freebsd-nq/sys/netinet/in_pcb.c
Mike Karels 8c1960d506 Fix reference count leak with L2 caching.
ip_forward, TCP/IPv6, and probably SCTP leaked references to L2 cache
entry because they used their own routes on the stack, not in_pcb routes.
The original model for route caching was callers that provided a route
structure to ip{,6}input() would keep the route, and this model was used
for L2 caching as well. Instead, change L2 caching to be done by default
only when using a route structure in the in_pcb; the pcb deallocation
code frees L2 as well as L3 cacches. A separate change will add route
caching to TCP/IPv6.

Another suggestion was to have the transport protocols indicate willingness
to use L2 caching, but this approach keeps the changes in the network
level

Reviewed by:    ae gnn
MFC after:      2 weeks
Differential Revision:  https://reviews.freebsd.org/D10059
2017-03-25 15:06:28 +00:00

2977 lines
75 KiB
C

/*-
* Copyright (c) 1982, 1986, 1991, 1993, 1995
* The Regents of the University of California.
* Copyright (c) 2007-2009 Robert N. M. Watson
* Copyright (c) 2010-2011 Juniper Networks, Inc.
* All rights reserved.
*
* Portions of this software were developed by Robert N. M. Watson under
* contract to Juniper Networks, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)in_pcb.c 8.4 (Berkeley) 5/24/95
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ddb.h"
#include "opt_ipsec.h"
#include "opt_inet.h"
#include "opt_inet6.h"
#include "opt_ratelimit.h"
#include "opt_pcbgroup.h"
#include "opt_rss.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/callout.h>
#include <sys/eventhandler.h>
#include <sys/domain.h>
#include <sys/protosw.h>
#include <sys/rmlock.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sockio.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/refcount.h>
#include <sys/jail.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>
#ifdef DDB
#include <ddb/ddb.h>
#endif
#include <vm/uma.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_types.h>
#include <net/if_llatbl.h>
#include <net/route.h>
#include <net/rss_config.h>
#include <net/vnet.h>
#if defined(INET) || defined(INET6)
#include <netinet/in.h>
#include <netinet/in_pcb.h>
#include <netinet/ip_var.h>
#include <netinet/tcp_var.h>
#include <netinet/udp.h>
#include <netinet/udp_var.h>
#endif
#ifdef INET
#include <netinet/in_var.h>
#endif
#ifdef INET6
#include <netinet/ip6.h>
#include <netinet6/in6_pcb.h>
#include <netinet6/in6_var.h>
#include <netinet6/ip6_var.h>
#endif /* INET6 */
#include <netipsec/ipsec_support.h>
#include <security/mac/mac_framework.h>
static struct callout ipport_tick_callout;
/*
* These configure the range of local port addresses assigned to
* "unspecified" outgoing connections/packets/whatever.
*/
VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */
VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */
VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */
VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */
VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */
VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */
/*
* Reserved ports accessible only to root. There are significant
* security considerations that must be accounted for when changing these,
* but the security benefits can be great. Please be careful.
*/
VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */
VNET_DEFINE(int, ipport_reservedlow);
/* Variables dealing with random ephemeral port allocation. */
VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */
VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */
VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */
VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */
VNET_DEFINE(int, ipport_tcpallocs);
static VNET_DEFINE(int, ipport_tcplastcount);
#define V_ipport_tcplastcount VNET(ipport_tcplastcount)
static void in_pcbremlists(struct inpcb *inp);
#ifdef INET
static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
struct in_addr faddr, u_int fport_arg,
struct in_addr laddr, u_int lport_arg,
int lookupflags, struct ifnet *ifp);
#define RANGECHK(var, min, max) \
if ((var) < (min)) { (var) = (min); } \
else if ((var) > (max)) { (var) = (max); }
static int
sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
{
int error;
error = sysctl_handle_int(oidp, arg1, arg2, req);
if (error == 0) {
RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
}
return (error);
}
#undef RANGECHK
static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0,
"IP Ports");
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
&VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", "");
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
&VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", "");
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
&VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", "");
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
&VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", "");
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
&VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", "");
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
&VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", "");
SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
&VNET_NAME(ipport_reservedhigh), 0, "");
SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
CTLFLAG_VNET | CTLFLAG_RW,
&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps,
CTLFLAG_VNET | CTLFLAG_RW,
&VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
"allocations before switching to a sequental one");
SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime,
CTLFLAG_VNET | CTLFLAG_RW,
&VNET_NAME(ipport_randomtime), 0,
"Minimum time to keep sequental port "
"allocation before switching to a random one");
#endif /* INET */
/*
* in_pcb.c: manage the Protocol Control Blocks.
*
* NOTE: It is assumed that most of these functions will be called with
* the pcbinfo lock held, and often, the inpcb lock held, as these utility
* functions often modify hash chains or addresses in pcbs.
*/
/*
* Initialize an inpcbinfo -- we should be able to reduce the number of
* arguments in time.
*/
void
in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
char *inpcbzone_name, uma_init inpcbzone_init, uma_fini inpcbzone_fini,
uint32_t inpcbzone_flags, u_int hashfields)
{
INP_INFO_LOCK_INIT(pcbinfo, name);
INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash"); /* XXXRW: argument? */
INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist");
#ifdef VIMAGE
pcbinfo->ipi_vnet = curvnet;
#endif
pcbinfo->ipi_listhead = listhead;
LIST_INIT(pcbinfo->ipi_listhead);
pcbinfo->ipi_count = 0;
pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
&pcbinfo->ipi_hashmask);
pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
&pcbinfo->ipi_porthashmask);
#ifdef PCBGROUP
in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
#endif
pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
NULL, NULL, inpcbzone_init, inpcbzone_fini, UMA_ALIGN_PTR,
inpcbzone_flags);
uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
uma_zone_set_warning(pcbinfo->ipi_zone,
"kern.ipc.maxsockets limit reached");
}
/*
* Destroy an inpcbinfo.
*/
void
in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
{
KASSERT(pcbinfo->ipi_count == 0,
("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
pcbinfo->ipi_porthashmask);
#ifdef PCBGROUP
in_pcbgroup_destroy(pcbinfo);
#endif
uma_zdestroy(pcbinfo->ipi_zone);
INP_LIST_LOCK_DESTROY(pcbinfo);
INP_HASH_LOCK_DESTROY(pcbinfo);
INP_INFO_LOCK_DESTROY(pcbinfo);
}
/*
* Allocate a PCB and associate it with the socket.
* On success return with the PCB locked.
*/
int
in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
{
struct inpcb *inp;
int error;
#ifdef INVARIANTS
if (pcbinfo == &V_tcbinfo) {
INP_INFO_RLOCK_ASSERT(pcbinfo);
} else {
INP_INFO_WLOCK_ASSERT(pcbinfo);
}
#endif
error = 0;
inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
if (inp == NULL)
return (ENOBUFS);
bzero(inp, inp_zero_size);
inp->inp_pcbinfo = pcbinfo;
inp->inp_socket = so;
inp->inp_cred = crhold(so->so_cred);
inp->inp_inc.inc_fibnum = so->so_fibnum;
#ifdef MAC
error = mac_inpcb_init(inp, M_NOWAIT);
if (error != 0)
goto out;
mac_inpcb_create(so, inp);
#endif
#if defined(IPSEC) || defined(IPSEC_SUPPORT)
error = ipsec_init_pcbpolicy(inp);
if (error != 0) {
#ifdef MAC
mac_inpcb_destroy(inp);
#endif
goto out;
}
#endif /*IPSEC*/
#ifdef INET6
if (INP_SOCKAF(so) == AF_INET6) {
inp->inp_vflag |= INP_IPV6PROTO;
if (V_ip6_v6only)
inp->inp_flags |= IN6P_IPV6_V6ONLY;
}
#endif
INP_WLOCK(inp);
INP_LIST_WLOCK(pcbinfo);
LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
pcbinfo->ipi_count++;
so->so_pcb = (caddr_t)inp;
#ifdef INET6
if (V_ip6_auto_flowlabel)
inp->inp_flags |= IN6P_AUTOFLOWLABEL;
#endif
inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
refcount_init(&inp->inp_refcount, 1); /* Reference from inpcbinfo */
/*
* Routes in inpcb's can cache L2 as well; they are guaranteed
* to be cleaned up.
*/
inp->inp_route.ro_flags = RT_LLE_CACHE;
INP_LIST_WUNLOCK(pcbinfo);
#if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
out:
if (error != 0) {
crfree(inp->inp_cred);
uma_zfree(pcbinfo->ipi_zone, inp);
}
#endif
return (error);
}
#ifdef INET
int
in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
{
int anonport, error;
INP_WLOCK_ASSERT(inp);
INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
return (EINVAL);
anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
&inp->inp_lport, cred);
if (error)
return (error);
if (in_pcbinshash(inp) != 0) {
inp->inp_laddr.s_addr = INADDR_ANY;
inp->inp_lport = 0;
return (EAGAIN);
}
if (anonport)
inp->inp_flags |= INP_ANONPORT;
return (0);
}
#endif
/*
* Select a local port (number) to use.
*/
#if defined(INET) || defined(INET6)
int
in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
struct ucred *cred, int lookupflags)
{
struct inpcbinfo *pcbinfo;
struct inpcb *tmpinp;
unsigned short *lastport;
int count, dorandom, error;
u_short aux, first, last, lport;
#ifdef INET
struct in_addr laddr;
#endif
pcbinfo = inp->inp_pcbinfo;
/*
* Because no actual state changes occur here, a global write lock on
* the pcbinfo isn't required.
*/
INP_LOCK_ASSERT(inp);
INP_HASH_LOCK_ASSERT(pcbinfo);
if (inp->inp_flags & INP_HIGHPORT) {
first = V_ipport_hifirstauto; /* sysctl */
last = V_ipport_hilastauto;
lastport = &pcbinfo->ipi_lasthi;
} else if (inp->inp_flags & INP_LOWPORT) {
error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0);
if (error)
return (error);
first = V_ipport_lowfirstauto; /* 1023 */
last = V_ipport_lowlastauto; /* 600 */
lastport = &pcbinfo->ipi_lastlow;
} else {
first = V_ipport_firstauto; /* sysctl */
last = V_ipport_lastauto;
lastport = &pcbinfo->ipi_lastport;
}
/*
* For UDP(-Lite), use random port allocation as long as the user
* allows it. For TCP (and as of yet unknown) connections,
* use random port allocation only if the user allows it AND
* ipport_tick() allows it.
*/
if (V_ipport_randomized &&
(!V_ipport_stoprandom || pcbinfo == &V_udbinfo ||
pcbinfo == &V_ulitecbinfo))
dorandom = 1;
else
dorandom = 0;
/*
* It makes no sense to do random port allocation if
* we have the only port available.
*/
if (first == last)
dorandom = 0;
/* Make sure to not include UDP(-Lite) packets in the count. */
if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo)
V_ipport_tcpallocs++;
/*
* Instead of having two loops further down counting up or down
* make sure that first is always <= last and go with only one
* code path implementing all logic.
*/
if (first > last) {
aux = first;
first = last;
last = aux;
}
#ifdef INET
/* Make the compiler happy. */
laddr.s_addr = 0;
if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p",
__func__, inp));
laddr = *laddrp;
}
#endif
tmpinp = NULL; /* Make compiler happy. */
lport = *lportp;
if (dorandom)
*lastport = first + (arc4random() % (last - first));
count = last - first;
do {
if (count-- < 0) /* completely used? */
return (EADDRNOTAVAIL);
++*lastport;
if (*lastport < first || *lastport > last)
*lastport = first;
lport = htons(*lastport);
#ifdef INET6
if ((inp->inp_vflag & INP_IPV6) != 0)
tmpinp = in6_pcblookup_local(pcbinfo,
&inp->in6p_laddr, lport, lookupflags, cred);
#endif
#if defined(INET) && defined(INET6)
else
#endif
#ifdef INET
tmpinp = in_pcblookup_local(pcbinfo, laddr,
lport, lookupflags, cred);
#endif
} while (tmpinp != NULL);
#ifdef INET
if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4)
laddrp->s_addr = laddr.s_addr;
#endif
*lportp = lport;
return (0);
}
/*
* Return cached socket options.
*/
short
inp_so_options(const struct inpcb *inp)
{
short so_options;
so_options = 0;
if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
so_options |= SO_REUSEPORT;
if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
so_options |= SO_REUSEADDR;
return (so_options);
}
#endif /* INET || INET6 */
/*
* Check if a new BINDMULTI socket is allowed to be created.
*
* ni points to the new inp.
* oi points to the exisitng inp.
*
* This checks whether the existing inp also has BINDMULTI and
* whether the credentials match.
*/
int
in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi)
{
/* Check permissions match */
if ((ni->inp_flags2 & INP_BINDMULTI) &&
(ni->inp_cred->cr_uid !=
oi->inp_cred->cr_uid))
return (0);
/* Check the existing inp has BINDMULTI set */
if ((ni->inp_flags2 & INP_BINDMULTI) &&
((oi->inp_flags2 & INP_BINDMULTI) == 0))
return (0);
/*
* We're okay - either INP_BINDMULTI isn't set on ni, or
* it is and it matches the checks.
*/
return (1);
}
#ifdef INET
/*
* Set up a bind operation on a PCB, performing port allocation
* as required, but do not actually modify the PCB. Callers can
* either complete the bind by setting inp_laddr/inp_lport and
* calling in_pcbinshash(), or they can just use the resulting
* port and address to authorise the sending of a once-off packet.
*
* On error, the values of *laddrp and *lportp are not changed.
*/
int
in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
u_short *lportp, struct ucred *cred)
{
struct socket *so = inp->inp_socket;
struct sockaddr_in *sin;
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
struct in_addr laddr;
u_short lport = 0;
int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
int error;
/*
* No state changes, so read locks are sufficient here.
*/
INP_LOCK_ASSERT(inp);
INP_HASH_LOCK_ASSERT(pcbinfo);
if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
return (EADDRNOTAVAIL);
laddr.s_addr = *laddrp;
if (nam != NULL && laddr.s_addr != INADDR_ANY)
return (EINVAL);
if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
lookupflags = INPLOOKUP_WILDCARD;
if (nam == NULL) {
if ((error = prison_local_ip4(cred, &laddr)) != 0)
return (error);
} else {
sin = (struct sockaddr_in *)nam;
if (nam->sa_len != sizeof (*sin))
return (EINVAL);
#ifdef notdef
/*
* We should check the family, but old programs
* incorrectly fail to initialize it.
*/
if (sin->sin_family != AF_INET)
return (EAFNOSUPPORT);
#endif
error = prison_local_ip4(cred, &sin->sin_addr);
if (error)
return (error);
if (sin->sin_port != *lportp) {
/* Don't allow the port to change. */
if (*lportp != 0)
return (EINVAL);
lport = sin->sin_port;
}
/* NB: lport is left as 0 if the port isn't being changed. */
if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
/*
* Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
* allow complete duplication of binding if
* SO_REUSEPORT is set, or if SO_REUSEADDR is set
* and a multicast address is bound on both
* new and duplicated sockets.
*/
if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
reuseport = SO_REUSEADDR|SO_REUSEPORT;
} else if (sin->sin_addr.s_addr != INADDR_ANY) {
sin->sin_port = 0; /* yech... */
bzero(&sin->sin_zero, sizeof(sin->sin_zero));
/*
* Is the address a local IP address?
* If INP_BINDANY is set, then the socket may be bound
* to any endpoint address, local or not.
*/
if ((inp->inp_flags & INP_BINDANY) == 0 &&
ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
return (EADDRNOTAVAIL);
}
laddr = sin->sin_addr;
if (lport) {
struct inpcb *t;
struct tcptw *tw;
/* GROSS */
if (ntohs(lport) <= V_ipport_reservedhigh &&
ntohs(lport) >= V_ipport_reservedlow &&
priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
0))
return (EACCES);
if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
priv_check_cred(inp->inp_cred,
PRIV_NETINET_REUSEPORT, 0) != 0) {
t = in_pcblookup_local(pcbinfo, sin->sin_addr,
lport, INPLOOKUP_WILDCARD, cred);
/*
* XXX
* This entire block sorely needs a rewrite.
*/
if (t &&
((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
((t->inp_flags & INP_TIMEWAIT) == 0) &&
(so->so_type != SOCK_STREAM ||
ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
(ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
(t->inp_flags2 & INP_REUSEPORT) == 0) &&
(inp->inp_cred->cr_uid !=
t->inp_cred->cr_uid))
return (EADDRINUSE);
/*
* If the socket is a BINDMULTI socket, then
* the credentials need to match and the
* original socket also has to have been bound
* with BINDMULTI.
*/
if (t && (! in_pcbbind_check_bindmulti(inp, t)))
return (EADDRINUSE);
}
t = in_pcblookup_local(pcbinfo, sin->sin_addr,
lport, lookupflags, cred);
if (t && (t->inp_flags & INP_TIMEWAIT)) {
/*
* XXXRW: If an incpb has had its timewait
* state recycled, we treat the address as
* being in use (for now). This is better
* than a panic, but not desirable.
*/
tw = intotw(t);
if (tw == NULL ||
(reuseport & tw->tw_so_options) == 0)
return (EADDRINUSE);
} else if (t &&
((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
(reuseport & inp_so_options(t)) == 0) {
#ifdef INET6
if (ntohl(sin->sin_addr.s_addr) !=
INADDR_ANY ||
ntohl(t->inp_laddr.s_addr) !=
INADDR_ANY ||
(inp->inp_vflag & INP_IPV6PROTO) == 0 ||
(t->inp_vflag & INP_IPV6PROTO) == 0)
#endif
return (EADDRINUSE);
if (t && (! in_pcbbind_check_bindmulti(inp, t)))
return (EADDRINUSE);
}
}
}
if (*lportp != 0)
lport = *lportp;
if (lport == 0) {
error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
if (error != 0)
return (error);
}
*laddrp = laddr.s_addr;
*lportp = lport;
return (0);
}
/*
* Connect from a socket to a specified address.
* Both address and port must be specified in argument sin.
* If don't have a local address for this socket yet,
* then pick one.
*/
int
in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
struct ucred *cred, struct mbuf *m)
{
u_short lport, fport;
in_addr_t laddr, faddr;
int anonport, error;
INP_WLOCK_ASSERT(inp);
INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
lport = inp->inp_lport;
laddr = inp->inp_laddr.s_addr;
anonport = (lport == 0);
error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
NULL, cred);
if (error)
return (error);
/* Do the initial binding of the local address if required. */
if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
inp->inp_lport = lport;
inp->inp_laddr.s_addr = laddr;
if (in_pcbinshash(inp) != 0) {
inp->inp_laddr.s_addr = INADDR_ANY;
inp->inp_lport = 0;
return (EAGAIN);
}
}
/* Commit the remaining changes. */
inp->inp_lport = lport;
inp->inp_laddr.s_addr = laddr;
inp->inp_faddr.s_addr = faddr;
inp->inp_fport = fport;
in_pcbrehash_mbuf(inp, m);
if (anonport)
inp->inp_flags |= INP_ANONPORT;
return (0);
}
int
in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
{
return (in_pcbconnect_mbuf(inp, nam, cred, NULL));
}
/*
* Do proper source address selection on an unbound socket in case
* of connect. Take jails into account as well.
*/
int
in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
struct ucred *cred)
{
struct ifaddr *ifa;
struct sockaddr *sa;
struct sockaddr_in *sin;
struct route sro;
int error;
KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
/*
* Bypass source address selection and use the primary jail IP
* if requested.
*/
if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
return (0);
error = 0;
bzero(&sro, sizeof(sro));
sin = (struct sockaddr_in *)&sro.ro_dst;
sin->sin_family = AF_INET;
sin->sin_len = sizeof(struct sockaddr_in);
sin->sin_addr.s_addr = faddr->s_addr;
/*
* If route is known our src addr is taken from the i/f,
* else punt.
*
* Find out route to destination.
*/
if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
/*
* If we found a route, use the address corresponding to
* the outgoing interface.
*
* Otherwise assume faddr is reachable on a directly connected
* network and try to find a corresponding interface to take
* the source address from.
*/
if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
struct in_ifaddr *ia;
struct ifnet *ifp;
ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
inp->inp_socket->so_fibnum));
if (ia == NULL)
ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
inp->inp_socket->so_fibnum));
if (ia == NULL) {
error = ENETUNREACH;
goto done;
}
if (cred == NULL || !prison_flag(cred, PR_IP4)) {
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
ifa_free(&ia->ia_ifa);
goto done;
}
ifp = ia->ia_ifp;
ifa_free(&ia->ia_ifa);
ia = NULL;
IF_ADDR_RLOCK(ifp);
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
sa = ifa->ifa_addr;
if (sa->sa_family != AF_INET)
continue;
sin = (struct sockaddr_in *)sa;
if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
ia = (struct in_ifaddr *)ifa;
break;
}
}
if (ia != NULL) {
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
IF_ADDR_RUNLOCK(ifp);
goto done;
}
IF_ADDR_RUNLOCK(ifp);
/* 3. As a last resort return the 'default' jail address. */
error = prison_get_ip4(cred, laddr);
goto done;
}
/*
* If the outgoing interface on the route found is not
* a loopback interface, use the address from that interface.
* In case of jails do those three steps:
* 1. check if the interface address belongs to the jail. If so use it.
* 2. check if we have any address on the outgoing interface
* belonging to this jail. If so use it.
* 3. as a last resort return the 'default' jail address.
*/
if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
struct in_ifaddr *ia;
struct ifnet *ifp;
/* If not jailed, use the default returned. */
if (cred == NULL || !prison_flag(cred, PR_IP4)) {
ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
goto done;
}
/* Jailed. */
/* 1. Check if the iface address belongs to the jail. */
sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
goto done;
}
/*
* 2. Check if we have any address on the outgoing interface
* belonging to this jail.
*/
ia = NULL;
ifp = sro.ro_rt->rt_ifp;
IF_ADDR_RLOCK(ifp);
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
sa = ifa->ifa_addr;
if (sa->sa_family != AF_INET)
continue;
sin = (struct sockaddr_in *)sa;
if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
ia = (struct in_ifaddr *)ifa;
break;
}
}
if (ia != NULL) {
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
IF_ADDR_RUNLOCK(ifp);
goto done;
}
IF_ADDR_RUNLOCK(ifp);
/* 3. As a last resort return the 'default' jail address. */
error = prison_get_ip4(cred, laddr);
goto done;
}
/*
* The outgoing interface is marked with 'loopback net', so a route
* to ourselves is here.
* Try to find the interface of the destination address and then
* take the address from there. That interface is not necessarily
* a loopback interface.
* In case of jails, check that it is an address of the jail
* and if we cannot find, fall back to the 'default' jail address.
*/
if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
struct sockaddr_in sain;
struct in_ifaddr *ia;
bzero(&sain, sizeof(struct sockaddr_in));
sain.sin_family = AF_INET;
sain.sin_len = sizeof(struct sockaddr_in);
sain.sin_addr.s_addr = faddr->s_addr;
ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain),
inp->inp_socket->so_fibnum));
if (ia == NULL)
ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0,
inp->inp_socket->so_fibnum));
if (ia == NULL)
ia = ifatoia(ifa_ifwithaddr(sintosa(&sain)));
if (cred == NULL || !prison_flag(cred, PR_IP4)) {
if (ia == NULL) {
error = ENETUNREACH;
goto done;
}
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
ifa_free(&ia->ia_ifa);
goto done;
}
/* Jailed. */
if (ia != NULL) {
struct ifnet *ifp;
ifp = ia->ia_ifp;
ifa_free(&ia->ia_ifa);
ia = NULL;
IF_ADDR_RLOCK(ifp);
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
sa = ifa->ifa_addr;
if (sa->sa_family != AF_INET)
continue;
sin = (struct sockaddr_in *)sa;
if (prison_check_ip4(cred,
&sin->sin_addr) == 0) {
ia = (struct in_ifaddr *)ifa;
break;
}
}
if (ia != NULL) {
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
IF_ADDR_RUNLOCK(ifp);
goto done;
}
IF_ADDR_RUNLOCK(ifp);
}
/* 3. As a last resort return the 'default' jail address. */
error = prison_get_ip4(cred, laddr);
goto done;
}
done:
if (sro.ro_rt != NULL)
RTFREE(sro.ro_rt);
return (error);
}
/*
* Set up for a connect from a socket to the specified address.
* On entry, *laddrp and *lportp should contain the current local
* address and port for the PCB; these are updated to the values
* that should be placed in inp_laddr and inp_lport to complete
* the connect.
*
* On success, *faddrp and *fportp will be set to the remote address
* and port. These are not updated in the error case.
*
* If the operation fails because the connection already exists,
* *oinpp will be set to the PCB of that connection so that the
* caller can decide to override it. In all other cases, *oinpp
* is set to NULL.
*/
int
in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
struct inpcb **oinpp, struct ucred *cred)
{
struct rm_priotracker in_ifa_tracker;
struct sockaddr_in *sin = (struct sockaddr_in *)nam;
struct in_ifaddr *ia;
struct inpcb *oinp;
struct in_addr laddr, faddr;
u_short lport, fport;
int error;
/*
* Because a global state change doesn't actually occur here, a read
* lock is sufficient.
*/
INP_LOCK_ASSERT(inp);
INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
if (oinpp != NULL)
*oinpp = NULL;
if (nam->sa_len != sizeof (*sin))
return (EINVAL);
if (sin->sin_family != AF_INET)
return (EAFNOSUPPORT);
if (sin->sin_port == 0)
return (EADDRNOTAVAIL);
laddr.s_addr = *laddrp;
lport = *lportp;
faddr = sin->sin_addr;
fport = sin->sin_port;
if (!TAILQ_EMPTY(&V_in_ifaddrhead)) {
/*
* If the destination address is INADDR_ANY,
* use the primary local address.
* If the supplied address is INADDR_BROADCAST,
* and the primary interface supports broadcast,
* choose the broadcast address for that interface.
*/
if (faddr.s_addr == INADDR_ANY) {
IN_IFADDR_RLOCK(&in_ifa_tracker);
faddr =
IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
IN_IFADDR_RUNLOCK(&in_ifa_tracker);
if (cred != NULL &&
(error = prison_get_ip4(cred, &faddr)) != 0)
return (error);
} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
IN_IFADDR_RLOCK(&in_ifa_tracker);
if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
IFF_BROADCAST)
faddr = satosin(&TAILQ_FIRST(
&V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
IN_IFADDR_RUNLOCK(&in_ifa_tracker);
}
}
if (laddr.s_addr == INADDR_ANY) {
error = in_pcbladdr(inp, &faddr, &laddr, cred);
/*
* If the destination address is multicast and an outgoing
* interface has been set as a multicast option, prefer the
* address of that interface as our source address.
*/
if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
inp->inp_moptions != NULL) {
struct ip_moptions *imo;
struct ifnet *ifp;
imo = inp->inp_moptions;
if (imo->imo_multicast_ifp != NULL) {
ifp = imo->imo_multicast_ifp;
IN_IFADDR_RLOCK(&in_ifa_tracker);
TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
if ((ia->ia_ifp == ifp) &&
(cred == NULL ||
prison_check_ip4(cred,
&ia->ia_addr.sin_addr) == 0))
break;
}
if (ia == NULL)
error = EADDRNOTAVAIL;
else {
laddr = ia->ia_addr.sin_addr;
error = 0;
}
IN_IFADDR_RUNLOCK(&in_ifa_tracker);
}
}
if (error)
return (error);
}
oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport,
laddr, lport, 0, NULL);
if (oinp != NULL) {
if (oinpp != NULL)
*oinpp = oinp;
return (EADDRINUSE);
}
if (lport == 0) {
error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
cred);
if (error)
return (error);
}
*laddrp = laddr.s_addr;
*lportp = lport;
*faddrp = faddr.s_addr;
*fportp = fport;
return (0);
}
void
in_pcbdisconnect(struct inpcb *inp)
{
INP_WLOCK_ASSERT(inp);
INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
inp->inp_faddr.s_addr = INADDR_ANY;
inp->inp_fport = 0;
in_pcbrehash(inp);
}
#endif /* INET */
/*
* in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
* For most protocols, this will be invoked immediately prior to calling
* in_pcbfree(). However, with TCP the inpcb may significantly outlive the
* socket, in which case in_pcbfree() is deferred.
*/
void
in_pcbdetach(struct inpcb *inp)
{
KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
#ifdef RATELIMIT
if (inp->inp_snd_tag != NULL)
in_pcbdetach_txrtlmt(inp);
#endif
inp->inp_socket->so_pcb = NULL;
inp->inp_socket = NULL;
}
/*
* in_pcbref() bumps the reference count on an inpcb in order to maintain
* stability of an inpcb pointer despite the inpcb lock being released. This
* is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
* but where the inpcb lock may already held, or when acquiring a reference
* via a pcbgroup.
*
* in_pcbref() should be used only to provide brief memory stability, and
* must always be followed by a call to INP_WLOCK() and in_pcbrele() to
* garbage collect the inpcb if it has been in_pcbfree()'d from another
* context. Until in_pcbrele() has returned that the inpcb is still valid,
* lock and rele are the *only* safe operations that may be performed on the
* inpcb.
*
* While the inpcb will not be freed, releasing the inpcb lock means that the
* connection's state may change, so the caller should be careful to
* revalidate any cached state on reacquiring the lock. Drop the reference
* using in_pcbrele().
*/
void
in_pcbref(struct inpcb *inp)
{
KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
refcount_acquire(&inp->inp_refcount);
}
/*
* Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
* in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
* return a flag indicating whether or not the inpcb remains valid. If it is
* valid, we return with the inpcb lock held.
*
* Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
* reference on an inpcb. Historically more work was done here (actually, in
* in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
* need for the pcbinfo lock in in_pcbrele(). Deferring the free is entirely
* about memory stability (and continued use of the write lock).
*/
int
in_pcbrele_rlocked(struct inpcb *inp)
{
struct inpcbinfo *pcbinfo;
KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
INP_RLOCK_ASSERT(inp);
if (refcount_release(&inp->inp_refcount) == 0) {
/*
* If the inpcb has been freed, let the caller know, even if
* this isn't the last reference.
*/
if (inp->inp_flags2 & INP_FREED) {
INP_RUNLOCK(inp);
return (1);
}
return (0);
}
KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
INP_RUNLOCK(inp);
pcbinfo = inp->inp_pcbinfo;
uma_zfree(pcbinfo->ipi_zone, inp);
return (1);
}
int
in_pcbrele_wlocked(struct inpcb *inp)
{
struct inpcbinfo *pcbinfo;
KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
INP_WLOCK_ASSERT(inp);
if (refcount_release(&inp->inp_refcount) == 0) {
/*
* If the inpcb has been freed, let the caller know, even if
* this isn't the last reference.
*/
if (inp->inp_flags2 & INP_FREED) {
INP_WUNLOCK(inp);
return (1);
}
return (0);
}
KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
INP_WUNLOCK(inp);
pcbinfo = inp->inp_pcbinfo;
uma_zfree(pcbinfo->ipi_zone, inp);
return (1);
}
/*
* Temporary wrapper.
*/
int
in_pcbrele(struct inpcb *inp)
{
return (in_pcbrele_wlocked(inp));
}
/*
* Unconditionally schedule an inpcb to be freed by decrementing its
* reference count, which should occur only after the inpcb has been detached
* from its socket. If another thread holds a temporary reference (acquired
* using in_pcbref()) then the free is deferred until that reference is
* released using in_pcbrele(), but the inpcb is still unlocked. Almost all
* work, including removal from global lists, is done in this context, where
* the pcbinfo lock is held.
*/
void
in_pcbfree(struct inpcb *inp)
{
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
#ifdef INVARIANTS
if (pcbinfo == &V_tcbinfo) {
INP_INFO_LOCK_ASSERT(pcbinfo);
} else {
INP_INFO_WLOCK_ASSERT(pcbinfo);
}
#endif
INP_WLOCK_ASSERT(inp);
/* XXXRW: Do as much as possible here. */
#if defined(IPSEC) || defined(IPSEC_SUPPORT)
if (inp->inp_sp != NULL)
ipsec_delete_pcbpolicy(inp);
#endif
INP_LIST_WLOCK(pcbinfo);
inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
in_pcbremlists(inp);
INP_LIST_WUNLOCK(pcbinfo);
#ifdef INET6
if (inp->inp_vflag & INP_IPV6PROTO) {
ip6_freepcbopts(inp->in6p_outputopts);
if (inp->in6p_moptions != NULL)
ip6_freemoptions(inp->in6p_moptions);
}
#endif
if (inp->inp_options)
(void)m_free(inp->inp_options);
#ifdef INET
if (inp->inp_moptions != NULL)
inp_freemoptions(inp->inp_moptions);
#endif
RO_RTFREE(&inp->inp_route);
if (inp->inp_route.ro_lle)
LLE_FREE(inp->inp_route.ro_lle); /* zeros ro_lle */
inp->inp_vflag = 0;
inp->inp_flags2 |= INP_FREED;
crfree(inp->inp_cred);
#ifdef MAC
mac_inpcb_destroy(inp);
#endif
if (!in_pcbrele_wlocked(inp))
INP_WUNLOCK(inp);
}
/*
* in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
* port reservation, and preventing it from being returned by inpcb lookups.
*
* It is used by TCP to mark an inpcb as unused and avoid future packet
* delivery or event notification when a socket remains open but TCP has
* closed. This might occur as a result of a shutdown()-initiated TCP close
* or a RST on the wire, and allows the port binding to be reused while still
* maintaining the invariant that so_pcb always points to a valid inpcb until
* in_pcbdetach().
*
* XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
* in_pcbnotifyall() and in_pcbpurgeif0()?
*/
void
in_pcbdrop(struct inpcb *inp)
{
INP_WLOCK_ASSERT(inp);
/*
* XXXRW: Possibly we should protect the setting of INP_DROPPED with
* the hash lock...?
*/
inp->inp_flags |= INP_DROPPED;
if (inp->inp_flags & INP_INHASHLIST) {
struct inpcbport *phd = inp->inp_phd;
INP_HASH_WLOCK(inp->inp_pcbinfo);
LIST_REMOVE(inp, inp_hash);
LIST_REMOVE(inp, inp_portlist);
if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
LIST_REMOVE(phd, phd_hash);
free(phd, M_PCB);
}
INP_HASH_WUNLOCK(inp->inp_pcbinfo);
inp->inp_flags &= ~INP_INHASHLIST;
#ifdef PCBGROUP
in_pcbgroup_remove(inp);
#endif
}
}
#ifdef INET
/*
* Common routines to return the socket addresses associated with inpcbs.
*/
struct sockaddr *
in_sockaddr(in_port_t port, struct in_addr *addr_p)
{
struct sockaddr_in *sin;
sin = malloc(sizeof *sin, M_SONAME,
M_WAITOK | M_ZERO);
sin->sin_family = AF_INET;
sin->sin_len = sizeof(*sin);
sin->sin_addr = *addr_p;
sin->sin_port = port;
return (struct sockaddr *)sin;
}
int
in_getsockaddr(struct socket *so, struct sockaddr **nam)
{
struct inpcb *inp;
struct in_addr addr;
in_port_t port;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
INP_RLOCK(inp);
port = inp->inp_lport;
addr = inp->inp_laddr;
INP_RUNLOCK(inp);
*nam = in_sockaddr(port, &addr);
return 0;
}
int
in_getpeeraddr(struct socket *so, struct sockaddr **nam)
{
struct inpcb *inp;
struct in_addr addr;
in_port_t port;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
INP_RLOCK(inp);
port = inp->inp_fport;
addr = inp->inp_faddr;
INP_RUNLOCK(inp);
*nam = in_sockaddr(port, &addr);
return 0;
}
void
in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
struct inpcb *(*notify)(struct inpcb *, int))
{
struct inpcb *inp, *inp_temp;
INP_INFO_WLOCK(pcbinfo);
LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
INP_WLOCK(inp);
#ifdef INET6
if ((inp->inp_vflag & INP_IPV4) == 0) {
INP_WUNLOCK(inp);
continue;
}
#endif
if (inp->inp_faddr.s_addr != faddr.s_addr ||
inp->inp_socket == NULL) {
INP_WUNLOCK(inp);
continue;
}
if ((*notify)(inp, errno))
INP_WUNLOCK(inp);
}
INP_INFO_WUNLOCK(pcbinfo);
}
void
in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
{
struct inpcb *inp;
struct ip_moptions *imo;
int i, gap;
INP_INFO_WLOCK(pcbinfo);
LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
INP_WLOCK(inp);
imo = inp->inp_moptions;
if ((inp->inp_vflag & INP_IPV4) &&
imo != NULL) {
/*
* Unselect the outgoing interface if it is being
* detached.
*/
if (imo->imo_multicast_ifp == ifp)
imo->imo_multicast_ifp = NULL;
/*
* Drop multicast group membership if we joined
* through the interface being detached.
*/
for (i = 0, gap = 0; i < imo->imo_num_memberships;
i++) {
if (imo->imo_membership[i]->inm_ifp == ifp) {
in_delmulti(imo->imo_membership[i]);
gap++;
} else if (gap != 0)
imo->imo_membership[i - gap] =
imo->imo_membership[i];
}
imo->imo_num_memberships -= gap;
}
INP_WUNLOCK(inp);
}
INP_INFO_WUNLOCK(pcbinfo);
}
/*
* Lookup a PCB based on the local address and port. Caller must hold the
* hash lock. No inpcb locks or references are acquired.
*/
#define INP_LOOKUP_MAPPED_PCB_COST 3
struct inpcb *
in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
u_short lport, int lookupflags, struct ucred *cred)
{
struct inpcb *inp;
#ifdef INET6
int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
#else
int matchwild = 3;
#endif
int wildcard;
KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
("%s: invalid lookup flags %d", __func__, lookupflags));
INP_HASH_LOCK_ASSERT(pcbinfo);
if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
struct inpcbhead *head;
/*
* Look for an unconnected (wildcard foreign addr) PCB that
* matches the local address and port we're looking for.
*/
head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
0, pcbinfo->ipi_hashmask)];
LIST_FOREACH(inp, head, inp_hash) {
#ifdef INET6
/* XXX inp locking */
if ((inp->inp_vflag & INP_IPV4) == 0)
continue;
#endif
if (inp->inp_faddr.s_addr == INADDR_ANY &&
inp->inp_laddr.s_addr == laddr.s_addr &&
inp->inp_lport == lport) {
/*
* Found?
*/
if (cred == NULL ||
prison_equal_ip4(cred->cr_prison,
inp->inp_cred->cr_prison))
return (inp);
}
}
/*
* Not found.
*/
return (NULL);
} else {
struct inpcbporthead *porthash;
struct inpcbport *phd;
struct inpcb *match = NULL;
/*
* Best fit PCB lookup.
*
* First see if this local port is in use by looking on the
* port hash list.
*/
porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
pcbinfo->ipi_porthashmask)];
LIST_FOREACH(phd, porthash, phd_hash) {
if (phd->phd_port == lport)
break;
}
if (phd != NULL) {
/*
* Port is in use by one or more PCBs. Look for best
* fit.
*/
LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
wildcard = 0;
if (cred != NULL &&
!prison_equal_ip4(inp->inp_cred->cr_prison,
cred->cr_prison))
continue;
#ifdef INET6
/* XXX inp locking */
if ((inp->inp_vflag & INP_IPV4) == 0)
continue;
/*
* We never select the PCB that has
* INP_IPV6 flag and is bound to :: if
* we have another PCB which is bound
* to 0.0.0.0. If a PCB has the
* INP_IPV6 flag, then we set its cost
* higher than IPv4 only PCBs.
*
* Note that the case only happens
* when a socket is bound to ::, under
* the condition that the use of the
* mapped address is allowed.
*/
if ((inp->inp_vflag & INP_IPV6) != 0)
wildcard += INP_LOOKUP_MAPPED_PCB_COST;
#endif
if (inp->inp_faddr.s_addr != INADDR_ANY)
wildcard++;
if (inp->inp_laddr.s_addr != INADDR_ANY) {
if (laddr.s_addr == INADDR_ANY)
wildcard++;
else if (inp->inp_laddr.s_addr != laddr.s_addr)
continue;
} else {
if (laddr.s_addr != INADDR_ANY)
wildcard++;
}
if (wildcard < matchwild) {
match = inp;
matchwild = wildcard;
if (matchwild == 0)
break;
}
}
}
return (match);
}
}
#undef INP_LOOKUP_MAPPED_PCB_COST
#ifdef PCBGROUP
/*
* Lookup PCB in hash list, using pcbgroup tables.
*/
static struct inpcb *
in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
u_int lport_arg, int lookupflags, struct ifnet *ifp)
{
struct inpcbhead *head;
struct inpcb *inp, *tmpinp;
u_short fport = fport_arg, lport = lport_arg;
/*
* First look for an exact match.
*/
tmpinp = NULL;
INP_GROUP_LOCK(pcbgroup);
head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
pcbgroup->ipg_hashmask)];
LIST_FOREACH(inp, head, inp_pcbgrouphash) {
#ifdef INET6
/* XXX inp locking */
if ((inp->inp_vflag & INP_IPV4) == 0)
continue;
#endif
if (inp->inp_faddr.s_addr == faddr.s_addr &&
inp->inp_laddr.s_addr == laddr.s_addr &&
inp->inp_fport == fport &&
inp->inp_lport == lport) {
/*
* XXX We should be able to directly return
* the inp here, without any checks.
* Well unless both bound with SO_REUSEPORT?
*/
if (prison_flag(inp->inp_cred, PR_IP4))
goto found;
if (tmpinp == NULL)
tmpinp = inp;
}
}
if (tmpinp != NULL) {
inp = tmpinp;
goto found;
}
#ifdef RSS
/*
* For incoming connections, we may wish to do a wildcard
* match for an RSS-local socket.
*/
if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
struct inpcb *local_wild = NULL, *local_exact = NULL;
#ifdef INET6
struct inpcb *local_wild_mapped = NULL;
#endif
struct inpcb *jail_wild = NULL;
struct inpcbhead *head;
int injail;
/*
* Order of socket selection - we always prefer jails.
* 1. jailed, non-wild.
* 2. jailed, wild.
* 3. non-jailed, non-wild.
* 4. non-jailed, wild.
*/
head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY,
lport, 0, pcbgroup->ipg_hashmask)];
LIST_FOREACH(inp, head, inp_pcbgrouphash) {
#ifdef INET6
/* XXX inp locking */
if ((inp->inp_vflag & INP_IPV4) == 0)
continue;
#endif
if (inp->inp_faddr.s_addr != INADDR_ANY ||
inp->inp_lport != lport)
continue;
injail = prison_flag(inp->inp_cred, PR_IP4);
if (injail) {
if (prison_check_ip4(inp->inp_cred,
&laddr) != 0)
continue;
} else {
if (local_exact != NULL)
continue;
}
if (inp->inp_laddr.s_addr == laddr.s_addr) {
if (injail)
goto found;
else
local_exact = inp;
} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
#ifdef INET6
/* XXX inp locking, NULL check */
if (inp->inp_vflag & INP_IPV6PROTO)
local_wild_mapped = inp;
else
#endif
if (injail)
jail_wild = inp;
else
local_wild = inp;
}
} /* LIST_FOREACH */
inp = jail_wild;
if (inp == NULL)
inp = local_exact;
if (inp == NULL)
inp = local_wild;
#ifdef INET6
if (inp == NULL)
inp = local_wild_mapped;
#endif
if (inp != NULL)
goto found;
}
#endif
/*
* Then look for a wildcard match, if requested.
*/
if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
struct inpcb *local_wild = NULL, *local_exact = NULL;
#ifdef INET6
struct inpcb *local_wild_mapped = NULL;
#endif
struct inpcb *jail_wild = NULL;
struct inpcbhead *head;
int injail;
/*
* Order of socket selection - we always prefer jails.
* 1. jailed, non-wild.
* 2. jailed, wild.
* 3. non-jailed, non-wild.
* 4. non-jailed, wild.
*/
head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
0, pcbinfo->ipi_wildmask)];
LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
#ifdef INET6
/* XXX inp locking */
if ((inp->inp_vflag & INP_IPV4) == 0)
continue;
#endif
if (inp->inp_faddr.s_addr != INADDR_ANY ||
inp->inp_lport != lport)
continue;
injail = prison_flag(inp->inp_cred, PR_IP4);
if (injail) {
if (prison_check_ip4(inp->inp_cred,
&laddr) != 0)
continue;
} else {
if (local_exact != NULL)
continue;
}
if (inp->inp_laddr.s_addr == laddr.s_addr) {
if (injail)
goto found;
else
local_exact = inp;
} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
#ifdef INET6
/* XXX inp locking, NULL check */
if (inp->inp_vflag & INP_IPV6PROTO)
local_wild_mapped = inp;
else
#endif
if (injail)
jail_wild = inp;
else
local_wild = inp;
}
} /* LIST_FOREACH */
inp = jail_wild;
if (inp == NULL)
inp = local_exact;
if (inp == NULL)
inp = local_wild;
#ifdef INET6
if (inp == NULL)
inp = local_wild_mapped;
#endif
if (inp != NULL)
goto found;
} /* if (lookupflags & INPLOOKUP_WILDCARD) */
INP_GROUP_UNLOCK(pcbgroup);
return (NULL);
found:
in_pcbref(inp);
INP_GROUP_UNLOCK(pcbgroup);
if (lookupflags & INPLOOKUP_WLOCKPCB) {
INP_WLOCK(inp);
if (in_pcbrele_wlocked(inp))
return (NULL);
} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
INP_RLOCK(inp);
if (in_pcbrele_rlocked(inp))
return (NULL);
} else
panic("%s: locking bug", __func__);
return (inp);
}
#endif /* PCBGROUP */
/*
* Lookup PCB in hash list, using pcbinfo tables. This variation assumes
* that the caller has locked the hash list, and will not perform any further
* locking or reference operations on either the hash list or the connection.
*/
static struct inpcb *
in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
struct ifnet *ifp)
{
struct inpcbhead *head;
struct inpcb *inp, *tmpinp;
u_short fport = fport_arg, lport = lport_arg;
KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
("%s: invalid lookup flags %d", __func__, lookupflags));
INP_HASH_LOCK_ASSERT(pcbinfo);
/*
* First look for an exact match.
*/
tmpinp = NULL;
head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
pcbinfo->ipi_hashmask)];
LIST_FOREACH(inp, head, inp_hash) {
#ifdef INET6
/* XXX inp locking */
if ((inp->inp_vflag & INP_IPV4) == 0)
continue;
#endif
if (inp->inp_faddr.s_addr == faddr.s_addr &&
inp->inp_laddr.s_addr == laddr.s_addr &&
inp->inp_fport == fport &&
inp->inp_lport == lport) {
/*
* XXX We should be able to directly return
* the inp here, without any checks.
* Well unless both bound with SO_REUSEPORT?
*/
if (prison_flag(inp->inp_cred, PR_IP4))
return (inp);
if (tmpinp == NULL)
tmpinp = inp;
}
}
if (tmpinp != NULL)
return (tmpinp);
/*
* Then look for a wildcard match, if requested.
*/
if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
struct inpcb *local_wild = NULL, *local_exact = NULL;
#ifdef INET6
struct inpcb *local_wild_mapped = NULL;
#endif
struct inpcb *jail_wild = NULL;
int injail;
/*
* Order of socket selection - we always prefer jails.
* 1. jailed, non-wild.
* 2. jailed, wild.
* 3. non-jailed, non-wild.
* 4. non-jailed, wild.
*/
head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
0, pcbinfo->ipi_hashmask)];
LIST_FOREACH(inp, head, inp_hash) {
#ifdef INET6
/* XXX inp locking */
if ((inp->inp_vflag & INP_IPV4) == 0)
continue;
#endif
if (inp->inp_faddr.s_addr != INADDR_ANY ||
inp->inp_lport != lport)
continue;
injail = prison_flag(inp->inp_cred, PR_IP4);
if (injail) {
if (prison_check_ip4(inp->inp_cred,
&laddr) != 0)
continue;
} else {
if (local_exact != NULL)
continue;
}
if (inp->inp_laddr.s_addr == laddr.s_addr) {
if (injail)
return (inp);
else
local_exact = inp;
} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
#ifdef INET6
/* XXX inp locking, NULL check */
if (inp->inp_vflag & INP_IPV6PROTO)
local_wild_mapped = inp;
else
#endif
if (injail)
jail_wild = inp;
else
local_wild = inp;
}
} /* LIST_FOREACH */
if (jail_wild != NULL)
return (jail_wild);
if (local_exact != NULL)
return (local_exact);
if (local_wild != NULL)
return (local_wild);
#ifdef INET6
if (local_wild_mapped != NULL)
return (local_wild_mapped);
#endif
} /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
return (NULL);
}
/*
* Lookup PCB in hash list, using pcbinfo tables. This variation locks the
* hash list lock, and will return the inpcb locked (i.e., requires
* INPLOOKUP_LOCKPCB).
*/
static struct inpcb *
in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
struct ifnet *ifp)
{
struct inpcb *inp;
INP_HASH_RLOCK(pcbinfo);
inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
(lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
if (inp != NULL) {
in_pcbref(inp);
INP_HASH_RUNLOCK(pcbinfo);
if (lookupflags & INPLOOKUP_WLOCKPCB) {
INP_WLOCK(inp);
if (in_pcbrele_wlocked(inp))
return (NULL);
} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
INP_RLOCK(inp);
if (in_pcbrele_rlocked(inp))
return (NULL);
} else
panic("%s: locking bug", __func__);
} else
INP_HASH_RUNLOCK(pcbinfo);
return (inp);
}
/*
* Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
* from which a pre-calculated hash value may be extracted.
*
* Possibly more of this logic should be in in_pcbgroup.c.
*/
struct inpcb *
in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
{
#if defined(PCBGROUP) && !defined(RSS)
struct inpcbgroup *pcbgroup;
#endif
KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
("%s: invalid lookup flags %d", __func__, lookupflags));
KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
("%s: LOCKPCB not set", __func__));
/*
* When not using RSS, use connection groups in preference to the
* reservation table when looking up 4-tuples. When using RSS, just
* use the reservation table, due to the cost of the Toeplitz hash
* in software.
*
* XXXRW: This policy belongs in the pcbgroup code, as in principle
* we could be doing RSS with a non-Toeplitz hash that is affordable
* in software.
*/
#if defined(PCBGROUP) && !defined(RSS)
if (in_pcbgroup_enabled(pcbinfo)) {
pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
fport);
return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
laddr, lport, lookupflags, ifp));
}
#endif
return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
lookupflags, ifp));
}
struct inpcb *
in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
struct ifnet *ifp, struct mbuf *m)
{
#ifdef PCBGROUP
struct inpcbgroup *pcbgroup;
#endif
KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
("%s: invalid lookup flags %d", __func__, lookupflags));
KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
("%s: LOCKPCB not set", __func__));
#ifdef PCBGROUP
/*
* If we can use a hardware-generated hash to look up the connection
* group, use that connection group to find the inpcb. Otherwise
* fall back on a software hash -- or the reservation table if we're
* using RSS.
*
* XXXRW: As above, that policy belongs in the pcbgroup code.
*/
if (in_pcbgroup_enabled(pcbinfo) &&
!(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) {
pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
m->m_pkthdr.flowid);
if (pcbgroup != NULL)
return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
fport, laddr, lport, lookupflags, ifp));
#ifndef RSS
pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
fport);
return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
laddr, lport, lookupflags, ifp));
#endif
}
#endif
return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
lookupflags, ifp));
}
#endif /* INET */
/*
* Insert PCB onto various hash lists.
*/
static int
in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update)
{
struct inpcbhead *pcbhash;
struct inpcbporthead *pcbporthash;
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
struct inpcbport *phd;
u_int32_t hashkey_faddr;
INP_WLOCK_ASSERT(inp);
INP_HASH_WLOCK_ASSERT(pcbinfo);
KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
("in_pcbinshash: INP_INHASHLIST"));
#ifdef INET6
if (inp->inp_vflag & INP_IPV6)
hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
else
#endif
hashkey_faddr = inp->inp_faddr.s_addr;
pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
pcbporthash = &pcbinfo->ipi_porthashbase[
INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
/*
* Go through port list and look for a head for this lport.
*/
LIST_FOREACH(phd, pcbporthash, phd_hash) {
if (phd->phd_port == inp->inp_lport)
break;
}
/*
* If none exists, malloc one and tack it on.
*/
if (phd == NULL) {
phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
if (phd == NULL) {
return (ENOBUFS); /* XXX */
}
phd->phd_port = inp->inp_lport;
LIST_INIT(&phd->phd_pcblist);
LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
}
inp->inp_phd = phd;
LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
inp->inp_flags |= INP_INHASHLIST;
#ifdef PCBGROUP
if (do_pcbgroup_update)
in_pcbgroup_update(inp);
#endif
return (0);
}
/*
* For now, there are two public interfaces to insert an inpcb into the hash
* lists -- one that does update pcbgroups, and one that doesn't. The latter
* is used only in the TCP syncache, where in_pcbinshash is called before the
* full 4-tuple is set for the inpcb, and we don't want to install in the
* pcbgroup until later.
*
* XXXRW: This seems like a misfeature. in_pcbinshash should always update
* connection groups, and partially initialised inpcbs should not be exposed
* to either reservation hash tables or pcbgroups.
*/
int
in_pcbinshash(struct inpcb *inp)
{
return (in_pcbinshash_internal(inp, 1));
}
int
in_pcbinshash_nopcbgroup(struct inpcb *inp)
{
return (in_pcbinshash_internal(inp, 0));
}
/*
* Move PCB to the proper hash bucket when { faddr, fport } have been
* changed. NOTE: This does not handle the case of the lport changing (the
* hashed port list would have to be updated as well), so the lport must
* not change after in_pcbinshash() has been called.
*/
void
in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
{
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
struct inpcbhead *head;
u_int32_t hashkey_faddr;
INP_WLOCK_ASSERT(inp);
INP_HASH_WLOCK_ASSERT(pcbinfo);
KASSERT(inp->inp_flags & INP_INHASHLIST,
("in_pcbrehash: !INP_INHASHLIST"));
#ifdef INET6
if (inp->inp_vflag & INP_IPV6)
hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
else
#endif
hashkey_faddr = inp->inp_faddr.s_addr;
head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
LIST_REMOVE(inp, inp_hash);
LIST_INSERT_HEAD(head, inp, inp_hash);
#ifdef PCBGROUP
if (m != NULL)
in_pcbgroup_update_mbuf(inp, m);
else
in_pcbgroup_update(inp);
#endif
}
void
in_pcbrehash(struct inpcb *inp)
{
in_pcbrehash_mbuf(inp, NULL);
}
/*
* Remove PCB from various lists.
*/
static void
in_pcbremlists(struct inpcb *inp)
{
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
#ifdef INVARIANTS
if (pcbinfo == &V_tcbinfo) {
INP_INFO_RLOCK_ASSERT(pcbinfo);
} else {
INP_INFO_WLOCK_ASSERT(pcbinfo);
}
#endif
INP_WLOCK_ASSERT(inp);
INP_LIST_WLOCK_ASSERT(pcbinfo);
inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
if (inp->inp_flags & INP_INHASHLIST) {
struct inpcbport *phd = inp->inp_phd;
INP_HASH_WLOCK(pcbinfo);
LIST_REMOVE(inp, inp_hash);
LIST_REMOVE(inp, inp_portlist);
if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
LIST_REMOVE(phd, phd_hash);
free(phd, M_PCB);
}
INP_HASH_WUNLOCK(pcbinfo);
inp->inp_flags &= ~INP_INHASHLIST;
}
LIST_REMOVE(inp, inp_list);
pcbinfo->ipi_count--;
#ifdef PCBGROUP
in_pcbgroup_remove(inp);
#endif
}
/*
* Check for alternatives when higher level complains
* about service problems. For now, invalidate cached
* routing information. If the route was created dynamically
* (by a redirect), time to try a default gateway again.
*/
void
in_losing(struct inpcb *inp)
{
RO_RTFREE(&inp->inp_route);
if (inp->inp_route.ro_lle)
LLE_FREE(inp->inp_route.ro_lle); /* zeros ro_lle */
return;
}
/*
* A set label operation has occurred at the socket layer, propagate the
* label change into the in_pcb for the socket.
*/
void
in_pcbsosetlabel(struct socket *so)
{
#ifdef MAC
struct inpcb *inp;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
INP_WLOCK(inp);
SOCK_LOCK(so);
mac_inpcb_sosetlabel(so, inp);
SOCK_UNLOCK(so);
INP_WUNLOCK(inp);
#endif
}
/*
* ipport_tick runs once per second, determining if random port allocation
* should be continued. If more than ipport_randomcps ports have been
* allocated in the last second, then we return to sequential port
* allocation. We return to random allocation only once we drop below
* ipport_randomcps for at least ipport_randomtime seconds.
*/
static void
ipport_tick(void *xtp)
{
VNET_ITERATOR_DECL(vnet_iter);
VNET_LIST_RLOCK_NOSLEEP();
VNET_FOREACH(vnet_iter) {
CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */
if (V_ipport_tcpallocs <=
V_ipport_tcplastcount + V_ipport_randomcps) {
if (V_ipport_stoprandom > 0)
V_ipport_stoprandom--;
} else
V_ipport_stoprandom = V_ipport_randomtime;
V_ipport_tcplastcount = V_ipport_tcpallocs;
CURVNET_RESTORE();
}
VNET_LIST_RUNLOCK_NOSLEEP();
callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
}
static void
ip_fini(void *xtp)
{
callout_stop(&ipport_tick_callout);
}
/*
* The ipport_callout should start running at about the time we attach the
* inet or inet6 domains.
*/
static void
ipport_tick_init(const void *unused __unused)
{
/* Start ipport_tick. */
callout_init(&ipport_tick_callout, 1);
callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
SHUTDOWN_PRI_DEFAULT);
}
SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE,
ipport_tick_init, NULL);
void
inp_wlock(struct inpcb *inp)
{
INP_WLOCK(inp);
}
void
inp_wunlock(struct inpcb *inp)
{
INP_WUNLOCK(inp);
}
void
inp_rlock(struct inpcb *inp)
{
INP_RLOCK(inp);
}
void
inp_runlock(struct inpcb *inp)
{
INP_RUNLOCK(inp);
}
#ifdef INVARIANT_SUPPORT
void
inp_lock_assert(struct inpcb *inp)
{
INP_WLOCK_ASSERT(inp);
}
void
inp_unlock_assert(struct inpcb *inp)
{
INP_UNLOCK_ASSERT(inp);
}
#endif
void
inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
{
struct inpcb *inp;
INP_INFO_WLOCK(&V_tcbinfo);
LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
INP_WLOCK(inp);
func(inp, arg);
INP_WUNLOCK(inp);
}
INP_INFO_WUNLOCK(&V_tcbinfo);
}
struct socket *
inp_inpcbtosocket(struct inpcb *inp)
{
INP_WLOCK_ASSERT(inp);
return (inp->inp_socket);
}
struct tcpcb *
inp_inpcbtotcpcb(struct inpcb *inp)
{
INP_WLOCK_ASSERT(inp);
return ((struct tcpcb *)inp->inp_ppcb);
}
int
inp_ip_tos_get(const struct inpcb *inp)
{
return (inp->inp_ip_tos);
}
void
inp_ip_tos_set(struct inpcb *inp, int val)
{
inp->inp_ip_tos = val;
}
void
inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
uint32_t *faddr, uint16_t *fp)
{
INP_LOCK_ASSERT(inp);
*laddr = inp->inp_laddr.s_addr;
*faddr = inp->inp_faddr.s_addr;
*lp = inp->inp_lport;
*fp = inp->inp_fport;
}
struct inpcb *
so_sotoinpcb(struct socket *so)
{
return (sotoinpcb(so));
}
struct tcpcb *
so_sototcpcb(struct socket *so)
{
return (sototcpcb(so));
}
/*
* Create an external-format (``xinpcb'') structure using the information in
* the kernel-format in_pcb structure pointed to by inp. This is done to
* reduce the spew of irrelevant information over this interface, to isolate
* user code from changes in the kernel structure, and potentially to provide
* information-hiding if we decide that some of this information should be
* hidden from users.
*/
void
in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi)
{
xi->xi_len = sizeof(struct xinpcb);
if (inp->inp_socket)
sotoxsocket(inp->inp_socket, &xi->xi_socket);
else
bzero(&xi->xi_socket, sizeof(struct xsocket));
bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo));
xi->inp_gencnt = inp->inp_gencnt;
xi->inp_ppcb = inp->inp_ppcb;
xi->inp_flow = inp->inp_flow;
xi->inp_flowid = inp->inp_flowid;
xi->inp_flowtype = inp->inp_flowtype;
xi->inp_flags = inp->inp_flags;
xi->inp_flags2 = inp->inp_flags2;
xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket;
xi->in6p_cksum = inp->in6p_cksum;
xi->in6p_hops = inp->in6p_hops;
xi->inp_ip_tos = inp->inp_ip_tos;
xi->inp_vflag = inp->inp_vflag;
xi->inp_ip_ttl = inp->inp_ip_ttl;
xi->inp_ip_p = inp->inp_ip_p;
xi->inp_ip_minttl = inp->inp_ip_minttl;
}
#ifdef DDB
static void
db_print_indent(int indent)
{
int i;
for (i = 0; i < indent; i++)
db_printf(" ");
}
static void
db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
{
char faddr_str[48], laddr_str[48];
db_print_indent(indent);
db_printf("%s at %p\n", name, inc);
indent += 2;
#ifdef INET6
if (inc->inc_flags & INC_ISIPV6) {
/* IPv6. */
ip6_sprintf(laddr_str, &inc->inc6_laddr);
ip6_sprintf(faddr_str, &inc->inc6_faddr);
} else
#endif
{
/* IPv4. */
inet_ntoa_r(inc->inc_laddr, laddr_str);
inet_ntoa_r(inc->inc_faddr, faddr_str);
}
db_print_indent(indent);
db_printf("inc_laddr %s inc_lport %u\n", laddr_str,
ntohs(inc->inc_lport));
db_print_indent(indent);
db_printf("inc_faddr %s inc_fport %u\n", faddr_str,
ntohs(inc->inc_fport));
}
static void
db_print_inpflags(int inp_flags)
{
int comma;
comma = 0;
if (inp_flags & INP_RECVOPTS) {
db_printf("%sINP_RECVOPTS", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_RECVRETOPTS) {
db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_RECVDSTADDR) {
db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_ORIGDSTADDR) {
db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_HDRINCL) {
db_printf("%sINP_HDRINCL", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_HIGHPORT) {
db_printf("%sINP_HIGHPORT", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_LOWPORT) {
db_printf("%sINP_LOWPORT", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_ANONPORT) {
db_printf("%sINP_ANONPORT", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_RECVIF) {
db_printf("%sINP_RECVIF", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_MTUDISC) {
db_printf("%sINP_MTUDISC", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_RECVTTL) {
db_printf("%sINP_RECVTTL", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_DONTFRAG) {
db_printf("%sINP_DONTFRAG", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_RECVTOS) {
db_printf("%sINP_RECVTOS", comma ? ", " : "");
comma = 1;
}
if (inp_flags & IN6P_IPV6_V6ONLY) {
db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
comma = 1;
}
if (inp_flags & IN6P_PKTINFO) {
db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
comma = 1;
}
if (inp_flags & IN6P_HOPLIMIT) {
db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
comma = 1;
}
if (inp_flags & IN6P_HOPOPTS) {
db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
comma = 1;
}
if (inp_flags & IN6P_DSTOPTS) {
db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
comma = 1;
}
if (inp_flags & IN6P_RTHDR) {
db_printf("%sIN6P_RTHDR", comma ? ", " : "");
comma = 1;
}
if (inp_flags & IN6P_RTHDRDSTOPTS) {
db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
comma = 1;
}
if (inp_flags & IN6P_TCLASS) {
db_printf("%sIN6P_TCLASS", comma ? ", " : "");
comma = 1;
}
if (inp_flags & IN6P_AUTOFLOWLABEL) {
db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_TIMEWAIT) {
db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_ONESBCAST) {
db_printf("%sINP_ONESBCAST", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_DROPPED) {
db_printf("%sINP_DROPPED", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_SOCKREF) {
db_printf("%sINP_SOCKREF", comma ? ", " : "");
comma = 1;
}
if (inp_flags & IN6P_RFC2292) {
db_printf("%sIN6P_RFC2292", comma ? ", " : "");
comma = 1;
}
if (inp_flags & IN6P_MTU) {
db_printf("IN6P_MTU%s", comma ? ", " : "");
comma = 1;
}
}
static void
db_print_inpvflag(u_char inp_vflag)
{
int comma;
comma = 0;
if (inp_vflag & INP_IPV4) {
db_printf("%sINP_IPV4", comma ? ", " : "");
comma = 1;
}
if (inp_vflag & INP_IPV6) {
db_printf("%sINP_IPV6", comma ? ", " : "");
comma = 1;
}
if (inp_vflag & INP_IPV6PROTO) {
db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
comma = 1;
}
}
static void
db_print_inpcb(struct inpcb *inp, const char *name, int indent)
{
db_print_indent(indent);
db_printf("%s at %p\n", name, inp);
indent += 2;
db_print_indent(indent);
db_printf("inp_flow: 0x%x\n", inp->inp_flow);
db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
db_print_indent(indent);
db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n",
inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
db_print_indent(indent);
db_printf("inp_label: %p inp_flags: 0x%x (",
inp->inp_label, inp->inp_flags);
db_print_inpflags(inp->inp_flags);
db_printf(")\n");
db_print_indent(indent);
db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp,
inp->inp_vflag);
db_print_inpvflag(inp->inp_vflag);
db_printf(")\n");
db_print_indent(indent);
db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n",
inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
db_print_indent(indent);
#ifdef INET6
if (inp->inp_vflag & INP_IPV6) {
db_printf("in6p_options: %p in6p_outputopts: %p "
"in6p_moptions: %p\n", inp->in6p_options,
inp->in6p_outputopts, inp->in6p_moptions);
db_printf("in6p_icmp6filt: %p in6p_cksum %d "
"in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
inp->in6p_hops);
} else
#endif
{
db_printf("inp_ip_tos: %d inp_ip_options: %p "
"inp_ip_moptions: %p\n", inp->inp_ip_tos,
inp->inp_options, inp->inp_moptions);
}
db_print_indent(indent);
db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd,
(uintmax_t)inp->inp_gencnt);
}
DB_SHOW_COMMAND(inpcb, db_show_inpcb)
{
struct inpcb *inp;
if (!have_addr) {
db_printf("usage: show inpcb <addr>\n");
return;
}
inp = (struct inpcb *)addr;
db_print_inpcb(inp, "inpcb", 0);
}
#endif /* DDB */
#ifdef RATELIMIT
/*
* Modify TX rate limit based on the existing "inp->inp_snd_tag",
* if any.
*/
int
in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
{
union if_snd_tag_modify_params params = {
.rate_limit.max_rate = max_pacing_rate,
};
struct m_snd_tag *mst;
struct ifnet *ifp;
int error;
mst = inp->inp_snd_tag;
if (mst == NULL)
return (EINVAL);
ifp = mst->ifp;
if (ifp == NULL)
return (EINVAL);
if (ifp->if_snd_tag_modify == NULL) {
error = EOPNOTSUPP;
} else {
error = ifp->if_snd_tag_modify(mst, &params);
}
return (error);
}
/*
* Query existing TX rate limit based on the existing
* "inp->inp_snd_tag", if any.
*/
int
in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
{
union if_snd_tag_query_params params = { };
struct m_snd_tag *mst;
struct ifnet *ifp;
int error;
mst = inp->inp_snd_tag;
if (mst == NULL)
return (EINVAL);
ifp = mst->ifp;
if (ifp == NULL)
return (EINVAL);
if (ifp->if_snd_tag_query == NULL) {
error = EOPNOTSUPP;
} else {
error = ifp->if_snd_tag_query(mst, &params);
if (error == 0 && p_max_pacing_rate != NULL)
*p_max_pacing_rate = params.rate_limit.max_rate;
}
return (error);
}
/*
* Allocate a new TX rate limit send tag from the network interface
* given by the "ifp" argument and save it in "inp->inp_snd_tag":
*/
int
in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate)
{
union if_snd_tag_alloc_params params = {
.rate_limit.hdr.type = IF_SND_TAG_TYPE_RATE_LIMIT,
.rate_limit.hdr.flowid = flowid,
.rate_limit.hdr.flowtype = flowtype,
.rate_limit.max_rate = max_pacing_rate,
};
int error;
INP_WLOCK_ASSERT(inp);
if (inp->inp_snd_tag != NULL)
return (EINVAL);
if (ifp->if_snd_tag_alloc == NULL) {
error = EOPNOTSUPP;
} else {
error = ifp->if_snd_tag_alloc(ifp, &params, &inp->inp_snd_tag);
/*
* At success increment the refcount on
* the send tag's network interface:
*/
if (error == 0)
if_ref(inp->inp_snd_tag->ifp);
}
return (error);
}
/*
* Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
* if any:
*/
void
in_pcbdetach_txrtlmt(struct inpcb *inp)
{
struct m_snd_tag *mst;
struct ifnet *ifp;
INP_WLOCK_ASSERT(inp);
mst = inp->inp_snd_tag;
inp->inp_snd_tag = NULL;
if (mst == NULL)
return;
ifp = mst->ifp;
if (ifp == NULL)
return;
/*
* If the device was detached while we still had reference(s)
* on the ifp, we assume if_snd_tag_free() was replaced with
* stubs.
*/
ifp->if_snd_tag_free(mst);
/* release reference count on network interface */
if_rele(ifp);
}
/*
* This function should be called when the INP_RATE_LIMIT_CHANGED flag
* is set in the fast path and will attach/detach/modify the TX rate
* limit send tag based on the socket's so_max_pacing_rate value.
*/
void
in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
{
struct socket *socket;
uint32_t max_pacing_rate;
bool did_upgrade;
int error;
if (inp == NULL)
return;
socket = inp->inp_socket;
if (socket == NULL)
return;
if (!INP_WLOCKED(inp)) {
/*
* NOTE: If the write locking fails, we need to bail
* out and use the non-ratelimited ring for the
* transmit until there is a new chance to get the
* write lock.
*/
if (!INP_TRY_UPGRADE(inp))
return;
did_upgrade = 1;
} else {
did_upgrade = 0;
}
/*
* NOTE: The so_max_pacing_rate value is read unlocked,
* because atomic updates are not required since the variable
* is checked at every mbuf we send. It is assumed that the
* variable read itself will be atomic.
*/
max_pacing_rate = socket->so_max_pacing_rate;
/*
* NOTE: When attaching to a network interface a reference is
* made to ensure the network interface doesn't go away until
* all ratelimit connections are gone. The network interface
* pointers compared below represent valid network interfaces,
* except when comparing towards NULL.
*/
if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
error = 0;
} else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
if (inp->inp_snd_tag != NULL)
in_pcbdetach_txrtlmt(inp);
error = 0;
} else if (inp->inp_snd_tag == NULL) {
/*
* In order to utilize packet pacing with RSS, we need
* to wait until there is a valid RSS hash before we
* can proceed:
*/
if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
error = EAGAIN;
} else {
error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
mb->m_pkthdr.flowid, max_pacing_rate);
}
} else {
error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
}
if (error == 0 || error == EOPNOTSUPP)
inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
if (did_upgrade)
INP_DOWNGRADE(inp);
}
/*
* Track route changes for TX rate limiting.
*/
void
in_pcboutput_eagain(struct inpcb *inp)
{
struct socket *socket;
bool did_upgrade;
if (inp == NULL)
return;
socket = inp->inp_socket;
if (socket == NULL)
return;
if (inp->inp_snd_tag == NULL)
return;
if (!INP_WLOCKED(inp)) {
/*
* NOTE: If the write locking fails, we need to bail
* out and use the non-ratelimited ring for the
* transmit until there is a new chance to get the
* write lock.
*/
if (!INP_TRY_UPGRADE(inp))
return;
did_upgrade = 1;
} else {
did_upgrade = 0;
}
/* detach rate limiting */
in_pcbdetach_txrtlmt(inp);
/* make sure new mbuf send tag allocation is made */
inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
if (did_upgrade)
INP_DOWNGRADE(inp);
}
#endif /* RATELIMIT */