281c86a4ef
Reviewed by: rwatson, zec Approved by: re
635 lines
18 KiB
C
635 lines
18 KiB
C
/*-
|
|
* Copyright (c) 2004-2009 University of Zagreb
|
|
* Copyright (c) 2006-2009 FreeBSD Foundation
|
|
* All rights reserved.
|
|
*
|
|
* This software was developed by the University of Zagreb and the
|
|
* FreeBSD Foundation under sponsorship by the Stichting NLnet and the
|
|
* FreeBSD Foundation.
|
|
*
|
|
* Copyright (c) 2009 Jeffrey Roberson <jeff@freebsd.org>
|
|
* Copyright (c) 2009 Robert N. M. Watson
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_ddb.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/jail.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/linker_set.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sx.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#ifdef DDB
|
|
#include <ddb/ddb.h>
|
|
#endif
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#include <net/vnet.h>
|
|
|
|
/*-
|
|
* This file implements core functions for virtual network stacks:
|
|
*
|
|
* - Virtual network stack management functions.
|
|
*
|
|
* - Virtual network stack memory allocator, which virtualizes global
|
|
* variables in the network stack
|
|
*
|
|
* - Virtualized SYSINIT's/SYSUNINIT's, which allow network stack subsystems
|
|
* to register startup/shutdown events to be run for each virtual network
|
|
* stack instance.
|
|
*/
|
|
|
|
MALLOC_DEFINE(M_VNET, "vnet", "network stack control block");
|
|
|
|
/*
|
|
* The virtual network stack list has two read-write locks, one sleepable and
|
|
* the other not, so that the list can be stablized and walked in a variety
|
|
* of network stack contexts. Both must be acquired exclusively to modify
|
|
* the list, but a read lock of either lock is sufficient to walk the list.
|
|
*/
|
|
struct rwlock vnet_rwlock;
|
|
struct sx vnet_sxlock;
|
|
|
|
#define VNET_LIST_WLOCK() do { \
|
|
sx_xlock(&vnet_sxlock); \
|
|
rw_wlock(&vnet_rwlock); \
|
|
} while (0)
|
|
|
|
#define VNET_LIST_WUNLOCK() do { \
|
|
rw_wunlock(&vnet_rwlock); \
|
|
sx_xunlock(&vnet_sxlock); \
|
|
} while (0)
|
|
|
|
struct vnet_list_head vnet_head;
|
|
struct vnet *vnet0;
|
|
|
|
/*
|
|
* The virtual network stack allocator provides storage for virtualized
|
|
* global variables. These variables are defined/declared using the
|
|
* VNET_DEFINE()/VNET_DECLARE() macros, which place them in the 'set_vnet'
|
|
* linker set. The details of the implementation are somewhat subtle, but
|
|
* allow the majority of most network subsystems to maintain
|
|
* virtualization-agnostic.
|
|
*
|
|
* The virtual network stack allocator handles variables in the base kernel
|
|
* vs. modules in similar but different ways. In both cases, virtualized
|
|
* global variables are marked as such by being declared to be part of the
|
|
* vnet linker set. These "master" copies of global variables serve two
|
|
* functions:
|
|
*
|
|
* (1) They contain static initialization or "default" values for global
|
|
* variables which will be propagated to each virtual network stack
|
|
* instance when created. As with normal global variables, they default
|
|
* to zero-filled.
|
|
*
|
|
* (2) They act as unique global names by which the variable can be referred
|
|
* to, regardless of network stack instance. The single global symbol
|
|
* will be used to calculate the location of a per-virtual instance
|
|
* variable at run-time.
|
|
*
|
|
* Each virtual network stack instance has a complete copy of each
|
|
* virtualized global variable, stored in a malloc'd block of memory
|
|
* referred to by vnet->vnet_data_mem. Critical to the design is that each
|
|
* per-instance memory block is laid out identically to the master block so
|
|
* that the offset of each global variable is the same across all blocks. To
|
|
* optimize run-time access, a precalculated 'base' address,
|
|
* vnet->vnet_data_base, is stored in each vnet, and is the amount that can
|
|
* be added to the address of a 'master' instance of a variable to get to the
|
|
* per-vnet instance.
|
|
*
|
|
* Virtualized global variables are handled in a similar manner, but as each
|
|
* module has its own 'set_vnet' linker set, and we want to keep all
|
|
* virtualized globals togther, we reserve space in the kernel's linker set
|
|
* for potential module variables using a per-vnet character array,
|
|
* 'modspace'. The virtual network stack allocator maintains a free list to
|
|
* track what space in the array is free (all, initially) and as modules are
|
|
* linked, allocates portions of the space to specific globals. The kernel
|
|
* module linker queries the virtual network stack allocator and will
|
|
* bind references of the global to the location during linking. It also
|
|
* calls into the virtual network stack allocator, once the memory is
|
|
* initialized, in order to propagate the new static initializations to all
|
|
* existing virtual network stack instances so that the soon-to-be executing
|
|
* module will find every network stack instance with proper default values.
|
|
*/
|
|
|
|
/*
|
|
* Location of the kernel's 'set_vnet' linker set.
|
|
*/
|
|
extern uintptr_t *__start_set_vnet;
|
|
extern uintptr_t *__stop_set_vnet;
|
|
|
|
#define VNET_START (uintptr_t)&__start_set_vnet
|
|
#define VNET_STOP (uintptr_t)&__stop_set_vnet
|
|
|
|
/*
|
|
* Number of bytes of data in the 'set_vnet' linker set, and hence the total
|
|
* size of all kernel virtualized global variables, and the malloc(9) type
|
|
* that will be used to allocate it.
|
|
*/
|
|
#define VNET_BYTES (VNET_STOP - VNET_START)
|
|
|
|
MALLOC_DEFINE(M_VNET_DATA, "vnet_data", "VNET data");
|
|
|
|
/*
|
|
* VNET_MODMIN is the minimum number of bytes we will reserve for the sum of
|
|
* global variables across all loaded modules. As this actually sizes an
|
|
* array declared as a virtualized global variable in the kernel itself, and
|
|
* we want the virtualized global variable space to be page-sized, we may
|
|
* have more space than that in practice.
|
|
*/
|
|
#define VNET_MODMIN 8192
|
|
#define VNET_SIZE roundup2(VNET_BYTES, PAGE_SIZE)
|
|
#define VNET_MODSIZE (VNET_SIZE - (VNET_BYTES - VNET_MODMIN))
|
|
|
|
/*
|
|
* Space to store virtualized global variables from loadable kernel modules,
|
|
* and the free list to manage it.
|
|
*/
|
|
static VNET_DEFINE(char, modspace[VNET_MODMIN]);
|
|
|
|
/*
|
|
* Global lists of subsystem constructor and destructors for vnets. They are
|
|
* registered via VNET_SYSINIT() and VNET_SYSUNINIT(). The lists are
|
|
* protected by the vnet_sxlock global lock.
|
|
*/
|
|
static TAILQ_HEAD(vnet_sysinit_head, vnet_sysinit) vnet_constructors =
|
|
TAILQ_HEAD_INITIALIZER(vnet_constructors);
|
|
static TAILQ_HEAD(vnet_sysuninit_head, vnet_sysinit) vnet_destructors =
|
|
TAILQ_HEAD_INITIALIZER(vnet_destructors);
|
|
|
|
struct vnet_data_free {
|
|
uintptr_t vnd_start;
|
|
int vnd_len;
|
|
TAILQ_ENTRY(vnet_data_free) vnd_link;
|
|
};
|
|
|
|
MALLOC_DEFINE(M_VNET_DATA_FREE, "vnet_data_free", "VNET resource accounting");
|
|
static TAILQ_HEAD(, vnet_data_free) vnet_data_free_head =
|
|
TAILQ_HEAD_INITIALIZER(vnet_data_free_head);
|
|
static struct sx vnet_data_free_lock;
|
|
|
|
/*
|
|
* Allocate a virtual network stack.
|
|
*/
|
|
struct vnet *
|
|
vnet_alloc(void)
|
|
{
|
|
struct vnet *vnet;
|
|
|
|
vnet = malloc(sizeof(struct vnet), M_VNET, M_WAITOK | M_ZERO);
|
|
vnet->vnet_magic_n = VNET_MAGIC_N;
|
|
|
|
/*
|
|
* Allocate storage for virtualized global variables and copy in
|
|
* initial values form our 'master' copy.
|
|
*/
|
|
vnet->vnet_data_mem = malloc(VNET_SIZE, M_VNET_DATA, M_WAITOK);
|
|
memcpy(vnet->vnet_data_mem, (void *)VNET_START, VNET_BYTES);
|
|
|
|
/*
|
|
* All use of vnet-specific data will immediately subtract VNET_START
|
|
* from the base memory pointer, so pre-calculate that now to avoid
|
|
* it on each use.
|
|
*/
|
|
vnet->vnet_data_base = (uintptr_t)vnet->vnet_data_mem - VNET_START;
|
|
|
|
/* Initialize / attach vnet module instances. */
|
|
CURVNET_SET_QUIET(vnet);
|
|
|
|
sx_xlock(&vnet_sxlock);
|
|
vnet_sysinit();
|
|
CURVNET_RESTORE();
|
|
|
|
rw_wlock(&vnet_rwlock);
|
|
LIST_INSERT_HEAD(&vnet_head, vnet, vnet_le);
|
|
VNET_LIST_WUNLOCK();
|
|
|
|
return (vnet);
|
|
}
|
|
|
|
/*
|
|
* Destroy a virtual network stack.
|
|
*/
|
|
void
|
|
vnet_destroy(struct vnet *vnet)
|
|
{
|
|
struct ifnet *ifp, *nifp;
|
|
|
|
KASSERT(vnet->vnet_sockcnt == 0,
|
|
("%s: vnet still has sockets", __func__));
|
|
|
|
VNET_LIST_WLOCK();
|
|
LIST_REMOVE(vnet, vnet_le);
|
|
rw_wunlock(&vnet_rwlock);
|
|
|
|
CURVNET_SET_QUIET(vnet);
|
|
|
|
/* Return all inherited interfaces to their parent vnets. */
|
|
TAILQ_FOREACH_SAFE(ifp, &V_ifnet, if_link, nifp) {
|
|
if (ifp->if_home_vnet != ifp->if_vnet)
|
|
if_vmove(ifp, ifp->if_home_vnet);
|
|
}
|
|
|
|
vnet_sysuninit();
|
|
sx_xunlock(&vnet_sxlock);
|
|
|
|
CURVNET_RESTORE();
|
|
|
|
/*
|
|
* Release storage for the virtual network stack instance.
|
|
*/
|
|
free(vnet->vnet_data_mem, M_VNET_DATA);
|
|
vnet->vnet_data_mem = NULL;
|
|
vnet->vnet_data_base = 0;
|
|
vnet->vnet_magic_n = 0xdeadbeef;
|
|
free(vnet, M_VNET);
|
|
}
|
|
|
|
/*
|
|
* Boot time initialization and allocation of virtual network stacks.
|
|
*/
|
|
static void
|
|
vnet_init_prelink(void *arg)
|
|
{
|
|
|
|
rw_init(&vnet_rwlock, "vnet_rwlock");
|
|
sx_init(&vnet_sxlock, "vnet_sxlock");
|
|
LIST_INIT(&vnet_head);
|
|
}
|
|
SYSINIT(vnet_init_prelink, SI_SUB_VNET_PRELINK, SI_ORDER_FIRST,
|
|
vnet_init_prelink, NULL);
|
|
|
|
static void
|
|
vnet0_init(void *arg)
|
|
{
|
|
|
|
/* Warn people before take off - in case we crash early. */
|
|
printf("WARNING: VIMAGE (virtualized network stack) is a highly "
|
|
"experimental feature.\n");
|
|
|
|
/*
|
|
* We MUST clear curvnet in vi_init_done() before going SMP,
|
|
* otherwise CURVNET_SET() macros would scream about unnecessary
|
|
* curvnet recursions.
|
|
*/
|
|
curvnet = prison0.pr_vnet = vnet0 = vnet_alloc();
|
|
}
|
|
SYSINIT(vnet0_init, SI_SUB_VNET, SI_ORDER_FIRST, vnet0_init, NULL);
|
|
|
|
static void
|
|
vnet_init_done(void *unused)
|
|
{
|
|
|
|
curvnet = NULL;
|
|
}
|
|
|
|
SYSINIT(vnet_init_done, SI_SUB_VNET_DONE, SI_ORDER_FIRST, vnet_init_done,
|
|
NULL);
|
|
|
|
/*
|
|
* Once on boot, initialize the modspace freelist to entirely cover modspace.
|
|
*/
|
|
static void
|
|
vnet_data_startup(void *dummy __unused)
|
|
{
|
|
struct vnet_data_free *df;
|
|
|
|
df = malloc(sizeof(*df), M_VNET_DATA_FREE, M_WAITOK | M_ZERO);
|
|
df->vnd_start = (uintptr_t)&VNET_NAME(modspace);
|
|
df->vnd_len = VNET_MODSIZE;
|
|
TAILQ_INSERT_HEAD(&vnet_data_free_head, df, vnd_link);
|
|
sx_init(&vnet_data_free_lock, "vnet_data alloc lock");
|
|
}
|
|
SYSINIT(vnet_data, SI_SUB_KLD, SI_ORDER_FIRST, vnet_data_startup, 0);
|
|
|
|
/*
|
|
* When a module is loaded and requires storage for a virtualized global
|
|
* variable, allocate space from the modspace free list. This interface
|
|
* should be used only by the kernel linker.
|
|
*/
|
|
void *
|
|
vnet_data_alloc(int size)
|
|
{
|
|
struct vnet_data_free *df;
|
|
void *s;
|
|
|
|
s = NULL;
|
|
size = roundup2(size, sizeof(void *));
|
|
sx_xlock(&vnet_data_free_lock);
|
|
TAILQ_FOREACH(df, &vnet_data_free_head, vnd_link) {
|
|
if (df->vnd_len < size)
|
|
continue;
|
|
if (df->vnd_len == size) {
|
|
s = (void *)df->vnd_start;
|
|
TAILQ_REMOVE(&vnet_data_free_head, df, vnd_link);
|
|
free(df, M_VNET_DATA_FREE);
|
|
break;
|
|
}
|
|
s = (void *)df->vnd_start;
|
|
df->vnd_len -= size;
|
|
df->vnd_start = df->vnd_start + size;
|
|
break;
|
|
}
|
|
sx_xunlock(&vnet_data_free_lock);
|
|
|
|
return (s);
|
|
}
|
|
|
|
/*
|
|
* Free space for a virtualized global variable on module unload.
|
|
*/
|
|
void
|
|
vnet_data_free(void *start_arg, int size)
|
|
{
|
|
struct vnet_data_free *df;
|
|
struct vnet_data_free *dn;
|
|
uintptr_t start;
|
|
uintptr_t end;
|
|
|
|
size = roundup2(size, sizeof(void *));
|
|
start = (uintptr_t)start_arg;
|
|
end = start + size;
|
|
/*
|
|
* Free a region of space and merge it with as many neighbors as
|
|
* possible. Keeping the list sorted simplifies this operation.
|
|
*/
|
|
sx_xlock(&vnet_data_free_lock);
|
|
TAILQ_FOREACH(df, &vnet_data_free_head, vnd_link) {
|
|
if (df->vnd_start > end)
|
|
break;
|
|
/*
|
|
* If we expand at the end of an entry we may have to merge
|
|
* it with the one following it as well.
|
|
*/
|
|
if (df->vnd_start + df->vnd_len == start) {
|
|
df->vnd_len += size;
|
|
dn = TAILQ_NEXT(df, vnd_link);
|
|
if (df->vnd_start + df->vnd_len == dn->vnd_start) {
|
|
df->vnd_len += dn->vnd_len;
|
|
TAILQ_REMOVE(&vnet_data_free_head, dn,
|
|
vnd_link);
|
|
free(dn, M_VNET_DATA_FREE);
|
|
}
|
|
sx_xunlock(&vnet_data_free_lock);
|
|
return;
|
|
}
|
|
if (df->vnd_start == end) {
|
|
df->vnd_start = start;
|
|
df->vnd_len += size;
|
|
sx_xunlock(&vnet_data_free_lock);
|
|
return;
|
|
}
|
|
}
|
|
dn = malloc(sizeof(*df), M_VNET_DATA_FREE, M_WAITOK | M_ZERO);
|
|
dn->vnd_start = start;
|
|
dn->vnd_len = size;
|
|
if (df)
|
|
TAILQ_INSERT_BEFORE(df, dn, vnd_link);
|
|
else
|
|
TAILQ_INSERT_TAIL(&vnet_data_free_head, dn, vnd_link);
|
|
sx_xunlock(&vnet_data_free_lock);
|
|
}
|
|
|
|
/*
|
|
* When a new virtualized global variable has been allocated, propagate its
|
|
* initial value to each already-allocated virtual network stack instance.
|
|
*/
|
|
void
|
|
vnet_data_copy(void *start, int size)
|
|
{
|
|
struct vnet *vnet;
|
|
|
|
VNET_LIST_RLOCK();
|
|
LIST_FOREACH(vnet, &vnet_head, vnet_le)
|
|
memcpy((void *)((uintptr_t)vnet->vnet_data_base +
|
|
(uintptr_t)start), start, size);
|
|
VNET_LIST_RUNLOCK();
|
|
}
|
|
|
|
/*
|
|
* Variants on sysctl_handle_foo that know how to handle virtualized global
|
|
* variables: if 'arg1' is a pointer, then we transform it to the local vnet
|
|
* offset.
|
|
*/
|
|
int
|
|
vnet_sysctl_handle_int(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
|
|
if (arg1 != NULL)
|
|
arg1 = (void *)(curvnet->vnet_data_base + (uintptr_t)arg1);
|
|
return (sysctl_handle_int(oidp, arg1, arg2, req));
|
|
}
|
|
|
|
int
|
|
vnet_sysctl_handle_opaque(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
|
|
if (arg1 != NULL)
|
|
arg1 = (void *)(curvnet->vnet_data_base + (uintptr_t)arg1);
|
|
return (sysctl_handle_opaque(oidp, arg1, arg2, req));
|
|
}
|
|
|
|
int
|
|
vnet_sysctl_handle_string(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
|
|
if (arg1 != NULL)
|
|
arg1 = (void *)(curvnet->vnet_data_base + (uintptr_t)arg1);
|
|
return (sysctl_handle_string(oidp, arg1, arg2, req));
|
|
}
|
|
|
|
int
|
|
vnet_sysctl_handle_uint(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
|
|
if (arg1 != NULL)
|
|
arg1 = (void *)(curvnet->vnet_data_base + (uintptr_t)arg1);
|
|
return (sysctl_handle_int(oidp, arg1, arg2, req));
|
|
}
|
|
|
|
/*
|
|
* Support for special SYSINIT handlers registered via VNET_SYSINIT()
|
|
* and VNET_SYSUNINIT().
|
|
*/
|
|
void
|
|
vnet_register_sysinit(void *arg)
|
|
{
|
|
struct vnet_sysinit *vs, *vs2;
|
|
struct vnet *vnet;
|
|
|
|
vs = arg;
|
|
KASSERT(vs->subsystem > SI_SUB_VNET, ("vnet sysinit too early"));
|
|
|
|
/* Add the constructor to the global list of vnet constructors. */
|
|
sx_xlock(&vnet_sxlock);
|
|
TAILQ_FOREACH(vs2, &vnet_constructors, link) {
|
|
if (vs2->subsystem > vs->subsystem)
|
|
break;
|
|
if (vs2->subsystem == vs->subsystem && vs2->order > vs->order)
|
|
break;
|
|
}
|
|
if (vs2 != NULL)
|
|
TAILQ_INSERT_BEFORE(vs2, vs, link);
|
|
else
|
|
TAILQ_INSERT_TAIL(&vnet_constructors, vs, link);
|
|
|
|
/*
|
|
* Invoke the constructor on all the existing vnets when it is
|
|
* registered.
|
|
*/
|
|
VNET_FOREACH(vnet) {
|
|
CURVNET_SET_QUIET(vnet);
|
|
vs->func(vs->arg);
|
|
CURVNET_RESTORE();
|
|
}
|
|
sx_xunlock(&vnet_sxlock);
|
|
}
|
|
|
|
void
|
|
vnet_deregister_sysinit(void *arg)
|
|
{
|
|
struct vnet_sysinit *vs;
|
|
|
|
vs = arg;
|
|
|
|
/* Remove the constructor from the global list of vnet constructors. */
|
|
sx_xlock(&vnet_sxlock);
|
|
TAILQ_REMOVE(&vnet_constructors, vs, link);
|
|
sx_xunlock(&vnet_sxlock);
|
|
}
|
|
|
|
void
|
|
vnet_register_sysuninit(void *arg)
|
|
{
|
|
struct vnet_sysinit *vs, *vs2;
|
|
|
|
vs = arg;
|
|
|
|
/* Add the destructor to the global list of vnet destructors. */
|
|
sx_xlock(&vnet_sxlock);
|
|
TAILQ_FOREACH(vs2, &vnet_destructors, link) {
|
|
if (vs2->subsystem > vs->subsystem)
|
|
break;
|
|
if (vs2->subsystem == vs->subsystem && vs2->order > vs->order)
|
|
break;
|
|
}
|
|
if (vs2 != NULL)
|
|
TAILQ_INSERT_BEFORE(vs2, vs, link);
|
|
else
|
|
TAILQ_INSERT_TAIL(&vnet_destructors, vs, link);
|
|
sx_xunlock(&vnet_sxlock);
|
|
}
|
|
|
|
void
|
|
vnet_deregister_sysuninit(void *arg)
|
|
{
|
|
struct vnet_sysinit *vs;
|
|
struct vnet *vnet;
|
|
|
|
vs = arg;
|
|
|
|
/*
|
|
* Invoke the destructor on all the existing vnets when it is
|
|
* deregistered.
|
|
*/
|
|
sx_xlock(&vnet_sxlock);
|
|
VNET_FOREACH(vnet) {
|
|
CURVNET_SET_QUIET(vnet);
|
|
vs->func(vs->arg);
|
|
CURVNET_RESTORE();
|
|
}
|
|
|
|
/* Remove the destructor from the global list of vnet destructors. */
|
|
TAILQ_REMOVE(&vnet_destructors, vs, link);
|
|
sx_xunlock(&vnet_sxlock);
|
|
}
|
|
|
|
/*
|
|
* Invoke all registered vnet constructors on the current vnet. Used during
|
|
* vnet construction. The caller is responsible for ensuring the new vnet is
|
|
* the current vnet and that the vnet_sxlock lock is locked.
|
|
*/
|
|
void
|
|
vnet_sysinit(void)
|
|
{
|
|
struct vnet_sysinit *vs;
|
|
|
|
sx_assert(&vnet_sxlock, SA_LOCKED);
|
|
TAILQ_FOREACH(vs, &vnet_constructors, link) {
|
|
vs->func(vs->arg);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Invoke all registered vnet destructors on the current vnet. Used during
|
|
* vnet destruction. The caller is responsible for ensuring the dying vnet
|
|
* is the current vnet and that the vnet_sxlock lock is locked.
|
|
*/
|
|
void
|
|
vnet_sysuninit(void)
|
|
{
|
|
struct vnet_sysinit *vs;
|
|
|
|
sx_assert(&vnet_sxlock, SA_LOCKED);
|
|
TAILQ_FOREACH_REVERSE(vs, &vnet_destructors, vnet_sysuninit_head,
|
|
link) {
|
|
vs->func(vs->arg);
|
|
}
|
|
}
|
|
|
|
#ifdef DDB
|
|
DB_SHOW_COMMAND(vnets, db_show_vnets)
|
|
{
|
|
VNET_ITERATOR_DECL(vnet_iter);
|
|
|
|
VNET_FOREACH(vnet_iter) {
|
|
db_printf("vnet = %p\n", vnet_iter);
|
|
db_printf(" vnet_magic_n = 0x%x (%s, orig 0x%x)\n",
|
|
vnet_iter->vnet_magic_n,
|
|
(vnet_iter->vnet_magic_n == VNET_MAGIC_N) ?
|
|
"ok" : "mismatch", VNET_MAGIC_N);
|
|
db_printf(" vnet_ifcnt = %u\n", vnet_iter->vnet_ifcnt);
|
|
db_printf(" vnet_sockcnt = %u\n", vnet_iter->vnet_sockcnt);
|
|
db_printf(" vnet_data_mem = %p\n", vnet_iter->vnet_data_mem);
|
|
db_printf(" vnet_data_base = 0x%jx\n",
|
|
(uintmax_t)vnet_iter->vnet_data_base);
|
|
db_printf("\n");
|
|
if (db_pager_quit)
|
|
break;
|
|
}
|
|
}
|
|
#endif
|