. Both the
* valid and dirty bits for the effected areas are cleared.
*
* May not block.
*/
void
vm_page_set_invalid(vm_page_t m, int base, int size)
{
int bits;
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
bits = vm_page_bits(base, size);
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
pmap_remove_all(m);
m->valid &= ~bits;
m->dirty &= ~bits;
m->object->generation++;
}
/*
* vm_page_zero_invalid()
*
* The kernel assumes that the invalid portions of a page contain
* garbage, but such pages can be mapped into memory by user code.
* When this occurs, we must zero out the non-valid portions of the
* page so user code sees what it expects.
*
* Pages are most often semi-valid when the end of a file is mapped
* into memory and the file's size is not page aligned.
*/
void
vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
{
int b;
int i;
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
/*
* Scan the valid bits looking for invalid sections that
* must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the
* valid bit may be set ) have already been zerod by
* vm_page_set_validclean().
*/
for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
if (i == (PAGE_SIZE / DEV_BSIZE) ||
(m->valid & (1 << i))
) {
if (i > b) {
pmap_zero_page_area(m,
b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
}
b = i + 1;
}
}
/*
* setvalid is TRUE when we can safely set the zero'd areas
* as being valid. We can do this if there are no cache consistancy
* issues. e.g. it is ok to do with UFS, but not ok to do with NFS.
*/
if (setvalid)
m->valid = VM_PAGE_BITS_ALL;
}
/*
* vm_page_is_valid:
*
* Is (partial) page valid? Note that the case where size == 0
* will return FALSE in the degenerate case where the page is
* entirely invalid, and TRUE otherwise.
*
* May not block.
*/
int
vm_page_is_valid(vm_page_t m, int base, int size)
{
int bits = vm_page_bits(base, size);
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
if (m->valid && ((m->valid & bits) == bits))
return 1;
else
return 0;
}
/*
* update dirty bits from pmap/mmu. May not block.
*/
void
vm_page_test_dirty(vm_page_t m)
{
if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
vm_page_dirty(m);
}
}
int so_zerocp_fullpage = 0;
/*
* Replace the given page with a copy. The copied page assumes
* the portion of the given page's "wire_count" that is not the
* responsibility of this copy-on-write mechanism.
*
* The object containing the given page must have a non-zero
* paging-in-progress count and be locked.
*/
void
vm_page_cowfault(vm_page_t m)
{
vm_page_t mnew;
vm_object_t object;
vm_pindex_t pindex;
object = m->object;
VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
KASSERT(object->paging_in_progress != 0,
("vm_page_cowfault: object %p's paging-in-progress count is zero.",
object));
pindex = m->pindex;
retry_alloc:
pmap_remove_all(m);
vm_page_remove(m);
mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
if (mnew == NULL) {
vm_page_insert(m, object, pindex);
vm_page_unlock_queues();
VM_OBJECT_UNLOCK(object);
VM_WAIT;
VM_OBJECT_LOCK(object);
if (m == vm_page_lookup(object, pindex)) {
vm_page_lock_queues();
goto retry_alloc;
} else {
/*
* Page disappeared during the wait.
*/
vm_page_lock_queues();
return;
}
}
if (m->cow == 0) {
/*
* check to see if we raced with an xmit complete when
* waiting to allocate a page. If so, put things back
* the way they were
*/
vm_page_free(mnew);
vm_page_insert(m, object, pindex);
} else { /* clear COW & copy page */
if (!so_zerocp_fullpage)
pmap_copy_page(m, mnew);
mnew->valid = VM_PAGE_BITS_ALL;
vm_page_dirty(mnew);
mnew->wire_count = m->wire_count - m->cow;
m->wire_count = m->cow;
}
}
void
vm_page_cowclear(vm_page_t m)
{
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
if (m->cow) {
m->cow--;
/*
* let vm_fault add back write permission lazily
*/
}
/*
* sf_buf_free() will free the page, so we needn't do it here
*/
}
int
vm_page_cowsetup(vm_page_t m)
{
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
if (m->cow == USHRT_MAX - 1)
return (EBUSY);
m->cow++;
pmap_remove_write(m);
return (0);
}
#include "opt_ddb.h"
#ifdef DDB
#include <sys/kernel.h>
#include <ddb/ddb.h>
DB_SHOW_COMMAND(page, vm_page_print_page_info)
{
db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
}
DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
{
db_printf("PQ_FREE:");
db_printf(" %d", cnt.v_free_count);
db_printf("\n");
db_printf("PQ_CACHE:");
db_printf(" %d", cnt.v_cache_count);
db_printf("\n");
db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
*vm_page_queues[PQ_ACTIVE].cnt,
*vm_page_queues[PQ_INACTIVE].cnt);
}
#endif /* DDB */