c9b6b5826c
Mention per-location total order, out of thin air, and torn writes guarantees. Mention C11 standard' memory model and one most important FreeBSD additional requirement, that is aligned ordinary loads and stores are atomic on processors. The text is introductional and informal. Reference the C11 and C++1{1,4,7} standards for authorative description. In collaboration with: alc Sponsored by: The FreeBSD Foundation (kib) MFC after: 1 week
533 lines
14 KiB
Groff
533 lines
14 KiB
Groff
.\" Copyright (c) 2000-2001 John H. Baldwin <jhb@FreeBSD.org>
|
|
.\" All rights reserved.
|
|
.\"
|
|
.\" Redistribution and use in source and binary forms, with or without
|
|
.\" modification, are permitted provided that the following conditions
|
|
.\" are met:
|
|
.\" 1. Redistributions of source code must retain the above copyright
|
|
.\" notice, this list of conditions and the following disclaimer.
|
|
.\" 2. Redistributions in binary form must reproduce the above copyright
|
|
.\" notice, this list of conditions and the following disclaimer in the
|
|
.\" documentation and/or other materials provided with the distribution.
|
|
.\"
|
|
.\" THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY EXPRESS OR
|
|
.\" IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
.\" OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
.\" IN NO EVENT SHALL THE DEVELOPERS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
.\" INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
.\" NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
.\" DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
.\" THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
.\" (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
.\" THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
.\"
|
|
.\" $FreeBSD$
|
|
.\"
|
|
.Dd March 23, 2017
|
|
.Dt ATOMIC 9
|
|
.Os
|
|
.Sh NAME
|
|
.Nm atomic_add ,
|
|
.Nm atomic_clear ,
|
|
.Nm atomic_cmpset ,
|
|
.Nm atomic_fcmpset ,
|
|
.Nm atomic_fetchadd ,
|
|
.Nm atomic_load ,
|
|
.Nm atomic_readandclear ,
|
|
.Nm atomic_set ,
|
|
.Nm atomic_subtract ,
|
|
.Nm atomic_store
|
|
.Nd atomic operations
|
|
.Sh SYNOPSIS
|
|
.In sys/types.h
|
|
.In machine/atomic.h
|
|
.Ft void
|
|
.Fn atomic_add_[acq_|rel_]<type> "volatile <type> *p" "<type> v"
|
|
.Ft void
|
|
.Fn atomic_clear_[acq_|rel_]<type> "volatile <type> *p" "<type> v"
|
|
.Ft int
|
|
.Fo atomic_cmpset_[acq_|rel_]<type>
|
|
.Fa "volatile <type> *dst"
|
|
.Fa "<type> old"
|
|
.Fa "<type> new"
|
|
.Fc
|
|
.Ft int
|
|
.Fo atomic_fcmpset_[acq_|rel_]<type>
|
|
.Fa "volatile <type> *dst"
|
|
.Fa "<type> *old"
|
|
.Fa "<type> new"
|
|
.Fc
|
|
.Ft <type>
|
|
.Fn atomic_fetchadd_<type> "volatile <type> *p" "<type> v"
|
|
.Ft <type>
|
|
.Fn atomic_load_acq_<type> "volatile <type> *p"
|
|
.Ft <type>
|
|
.Fn atomic_readandclear_<type> "volatile <type> *p"
|
|
.Ft void
|
|
.Fn atomic_set_[acq_|rel_]<type> "volatile <type> *p" "<type> v"
|
|
.Ft void
|
|
.Fn atomic_subtract_[acq_|rel_]<type> "volatile <type> *p" "<type> v"
|
|
.Ft void
|
|
.Fn atomic_store_rel_<type> "volatile <type> *p" "<type> v"
|
|
.Ft <type>
|
|
.Fn atomic_swap_<type> "volatile <type> *p" "<type> v"
|
|
.Ft int
|
|
.Fn atomic_testandclear_<type> "volatile <type> *p" "u_int v"
|
|
.Ft int
|
|
.Fn atomic_testandset_<type> "volatile <type> *p" "u_int v"
|
|
.Sh DESCRIPTION
|
|
All of these operations are performed atomically across multiple
|
|
threads and in the presence of interrupts, meaning that they are
|
|
performed in an indivisible manner from the perspective of concurrently
|
|
running threads and interrupt handlers.
|
|
.Pp
|
|
When atomic operations are performed on cache-coherent memory, all
|
|
operations on the same location are totally ordered.
|
|
.Pp
|
|
When an atomic load is performed on a location in cache-coherent memory,
|
|
it reads the entire value that was defined by the last atomic store to
|
|
each byte of the location.
|
|
An atomic load will never return a value out of thin air.
|
|
When an atomic store is performed on a location, no other thread or
|
|
interrupt handler will observe a
|
|
.Em torn write ,
|
|
or partial modification of the location.
|
|
.Pp
|
|
On all architectures supported by
|
|
.Fx ,
|
|
ordinary loads and stores of naturally aligned integer types
|
|
are atomic, as executed by the processor.
|
|
.Pp
|
|
Atomic operations can be used to implement reference counts or as
|
|
building blocks for synchronization primitives such as mutexes.
|
|
.Pp
|
|
The semantics of
|
|
.Fx Ns 's
|
|
atomic operations are almost identical to those of the similarly named
|
|
C11 operations.
|
|
The one important difference is that the C11 standard does not
|
|
require ordinary loads and stores to ever be atomic.
|
|
This is is why the
|
|
.Fn atomic_load_explicit memory_order_relaxed
|
|
operation exists in the C11 standard, but is not provided by
|
|
.In machine/atomic.h .
|
|
.Ss Types
|
|
Each atomic operation operates on a specific
|
|
.Fa type .
|
|
The type to use is indicated in the function name.
|
|
The available types that can be used are:
|
|
.Pp
|
|
.Bl -tag -offset indent -width short -compact
|
|
.It Li int
|
|
unsigned integer
|
|
.It Li long
|
|
unsigned long integer
|
|
.It Li ptr
|
|
unsigned integer the size of a pointer
|
|
.It Li 32
|
|
unsigned 32-bit integer
|
|
.It Li 64
|
|
unsigned 64-bit integer
|
|
.El
|
|
.Pp
|
|
For example, the function to atomically add two integers is called
|
|
.Fn atomic_add_int .
|
|
.Pp
|
|
Certain architectures also provide operations for types smaller than
|
|
.Dq Li int .
|
|
.Pp
|
|
.Bl -tag -offset indent -width short -compact
|
|
.It Li char
|
|
unsigned character
|
|
.It Li short
|
|
unsigned short integer
|
|
.It Li 8
|
|
unsigned 8-bit integer
|
|
.It Li 16
|
|
unsigned 16-bit integer
|
|
.El
|
|
.Pp
|
|
These must not be used in MI code because the instructions to implement them
|
|
efficiently might not be available.
|
|
.Ss Acquire and Release Operations
|
|
By default, a thread's accesses to different memory locations might not be
|
|
performed in
|
|
.Em program order ,
|
|
that is, the order in which the accesses appear in the source code.
|
|
To optimize the program's execution, both the compiler and processor might
|
|
reorder the thread's accesses.
|
|
However, both ensure that their reordering of the accesses is not visible to
|
|
the thread.
|
|
Otherwise, the traditional memory model that is expected by single-threaded
|
|
programs would be violated.
|
|
Nonetheless, other threads in a multithreaded program, such as the
|
|
.Fx
|
|
kernel, might observe the reordering.
|
|
Moreover, in some cases, such as the implementation of synchronization between
|
|
threads, arbitrary reordering might result in the incorrect execution of the
|
|
program.
|
|
To constrain the reordering that both the compiler and processor might perform
|
|
on a thread's accesses, the thread should use atomic operations with
|
|
.Em acquire
|
|
and
|
|
.Em release
|
|
semantics.
|
|
.Pp
|
|
Most of the atomic operations on memory have three variants.
|
|
The first variant performs the operation without imposing any ordering
|
|
constraints on memory accesses to other locations.
|
|
The second variant has acquire semantics, and the third variant has release
|
|
semantics.
|
|
In effect, operations with acquire and release semantics establish one-way
|
|
barriers to reordering.
|
|
.Pp
|
|
When an atomic operation has acquire semantics, the effects of the operation
|
|
must have completed before any subsequent load or store (by program order) is
|
|
performed.
|
|
Conversely, acquire semantics do not require that prior loads or stores have
|
|
completed before the atomic operation is performed.
|
|
To denote acquire semantics, the suffix
|
|
.Dq Li _acq
|
|
is inserted into the function name immediately prior to the
|
|
.Dq Li _ Ns Aq Fa type
|
|
suffix.
|
|
For example, to subtract two integers ensuring that subsequent loads and
|
|
stores happen after the subtraction is performed, use
|
|
.Fn atomic_subtract_acq_int .
|
|
.Pp
|
|
When an atomic operation has release semantics, the effects of all prior
|
|
loads or stores (by program order) must have completed before the operation
|
|
is performed.
|
|
Conversely, release semantics do not require that the effects of the
|
|
atomic operation must have completed before any subsequent load or store is
|
|
performed.
|
|
To denote release semantics, the suffix
|
|
.Dq Li _rel
|
|
is inserted into the function name immediately prior to the
|
|
.Dq Li _ Ns Aq Fa type
|
|
suffix.
|
|
For example, to add two long integers ensuring that all prior loads and
|
|
stores happen before the addition, use
|
|
.Fn atomic_add_rel_long .
|
|
.Pp
|
|
The one-way barriers provided by acquire and release operations allow the
|
|
implementations of common synchronization primitives to express their
|
|
ordering requirements without also imposing unnecessary ordering.
|
|
For example, for a critical section guarded by a mutex, an acquire operation
|
|
when the mutex is locked and a release operation when the mutex is unlocked
|
|
will prevent any loads or stores from moving outside of the critical
|
|
section.
|
|
However, they will not prevent the compiler or processor from moving loads
|
|
or stores into the critical section, which does not violate the semantics of
|
|
a mutex.
|
|
.Ss Multiple Processors
|
|
In multiprocessor systems, the atomicity of the atomic operations on memory
|
|
depends on support for cache coherence in the underlying architecture.
|
|
In general, cache coherence on the default memory type,
|
|
.Dv VM_MEMATTR_DEFAULT ,
|
|
is guaranteed by all architectures that are supported by
|
|
.Fx .
|
|
For example, cache coherence is guaranteed on write-back memory by the
|
|
.Tn amd64
|
|
and
|
|
.Tn i386
|
|
architectures.
|
|
However, on some architectures, cache coherence might not be enabled on all
|
|
memory types.
|
|
To determine if cache coherence is enabled for a non-default memory type,
|
|
consult the architecture's documentation.
|
|
.Ss Semantics
|
|
This section describes the semantics of each operation using a C like notation.
|
|
.Bl -hang
|
|
.It Fn atomic_add p v
|
|
.Bd -literal -compact
|
|
*p += v;
|
|
.Ed
|
|
.It Fn atomic_clear p v
|
|
.Bd -literal -compact
|
|
*p &= ~v;
|
|
.Ed
|
|
.It Fn atomic_cmpset dst old new
|
|
.Bd -literal -compact
|
|
if (*dst == old) {
|
|
*dst = new;
|
|
return (1);
|
|
} else
|
|
return (0);
|
|
.Ed
|
|
.El
|
|
.Pp
|
|
Some architectures do not implement the
|
|
.Fn atomic_cmpset
|
|
functions for the types
|
|
.Dq Li char ,
|
|
.Dq Li short ,
|
|
.Dq Li 8 ,
|
|
and
|
|
.Dq Li 16 .
|
|
.Bl -hang
|
|
.It Fn atomic_fcmpset dst *old new
|
|
.El
|
|
.Pp
|
|
On architectures implementing
|
|
.Em Compare And Swap
|
|
operation in hardware, the functionality can be described as
|
|
.Bd -literal -offset indent -compact
|
|
if (*dst == *old) {
|
|
*dst = new;
|
|
return (1);
|
|
} else {
|
|
*old = *dst;
|
|
return (0);
|
|
}
|
|
.Ed
|
|
On architectures which provide
|
|
.Em Load Linked/Store Conditional
|
|
primitive, the write to
|
|
.Dv *dst
|
|
might also fail for several reasons, most important of which
|
|
is a parallel write to
|
|
.Dv *dst
|
|
cache line by other CPU.
|
|
In this case
|
|
.Fn atomic_fcmpset
|
|
function also returns
|
|
.Dv false ,
|
|
despite
|
|
.Dl *old == *dst .
|
|
.Pp
|
|
Some architectures do not implement the
|
|
.Fn atomic_fcmpset
|
|
functions for the types
|
|
.Dq Li char ,
|
|
.Dq Li short ,
|
|
.Dq Li 8 ,
|
|
and
|
|
.Dq Li 16 .
|
|
.Bl -hang
|
|
.It Fn atomic_fetchadd p v
|
|
.Bd -literal -compact
|
|
tmp = *p;
|
|
*p += v;
|
|
return (tmp);
|
|
.Ed
|
|
.El
|
|
.Pp
|
|
The
|
|
.Fn atomic_fetchadd
|
|
functions are only implemented for the types
|
|
.Dq Li int ,
|
|
.Dq Li long
|
|
and
|
|
.Dq Li 32
|
|
and do not have any variants with memory barriers at this time.
|
|
.Bl -hang
|
|
.It Fn atomic_load p
|
|
.Bd -literal -compact
|
|
return (*p);
|
|
.Ed
|
|
.El
|
|
.Pp
|
|
The
|
|
.Fn atomic_load
|
|
functions are only provided with acquire memory barriers.
|
|
.Bl -hang
|
|
.It Fn atomic_readandclear p
|
|
.Bd -literal -compact
|
|
tmp = *p;
|
|
*p = 0;
|
|
return (tmp);
|
|
.Ed
|
|
.El
|
|
.Pp
|
|
The
|
|
.Fn atomic_readandclear
|
|
functions are not implemented for the types
|
|
.Dq Li char ,
|
|
.Dq Li short ,
|
|
.Dq Li ptr ,
|
|
.Dq Li 8 ,
|
|
and
|
|
.Dq Li 16
|
|
and do not have any variants with memory barriers at this time.
|
|
.Bl -hang
|
|
.It Fn atomic_set p v
|
|
.Bd -literal -compact
|
|
*p |= v;
|
|
.Ed
|
|
.It Fn atomic_subtract p v
|
|
.Bd -literal -compact
|
|
*p -= v;
|
|
.Ed
|
|
.It Fn atomic_store p v
|
|
.Bd -literal -compact
|
|
*p = v;
|
|
.Ed
|
|
.El
|
|
.Pp
|
|
The
|
|
.Fn atomic_store
|
|
functions are only provided with release memory barriers.
|
|
.Bl -hang
|
|
.It Fn atomic_swap p v
|
|
.Bd -literal -compact
|
|
tmp = *p;
|
|
*p = v;
|
|
return (tmp);
|
|
.Ed
|
|
.El
|
|
.Pp
|
|
The
|
|
.Fn atomic_swap
|
|
functions are not implemented for the types
|
|
.Dq Li char ,
|
|
.Dq Li short ,
|
|
.Dq Li ptr ,
|
|
.Dq Li 8 ,
|
|
and
|
|
.Dq Li 16
|
|
and do not have any variants with memory barriers at this time.
|
|
.Bl -hang
|
|
.It Fn atomic_testandclear p v
|
|
.Bd -literal -compact
|
|
bit = 1 << (v % (sizeof(*p) * NBBY));
|
|
tmp = (*p & bit) != 0;
|
|
*p &= ~bit;
|
|
return (tmp);
|
|
.Ed
|
|
.El
|
|
.Bl -hang
|
|
.It Fn atomic_testandset p v
|
|
.Bd -literal -compact
|
|
bit = 1 << (v % (sizeof(*p) * NBBY));
|
|
tmp = (*p & bit) != 0;
|
|
*p |= bit;
|
|
return (tmp);
|
|
.Ed
|
|
.El
|
|
.Pp
|
|
The
|
|
.Fn atomic_testandset
|
|
and
|
|
.Fn atomic_testandclear
|
|
functions are only implemented for the types
|
|
.Dq Li int ,
|
|
.Dq Li long
|
|
and
|
|
.Dq Li 32
|
|
and do not have any variants with memory barriers at this time.
|
|
.Pp
|
|
The type
|
|
.Dq Li 64
|
|
is currently not implemented for any of the atomic operations on the
|
|
.Tn arm ,
|
|
.Tn i386 ,
|
|
and
|
|
.Tn powerpc
|
|
architectures.
|
|
.Sh RETURN VALUES
|
|
The
|
|
.Fn atomic_cmpset
|
|
function returns the result of the compare operation.
|
|
The
|
|
.Fn atomic_fcmpset
|
|
function returns
|
|
.Dv true
|
|
if the operation succeeded.
|
|
Otherwise it returns
|
|
.Dv false
|
|
and sets
|
|
.Va *old
|
|
to the found value.
|
|
The
|
|
.Fn atomic_fetchadd ,
|
|
.Fn atomic_load ,
|
|
.Fn atomic_readandclear ,
|
|
and
|
|
.Fn atomic_swap
|
|
functions return the value at the specified address.
|
|
The
|
|
.Fn atomic_testandset
|
|
and
|
|
.Fn atomic_testandclear
|
|
function returns the result of the test operation.
|
|
.Sh EXAMPLES
|
|
This example uses the
|
|
.Fn atomic_cmpset_acq_ptr
|
|
and
|
|
.Fn atomic_set_ptr
|
|
functions to obtain a sleep mutex and handle recursion.
|
|
Since the
|
|
.Va mtx_lock
|
|
member of a
|
|
.Vt "struct mtx"
|
|
is a pointer, the
|
|
.Dq Li ptr
|
|
type is used.
|
|
.Bd -literal
|
|
/* Try to obtain mtx_lock once. */
|
|
#define _obtain_lock(mp, tid) \\
|
|
atomic_cmpset_acq_ptr(&(mp)->mtx_lock, MTX_UNOWNED, (tid))
|
|
|
|
/* Get a sleep lock, deal with recursion inline. */
|
|
#define _get_sleep_lock(mp, tid, opts, file, line) do { \\
|
|
uintptr_t _tid = (uintptr_t)(tid); \\
|
|
\\
|
|
if (!_obtain_lock(mp, tid)) { \\
|
|
if (((mp)->mtx_lock & MTX_FLAGMASK) != _tid) \\
|
|
_mtx_lock_sleep((mp), _tid, (opts), (file), (line));\\
|
|
else { \\
|
|
atomic_set_ptr(&(mp)->mtx_lock, MTX_RECURSE); \\
|
|
(mp)->mtx_recurse++; \\
|
|
} \\
|
|
} \\
|
|
} while (0)
|
|
.Ed
|
|
.Sh HISTORY
|
|
The
|
|
.Fn atomic_add ,
|
|
.Fn atomic_clear ,
|
|
.Fn atomic_set ,
|
|
and
|
|
.Fn atomic_subtract
|
|
operations were first introduced in
|
|
.Fx 3.0 .
|
|
This first set only supported the types
|
|
.Dq Li char ,
|
|
.Dq Li short ,
|
|
.Dq Li int ,
|
|
and
|
|
.Dq Li long .
|
|
The
|
|
.Fn atomic_cmpset ,
|
|
.Fn atomic_load ,
|
|
.Fn atomic_readandclear ,
|
|
and
|
|
.Fn atomic_store
|
|
operations were added in
|
|
.Fx 5.0 .
|
|
The types
|
|
.Dq Li 8 ,
|
|
.Dq Li 16 ,
|
|
.Dq Li 32 ,
|
|
.Dq Li 64 ,
|
|
and
|
|
.Dq Li ptr
|
|
and all of the acquire and release variants
|
|
were added in
|
|
.Fx 5.0
|
|
as well.
|
|
The
|
|
.Fn atomic_fetchadd
|
|
operations were added in
|
|
.Fx 6.0 .
|
|
The
|
|
.Fn atomic_swap
|
|
and
|
|
.Fn atomic_testandset
|
|
operations were added in
|
|
.Fx 10.0 .
|
|
.Fn atomic_testandclear
|
|
operation was added in
|
|
.Fx 11.0 .
|