freebsd-nq/sys/powerpc/ofw/ofw_machdep.c
Brandon Bergren a662559264 [PowerPC64LE] LE bringup work: locore / machdep / platform
This is the initial LE changes required in the machdep code to get as far
as platform attachment on qemu pseries.

Sponsored by:	Tag1 Consulting, Inc.
2020-09-22 23:55:34 +00:00

876 lines
20 KiB
C

/*-
* SPDX-License-Identifier: BSD-4-Clause
*
* Copyright (C) 1996 Wolfgang Solfrank.
* Copyright (C) 1996 TooLs GmbH.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by TooLs GmbH.
* 4. The name of TooLs GmbH may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $NetBSD: ofw_machdep.c,v 1.5 2000/05/23 13:25:43 tsubai Exp $
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_platform.h"
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/disk.h>
#include <sys/fcntl.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/smp.h>
#include <sys/stat.h>
#include <sys/endian.h>
#include <net/ethernet.h>
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/openfirm.h>
#include <dev/ofw/ofw_pci.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_subr.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_page.h>
#include <vm/vm_phys.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <machine/md_var.h>
#include <machine/platform.h>
#include <machine/ofw_machdep.h>
#include <machine/trap.h>
#include <contrib/libfdt/libfdt.h>
#ifdef POWERNV
#include <powerpc/powernv/opal.h>
#endif
static void *fdt;
int ofw_real_mode;
#ifdef AIM
extern register_t ofmsr[5];
extern void *openfirmware_entry;
char save_trap_init[0x2f00]; /* EXC_LAST */
char save_trap_of[0x2f00]; /* EXC_LAST */
int ofwcall(void *);
static int openfirmware(void *args);
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wfortify-source"
__inline void
ofw_save_trap_vec(char *save_trap_vec)
{
if (!ofw_real_mode || !hw_direct_map)
return;
bcopy((void *)PHYS_TO_DMAP(EXC_RST), save_trap_vec, EXC_LAST - EXC_RST);
}
static __inline void
ofw_restore_trap_vec(char *restore_trap_vec)
{
if (!ofw_real_mode || !hw_direct_map)
return;
bcopy(restore_trap_vec, (void *)PHYS_TO_DMAP(EXC_RST),
EXC_LAST - EXC_RST);
__syncicache((void *)PHYS_TO_DMAP(EXC_RSVD), EXC_LAST - EXC_RSVD);
}
#pragma clang diagnostic pop
/*
* Saved SPRG0-3 from OpenFirmware. Will be restored prior to the callback.
*/
register_t ofw_sprg0_save;
static __inline void
ofw_sprg_prepare(void)
{
if (ofw_real_mode)
return;
/*
* Assume that interrupt are disabled at this point, or
* SPRG1-3 could be trashed
*/
#ifdef __powerpc64__
__asm __volatile("mtsprg1 %0\n\t"
"mtsprg2 %1\n\t"
"mtsprg3 %2\n\t"
:
: "r"(ofmsr[2]),
"r"(ofmsr[3]),
"r"(ofmsr[4]));
#else
__asm __volatile("mfsprg0 %0\n\t"
"mtsprg0 %1\n\t"
"mtsprg1 %2\n\t"
"mtsprg2 %3\n\t"
"mtsprg3 %4\n\t"
: "=&r"(ofw_sprg0_save)
: "r"(ofmsr[1]),
"r"(ofmsr[2]),
"r"(ofmsr[3]),
"r"(ofmsr[4]));
#endif
}
static __inline void
ofw_sprg_restore(void)
{
if (ofw_real_mode)
return;
/*
* Note that SPRG1-3 contents are irrelevant. They are scratch
* registers used in the early portion of trap handling when
* interrupts are disabled.
*
* PCPU data cannot be used until this routine is called !
*/
#ifndef __powerpc64__
__asm __volatile("mtsprg0 %0" :: "r"(ofw_sprg0_save));
#endif
}
#endif
static int
parse_ofw_memory(phandle_t node, const char *prop, struct mem_region *output)
{
cell_t address_cells, size_cells;
cell_t OFmem[4 * PHYS_AVAIL_SZ];
int sz, i, j;
phandle_t phandle;
sz = 0;
/*
* Get #address-cells from root node, defaulting to 1 if it cannot
* be found.
*/
phandle = OF_finddevice("/");
if (OF_getencprop(phandle, "#address-cells", &address_cells,
sizeof(address_cells)) < (ssize_t)sizeof(address_cells))
address_cells = 1;
if (OF_getencprop(phandle, "#size-cells", &size_cells,
sizeof(size_cells)) < (ssize_t)sizeof(size_cells))
size_cells = 1;
/*
* Get memory.
*/
if (node == -1 || (sz = OF_getencprop(node, prop,
OFmem, sizeof(OFmem))) <= 0)
panic("Physical memory map not found");
i = 0;
j = 0;
while (i < sz/sizeof(cell_t)) {
output[j].mr_start = OFmem[i++];
if (address_cells == 2) {
output[j].mr_start <<= 32;
output[j].mr_start += OFmem[i++];
}
output[j].mr_size = OFmem[i++];
if (size_cells == 2) {
output[j].mr_size <<= 32;
output[j].mr_size += OFmem[i++];
}
if (output[j].mr_start > BUS_SPACE_MAXADDR)
continue;
/*
* Constrain memory to that which we can access.
* 32-bit AIM can only reference 32 bits of address currently,
* but Book-E can access 36 bits.
*/
if (((uint64_t)output[j].mr_start +
(uint64_t)output[j].mr_size - 1) >
BUS_SPACE_MAXADDR) {
output[j].mr_size = BUS_SPACE_MAXADDR -
output[j].mr_start + 1;
}
j++;
}
return (j);
}
static int
parse_numa_ofw_memory(phandle_t node, const char *prop,
struct numa_mem_region *output)
{
cell_t address_cells, size_cells;
cell_t OFmem[4 * PHYS_AVAIL_SZ];
int sz, i, j;
phandle_t phandle;
sz = 0;
/*
* Get #address-cells from root node, defaulting to 1 if it cannot
* be found.
*/
phandle = OF_finddevice("/");
if (OF_getencprop(phandle, "#address-cells", &address_cells,
sizeof(address_cells)) < (ssize_t)sizeof(address_cells))
address_cells = 1;
if (OF_getencprop(phandle, "#size-cells", &size_cells,
sizeof(size_cells)) < (ssize_t)sizeof(size_cells))
size_cells = 1;
/*
* Get memory.
*/
if (node == -1 || (sz = OF_getencprop(node, prop,
OFmem, sizeof(OFmem))) <= 0)
panic("Physical memory map not found");
i = 0;
j = 0;
while (i < sz/sizeof(cell_t)) {
output[j].mr_start = OFmem[i++];
if (address_cells == 2) {
output[j].mr_start <<= 32;
output[j].mr_start += OFmem[i++];
}
output[j].mr_size = OFmem[i++];
if (size_cells == 2) {
output[j].mr_size <<= 32;
output[j].mr_size += OFmem[i++];
}
j++;
}
return (j);
}
#ifdef FDT
static int
excise_reserved_regions(struct mem_region *avail, int asz,
struct mem_region *exclude, int esz)
{
int i, j, k;
for (i = 0; i < asz; i++) {
for (j = 0; j < esz; j++) {
/*
* Case 1: Exclusion region encloses complete
* available entry. Drop it and move on.
*/
if (exclude[j].mr_start <= avail[i].mr_start &&
exclude[j].mr_start + exclude[j].mr_size >=
avail[i].mr_start + avail[i].mr_size) {
for (k = i+1; k < asz; k++)
avail[k-1] = avail[k];
asz--;
i--; /* Repeat some entries */
continue;
}
/*
* Case 2: Exclusion region starts in available entry.
* Trim it to where the entry begins and append
* a new available entry with the region after
* the excluded region, if any.
*/
if (exclude[j].mr_start >= avail[i].mr_start &&
exclude[j].mr_start < avail[i].mr_start +
avail[i].mr_size) {
if (exclude[j].mr_start + exclude[j].mr_size <
avail[i].mr_start + avail[i].mr_size) {
avail[asz].mr_start =
exclude[j].mr_start + exclude[j].mr_size;
avail[asz].mr_size = avail[i].mr_start +
avail[i].mr_size -
avail[asz].mr_start;
asz++;
}
avail[i].mr_size = exclude[j].mr_start -
avail[i].mr_start;
}
/*
* Case 3: Exclusion region ends in available entry.
* Move start point to where the exclusion zone ends.
* The case of a contained exclusion zone has already
* been caught in case 2.
*/
if (exclude[j].mr_start + exclude[j].mr_size >=
avail[i].mr_start && exclude[j].mr_start +
exclude[j].mr_size < avail[i].mr_start +
avail[i].mr_size) {
avail[i].mr_size += avail[i].mr_start;
avail[i].mr_start =
exclude[j].mr_start + exclude[j].mr_size;
avail[i].mr_size -= avail[i].mr_start;
}
}
}
return (asz);
}
static int
excise_initrd_region(struct mem_region *avail, int asz)
{
phandle_t chosen;
uint64_t start, end;
ssize_t size;
struct mem_region initrdmap[1];
pcell_t cell[2];
chosen = OF_finddevice("/chosen");
size = OF_getencprop(chosen, "linux,initrd-start", cell, sizeof(cell));
if (size < 0)
return (asz);
else if (size == 4)
start = cell[0];
else if (size == 8)
start = (uint64_t)cell[0] << 32 | cell[1];
else {
/* Invalid value length */
printf("WARNING: linux,initrd-start must be either 4 or 8 bytes long\n");
return (asz);
}
size = OF_getencprop(chosen, "linux,initrd-end", cell, sizeof(cell));
if (size < 0)
return (asz);
else if (size == 4)
end = cell[0];
else if (size == 8)
end = (uint64_t)cell[0] << 32 | cell[1];
else {
/* Invalid value length */
printf("WARNING: linux,initrd-end must be either 4 or 8 bytes long\n");
return (asz);
}
if (end <= start)
return (asz);
initrdmap[0].mr_start = start;
initrdmap[0].mr_size = end - start;
asz = excise_reserved_regions(avail, asz, initrdmap, 1);
return (asz);
}
#ifdef POWERNV
static int
excise_msi_region(struct mem_region *avail, int asz)
{
uint64_t start, end;
struct mem_region initrdmap[1];
/*
* This range of physical addresses is used to implement optimized
* 32 bit MSI interrupts on POWER9. Exclude it to avoid accidentally
* using it for DMA, as this will cause an immediate PHB fence.
* While we could theoretically turn off this behavior in the ETU,
* doing so would break 32-bit MSI, so just reserve the range in
* the physical map instead.
* See section 4.4.2.8 of the PHB4 specification.
*/
start = 0x00000000ffff0000ul;
end = 0x00000000fffffffful;
initrdmap[0].mr_start = start;
initrdmap[0].mr_size = end - start;
asz = excise_reserved_regions(avail, asz, initrdmap, 1);
return (asz);
}
#endif
static int
excise_fdt_reserved(struct mem_region *avail, int asz)
{
struct mem_region fdtmap[32];
ssize_t fdtmapsize;
phandle_t chosen;
int j, fdtentries;
chosen = OF_finddevice("/chosen");
fdtmapsize = OF_getprop(chosen, "fdtmemreserv", fdtmap, sizeof(fdtmap));
for (j = 0; j < fdtmapsize/sizeof(fdtmap[0]); j++) {
fdtmap[j].mr_start = be64toh(fdtmap[j].mr_start) & ~PAGE_MASK;
fdtmap[j].mr_size = round_page(be64toh(fdtmap[j].mr_size));
}
KASSERT(j*sizeof(fdtmap[0]) < sizeof(fdtmap),
("Exceeded number of FDT reservations"));
/* Add a virtual entry for the FDT itself */
if (fdt != NULL) {
fdtmap[j].mr_start = (vm_offset_t)fdt & ~PAGE_MASK;
fdtmap[j].mr_size = round_page(fdt_totalsize(fdt));
fdtmapsize += sizeof(fdtmap[0]);
}
fdtentries = fdtmapsize/sizeof(fdtmap[0]);
asz = excise_reserved_regions(avail, asz, fdtmap, fdtentries);
return (asz);
}
#endif
/*
* This is called during powerpc_init, before the system is really initialized.
* It shall provide the total and the available regions of RAM.
* The available regions need not take the kernel into account.
*/
void
ofw_numa_mem_regions(struct numa_mem_region *memp, int *memsz)
{
phandle_t phandle;
int count, msz;
char name[31];
struct numa_mem_region *curmemp;
msz = 0;
/*
* Get memory from all the /memory nodes.
*/
for (phandle = OF_child(OF_peer(0)); phandle != 0;
phandle = OF_peer(phandle)) {
if (OF_getprop(phandle, "name", name, sizeof(name)) <= 0)
continue;
if (strncmp(name, "memory@", strlen("memory@")) != 0)
continue;
count = parse_numa_ofw_memory(phandle, "reg", &memp[msz]);
if (count == 0)
continue;
curmemp = &memp[msz];
MPASS(count == 1);
curmemp->mr_domain = platform_node_numa_domain(phandle);
if (bootverbose)
printf("%s %#jx-%#jx domain(%ju)\n",
name, (uintmax_t)curmemp->mr_start,
(uintmax_t)curmemp->mr_start + curmemp->mr_size,
(uintmax_t)curmemp->mr_domain);
msz += count;
}
*memsz = msz;
}
/*
* This is called during powerpc_init, before the system is really initialized.
* It shall provide the total and the available regions of RAM.
* The available regions need not take the kernel into account.
*/
void
ofw_mem_regions(struct mem_region *memp, int *memsz,
struct mem_region *availp, int *availsz)
{
phandle_t phandle;
int asz, msz;
int res;
char name[31];
asz = msz = 0;
/*
* Get memory from all the /memory nodes.
*/
for (phandle = OF_child(OF_peer(0)); phandle != 0;
phandle = OF_peer(phandle)) {
if (OF_getprop(phandle, "name", name, sizeof(name)) <= 0)
continue;
if (strncmp(name, "memory", sizeof(name)) != 0 &&
strncmp(name, "memory@", strlen("memory@")) != 0)
continue;
res = parse_ofw_memory(phandle, "reg", &memp[msz]);
msz += res;
/*
* On POWER9 Systems we might have both linux,usable-memory and
* reg properties. 'reg' denotes all available memory, but we
* must use 'linux,usable-memory', a subset, as some memory
* regions are reserved for NVLink.
*/
if (OF_getproplen(phandle, "linux,usable-memory") >= 0)
res = parse_ofw_memory(phandle, "linux,usable-memory",
&availp[asz]);
else if (OF_getproplen(phandle, "available") >= 0)
res = parse_ofw_memory(phandle, "available",
&availp[asz]);
else
res = parse_ofw_memory(phandle, "reg", &availp[asz]);
asz += res;
}
#ifdef FDT
phandle = OF_finddevice("/chosen");
if (OF_hasprop(phandle, "fdtmemreserv"))
asz = excise_fdt_reserved(availp, asz);
/* If the kernel is being loaded through kexec, initrd region is listed
* in /chosen but the region is not marked as reserved, so, we might exclude
* it here.
*/
if (OF_hasprop(phandle, "linux,initrd-start"))
asz = excise_initrd_region(availp, asz);
#endif
#ifdef POWERNV
if (opal_check() == 0)
asz = excise_msi_region(availp, asz);
#endif
*memsz = msz;
*availsz = asz;
}
void
OF_initial_setup(void *fdt_ptr, void *junk, int (*openfirm)(void *))
{
#ifdef AIM
ofmsr[0] = mfmsr();
#ifdef __powerpc64__
ofmsr[0] &= ~PSL_SF;
#ifdef __LITTLE_ENDIAN__
/* Assume OFW is BE. */
ofmsr[0] &= ~PSL_LE;
#endif
#else
__asm __volatile("mfsprg0 %0" : "=&r"(ofmsr[1]));
#endif
__asm __volatile("mfsprg1 %0" : "=&r"(ofmsr[2]));
__asm __volatile("mfsprg2 %0" : "=&r"(ofmsr[3]));
__asm __volatile("mfsprg3 %0" : "=&r"(ofmsr[4]));
openfirmware_entry = openfirm;
if (ofmsr[0] & PSL_DR)
ofw_real_mode = 0;
else
ofw_real_mode = 1;
ofw_save_trap_vec(save_trap_init);
#else
ofw_real_mode = 1;
#endif
fdt = fdt_ptr;
}
boolean_t
OF_bootstrap()
{
boolean_t status = FALSE;
int err = 0;
#ifdef AIM
if (openfirmware_entry != NULL) {
if (ofw_real_mode) {
status = OF_install(OFW_STD_REAL, 0);
} else {
#ifdef __powerpc64__
status = OF_install(OFW_STD_32BIT, 0);
#else
status = OF_install(OFW_STD_DIRECT, 0);
#endif
}
if (status != TRUE)
return status;
err = OF_init(openfirmware);
} else
#endif
if (fdt != NULL) {
#ifdef FDT
#ifdef AIM
bus_space_tag_t fdt_bt;
vm_offset_t tmp_fdt_ptr;
vm_size_t fdt_size;
uintptr_t fdt_va;
#endif
status = OF_install(OFW_FDT, 0);
if (status != TRUE)
return status;
#ifdef AIM /* AIM-only for now -- Book-E does this remapping in early init */
/* Get the FDT size for mapping if we can */
tmp_fdt_ptr = pmap_early_io_map((vm_paddr_t)fdt, PAGE_SIZE);
if (fdt_check_header((void *)tmp_fdt_ptr) != 0) {
pmap_early_io_unmap(tmp_fdt_ptr, PAGE_SIZE);
return FALSE;
}
fdt_size = fdt_totalsize((void *)tmp_fdt_ptr);
pmap_early_io_unmap(tmp_fdt_ptr, PAGE_SIZE);
/*
* Map this for real. Use bus_space_map() to take advantage
* of its auto-remapping function once the kernel is loaded.
* This is a dirty hack, but what we have.
*/
#ifdef __LITTLE_ENDIAN__
fdt_bt = &bs_le_tag;
#else
fdt_bt = &bs_be_tag;
#endif
bus_space_map(fdt_bt, (vm_paddr_t)fdt, fdt_size, 0, &fdt_va);
err = OF_init((void *)fdt_va);
#else
err = OF_init(fdt);
#endif
#endif
}
#ifdef FDT_DTB_STATIC
/*
* Check for a statically included blob already in the kernel and
* needing no mapping.
*/
else {
status = OF_install(OFW_FDT, 0);
if (status != TRUE)
return status;
err = OF_init(&fdt_static_dtb);
}
#endif
if (err != 0) {
OF_install(NULL, 0);
status = FALSE;
}
return (status);
}
#ifdef AIM
void
ofw_quiesce(void)
{
struct {
cell_t name;
cell_t nargs;
cell_t nreturns;
} args;
KASSERT(!pmap_bootstrapped, ("Cannot call ofw_quiesce after VM is up"));
args.name = (cell_t)(uintptr_t)"quiesce";
args.nargs = 0;
args.nreturns = 0;
openfirmware(&args);
}
static int
openfirmware_core(void *args)
{
int result;
register_t oldmsr;
if (openfirmware_entry == NULL)
return (-1);
/*
* Turn off exceptions - we really don't want to end up
* anywhere unexpected with PCPU set to something strange
* or the stack pointer wrong.
*/
oldmsr = intr_disable();
ofw_sprg_prepare();
/* Save trap vectors */
ofw_save_trap_vec(save_trap_of);
/* Restore initially saved trap vectors */
ofw_restore_trap_vec(save_trap_init);
#ifndef __powerpc64__
/*
* Clear battable[] translations
*/
if (!(cpu_features & PPC_FEATURE_64))
__asm __volatile("mtdbatu 2, %0\n"
"mtdbatu 3, %0" : : "r" (0));
isync();
#endif
result = ofwcall(args);
/* Restore trap vecotrs */
ofw_restore_trap_vec(save_trap_of);
ofw_sprg_restore();
intr_restore(oldmsr);
return (result);
}
#ifdef SMP
struct ofw_rv_args {
void *args;
int retval;
volatile int in_progress;
};
static void
ofw_rendezvous_dispatch(void *xargs)
{
struct ofw_rv_args *rv_args = xargs;
/* NOTE: Interrupts are disabled here */
if (PCPU_GET(cpuid) == 0) {
/*
* Execute all OF calls on CPU 0
*/
rv_args->retval = openfirmware_core(rv_args->args);
rv_args->in_progress = 0;
} else {
/*
* Spin with interrupts off on other CPUs while OF has
* control of the machine.
*/
while (rv_args->in_progress)
cpu_spinwait();
}
}
#endif
static int
openfirmware(void *args)
{
int result;
#ifdef SMP
struct ofw_rv_args rv_args;
#endif
if (openfirmware_entry == NULL)
return (-1);
#ifdef SMP
if (cold) {
result = openfirmware_core(args);
} else {
rv_args.args = args;
rv_args.in_progress = 1;
smp_rendezvous(smp_no_rendezvous_barrier,
ofw_rendezvous_dispatch, smp_no_rendezvous_barrier,
&rv_args);
result = rv_args.retval;
}
#else
result = openfirmware_core(args);
#endif
return (result);
}
void
OF_reboot()
{
struct {
cell_t name;
cell_t nargs;
cell_t nreturns;
cell_t arg;
} args;
args.name = (cell_t)(uintptr_t)"interpret";
args.nargs = 1;
args.nreturns = 0;
args.arg = (cell_t)(uintptr_t)"reset-all";
openfirmware_core(&args); /* Don't do rendezvous! */
for (;;); /* just in case */
}
#endif /* AIM */
void
OF_getetheraddr(device_t dev, u_char *addr)
{
phandle_t node;
node = ofw_bus_get_node(dev);
OF_getprop(node, "local-mac-address", addr, ETHER_ADDR_LEN);
}
/*
* Return a bus handle and bus tag that corresponds to the register
* numbered regno for the device referenced by the package handle
* dev. This function is intended to be used by console drivers in
* early boot only. It works by mapping the address of the device's
* register in the address space of its parent and recursively walk
* the device tree upward this way.
*/
int
OF_decode_addr(phandle_t dev, int regno, bus_space_tag_t *tag,
bus_space_handle_t *handle, bus_size_t *sz)
{
bus_addr_t addr;
bus_size_t size;
pcell_t pci_hi;
int flags, res;
res = ofw_reg_to_paddr(dev, regno, &addr, &size, &pci_hi);
if (res < 0)
return (res);
if (pci_hi == OFW_PADDR_NOT_PCI) {
*tag = &bs_be_tag;
flags = 0;
} else {
*tag = &bs_le_tag;
flags = (pci_hi & OFW_PCI_PHYS_HI_PREFETCHABLE) ?
BUS_SPACE_MAP_PREFETCHABLE: 0;
}
if (sz != NULL)
*sz = size;
return (bus_space_map(*tag, addr, size, flags, handle));
}