Pedro F. Giffuni 910c079886 sys/powerpc: make use of the howmany() macro when available.
We have a howmany() macro in the <sys/param.h> header that is
convenient to re-use as it makes things easier to read.
2016-04-26 14:44:49 +00:00

1304 lines
29 KiB
C

/*-
* Copyright (c) 2011-2012 Semihalf
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Driver for Freescale integrated eSDHC controller.
* Limitations:
* - No support for multi-block transfers.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/rman.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/taskqueue.h>
#include <machine/bus.h>
#include <machine/vmparam.h>
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/mmc/bridge.h>
#include <dev/mmc/mmcreg.h>
#include <dev/mmc/mmcvar.h>
#include <dev/mmc/mmcbrvar.h>
#include <powerpc/mpc85xx/mpc85xx.h>
#include "opt_platform.h"
#include "mmcbr_if.h"
#include "fsl_sdhc.h"
#ifdef DEBUG
#define DPRINTF(fmt, arg...) printf("DEBUG %s(): " fmt, __FUNCTION__, ##arg)
#else
#define DPRINTF(fmt, arg...)
#endif
/*****************************************************************************
* Register the driver
*****************************************************************************/
/* Forward declarations */
static int fsl_sdhc_probe(device_t);
static int fsl_sdhc_attach(device_t);
static int fsl_sdhc_detach(device_t);
static int fsl_sdhc_read_ivar(device_t, device_t, int, uintptr_t *);
static int fsl_sdhc_write_ivar(device_t, device_t, int, uintptr_t);
static int fsl_sdhc_update_ios(device_t, device_t);
static int fsl_sdhc_request(device_t, device_t, struct mmc_request *);
static int fsl_sdhc_get_ro(device_t, device_t);
static int fsl_sdhc_acquire_host(device_t, device_t);
static int fsl_sdhc_release_host(device_t, device_t);
static device_method_t fsl_sdhc_methods[] = {
/* device_if */
DEVMETHOD(device_probe, fsl_sdhc_probe),
DEVMETHOD(device_attach, fsl_sdhc_attach),
DEVMETHOD(device_detach, fsl_sdhc_detach),
/* Bus interface */
DEVMETHOD(bus_read_ivar, fsl_sdhc_read_ivar),
DEVMETHOD(bus_write_ivar, fsl_sdhc_write_ivar),
/* OFW bus interface */
DEVMETHOD(ofw_bus_get_compat, ofw_bus_gen_get_compat),
DEVMETHOD(ofw_bus_get_model, ofw_bus_gen_get_model),
DEVMETHOD(ofw_bus_get_name, ofw_bus_gen_get_name),
DEVMETHOD(ofw_bus_get_node, ofw_bus_gen_get_node),
DEVMETHOD(ofw_bus_get_type, ofw_bus_gen_get_type),
/* mmcbr_if */
DEVMETHOD(mmcbr_update_ios, fsl_sdhc_update_ios),
DEVMETHOD(mmcbr_request, fsl_sdhc_request),
DEVMETHOD(mmcbr_get_ro, fsl_sdhc_get_ro),
DEVMETHOD(mmcbr_acquire_host, fsl_sdhc_acquire_host),
DEVMETHOD(mmcbr_release_host, fsl_sdhc_release_host),
{0, 0},
};
/* kobj_class definition */
static driver_t fsl_sdhc_driver = {
"sdhci_fsl",
fsl_sdhc_methods,
sizeof(struct fsl_sdhc_softc)
};
static devclass_t fsl_sdhc_devclass;
DRIVER_MODULE(sdhci_fsl, simplebus, fsl_sdhc_driver, fsl_sdhc_devclass, 0, 0);
DRIVER_MODULE(mmc, sdhci_fsl, mmc_driver, mmc_devclass, NULL, NULL);
MODULE_DEPEND(sdhci_fsl, mmc, 1, 1, 1);
/*****************************************************************************
* Private methods
*****************************************************************************/
static inline int
read4(struct fsl_sdhc_softc *sc, unsigned int offset)
{
return bus_space_read_4(sc->bst, sc->bsh, offset);
}
static inline void
write4(struct fsl_sdhc_softc *sc, unsigned int offset, int value)
{
bus_space_write_4(sc->bst, sc->bsh, offset, value);
}
static inline void
set_bit(struct fsl_sdhc_softc *sc, uint32_t offset, uint32_t mask)
{
uint32_t x = read4(sc, offset);
write4(sc, offset, x | mask);
}
static inline void
clear_bit(struct fsl_sdhc_softc *sc, uint32_t offset, uint32_t mask)
{
uint32_t x = read4(sc, offset);
write4(sc, offset, x & ~mask);
}
static int
wait_for_bit_clear(struct fsl_sdhc_softc *sc, enum sdhc_reg_off reg,
uint32_t bit)
{
uint32_t timeout = 10;
uint32_t stat;
stat = read4(sc, reg);
while (stat & bit) {
if (timeout == 0) {
return (-1);
}
--timeout;
DELAY(1000);
stat = read4(sc, reg);
}
return (0);
}
static int
wait_for_free_line(struct fsl_sdhc_softc *sc, enum sdhc_line line)
{
uint32_t timeout = 100;
uint32_t stat;
stat = read4(sc, SDHC_PRSSTAT);
while (stat & line) {
if (timeout == 0) {
return (-1);
}
--timeout;
DELAY(1000);
stat = read4(sc, SDHC_PRSSTAT);
}
return (0);
}
static uint32_t
get_platform_clock(struct fsl_sdhc_softc *sc)
{
device_t self, parent;
phandle_t node;
uint32_t clock;
self = sc->self;
node = ofw_bus_get_node(self);
/* Get sdhci node properties */
if((OF_getprop(node, "clock-frequency", (void *)&clock,
sizeof(clock)) <= 0) || (clock == 0)) {
/*
* Trying to get clock from parent device (soc) if correct
* clock cannot be acquired from sdhci node.
*/
parent = device_get_parent(self);
node = ofw_bus_get_node(parent);
/* Get soc properties */
if ((OF_getprop(node, "bus-frequency", (void *)&clock,
sizeof(clock)) <= 0) || (clock == 0)) {
device_printf(self,"Cannot acquire correct sdhci "
"frequency from DTS.\n");
return (0);
}
}
DPRINTF("Acquired clock: %d from DTS\n", clock);
return (clock);
}
/**
* Set clock driving card.
* @param sc
* @param clock Desired clock frequency in Hz
*/
static void
set_clock(struct fsl_sdhc_softc *sc, uint32_t clock)
{
uint32_t base_clock;
uint32_t divisor, prescaler = 1;
uint32_t round = 0;
if (clock == sc->slot.clock)
return;
if (clock == 0) {
clear_bit(sc, SDHC_SYSCTL, MASK_CLOCK_CONTROL | SYSCTL_PEREN |
SYSCTL_HCKEN | SYSCTL_IPGEN);
return;
}
base_clock = sc->platform_clock;
round = base_clock & 0x2;
base_clock >>= 2;
base_clock += round;
round = 0;
/* SD specification 1.1 doesn't allow frequences above 50 MHz */
if (clock > FSL_SDHC_MAX_CLOCK)
clock = FSL_SDHC_MAX_CLOCK;
/*
* divisor = ceil(base_clock / clock)
* TODO: Reconsider symmetric rounding here instead of ceiling.
*/
divisor = howmany(base_clock, clock);
while (divisor > 16) {
round = divisor & 0x1;
divisor >>= 1;
prescaler <<= 1;
}
divisor += round - 1;
/* Turn off the clock. */
clear_bit(sc, SDHC_SYSCTL, MASK_CLOCK_CONTROL);
/* Write clock settings. */
set_bit(sc, SDHC_SYSCTL, (prescaler << SHIFT_SDCLKFS) |
(divisor << SHIFT_DVS));
/*
* Turn on clocks.
* TODO: This actually disables clock automatic gating off feature of
* the controller which eventually should be enabled but as for now
* it prevents controller from generating card insertion/removal
* interrupts correctly.
*/
set_bit(sc, SDHC_SYSCTL, SYSCTL_PEREN | SYSCTL_HCKEN | SYSCTL_IPGEN);
sc->slot.clock = clock;
DPRINTF("given clock = %d, computed clock = %d\n", clock,
(base_clock / prescaler) / (divisor + 1));
}
static inline void
send_80_clock_ticks(struct fsl_sdhc_softc *sc)
{
int err;
err = wait_for_free_line(sc, SDHC_CMD_LINE | SDHC_DAT_LINE);
if (err != 0) {
device_printf(sc->self, "Can't acquire data/cmd lines\n");
return;
}
set_bit(sc, SDHC_SYSCTL, SYSCTL_INITA);
err = wait_for_bit_clear(sc, SDHC_SYSCTL, SYSCTL_INITA);
if (err != 0) {
device_printf(sc->self, "Can't send 80 clocks to the card.\n");
}
}
static void
set_bus_width(struct fsl_sdhc_softc *sc, enum mmc_bus_width width)
{
DPRINTF("setting bus width to %d\n", width);
switch (width) {
case bus_width_1:
set_bit(sc, SDHC_PROCTL, DTW_1);
break;
case bus_width_4:
set_bit(sc, SDHC_PROCTL, DTW_4);
break;
case bus_width_8:
set_bit(sc, SDHC_PROCTL, DTW_8);
break;
default:
device_printf(sc->self, "Unsupported bus width\n");
}
}
static void
reset_controller_all(struct fsl_sdhc_softc *sc)
{
uint32_t count = 5;
set_bit(sc, SDHC_SYSCTL, SYSCTL_RSTA);
while (read4(sc, SDHC_SYSCTL) & SYSCTL_RSTA) {
DELAY(FSL_SDHC_RESET_DELAY);
--count;
if (count == 0) {
device_printf(sc->self,
"Can't reset the controller\n");
return;
}
}
}
static void
reset_controller_dat_cmd(struct fsl_sdhc_softc *sc)
{
int err;
set_bit(sc, SDHC_SYSCTL, SYSCTL_RSTD | SYSCTL_RSTC);
err = wait_for_bit_clear(sc, SDHC_SYSCTL, SYSCTL_RSTD | SYSCTL_RSTC);
if (err != 0) {
device_printf(sc->self, "Can't reset data & command part!\n");
return;
}
}
static void
init_controller(struct fsl_sdhc_softc *sc)
{
/* Enable interrupts. */
#ifdef FSL_SDHC_NO_DMA
write4(sc, SDHC_IRQSTATEN, MASK_IRQ_ALL & ~IRQ_DINT & ~IRQ_DMAE);
write4(sc, SDHC_IRQSIGEN, MASK_IRQ_ALL & ~IRQ_DINT & ~IRQ_DMAE);
#else
write4(sc, SDHC_IRQSTATEN, MASK_IRQ_ALL & ~IRQ_BRR & ~IRQ_BWR);
write4(sc, SDHC_IRQSIGEN, MASK_IRQ_ALL & ~IRQ_BRR & ~IRQ_BWR);
/* Write DMA address */
write4(sc, SDHC_DSADDR, sc->dma_phys);
/* Enable snooping and fix for AHB2MAG bypass. */
write4(sc, SDHC_DCR, DCR_SNOOP | DCR_AHB2MAG_BYPASS);
#endif
/* Set data timeout. */
set_bit(sc, SDHC_SYSCTL, 0xe << SHIFT_DTOCV);
/* Set water-mark levels (FIFO buffer size). */
write4(sc, SDHC_WML, (FSL_SDHC_FIFO_BUF_WORDS << 16) |
FSL_SDHC_FIFO_BUF_WORDS);
}
static void
init_mmc_host_struct(struct fsl_sdhc_softc *sc)
{
struct mmc_host *host = &sc->mmc_host;
/* Clear host structure. */
bzero(host, sizeof(struct mmc_host));
/* Calculate minimum and maximum operating frequencies. */
host->f_min = sc->platform_clock / FSL_SDHC_MAX_DIV;
host->f_max = FSL_SDHC_MAX_CLOCK;
/* Set operation conditions (voltage). */
host->host_ocr = MMC_OCR_320_330 | MMC_OCR_330_340;
/* Set additional host controller capabilities. */
host->caps = MMC_CAP_4_BIT_DATA;
/* Set mode. */
host->mode = mode_sd;
}
static void
card_detect_task(void *arg, int pending)
{
struct fsl_sdhc_softc *sc = (struct fsl_sdhc_softc *)arg;
int err;
int insert;
insert = read4(sc, SDHC_PRSSTAT) & PRSSTAT_CINS;
mtx_lock(&sc->mtx);
if (insert) {
if (sc->child != NULL) {
mtx_unlock(&sc->mtx);
return;
}
sc->child = device_add_child(sc->self, "mmc", -1);
if (sc->child == NULL) {
device_printf(sc->self, "Couldn't add MMC bus!\n");
mtx_unlock(&sc->mtx);
return;
}
/* Initialize MMC bus host structure. */
init_mmc_host_struct(sc);
device_set_ivars(sc->child, &sc->mmc_host);
} else {
if (sc->child == NULL) {
mtx_unlock(&sc->mtx);
return;
}
}
mtx_unlock(&sc->mtx);
if (insert) {
if ((err = device_probe_and_attach(sc->child)) != 0) {
device_printf(sc->self, "MMC bus failed on probe "
"and attach! error %d\n", err);
device_delete_child(sc->self, sc->child);
sc->child = NULL;
}
} else {
if (device_delete_child(sc->self, sc->child) != 0)
device_printf(sc->self, "Could not delete MMC bus!\n");
sc->child = NULL;
}
}
static void
card_detect_delay(void *arg)
{
struct fsl_sdhc_softc *sc = arg;
taskqueue_enqueue(taskqueue_swi_giant, &sc->card_detect_task);
}
static void
finalize_request(struct fsl_sdhc_softc *sc)
{
DPRINTF("finishing request %p\n", sc->request);
sc->request->done(sc->request);
sc->request = NULL;
}
/**
* Read response from card.
* @todo Implement Auto-CMD responses being held in R3 for multi-block xfers.
* @param sc
*/
static void
get_response(struct fsl_sdhc_softc *sc)
{
struct mmc_command *cmd = sc->request->cmd;
int i;
uint32_t val;
uint8_t ext = 0;
if (cmd->flags & MMC_RSP_136) {
/* CRC is stripped, need to shift one byte left. */
for (i = 0; i < 4; i++) {
val = read4(sc, SDHC_CMDRSP0 + i * 4);
cmd->resp[3 - i] = (val << 8) + ext;
ext = val >> 24;
}
} else {
cmd->resp[0] = read4(sc, SDHC_CMDRSP0);
}
}
#ifdef FSL_SDHC_NO_DMA
/**
* Read all content of a fifo buffer.
* @warning Assumes data buffer is 32-bit aligned.
* @param sc
*/
static void
read_block_pio(struct fsl_sdhc_softc *sc)
{
struct mmc_data *data = sc->request->cmd->data;
size_t left = min(FSL_SDHC_FIFO_BUF_SIZE, data->len);
uint8_t *buf = data->data;
uint32_t word;
buf += sc->data_offset;
bus_space_read_multi_4(sc->bst, sc->bsh, SDHC_DATPORT, (uint32_t *)buf,
left >> 2);
sc->data_offset += left;
/* Handle 32-bit unaligned size case. */
left &= 0x3;
if (left > 0) {
buf = (uint8_t *)data->data + (sc->data_offset & ~0x3);
word = read4(sc, SDHC_DATPORT);
while (left > 0) {
*(buf++) = word;
word >>= 8;
--left;
}
}
}
/**
* Write a fifo buffer.
* @warning Assumes data buffer size is 32-bit aligned.
* @param sc
*/
static void
write_block_pio(struct fsl_sdhc_softc *sc)
{
struct mmc_data *data = sc->request->cmd->data;
size_t left = min(FSL_SDHC_FIFO_BUF_SIZE, data->len);
uint8_t *buf = data->data;
uint32_t word = 0;
DPRINTF("sc->data_offset %d\n", sc->data_offset);
buf += sc->data_offset;
bus_space_write_multi_4(sc->bst, sc->bsh, SDHC_DATPORT, (uint32_t *)buf,
left >> 2);
sc->data_offset += left;
/* Handle 32-bit unaligned size case. */
left &= 0x3;
if (left > 0) {
buf = (uint8_t *)data->data + (sc->data_offset & ~0x3);
while (left > 0) {
word += *(buf++);
word <<= 8;
--left;
}
write4(sc, SDHC_DATPORT, word);
}
}
static void
pio_read_transfer(struct fsl_sdhc_softc *sc)
{
while (read4(sc, SDHC_PRSSTAT) & PRSSTAT_BREN) {
read_block_pio(sc);
/*
* TODO: should we check here whether data_offset >= data->len?
*/
}
}
static void
pio_write_transfer(struct fsl_sdhc_softc *sc)
{
while (read4(sc, SDHC_PRSSTAT) & PRSSTAT_BWEN) {
write_block_pio(sc);
/*
* TODO: should we check here whether data_offset >= data->len?
*/
}
}
#endif /* FSL_SDHC_USE_DMA */
static inline void
handle_command_intr(struct fsl_sdhc_softc *sc, uint32_t irq_stat)
{
struct mmc_command *cmd = sc->request->cmd;
/* Handle errors. */
if (irq_stat & IRQ_CTOE) {
cmd->error = MMC_ERR_TIMEOUT;
} else if (irq_stat & IRQ_CCE) {
cmd->error = MMC_ERR_BADCRC;
} else if (irq_stat & (IRQ_CEBE | IRQ_CIE)) {
cmd->error = MMC_ERR_FIFO;
}
if (cmd->error) {
device_printf(sc->self, "Error interrupt occured\n");
reset_controller_dat_cmd(sc);
return;
}
if (sc->command_done)
return;
if (irq_stat & IRQ_CC) {
sc->command_done = 1;
if (cmd->flags & MMC_RSP_PRESENT)
get_response(sc);
}
}
static inline void
handle_data_intr(struct fsl_sdhc_softc *sc, uint32_t irq_stat)
{
struct mmc_command *cmd = sc->request->cmd;
/* Handle errors. */
if (irq_stat & IRQ_DTOE) {
cmd->error = MMC_ERR_TIMEOUT;
} else if (irq_stat & (IRQ_DCE | IRQ_DEBE)) {
cmd->error = MMC_ERR_BADCRC;
} else if (irq_stat & IRQ_ERROR_DATA_MASK) {
cmd->error = MMC_ERR_FAILED;
}
if (cmd->error) {
device_printf(sc->self, "Error interrupt occured\n");
sc->data_done = 1;
reset_controller_dat_cmd(sc);
return;
}
if (sc->data_done)
return;
#ifdef FSL_SDHC_NO_DMA
if (irq_stat & IRQ_BRR) {
pio_read_transfer(sc);
}
if (irq_stat & IRQ_BWR) {
pio_write_transfer(sc);
}
#else
if (irq_stat & IRQ_DINT) {
struct mmc_data *data = sc->request->cmd->data;
/* Synchronize DMA. */
if (data->flags & MMC_DATA_READ) {
bus_dmamap_sync(sc->dma_tag, sc->dma_map,
BUS_DMASYNC_POSTREAD);
memcpy(data->data, sc->dma_mem, data->len);
} else {
bus_dmamap_sync(sc->dma_tag, sc->dma_map,
BUS_DMASYNC_POSTWRITE);
}
/*
* TODO: For multiple block transfers, address of dma memory
* in DSADDR register should be set to the beginning of the
* segment here. Also offset to data pointer should be handled.
*/
}
#endif
if (irq_stat & IRQ_TC)
sc->data_done = 1;
}
static void
interrupt_handler(void *arg)
{
struct fsl_sdhc_softc *sc = (struct fsl_sdhc_softc *)arg;
uint32_t irq_stat;
mtx_lock(&sc->mtx);
irq_stat = read4(sc, SDHC_IRQSTAT);
/* Card interrupt. */
if (irq_stat & IRQ_CINT) {
DPRINTF("Card interrupt recievied\n");
}
/* Card insertion interrupt. */
if (irq_stat & IRQ_CINS) {
clear_bit(sc, SDHC_IRQSIGEN, IRQ_CINS);
clear_bit(sc, SDHC_IRQSTATEN, IRQ_CINS);
set_bit(sc, SDHC_IRQSIGEN, IRQ_CRM);
set_bit(sc, SDHC_IRQSTATEN, IRQ_CRM);
callout_reset(&sc->card_detect_callout, hz / 2,
card_detect_delay, sc);
}
/* Card removal interrupt. */
if (irq_stat & IRQ_CRM) {
clear_bit(sc, SDHC_IRQSIGEN, IRQ_CRM);
clear_bit(sc, SDHC_IRQSTATEN, IRQ_CRM);
set_bit(sc, SDHC_IRQSIGEN, IRQ_CINS);
set_bit(sc, SDHC_IRQSTATEN, IRQ_CINS);
callout_stop(&sc->card_detect_callout);
taskqueue_enqueue(taskqueue_swi_giant, &sc->card_detect_task);
}
/* Handle request interrupts. */
if (sc->request) {
handle_command_intr(sc, irq_stat);
handle_data_intr(sc, irq_stat);
/*
* Finalize request when transfer is done successfully
* or was interrupted due to error.
*/
if ((sc->data_done && sc->command_done) ||
(sc->request->cmd->error))
finalize_request(sc);
}
/* Clear status register. */
write4(sc, SDHC_IRQSTAT, irq_stat);
mtx_unlock(&sc->mtx);
}
#ifndef FSL_SDHC_NO_DMA
static void
dma_get_phys_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
if (error != 0)
return;
/* Get first segment's physical address. */
*(bus_addr_t *)arg = segs->ds_addr;
}
static int
init_dma(struct fsl_sdhc_softc *sc)
{
device_t self = sc->self;
int err;
err = bus_dma_tag_create(bus_get_dma_tag(self),
FSL_SDHC_DMA_BLOCK_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, FSL_SDHC_DMA_BLOCK_SIZE, 1,
FSL_SDHC_DMA_BLOCK_SIZE, BUS_DMA_ALLOCNOW, NULL, NULL,
&sc->dma_tag);
if (err) {
device_printf(self, "Could not create DMA tag!\n");
return (-1);
}
err = bus_dmamem_alloc(sc->dma_tag, (void **)&(sc->dma_mem),
BUS_DMA_NOWAIT | BUS_DMA_NOCACHE, &sc->dma_map);
if (err) {
device_printf(self, "Could not allocate DMA memory!\n");
goto fail1;
}
err = bus_dmamap_load(sc->dma_tag, sc->dma_map, (void *)sc->dma_mem,
FSL_SDHC_DMA_BLOCK_SIZE, dma_get_phys_addr, &sc->dma_phys, 0);
if (err) {
device_printf(self, "Could not load DMA map!\n");
goto fail2;
}
return (0);
fail2:
bus_dmamem_free(sc->dma_tag, sc->dma_mem, sc->dma_map);
fail1:
bus_dma_tag_destroy(sc->dma_tag);
return (-1);
}
#endif /* FSL_SDHC_NO_DMA */
static uint32_t
set_xfertyp_register(const struct mmc_command *cmd)
{
uint32_t xfertyp = 0;
/* Set command index. */
xfertyp |= cmd->opcode << CMDINX_SHIFT;
/* Set command type. */
if (cmd->opcode == MMC_STOP_TRANSMISSION)
xfertyp |= CMDTYP_ABORT;
/* Set data preset select. */
if (cmd->data) {
xfertyp |= XFERTYP_DPSEL;
/* Set transfer direction. */
if (cmd->data->flags & MMC_DATA_READ)
xfertyp |= XFERTYP_DTDSEL;
}
/* Set command index check. */
if (cmd->flags & MMC_RSP_OPCODE)
xfertyp |= XFERTYP_CICEN;
/* Set command CRC check. */
if (cmd->flags & MMC_RSP_CRC)
xfertyp |= XFERTYP_CCCEN;
/* Set response type */
if (!(cmd->flags & MMC_RSP_PRESENT))
xfertyp |= RSPTYP_NONE;
else if (cmd->flags & MMC_RSP_136)
xfertyp |= RSPTYP_136;
else if (cmd->flags & MMC_RSP_BUSY)
xfertyp |= RSPTYP_48_BUSY;
else
xfertyp |= RSPTYP_48;
#ifndef FSL_SDHC_NO_DMA
/* Enable DMA */
xfertyp |= XFERTYP_DMAEN;
#endif
return (xfertyp);
}
static uint32_t
set_blkattr_register(const struct mmc_data *data)
{
if (data->len <= FSL_SDHC_MAX_BLOCK_SIZE) {
/* One block transfer. */
return (BLKATTR_BLOCK_COUNT(1) | ((data->len) &
BLKATTR_BLKSZE));
}
/* TODO: Write code here for multi-block transfers. */
return (0);
}
/**
* Initiate data transfer. Interrupt handler will finalize it.
* @todo Implement multi-block transfers.
* @param sc
* @param cmd
*/
static int
start_data(struct fsl_sdhc_softc *sc, struct mmc_data *data)
{
uint32_t reg;
if ((uint32_t)data->data & 0x3) {
device_printf(sc->self, "32-bit unaligned data pointer in "
"request\n");
return (-1);
}
sc->data_done = 0;
#ifdef FSL_SDHC_NO_DMA
sc->data_ptr = data->data;
sc->data_offset = 0;
#else
/* Write DMA address register. */
write4(sc, SDHC_DSADDR, sc->dma_phys);
/* Synchronize DMA. */
if (data->flags & MMC_DATA_READ) {
bus_dmamap_sync(sc->dma_tag, sc->dma_map,
BUS_DMASYNC_PREREAD);
} else {
memcpy(sc->dma_mem, data->data, data->len);
bus_dmamap_sync(sc->dma_tag, sc->dma_map,
BUS_DMASYNC_PREWRITE);
}
#endif
/* Set block size and count. */
reg = set_blkattr_register(data);
if (reg == 0) {
device_printf(sc->self, "Requested unsupported multi-block "
"transfer.\n");
return (-1);
}
write4(sc, SDHC_BLKATTR, reg);
return (0);
}
static int
start_command(struct fsl_sdhc_softc *sc, struct mmc_command *cmd)
{
struct mmc_request *req = sc->request;
uint32_t mask;
uint32_t xfertyp;
int err;
DPRINTF("opcode %d, flags 0x%08x\n", cmd->opcode, cmd->flags);
DPRINTF("PRSSTAT = 0x%08x\n", read4(sc, SDHC_PRSSTAT));
sc->command_done = 0;
cmd->error = MMC_ERR_NONE;
/* TODO: should we check here for card presence and clock settings? */
/* Always wait for free CMD line. */
mask = SDHC_CMD_LINE;
/* Wait for free DAT if we have data or busy signal. */
if (cmd->data || (cmd->flags & MMC_RSP_BUSY))
mask |= SDHC_DAT_LINE;
/* We shouldn't wait for DAT for stop commands. */
if (cmd == req->stop)
mask &= ~SDHC_DAT_LINE;
err = wait_for_free_line(sc, mask);
if (err != 0) {
device_printf(sc->self, "Controller never released inhibit "
"bit(s).\n");
reset_controller_dat_cmd(sc);
cmd->error = MMC_ERR_FAILED;
sc->request = NULL;
req->done(req);
return (-1);
}
xfertyp = set_xfertyp_register(cmd);
if (cmd->data != NULL) {
err = start_data(sc, cmd->data);
if (err != 0) {
device_printf(sc->self,
"Data transfer request failed\n");
reset_controller_dat_cmd(sc);
cmd->error = MMC_ERR_FAILED;
sc->request = NULL;
req->done(req);
return (-1);
}
}
write4(sc, SDHC_CMDARG, cmd->arg);
write4(sc, SDHC_XFERTYP, xfertyp);
DPRINTF("XFERTYP = 0x%08x\n", xfertyp);
DPRINTF("CMDARG = 0x%08x\n", cmd->arg);
return (0);
}
#ifdef DEBUG
static void
dump_registers(struct fsl_sdhc_softc *sc)
{
printf("PRSSTAT = 0x%08x\n", read4(sc, SDHC_PRSSTAT));
printf("PROCTL = 0x%08x\n", read4(sc, SDHC_PROCTL));
printf("HOSTCAPBLT = 0x%08x\n", read4(sc, SDHC_HOSTCAPBLT));
printf("IRQSTAT = 0x%08x\n", read4(sc, SDHC_IRQSTAT));
printf("IRQSTATEN = 0x%08x\n", read4(sc, SDHC_IRQSTATEN));
printf("IRQSIGEN = 0x%08x\n", read4(sc, SDHC_IRQSIGEN));
printf("WML = 0x%08x\n", read4(sc, SDHC_WML));
printf("DSADDR = 0x%08x\n", read4(sc, SDHC_DSADDR));
printf("XFERTYP = 0x%08x\n", read4(sc, SDHC_XFERTYP));
printf("DCR = 0x%08x\n", read4(sc, SDHC_DCR));
}
#endif
/*****************************************************************************
* Public methods
*****************************************************************************/
/*
* Device interface methods.
*/
static int
fsl_sdhc_probe(device_t self)
{
static const char *desc =
"Freescale Enhanced Secure Digital Host Controller";
if (!ofw_bus_is_compatible(self, "fsl,p2020-esdhc") &&
!ofw_bus_is_compatible(self, "fsl,esdhc"))
return (ENXIO);
device_set_desc(self, desc);
return (BUS_PROBE_VENDOR);
}
static int
fsl_sdhc_attach(device_t self)
{
struct fsl_sdhc_softc *sc;
sc = device_get_softc(self);
sc->self = self;
mtx_init(&sc->mtx, device_get_nameunit(self), NULL, MTX_DEF);
/* Setup memory resource */
sc->mem_rid = 0;
sc->mem_resource = bus_alloc_resource_any(self, SYS_RES_MEMORY,
&sc->mem_rid, RF_ACTIVE);
if (sc->mem_resource == NULL) {
device_printf(self, "Could not allocate memory.\n");
goto fail;
}
sc->bst = rman_get_bustag(sc->mem_resource);
sc->bsh = rman_get_bushandle(sc->mem_resource);
/* Setup interrupt resource. */
sc->irq_rid = 0;
sc->irq_resource = bus_alloc_resource_any(self, SYS_RES_IRQ,
&sc->irq_rid, RF_ACTIVE);
if (sc->irq_resource == NULL) {
device_printf(self, "Could not allocate interrupt.\n");
goto fail;
}
if (bus_setup_intr(self, sc->irq_resource, INTR_TYPE_MISC |
INTR_MPSAFE, NULL, interrupt_handler, sc, &sc->ihl) != 0) {
device_printf(self, "Could not setup interrupt.\n");
goto fail;
}
/* Setup DMA. */
#ifndef FSL_SDHC_NO_DMA
if (init_dma(sc) != 0) {
device_printf(self, "Could not setup DMA\n");
}
#endif
sc->bus_busy = 0;
sc->platform_clock = get_platform_clock(sc);
if (sc->platform_clock == 0) {
device_printf(self, "Could not get platform clock.\n");
goto fail;
}
sc->command_done = 1;
sc->data_done = 1;
/* Init card detection task. */
TASK_INIT(&sc->card_detect_task, 0, card_detect_task, sc);
callout_init(&sc->card_detect_callout, 1);
reset_controller_all(sc);
init_controller(sc);
set_clock(sc, 400000);
send_80_clock_ticks(sc);
#ifdef DEBUG
dump_registers(sc);
#endif
return (0);
fail:
fsl_sdhc_detach(self);
return (ENXIO);
}
static int
fsl_sdhc_detach(device_t self)
{
struct fsl_sdhc_softc *sc = device_get_softc(self);
int err;
if (sc->child)
device_delete_child(self, sc->child);
taskqueue_drain(taskqueue_swi_giant, &sc->card_detect_task);
#ifndef FSL_SDHC_NO_DMA
bus_dmamap_unload(sc->dma_tag, sc->dma_map);
bus_dmamem_free(sc->dma_tag, sc->dma_mem, sc->dma_map);
bus_dma_tag_destroy(sc->dma_tag);
#endif
if (sc->ihl != NULL) {
err = bus_teardown_intr(self, sc->irq_resource, sc->ihl);
if (err)
return (err);
}
if (sc->irq_resource != NULL) {
err = bus_release_resource(self, SYS_RES_IRQ, sc->irq_rid,
sc->irq_resource);
if (err)
return (err);
}
if (sc->mem_resource != NULL) {
err = bus_release_resource(self, SYS_RES_MEMORY, sc->mem_rid,
sc->mem_resource);
if (err)
return (err);
}
mtx_destroy(&sc->mtx);
return (0);
}
/*
* Bus interface methods.
*/
static int
fsl_sdhc_read_ivar(device_t self, device_t child, int index,
uintptr_t *result)
{
struct mmc_host *host = device_get_ivars(child);
switch (index) {
case MMCBR_IVAR_BUS_MODE:
*(int *)result = host->ios.bus_mode;
break;
case MMCBR_IVAR_BUS_WIDTH:
*(int *)result = host->ios.bus_width;
break;
case MMCBR_IVAR_CHIP_SELECT:
*(int *)result = host->ios.chip_select;
break;
case MMCBR_IVAR_CLOCK:
*(int *)result = host->ios.clock;
break;
case MMCBR_IVAR_F_MIN:
*(int *)result = host->f_min;
break;
case MMCBR_IVAR_F_MAX:
*(int *)result = host->f_max;
break;
case MMCBR_IVAR_HOST_OCR:
*(int *)result = host->host_ocr;
break;
case MMCBR_IVAR_MODE:
*(int *)result = host->mode;
break;
case MMCBR_IVAR_OCR:
*(int *)result = host->ocr;
break;
case MMCBR_IVAR_POWER_MODE:
*(int *)result = host->ios.power_mode;
break;
case MMCBR_IVAR_VDD:
*(int *)result = host->ios.vdd;
break;
default:
return (EINVAL);
}
return (0);
}
static int
fsl_sdhc_write_ivar(device_t self, device_t child, int index,
uintptr_t value)
{
struct mmc_host *host = device_get_ivars(child);
switch (index) {
case MMCBR_IVAR_BUS_MODE:
host->ios.bus_mode = value;
break;
case MMCBR_IVAR_BUS_WIDTH:
host->ios.bus_width = value;
break;
case MMCBR_IVAR_CHIP_SELECT:
host->ios.chip_select = value;
break;
case MMCBR_IVAR_CLOCK:
host->ios.clock = value;
break;
case MMCBR_IVAR_MODE:
host->mode = value;
break;
case MMCBR_IVAR_OCR:
host->ocr = value;
break;
case MMCBR_IVAR_POWER_MODE:
host->ios.power_mode = value;
break;
case MMCBR_IVAR_VDD:
host->ios.vdd = value;
break;
case MMCBR_IVAR_HOST_OCR:
case MMCBR_IVAR_F_MIN:
case MMCBR_IVAR_F_MAX:
default:
/* Instance variable not writable. */
return (EINVAL);
}
return (0);
}
/*
* MMC bridge methods.
*/
static int
fsl_sdhc_update_ios(device_t self, device_t reqdev)
{
struct fsl_sdhc_softc *sc = device_get_softc(self);
struct mmc_host *host = device_get_ivars(reqdev);
struct mmc_ios *ios = &host->ios;
mtx_lock(&sc->mtx);
/* Full reset on bus power down to clear from any state. */
if (ios->power_mode == power_off) {
reset_controller_all(sc);
init_controller(sc);
}
set_clock(sc, ios->clock);
set_bus_width(sc, ios->bus_width);
mtx_unlock(&sc->mtx);
return (0);
}
static int
fsl_sdhc_request(device_t self, device_t reqdev, struct mmc_request *req)
{
struct fsl_sdhc_softc *sc = device_get_softc(self);
int err;
mtx_lock(&sc->mtx);
sc->request = req;
err = start_command(sc, req->cmd);
mtx_unlock(&sc->mtx);
return (err);
}
static int
fsl_sdhc_get_ro(device_t self, device_t reqdev)
{
struct fsl_sdhc_softc *sc = device_get_softc(self);
/* Wouldn't it be faster using branching (if {}) ?? */
return (((read4(sc, SDHC_PRSSTAT) & PRSSTAT_WPSPL) >> 19) ^ 0x1);
}
static int
fsl_sdhc_acquire_host(device_t self, device_t reqdev)
{
struct fsl_sdhc_softc *sc = device_get_softc(self);
int retval = 0;
mtx_lock(&sc->mtx);
while (sc->bus_busy)
retval = mtx_sleep(sc, &sc->mtx, PZERO, "sdhcah", 0);
++(sc->bus_busy);
mtx_unlock(&sc->mtx);
return (retval);
}
static int
fsl_sdhc_release_host(device_t self, device_t reqdev)
{
struct fsl_sdhc_softc *sc = device_get_softc(self);
mtx_lock(&sc->mtx);
--(sc->bus_busy);
mtx_unlock(&sc->mtx);
wakeup(sc);
return (0);
}