1086f54219
This reverts commit aa7aab6c457f106d2b794b9adf3fe5aa451ad8e. The change is not compatible with CentOS 6's 2.6.32 based kernel due to differnces in the bio layer. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Issue #8961
956 lines
24 KiB
C
956 lines
24 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
|
|
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
|
|
* Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
|
|
* LLNL-CODE-403049.
|
|
* Copyright (c) 2012, 2019 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/vdev_disk.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/vdev_trim.h>
|
|
#include <sys/abd.h>
|
|
#include <sys/fs/zfs.h>
|
|
#include <sys/zio.h>
|
|
#include <linux/mod_compat.h>
|
|
#include <linux/msdos_fs.h>
|
|
#include <linux/vfs_compat.h>
|
|
|
|
char *zfs_vdev_scheduler = VDEV_SCHEDULER;
|
|
static void *zfs_vdev_holder = VDEV_HOLDER;
|
|
|
|
/* size of the "reserved" partition, in blocks */
|
|
#define EFI_MIN_RESV_SIZE (16 * 1024)
|
|
|
|
/*
|
|
* Virtual device vector for disks.
|
|
*/
|
|
typedef struct dio_request {
|
|
zio_t *dr_zio; /* Parent ZIO */
|
|
atomic_t dr_ref; /* References */
|
|
int dr_error; /* Bio error */
|
|
int dr_bio_count; /* Count of bio's */
|
|
struct bio *dr_bio[0]; /* Attached bio's */
|
|
} dio_request_t;
|
|
|
|
|
|
#if defined(HAVE_OPEN_BDEV_EXCLUSIVE) || defined(HAVE_BLKDEV_GET_BY_PATH)
|
|
static fmode_t
|
|
vdev_bdev_mode(int smode)
|
|
{
|
|
fmode_t mode = 0;
|
|
|
|
ASSERT3S(smode & (FREAD | FWRITE), !=, 0);
|
|
|
|
if (smode & FREAD)
|
|
mode |= FMODE_READ;
|
|
|
|
if (smode & FWRITE)
|
|
mode |= FMODE_WRITE;
|
|
|
|
return (mode);
|
|
}
|
|
#else
|
|
static int
|
|
vdev_bdev_mode(int smode)
|
|
{
|
|
int mode = 0;
|
|
|
|
ASSERT3S(smode & (FREAD | FWRITE), !=, 0);
|
|
|
|
if ((smode & FREAD) && !(smode & FWRITE))
|
|
mode = SB_RDONLY;
|
|
|
|
return (mode);
|
|
}
|
|
#endif /* HAVE_OPEN_BDEV_EXCLUSIVE */
|
|
|
|
/*
|
|
* Returns the usable capacity (in bytes) for the partition or disk.
|
|
*/
|
|
static uint64_t
|
|
bdev_capacity(struct block_device *bdev)
|
|
{
|
|
return (i_size_read(bdev->bd_inode));
|
|
}
|
|
|
|
/*
|
|
* Returns the maximum expansion capacity of the block device (in bytes).
|
|
*
|
|
* It is possible to expand a vdev when it has been created as a wholedisk
|
|
* and the containing block device has increased in capacity. Or when the
|
|
* partition containing the pool has been manually increased in size.
|
|
*
|
|
* This function is only responsible for calculating the potential expansion
|
|
* size so it can be reported by 'zpool list'. The efi_use_whole_disk() is
|
|
* responsible for verifying the expected partition layout in the wholedisk
|
|
* case, and updating the partition table if appropriate. Once the partition
|
|
* size has been increased the additional capacity will be visible using
|
|
* bdev_capacity().
|
|
*
|
|
* The returned maximum expansion capacity is always expected to be larger, or
|
|
* at the very least equal, to its usable capacity to prevent overestimating
|
|
* the pool expandsize.
|
|
*/
|
|
static uint64_t
|
|
bdev_max_capacity(struct block_device *bdev, uint64_t wholedisk)
|
|
{
|
|
uint64_t psize;
|
|
int64_t available;
|
|
|
|
if (wholedisk && bdev->bd_part != NULL && bdev != bdev->bd_contains) {
|
|
/*
|
|
* When reporting maximum expansion capacity for a wholedisk
|
|
* deduct any capacity which is expected to be lost due to
|
|
* alignment restrictions. Over reporting this value isn't
|
|
* harmful and would only result in slightly less capacity
|
|
* than expected post expansion.
|
|
* The estimated available space may be slightly smaller than
|
|
* bdev_capacity() for devices where the number of sectors is
|
|
* not a multiple of the alignment size and the partition layout
|
|
* is keeping less than PARTITION_END_ALIGNMENT bytes after the
|
|
* "reserved" EFI partition: in such cases return the device
|
|
* usable capacity.
|
|
*/
|
|
available = i_size_read(bdev->bd_contains->bd_inode) -
|
|
((EFI_MIN_RESV_SIZE + NEW_START_BLOCK +
|
|
PARTITION_END_ALIGNMENT) << SECTOR_BITS);
|
|
psize = MAX(available, bdev_capacity(bdev));
|
|
} else {
|
|
psize = bdev_capacity(bdev);
|
|
}
|
|
|
|
return (psize);
|
|
}
|
|
|
|
static void
|
|
vdev_disk_error(zio_t *zio)
|
|
{
|
|
/*
|
|
* This function can be called in interrupt context, for instance while
|
|
* handling IRQs coming from a misbehaving disk device; use printk()
|
|
* which is safe from any context.
|
|
*/
|
|
printk(KERN_WARNING "zio pool=%s vdev=%s error=%d type=%d "
|
|
"offset=%llu size=%llu flags=%x\n", spa_name(zio->io_spa),
|
|
zio->io_vd->vdev_path, zio->io_error, zio->io_type,
|
|
(u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size,
|
|
zio->io_flags);
|
|
}
|
|
|
|
/*
|
|
* Use the Linux 'noop' elevator for zfs managed block devices. This
|
|
* strikes the ideal balance by allowing the zfs elevator to do all
|
|
* request ordering and prioritization. While allowing the Linux
|
|
* elevator to do the maximum front/back merging allowed by the
|
|
* physical device. This yields the largest possible requests for
|
|
* the device with the lowest total overhead.
|
|
*/
|
|
static void
|
|
vdev_elevator_switch(vdev_t *v, char *elevator)
|
|
{
|
|
vdev_disk_t *vd = v->vdev_tsd;
|
|
struct request_queue *q;
|
|
char *device;
|
|
int error;
|
|
|
|
for (int c = 0; c < v->vdev_children; c++)
|
|
vdev_elevator_switch(v->vdev_child[c], elevator);
|
|
|
|
if (!v->vdev_ops->vdev_op_leaf || vd->vd_bdev == NULL)
|
|
return;
|
|
|
|
q = bdev_get_queue(vd->vd_bdev);
|
|
device = vd->vd_bdev->bd_disk->disk_name;
|
|
|
|
/*
|
|
* Skip devices which are not whole disks (partitions).
|
|
* Device-mapper devices are excepted since they may be whole
|
|
* disks despite the vdev_wholedisk flag, in which case we can
|
|
* and should switch the elevator. If the device-mapper device
|
|
* does not have an elevator (i.e. dm-raid, dm-crypt, etc.) the
|
|
* "Skip devices without schedulers" check below will fail.
|
|
*/
|
|
if (!v->vdev_wholedisk && strncmp(device, "dm-", 3) != 0)
|
|
return;
|
|
|
|
/* Leave existing scheduler when set to "none" */
|
|
if ((strncmp(elevator, "none", 4) == 0) && (strlen(elevator) == 4))
|
|
return;
|
|
|
|
/*
|
|
* The elevator_change() function was available in kernels from
|
|
* 2.6.36 to 4.11. When not available fall back to using the user
|
|
* mode helper functionality to set the elevator via sysfs. This
|
|
* requires /bin/echo and sysfs to be mounted which may not be true
|
|
* early in the boot process.
|
|
*/
|
|
#ifdef HAVE_ELEVATOR_CHANGE
|
|
error = elevator_change(q, elevator);
|
|
#else
|
|
#define SET_SCHEDULER_CMD \
|
|
"exec 0</dev/null " \
|
|
" 1>/sys/block/%s/queue/scheduler " \
|
|
" 2>/dev/null; " \
|
|
"echo %s"
|
|
|
|
char *argv[] = { "/bin/sh", "-c", NULL, NULL };
|
|
char *envp[] = { NULL };
|
|
|
|
argv[2] = kmem_asprintf(SET_SCHEDULER_CMD, device, elevator);
|
|
error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
|
|
strfree(argv[2]);
|
|
#endif /* HAVE_ELEVATOR_CHANGE */
|
|
if (error) {
|
|
zfs_dbgmsg("Unable to set \"%s\" scheduler for %s (%s): %d",
|
|
elevator, v->vdev_path, device, error);
|
|
}
|
|
}
|
|
|
|
static int
|
|
vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize,
|
|
uint64_t *ashift)
|
|
{
|
|
struct block_device *bdev;
|
|
fmode_t mode = vdev_bdev_mode(spa_mode(v->vdev_spa));
|
|
int count = 0, block_size;
|
|
int bdev_retry_count = 50;
|
|
vdev_disk_t *vd;
|
|
|
|
/* Must have a pathname and it must be absolute. */
|
|
if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
|
|
v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
|
|
vdev_dbgmsg(v, "invalid vdev_path");
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
/*
|
|
* Reopen the device if it is currently open. When expanding a
|
|
* partition force re-scanning the partition table while closed
|
|
* in order to get an accurate updated block device size. Then
|
|
* since udev may need to recreate the device links increase the
|
|
* open retry count before reporting the device as unavailable.
|
|
*/
|
|
vd = v->vdev_tsd;
|
|
if (vd) {
|
|
char disk_name[BDEVNAME_SIZE + 6] = "/dev/";
|
|
boolean_t reread_part = B_FALSE;
|
|
|
|
rw_enter(&vd->vd_lock, RW_WRITER);
|
|
bdev = vd->vd_bdev;
|
|
vd->vd_bdev = NULL;
|
|
|
|
if (bdev) {
|
|
if (v->vdev_expanding && bdev != bdev->bd_contains) {
|
|
bdevname(bdev->bd_contains, disk_name + 5);
|
|
reread_part = B_TRUE;
|
|
}
|
|
|
|
vdev_bdev_close(bdev, mode);
|
|
}
|
|
|
|
if (reread_part) {
|
|
bdev = vdev_bdev_open(disk_name, mode, zfs_vdev_holder);
|
|
if (!IS_ERR(bdev)) {
|
|
int error = vdev_bdev_reread_part(bdev);
|
|
vdev_bdev_close(bdev, mode);
|
|
if (error == 0)
|
|
bdev_retry_count = 100;
|
|
}
|
|
}
|
|
} else {
|
|
vd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
|
|
|
|
rw_init(&vd->vd_lock, NULL, RW_DEFAULT, NULL);
|
|
rw_enter(&vd->vd_lock, RW_WRITER);
|
|
}
|
|
|
|
/*
|
|
* Devices are always opened by the path provided at configuration
|
|
* time. This means that if the provided path is a udev by-id path
|
|
* then drives may be re-cabled without an issue. If the provided
|
|
* path is a udev by-path path, then the physical location information
|
|
* will be preserved. This can be critical for more complicated
|
|
* configurations where drives are located in specific physical
|
|
* locations to maximize the systems tolerance to component failure.
|
|
*
|
|
* Alternatively, you can provide your own udev rule to flexibly map
|
|
* the drives as you see fit. It is not advised that you use the
|
|
* /dev/[hd]d devices which may be reordered due to probing order.
|
|
* Devices in the wrong locations will be detected by the higher
|
|
* level vdev validation.
|
|
*
|
|
* The specified paths may be briefly removed and recreated in
|
|
* response to udev events. This should be exceptionally unlikely
|
|
* because the zpool command makes every effort to verify these paths
|
|
* have already settled prior to reaching this point. Therefore,
|
|
* a ENOENT failure at this point is highly likely to be transient
|
|
* and it is reasonable to sleep and retry before giving up. In
|
|
* practice delays have been observed to be on the order of 100ms.
|
|
*/
|
|
bdev = ERR_PTR(-ENXIO);
|
|
while (IS_ERR(bdev) && count < bdev_retry_count) {
|
|
bdev = vdev_bdev_open(v->vdev_path, mode, zfs_vdev_holder);
|
|
if (unlikely(PTR_ERR(bdev) == -ENOENT)) {
|
|
schedule_timeout(MSEC_TO_TICK(10));
|
|
count++;
|
|
} else if (IS_ERR(bdev)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (IS_ERR(bdev)) {
|
|
int error = -PTR_ERR(bdev);
|
|
vdev_dbgmsg(v, "open error=%d count=%d", error, count);
|
|
vd->vd_bdev = NULL;
|
|
v->vdev_tsd = vd;
|
|
rw_exit(&vd->vd_lock);
|
|
return (SET_ERROR(error));
|
|
} else {
|
|
vd->vd_bdev = bdev;
|
|
v->vdev_tsd = vd;
|
|
rw_exit(&vd->vd_lock);
|
|
}
|
|
|
|
struct request_queue *q = bdev_get_queue(vd->vd_bdev);
|
|
|
|
/* Determine the physical block size */
|
|
block_size = vdev_bdev_block_size(vd->vd_bdev);
|
|
|
|
/* Clear the nowritecache bit, causes vdev_reopen() to try again. */
|
|
v->vdev_nowritecache = B_FALSE;
|
|
|
|
/* Set when device reports it supports TRIM. */
|
|
v->vdev_has_trim = !!blk_queue_discard(q);
|
|
|
|
/* Set when device reports it supports secure TRIM. */
|
|
v->vdev_has_securetrim = !!blk_queue_discard_secure(q);
|
|
|
|
/* Inform the ZIO pipeline that we are non-rotational */
|
|
v->vdev_nonrot = blk_queue_nonrot(q);
|
|
|
|
/* Physical volume size in bytes for the partition */
|
|
*psize = bdev_capacity(vd->vd_bdev);
|
|
|
|
/* Physical volume size in bytes including possible expansion space */
|
|
*max_psize = bdev_max_capacity(vd->vd_bdev, v->vdev_wholedisk);
|
|
|
|
/* Based on the minimum sector size set the block size */
|
|
*ashift = highbit64(MAX(block_size, SPA_MINBLOCKSIZE)) - 1;
|
|
|
|
/* Try to set the io scheduler elevator algorithm */
|
|
(void) vdev_elevator_switch(v, zfs_vdev_scheduler);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
vdev_disk_close(vdev_t *v)
|
|
{
|
|
vdev_disk_t *vd = v->vdev_tsd;
|
|
|
|
if (v->vdev_reopening || vd == NULL)
|
|
return;
|
|
|
|
if (vd->vd_bdev != NULL) {
|
|
vdev_bdev_close(vd->vd_bdev,
|
|
vdev_bdev_mode(spa_mode(v->vdev_spa)));
|
|
}
|
|
|
|
rw_destroy(&vd->vd_lock);
|
|
kmem_free(vd, sizeof (vdev_disk_t));
|
|
v->vdev_tsd = NULL;
|
|
}
|
|
|
|
static dio_request_t *
|
|
vdev_disk_dio_alloc(int bio_count)
|
|
{
|
|
dio_request_t *dr;
|
|
int i;
|
|
|
|
dr = kmem_zalloc(sizeof (dio_request_t) +
|
|
sizeof (struct bio *) * bio_count, KM_SLEEP);
|
|
if (dr) {
|
|
atomic_set(&dr->dr_ref, 0);
|
|
dr->dr_bio_count = bio_count;
|
|
dr->dr_error = 0;
|
|
|
|
for (i = 0; i < dr->dr_bio_count; i++)
|
|
dr->dr_bio[i] = NULL;
|
|
}
|
|
|
|
return (dr);
|
|
}
|
|
|
|
static void
|
|
vdev_disk_dio_free(dio_request_t *dr)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < dr->dr_bio_count; i++)
|
|
if (dr->dr_bio[i])
|
|
bio_put(dr->dr_bio[i]);
|
|
|
|
kmem_free(dr, sizeof (dio_request_t) +
|
|
sizeof (struct bio *) * dr->dr_bio_count);
|
|
}
|
|
|
|
static void
|
|
vdev_disk_dio_get(dio_request_t *dr)
|
|
{
|
|
atomic_inc(&dr->dr_ref);
|
|
}
|
|
|
|
static int
|
|
vdev_disk_dio_put(dio_request_t *dr)
|
|
{
|
|
int rc = atomic_dec_return(&dr->dr_ref);
|
|
|
|
/*
|
|
* Free the dio_request when the last reference is dropped and
|
|
* ensure zio_interpret is called only once with the correct zio
|
|
*/
|
|
if (rc == 0) {
|
|
zio_t *zio = dr->dr_zio;
|
|
int error = dr->dr_error;
|
|
|
|
vdev_disk_dio_free(dr);
|
|
|
|
if (zio) {
|
|
zio->io_error = error;
|
|
ASSERT3S(zio->io_error, >=, 0);
|
|
if (zio->io_error)
|
|
vdev_disk_error(zio);
|
|
|
|
zio_delay_interrupt(zio);
|
|
}
|
|
}
|
|
|
|
return (rc);
|
|
}
|
|
|
|
BIO_END_IO_PROTO(vdev_disk_physio_completion, bio, error)
|
|
{
|
|
dio_request_t *dr = bio->bi_private;
|
|
int rc;
|
|
|
|
if (dr->dr_error == 0) {
|
|
#ifdef HAVE_1ARG_BIO_END_IO_T
|
|
dr->dr_error = BIO_END_IO_ERROR(bio);
|
|
#else
|
|
if (error)
|
|
dr->dr_error = -(error);
|
|
else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
|
|
dr->dr_error = EIO;
|
|
#endif
|
|
}
|
|
|
|
/* Drop reference acquired by __vdev_disk_physio */
|
|
rc = vdev_disk_dio_put(dr);
|
|
}
|
|
|
|
static unsigned int
|
|
bio_map(struct bio *bio, void *bio_ptr, unsigned int bio_size)
|
|
{
|
|
unsigned int offset, size, i;
|
|
struct page *page;
|
|
|
|
offset = offset_in_page(bio_ptr);
|
|
for (i = 0; i < bio->bi_max_vecs; i++) {
|
|
size = PAGE_SIZE - offset;
|
|
|
|
if (bio_size <= 0)
|
|
break;
|
|
|
|
if (size > bio_size)
|
|
size = bio_size;
|
|
|
|
if (is_vmalloc_addr(bio_ptr))
|
|
page = vmalloc_to_page(bio_ptr);
|
|
else
|
|
page = virt_to_page(bio_ptr);
|
|
|
|
/*
|
|
* Some network related block device uses tcp_sendpage, which
|
|
* doesn't behave well when using 0-count page, this is a
|
|
* safety net to catch them.
|
|
*/
|
|
ASSERT3S(page_count(page), >, 0);
|
|
|
|
if (bio_add_page(bio, page, size, offset) != size)
|
|
break;
|
|
|
|
bio_ptr += size;
|
|
bio_size -= size;
|
|
offset = 0;
|
|
}
|
|
|
|
return (bio_size);
|
|
}
|
|
|
|
static unsigned int
|
|
bio_map_abd_off(struct bio *bio, abd_t *abd, unsigned int size, size_t off)
|
|
{
|
|
if (abd_is_linear(abd))
|
|
return (bio_map(bio, ((char *)abd_to_buf(abd)) + off, size));
|
|
|
|
return (abd_scatter_bio_map_off(bio, abd, size, off));
|
|
}
|
|
|
|
static inline void
|
|
vdev_submit_bio_impl(struct bio *bio)
|
|
{
|
|
#ifdef HAVE_1ARG_SUBMIT_BIO
|
|
submit_bio(bio);
|
|
#else
|
|
submit_bio(0, bio);
|
|
#endif
|
|
}
|
|
|
|
#ifdef HAVE_BIO_SET_DEV
|
|
#if defined(CONFIG_BLK_CGROUP) && defined(HAVE_BIO_SET_DEV_GPL_ONLY)
|
|
/*
|
|
* The Linux 5.0 kernel updated the bio_set_dev() macro so it calls the
|
|
* GPL-only bio_associate_blkg() symbol thus inadvertently converting
|
|
* the entire macro. Provide a minimal version which always assigns the
|
|
* request queue's root_blkg to the bio.
|
|
*/
|
|
static inline void
|
|
vdev_bio_associate_blkg(struct bio *bio)
|
|
{
|
|
struct request_queue *q = bio->bi_disk->queue;
|
|
|
|
ASSERT3P(q, !=, NULL);
|
|
ASSERT3P(bio->bi_blkg, ==, NULL);
|
|
|
|
if (blkg_tryget(q->root_blkg))
|
|
bio->bi_blkg = q->root_blkg;
|
|
}
|
|
#define bio_associate_blkg vdev_bio_associate_blkg
|
|
#endif
|
|
#else
|
|
/*
|
|
* Provide a bio_set_dev() helper macro for pre-Linux 4.14 kernels.
|
|
*/
|
|
static inline void
|
|
bio_set_dev(struct bio *bio, struct block_device *bdev)
|
|
{
|
|
bio->bi_bdev = bdev;
|
|
}
|
|
#endif /* HAVE_BIO_SET_DEV */
|
|
|
|
static inline void
|
|
vdev_submit_bio(struct bio *bio)
|
|
{
|
|
#ifdef HAVE_CURRENT_BIO_TAIL
|
|
struct bio **bio_tail = current->bio_tail;
|
|
current->bio_tail = NULL;
|
|
vdev_submit_bio_impl(bio);
|
|
current->bio_tail = bio_tail;
|
|
#else
|
|
struct bio_list *bio_list = current->bio_list;
|
|
current->bio_list = NULL;
|
|
vdev_submit_bio_impl(bio);
|
|
current->bio_list = bio_list;
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
__vdev_disk_physio(struct block_device *bdev, zio_t *zio,
|
|
size_t io_size, uint64_t io_offset, int rw, int flags)
|
|
{
|
|
dio_request_t *dr;
|
|
uint64_t abd_offset;
|
|
uint64_t bio_offset;
|
|
int bio_size, bio_count = 16;
|
|
int i = 0, error = 0;
|
|
#if defined(HAVE_BLK_QUEUE_HAVE_BLK_PLUG)
|
|
struct blk_plug plug;
|
|
#endif
|
|
/*
|
|
* Accessing outside the block device is never allowed.
|
|
*/
|
|
if (io_offset + io_size > bdev->bd_inode->i_size) {
|
|
vdev_dbgmsg(zio->io_vd,
|
|
"Illegal access %llu size %llu, device size %llu",
|
|
io_offset, io_size, i_size_read(bdev->bd_inode));
|
|
return (SET_ERROR(EIO));
|
|
}
|
|
|
|
retry:
|
|
dr = vdev_disk_dio_alloc(bio_count);
|
|
if (dr == NULL)
|
|
return (SET_ERROR(ENOMEM));
|
|
|
|
if (zio && !(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)))
|
|
bio_set_flags_failfast(bdev, &flags);
|
|
|
|
dr->dr_zio = zio;
|
|
|
|
/*
|
|
* When the IO size exceeds the maximum bio size for the request
|
|
* queue we are forced to break the IO in multiple bio's and wait
|
|
* for them all to complete. Ideally, all pool users will set
|
|
* their volume block size to match the maximum request size and
|
|
* the common case will be one bio per vdev IO request.
|
|
*/
|
|
|
|
abd_offset = 0;
|
|
bio_offset = io_offset;
|
|
bio_size = io_size;
|
|
for (i = 0; i <= dr->dr_bio_count; i++) {
|
|
|
|
/* Finished constructing bio's for given buffer */
|
|
if (bio_size <= 0)
|
|
break;
|
|
|
|
/*
|
|
* By default only 'bio_count' bio's per dio are allowed.
|
|
* However, if we find ourselves in a situation where more
|
|
* are needed we allocate a larger dio and warn the user.
|
|
*/
|
|
if (dr->dr_bio_count == i) {
|
|
vdev_disk_dio_free(dr);
|
|
bio_count *= 2;
|
|
goto retry;
|
|
}
|
|
|
|
/* bio_alloc() with __GFP_WAIT never returns NULL */
|
|
dr->dr_bio[i] = bio_alloc(GFP_NOIO,
|
|
MIN(abd_nr_pages_off(zio->io_abd, bio_size, abd_offset),
|
|
BIO_MAX_PAGES));
|
|
if (unlikely(dr->dr_bio[i] == NULL)) {
|
|
vdev_disk_dio_free(dr);
|
|
return (SET_ERROR(ENOMEM));
|
|
}
|
|
|
|
/* Matching put called by vdev_disk_physio_completion */
|
|
vdev_disk_dio_get(dr);
|
|
|
|
bio_set_dev(dr->dr_bio[i], bdev);
|
|
BIO_BI_SECTOR(dr->dr_bio[i]) = bio_offset >> 9;
|
|
dr->dr_bio[i]->bi_end_io = vdev_disk_physio_completion;
|
|
dr->dr_bio[i]->bi_private = dr;
|
|
bio_set_op_attrs(dr->dr_bio[i], rw, flags);
|
|
|
|
/* Remaining size is returned to become the new size */
|
|
bio_size = bio_map_abd_off(dr->dr_bio[i], zio->io_abd,
|
|
bio_size, abd_offset);
|
|
|
|
/* Advance in buffer and construct another bio if needed */
|
|
abd_offset += BIO_BI_SIZE(dr->dr_bio[i]);
|
|
bio_offset += BIO_BI_SIZE(dr->dr_bio[i]);
|
|
}
|
|
|
|
/* Extra reference to protect dio_request during vdev_submit_bio */
|
|
vdev_disk_dio_get(dr);
|
|
|
|
#if defined(HAVE_BLK_QUEUE_HAVE_BLK_PLUG)
|
|
if (dr->dr_bio_count > 1)
|
|
blk_start_plug(&plug);
|
|
#endif
|
|
|
|
/* Submit all bio's associated with this dio */
|
|
for (i = 0; i < dr->dr_bio_count; i++)
|
|
if (dr->dr_bio[i])
|
|
vdev_submit_bio(dr->dr_bio[i]);
|
|
|
|
#if defined(HAVE_BLK_QUEUE_HAVE_BLK_PLUG)
|
|
if (dr->dr_bio_count > 1)
|
|
blk_finish_plug(&plug);
|
|
#endif
|
|
|
|
(void) vdev_disk_dio_put(dr);
|
|
|
|
return (error);
|
|
}
|
|
|
|
BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, error)
|
|
{
|
|
zio_t *zio = bio->bi_private;
|
|
#ifdef HAVE_1ARG_BIO_END_IO_T
|
|
zio->io_error = BIO_END_IO_ERROR(bio);
|
|
#else
|
|
zio->io_error = -error;
|
|
#endif
|
|
|
|
if (zio->io_error && (zio->io_error == EOPNOTSUPP))
|
|
zio->io_vd->vdev_nowritecache = B_TRUE;
|
|
|
|
bio_put(bio);
|
|
ASSERT3S(zio->io_error, >=, 0);
|
|
if (zio->io_error)
|
|
vdev_disk_error(zio);
|
|
zio_interrupt(zio);
|
|
}
|
|
|
|
static int
|
|
vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
|
|
{
|
|
struct request_queue *q;
|
|
struct bio *bio;
|
|
|
|
q = bdev_get_queue(bdev);
|
|
if (!q)
|
|
return (SET_ERROR(ENXIO));
|
|
|
|
bio = bio_alloc(GFP_NOIO, 0);
|
|
/* bio_alloc() with __GFP_WAIT never returns NULL */
|
|
if (unlikely(bio == NULL))
|
|
return (SET_ERROR(ENOMEM));
|
|
|
|
bio->bi_end_io = vdev_disk_io_flush_completion;
|
|
bio->bi_private = zio;
|
|
bio_set_dev(bio, bdev);
|
|
bio_set_flush(bio);
|
|
vdev_submit_bio(bio);
|
|
invalidate_bdev(bdev);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
vdev_disk_io_start(zio_t *zio)
|
|
{
|
|
vdev_t *v = zio->io_vd;
|
|
vdev_disk_t *vd = v->vdev_tsd;
|
|
unsigned long trim_flags = 0;
|
|
int rw, flags, error;
|
|
|
|
/*
|
|
* If the vdev is closed, it's likely in the REMOVED or FAULTED state.
|
|
* Nothing to be done here but return failure.
|
|
*/
|
|
if (vd == NULL) {
|
|
zio->io_error = ENXIO;
|
|
zio_interrupt(zio);
|
|
return;
|
|
}
|
|
|
|
rw_enter(&vd->vd_lock, RW_READER);
|
|
|
|
/*
|
|
* If the vdev is closed, it's likely due to a failed reopen and is
|
|
* in the UNAVAIL state. Nothing to be done here but return failure.
|
|
*/
|
|
if (vd->vd_bdev == NULL) {
|
|
rw_exit(&vd->vd_lock);
|
|
zio->io_error = ENXIO;
|
|
zio_interrupt(zio);
|
|
return;
|
|
}
|
|
|
|
switch (zio->io_type) {
|
|
case ZIO_TYPE_IOCTL:
|
|
|
|
if (!vdev_readable(v)) {
|
|
rw_exit(&vd->vd_lock);
|
|
zio->io_error = SET_ERROR(ENXIO);
|
|
zio_interrupt(zio);
|
|
return;
|
|
}
|
|
|
|
switch (zio->io_cmd) {
|
|
case DKIOCFLUSHWRITECACHE:
|
|
|
|
if (zfs_nocacheflush)
|
|
break;
|
|
|
|
if (v->vdev_nowritecache) {
|
|
zio->io_error = SET_ERROR(ENOTSUP);
|
|
break;
|
|
}
|
|
|
|
error = vdev_disk_io_flush(vd->vd_bdev, zio);
|
|
if (error == 0) {
|
|
rw_exit(&vd->vd_lock);
|
|
return;
|
|
}
|
|
|
|
zio->io_error = error;
|
|
|
|
break;
|
|
|
|
default:
|
|
zio->io_error = SET_ERROR(ENOTSUP);
|
|
}
|
|
|
|
rw_exit(&vd->vd_lock);
|
|
zio_execute(zio);
|
|
return;
|
|
case ZIO_TYPE_WRITE:
|
|
rw = WRITE;
|
|
#if defined(HAVE_BLK_QUEUE_HAVE_BIO_RW_UNPLUG)
|
|
flags = (1 << BIO_RW_UNPLUG);
|
|
#elif defined(REQ_UNPLUG)
|
|
flags = REQ_UNPLUG;
|
|
#else
|
|
flags = 0;
|
|
#endif
|
|
break;
|
|
|
|
case ZIO_TYPE_READ:
|
|
rw = READ;
|
|
#if defined(HAVE_BLK_QUEUE_HAVE_BIO_RW_UNPLUG)
|
|
flags = (1 << BIO_RW_UNPLUG);
|
|
#elif defined(REQ_UNPLUG)
|
|
flags = REQ_UNPLUG;
|
|
#else
|
|
flags = 0;
|
|
#endif
|
|
break;
|
|
|
|
case ZIO_TYPE_TRIM:
|
|
#if defined(BLKDEV_DISCARD_SECURE)
|
|
if (zio->io_trim_flags & ZIO_TRIM_SECURE)
|
|
trim_flags |= BLKDEV_DISCARD_SECURE;
|
|
#endif
|
|
zio->io_error = -blkdev_issue_discard(vd->vd_bdev,
|
|
zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS,
|
|
trim_flags);
|
|
|
|
rw_exit(&vd->vd_lock);
|
|
zio_interrupt(zio);
|
|
return;
|
|
|
|
default:
|
|
rw_exit(&vd->vd_lock);
|
|
zio->io_error = SET_ERROR(ENOTSUP);
|
|
zio_interrupt(zio);
|
|
return;
|
|
}
|
|
|
|
zio->io_target_timestamp = zio_handle_io_delay(zio);
|
|
error = __vdev_disk_physio(vd->vd_bdev, zio,
|
|
zio->io_size, zio->io_offset, rw, flags);
|
|
rw_exit(&vd->vd_lock);
|
|
|
|
if (error) {
|
|
zio->io_error = error;
|
|
zio_interrupt(zio);
|
|
return;
|
|
}
|
|
}
|
|
|
|
static void
|
|
vdev_disk_io_done(zio_t *zio)
|
|
{
|
|
/*
|
|
* If the device returned EIO, we revalidate the media. If it is
|
|
* determined the media has changed this triggers the asynchronous
|
|
* removal of the device from the configuration.
|
|
*/
|
|
if (zio->io_error == EIO) {
|
|
vdev_t *v = zio->io_vd;
|
|
vdev_disk_t *vd = v->vdev_tsd;
|
|
|
|
if (check_disk_change(vd->vd_bdev)) {
|
|
vdev_bdev_invalidate(vd->vd_bdev);
|
|
v->vdev_remove_wanted = B_TRUE;
|
|
spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
vdev_disk_hold(vdev_t *vd)
|
|
{
|
|
ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
|
|
|
|
/* We must have a pathname, and it must be absolute. */
|
|
if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
|
|
return;
|
|
|
|
/*
|
|
* Only prefetch path and devid info if the device has
|
|
* never been opened.
|
|
*/
|
|
if (vd->vdev_tsd != NULL)
|
|
return;
|
|
|
|
/* XXX: Implement me as a vnode lookup for the device */
|
|
vd->vdev_name_vp = NULL;
|
|
vd->vdev_devid_vp = NULL;
|
|
}
|
|
|
|
static void
|
|
vdev_disk_rele(vdev_t *vd)
|
|
{
|
|
ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
|
|
|
|
/* XXX: Implement me as a vnode rele for the device */
|
|
}
|
|
|
|
static int
|
|
param_set_vdev_scheduler(const char *val, zfs_kernel_param_t *kp)
|
|
{
|
|
spa_t *spa = NULL;
|
|
char *p;
|
|
|
|
if (val == NULL)
|
|
return (SET_ERROR(-EINVAL));
|
|
|
|
if ((p = strchr(val, '\n')) != NULL)
|
|
*p = '\0';
|
|
|
|
if (spa_mode_global != 0) {
|
|
mutex_enter(&spa_namespace_lock);
|
|
while ((spa = spa_next(spa)) != NULL) {
|
|
if (spa_state(spa) != POOL_STATE_ACTIVE ||
|
|
!spa_writeable(spa) || spa_suspended(spa))
|
|
continue;
|
|
|
|
spa_open_ref(spa, FTAG);
|
|
mutex_exit(&spa_namespace_lock);
|
|
vdev_elevator_switch(spa->spa_root_vdev, (char *)val);
|
|
mutex_enter(&spa_namespace_lock);
|
|
spa_close(spa, FTAG);
|
|
}
|
|
mutex_exit(&spa_namespace_lock);
|
|
}
|
|
|
|
return (param_set_charp(val, kp));
|
|
}
|
|
|
|
vdev_ops_t vdev_disk_ops = {
|
|
.vdev_op_open = vdev_disk_open,
|
|
.vdev_op_close = vdev_disk_close,
|
|
.vdev_op_asize = vdev_default_asize,
|
|
.vdev_op_io_start = vdev_disk_io_start,
|
|
.vdev_op_io_done = vdev_disk_io_done,
|
|
.vdev_op_state_change = NULL,
|
|
.vdev_op_need_resilver = NULL,
|
|
.vdev_op_hold = vdev_disk_hold,
|
|
.vdev_op_rele = vdev_disk_rele,
|
|
.vdev_op_remap = NULL,
|
|
.vdev_op_xlate = vdev_default_xlate,
|
|
.vdev_op_type = VDEV_TYPE_DISK, /* name of this vdev type */
|
|
.vdev_op_leaf = B_TRUE /* leaf vdev */
|
|
};
|
|
|
|
module_param_call(zfs_vdev_scheduler, param_set_vdev_scheduler,
|
|
param_get_charp, &zfs_vdev_scheduler, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler");
|