freebsd-nq/sys/dev/qlxgbe/ql_os.c
Pedro F. Giffuni 718cf2ccb9 sys/dev: further adoption of SPDX licensing ID tags.
Mainly focus on files that use BSD 2-Clause license, however the tool I
was using misidentified many licenses so this was mostly a manual - error
prone - task.

The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.
2017-11-27 14:52:40 +00:00

2174 lines
52 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2013-2016 Qlogic Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* and ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* File: ql_os.c
* Author : David C Somayajulu, Qlogic Corporation, Aliso Viejo, CA 92656.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "ql_os.h"
#include "ql_hw.h"
#include "ql_def.h"
#include "ql_inline.h"
#include "ql_ver.h"
#include "ql_glbl.h"
#include "ql_dbg.h"
#include <sys/smp.h>
/*
* Some PCI Configuration Space Related Defines
*/
#ifndef PCI_VENDOR_QLOGIC
#define PCI_VENDOR_QLOGIC 0x1077
#endif
#ifndef PCI_PRODUCT_QLOGIC_ISP8030
#define PCI_PRODUCT_QLOGIC_ISP8030 0x8030
#endif
#define PCI_QLOGIC_ISP8030 \
((PCI_PRODUCT_QLOGIC_ISP8030 << 16) | PCI_VENDOR_QLOGIC)
/*
* static functions
*/
static int qla_alloc_parent_dma_tag(qla_host_t *ha);
static void qla_free_parent_dma_tag(qla_host_t *ha);
static int qla_alloc_xmt_bufs(qla_host_t *ha);
static void qla_free_xmt_bufs(qla_host_t *ha);
static int qla_alloc_rcv_bufs(qla_host_t *ha);
static void qla_free_rcv_bufs(qla_host_t *ha);
static void qla_clear_tx_buf(qla_host_t *ha, qla_tx_buf_t *txb);
static void qla_init_ifnet(device_t dev, qla_host_t *ha);
static int qla_sysctl_get_link_status(SYSCTL_HANDLER_ARGS);
static void qla_release(qla_host_t *ha);
static void qla_dmamap_callback(void *arg, bus_dma_segment_t *segs, int nsegs,
int error);
static void qla_stop(qla_host_t *ha);
static void qla_get_peer(qla_host_t *ha);
static void qla_error_recovery(void *context, int pending);
static void qla_async_event(void *context, int pending);
static void qla_stats(void *context, int pending);
static int qla_send(qla_host_t *ha, struct mbuf **m_headp, uint32_t txr_idx,
uint32_t iscsi_pdu);
/*
* Hooks to the Operating Systems
*/
static int qla_pci_probe (device_t);
static int qla_pci_attach (device_t);
static int qla_pci_detach (device_t);
static void qla_init(void *arg);
static int qla_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data);
static int qla_media_change(struct ifnet *ifp);
static void qla_media_status(struct ifnet *ifp, struct ifmediareq *ifmr);
static int qla_transmit(struct ifnet *ifp, struct mbuf *mp);
static void qla_qflush(struct ifnet *ifp);
static int qla_alloc_tx_br(qla_host_t *ha, qla_tx_fp_t *tx_fp);
static void qla_free_tx_br(qla_host_t *ha, qla_tx_fp_t *tx_fp);
static int qla_create_fp_taskqueues(qla_host_t *ha);
static void qla_destroy_fp_taskqueues(qla_host_t *ha);
static void qla_drain_fp_taskqueues(qla_host_t *ha);
static device_method_t qla_pci_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, qla_pci_probe),
DEVMETHOD(device_attach, qla_pci_attach),
DEVMETHOD(device_detach, qla_pci_detach),
{ 0, 0 }
};
static driver_t qla_pci_driver = {
"ql", qla_pci_methods, sizeof (qla_host_t),
};
static devclass_t qla83xx_devclass;
DRIVER_MODULE(qla83xx, pci, qla_pci_driver, qla83xx_devclass, 0, 0);
MODULE_DEPEND(qla83xx, pci, 1, 1, 1);
MODULE_DEPEND(qla83xx, ether, 1, 1, 1);
MALLOC_DEFINE(M_QLA83XXBUF, "qla83xxbuf", "Buffers for qla83xx driver");
#define QL_STD_REPLENISH_THRES 0
#define QL_JUMBO_REPLENISH_THRES 32
static char dev_str[64];
static char ver_str[64];
/*
* Name: qla_pci_probe
* Function: Validate the PCI device to be a QLA80XX device
*/
static int
qla_pci_probe(device_t dev)
{
switch ((pci_get_device(dev) << 16) | (pci_get_vendor(dev))) {
case PCI_QLOGIC_ISP8030:
snprintf(dev_str, sizeof(dev_str), "%s v%d.%d.%d",
"Qlogic ISP 83xx PCI CNA Adapter-Ethernet Function",
QLA_VERSION_MAJOR, QLA_VERSION_MINOR,
QLA_VERSION_BUILD);
snprintf(ver_str, sizeof(ver_str), "v%d.%d.%d",
QLA_VERSION_MAJOR, QLA_VERSION_MINOR,
QLA_VERSION_BUILD);
device_set_desc(dev, dev_str);
break;
default:
return (ENXIO);
}
if (bootverbose)
printf("%s: %s\n ", __func__, dev_str);
return (BUS_PROBE_DEFAULT);
}
static void
qla_add_sysctls(qla_host_t *ha)
{
device_t dev = ha->pci_dev;
SYSCTL_ADD_STRING(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "version", CTLFLAG_RD,
ver_str, 0, "Driver Version");
SYSCTL_ADD_STRING(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "fw_version", CTLFLAG_RD,
ha->fw_ver_str, 0, "firmware version");
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "link_status", CTLTYPE_INT | CTLFLAG_RW,
(void *)ha, 0,
qla_sysctl_get_link_status, "I", "Link Status");
ha->dbg_level = 0;
SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "debug", CTLFLAG_RW,
&ha->dbg_level, ha->dbg_level, "Debug Level");
ha->enable_minidump = 1;
SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "enable_minidump", CTLFLAG_RW,
&ha->enable_minidump, ha->enable_minidump,
"Minidump retrival is enabled only when this is set");
ha->std_replenish = QL_STD_REPLENISH_THRES;
SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "std_replenish", CTLFLAG_RW,
&ha->std_replenish, ha->std_replenish,
"Threshold for Replenishing Standard Frames");
SYSCTL_ADD_QUAD(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "ipv4_lro",
CTLFLAG_RD, &ha->ipv4_lro,
"number of ipv4 lro completions");
SYSCTL_ADD_QUAD(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "ipv6_lro",
CTLFLAG_RD, &ha->ipv6_lro,
"number of ipv6 lro completions");
SYSCTL_ADD_QUAD(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "tx_tso_frames",
CTLFLAG_RD, &ha->tx_tso_frames,
"number of Tx TSO Frames");
SYSCTL_ADD_QUAD(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "hw_vlan_tx_frames",
CTLFLAG_RD, &ha->hw_vlan_tx_frames,
"number of Tx VLAN Frames");
SYSCTL_ADD_QUAD(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "hw_lock_failed",
CTLFLAG_RD, &ha->hw_lock_failed,
"number of hw_lock failures");
return;
}
static void
qla_watchdog(void *arg)
{
qla_host_t *ha = arg;
qla_hw_t *hw;
struct ifnet *ifp;
hw = &ha->hw;
ifp = ha->ifp;
if (ha->qla_watchdog_exit) {
ha->qla_watchdog_exited = 1;
return;
}
ha->qla_watchdog_exited = 0;
if (!ha->qla_watchdog_pause) {
if (ql_hw_check_health(ha) || ha->qla_initiate_recovery ||
(ha->msg_from_peer == QL_PEER_MSG_RESET)) {
if (!(ha->dbg_level & 0x8000)) {
ha->qla_watchdog_paused = 1;
ha->qla_watchdog_pause = 1;
ha->qla_initiate_recovery = 0;
ha->err_inject = 0;
device_printf(ha->pci_dev,
"%s: taskqueue_enqueue(err_task) \n",
__func__);
taskqueue_enqueue(ha->err_tq, &ha->err_task);
return;
}
} else if (ha->qla_interface_up) {
ha->watchdog_ticks++;
if (ha->watchdog_ticks > 1000)
ha->watchdog_ticks = 0;
if (!ha->watchdog_ticks && QL_RUNNING(ifp)) {
taskqueue_enqueue(ha->stats_tq, &ha->stats_task);
}
if (ha->async_event) {
taskqueue_enqueue(ha->async_event_tq,
&ha->async_event_task);
}
#if 0
for (i = 0; ((i < ha->hw.num_sds_rings) &&
!ha->watchdog_ticks); i++) {
qla_tx_fp_t *fp = &ha->tx_fp[i];
if (fp->fp_taskqueue != NULL)
taskqueue_enqueue(fp->fp_taskqueue,
&fp->fp_task);
}
#endif
ha->qla_watchdog_paused = 0;
} else {
ha->qla_watchdog_paused = 0;
}
} else {
ha->qla_watchdog_paused = 1;
}
callout_reset(&ha->tx_callout, QLA_WATCHDOG_CALLOUT_TICKS,
qla_watchdog, ha);
}
/*
* Name: qla_pci_attach
* Function: attaches the device to the operating system
*/
static int
qla_pci_attach(device_t dev)
{
qla_host_t *ha = NULL;
uint32_t rsrc_len;
int i;
uint32_t num_rcvq = 0;
if ((ha = device_get_softc(dev)) == NULL) {
device_printf(dev, "cannot get softc\n");
return (ENOMEM);
}
memset(ha, 0, sizeof (qla_host_t));
if (pci_get_device(dev) != PCI_PRODUCT_QLOGIC_ISP8030) {
device_printf(dev, "device is not ISP8030\n");
return (ENXIO);
}
ha->pci_func = pci_get_function(dev) & 0x1;
ha->pci_dev = dev;
pci_enable_busmaster(dev);
ha->reg_rid = PCIR_BAR(0);
ha->pci_reg = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &ha->reg_rid,
RF_ACTIVE);
if (ha->pci_reg == NULL) {
device_printf(dev, "unable to map any ports\n");
goto qla_pci_attach_err;
}
rsrc_len = (uint32_t) bus_get_resource_count(dev, SYS_RES_MEMORY,
ha->reg_rid);
mtx_init(&ha->hw_lock, "qla83xx_hw_lock", MTX_NETWORK_LOCK, MTX_DEF);
ha->flags.lock_init = 1;
qla_add_sysctls(ha);
ha->hw.num_sds_rings = MAX_SDS_RINGS;
ha->hw.num_rds_rings = MAX_RDS_RINGS;
ha->hw.num_tx_rings = NUM_TX_RINGS;
ha->reg_rid1 = PCIR_BAR(2);
ha->pci_reg1 = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&ha->reg_rid1, RF_ACTIVE);
ha->msix_count = pci_msix_count(dev);
if (ha->msix_count < 1 ) {
device_printf(dev, "%s: msix_count[%d] not enough\n", __func__,
ha->msix_count);
goto qla_pci_attach_err;
}
if (ha->msix_count < (ha->hw.num_sds_rings + 1)) {
ha->hw.num_sds_rings = ha->msix_count - 1;
}
QL_DPRINT2(ha, (dev, "%s: ha %p pci_func 0x%x rsrc_count 0x%08x"
" msix_count 0x%x pci_reg %p pci_reg1 %p\n", __func__, ha,
ha->pci_func, rsrc_len, ha->msix_count, ha->pci_reg,
ha->pci_reg1));
/* initialize hardware */
if (ql_init_hw(ha)) {
device_printf(dev, "%s: ql_init_hw failed\n", __func__);
goto qla_pci_attach_err;
}
device_printf(dev, "%s: firmware[%d.%d.%d.%d]\n", __func__,
ha->fw_ver_major, ha->fw_ver_minor, ha->fw_ver_sub,
ha->fw_ver_build);
snprintf(ha->fw_ver_str, sizeof(ha->fw_ver_str), "%d.%d.%d.%d",
ha->fw_ver_major, ha->fw_ver_minor, ha->fw_ver_sub,
ha->fw_ver_build);
if (qla_get_nic_partition(ha, NULL, &num_rcvq)) {
device_printf(dev, "%s: qla_get_nic_partition failed\n",
__func__);
goto qla_pci_attach_err;
}
device_printf(dev, "%s: ha %p pci_func 0x%x rsrc_count 0x%08x"
" msix_count 0x%x pci_reg %p pci_reg1 %p num_rcvq = %d\n",
__func__, ha, ha->pci_func, rsrc_len, ha->msix_count,
ha->pci_reg, ha->pci_reg1, num_rcvq);
if ((ha->msix_count < 64) || (num_rcvq != 32)) {
if (ha->hw.num_sds_rings > 15) {
ha->hw.num_sds_rings = 15;
}
}
ha->hw.num_rds_rings = ha->hw.num_sds_rings;
ha->hw.num_tx_rings = ha->hw.num_sds_rings;
#ifdef QL_ENABLE_ISCSI_TLV
ha->hw.num_tx_rings = ha->hw.num_sds_rings * 2;
#endif /* #ifdef QL_ENABLE_ISCSI_TLV */
ql_hw_add_sysctls(ha);
ha->msix_count = ha->hw.num_sds_rings + 1;
if (pci_alloc_msix(dev, &ha->msix_count)) {
device_printf(dev, "%s: pci_alloc_msi[%d] failed\n", __func__,
ha->msix_count);
ha->msix_count = 0;
goto qla_pci_attach_err;
}
ha->mbx_irq_rid = 1;
ha->mbx_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
&ha->mbx_irq_rid,
(RF_ACTIVE | RF_SHAREABLE));
if (ha->mbx_irq == NULL) {
device_printf(dev, "could not allocate mbx interrupt\n");
goto qla_pci_attach_err;
}
if (bus_setup_intr(dev, ha->mbx_irq, (INTR_TYPE_NET | INTR_MPSAFE),
NULL, ql_mbx_isr, ha, &ha->mbx_handle)) {
device_printf(dev, "could not setup mbx interrupt\n");
goto qla_pci_attach_err;
}
for (i = 0; i < ha->hw.num_sds_rings; i++) {
ha->irq_vec[i].sds_idx = i;
ha->irq_vec[i].ha = ha;
ha->irq_vec[i].irq_rid = 2 + i;
ha->irq_vec[i].irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
&ha->irq_vec[i].irq_rid,
(RF_ACTIVE | RF_SHAREABLE));
if (ha->irq_vec[i].irq == NULL) {
device_printf(dev, "could not allocate interrupt\n");
goto qla_pci_attach_err;
}
if (bus_setup_intr(dev, ha->irq_vec[i].irq,
(INTR_TYPE_NET | INTR_MPSAFE),
NULL, ql_isr, &ha->irq_vec[i],
&ha->irq_vec[i].handle)) {
device_printf(dev, "could not setup interrupt\n");
goto qla_pci_attach_err;
}
ha->tx_fp[i].ha = ha;
ha->tx_fp[i].txr_idx = i;
if (qla_alloc_tx_br(ha, &ha->tx_fp[i])) {
device_printf(dev, "%s: could not allocate tx_br[%d]\n",
__func__, i);
goto qla_pci_attach_err;
}
}
if (qla_create_fp_taskqueues(ha) != 0)
goto qla_pci_attach_err;
printf("%s: mp__ncpus %d sds %d rds %d msi-x %d\n", __func__, mp_ncpus,
ha->hw.num_sds_rings, ha->hw.num_rds_rings, ha->msix_count);
ql_read_mac_addr(ha);
/* allocate parent dma tag */
if (qla_alloc_parent_dma_tag(ha)) {
device_printf(dev, "%s: qla_alloc_parent_dma_tag failed\n",
__func__);
goto qla_pci_attach_err;
}
/* alloc all dma buffers */
if (ql_alloc_dma(ha)) {
device_printf(dev, "%s: ql_alloc_dma failed\n", __func__);
goto qla_pci_attach_err;
}
qla_get_peer(ha);
if (ql_minidump_init(ha) != 0) {
device_printf(dev, "%s: ql_minidump_init failed\n", __func__);
goto qla_pci_attach_err;
}
ql_alloc_drvr_state_buffer(ha);
/* create the o.s ethernet interface */
qla_init_ifnet(dev, ha);
ha->flags.qla_watchdog_active = 1;
ha->qla_watchdog_pause = 0;
callout_init(&ha->tx_callout, TRUE);
ha->flags.qla_callout_init = 1;
/* create ioctl device interface */
if (ql_make_cdev(ha)) {
device_printf(dev, "%s: ql_make_cdev failed\n", __func__);
goto qla_pci_attach_err;
}
callout_reset(&ha->tx_callout, QLA_WATCHDOG_CALLOUT_TICKS,
qla_watchdog, ha);
TASK_INIT(&ha->err_task, 0, qla_error_recovery, ha);
ha->err_tq = taskqueue_create("qla_errq", M_NOWAIT,
taskqueue_thread_enqueue, &ha->err_tq);
taskqueue_start_threads(&ha->err_tq, 1, PI_NET, "%s errq",
device_get_nameunit(ha->pci_dev));
TASK_INIT(&ha->async_event_task, 0, qla_async_event, ha);
ha->async_event_tq = taskqueue_create("qla_asyncq", M_NOWAIT,
taskqueue_thread_enqueue, &ha->async_event_tq);
taskqueue_start_threads(&ha->async_event_tq, 1, PI_NET, "%s asyncq",
device_get_nameunit(ha->pci_dev));
TASK_INIT(&ha->stats_task, 0, qla_stats, ha);
ha->stats_tq = taskqueue_create("qla_statsq", M_NOWAIT,
taskqueue_thread_enqueue, &ha->stats_tq);
taskqueue_start_threads(&ha->stats_tq, 1, PI_NET, "%s taskq",
device_get_nameunit(ha->pci_dev));
QL_DPRINT2(ha, (dev, "%s: exit 0\n", __func__));
return (0);
qla_pci_attach_err:
qla_release(ha);
if (ha->flags.lock_init) {
mtx_destroy(&ha->hw_lock);
}
QL_DPRINT2(ha, (dev, "%s: exit ENXIO\n", __func__));
return (ENXIO);
}
/*
* Name: qla_pci_detach
* Function: Unhooks the device from the operating system
*/
static int
qla_pci_detach(device_t dev)
{
qla_host_t *ha = NULL;
struct ifnet *ifp;
if ((ha = device_get_softc(dev)) == NULL) {
device_printf(dev, "cannot get softc\n");
return (ENOMEM);
}
QL_DPRINT2(ha, (dev, "%s: enter\n", __func__));
ifp = ha->ifp;
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
QLA_LOCK(ha, __func__, -1, 0);
ha->qla_detach_active = 1;
qla_stop(ha);
qla_release(ha);
QLA_UNLOCK(ha, __func__);
if (ha->flags.lock_init) {
mtx_destroy(&ha->hw_lock);
}
QL_DPRINT2(ha, (dev, "%s: exit\n", __func__));
return (0);
}
/*
* SYSCTL Related Callbacks
*/
static int
qla_sysctl_get_link_status(SYSCTL_HANDLER_ARGS)
{
int err, ret = 0;
qla_host_t *ha;
err = sysctl_handle_int(oidp, &ret, 0, req);
if (err || !req->newptr)
return (err);
if (ret == 1) {
ha = (qla_host_t *)arg1;
ql_hw_link_status(ha);
}
return (err);
}
/*
* Name: qla_release
* Function: Releases the resources allocated for the device
*/
static void
qla_release(qla_host_t *ha)
{
device_t dev;
int i;
dev = ha->pci_dev;
if (ha->async_event_tq) {
taskqueue_drain(ha->async_event_tq, &ha->async_event_task);
taskqueue_free(ha->async_event_tq);
}
if (ha->err_tq) {
taskqueue_drain(ha->err_tq, &ha->err_task);
taskqueue_free(ha->err_tq);
}
if (ha->stats_tq) {
taskqueue_drain(ha->stats_tq, &ha->stats_task);
taskqueue_free(ha->stats_tq);
}
ql_del_cdev(ha);
if (ha->flags.qla_watchdog_active) {
ha->qla_watchdog_exit = 1;
while (ha->qla_watchdog_exited == 0)
qla_mdelay(__func__, 1);
}
if (ha->flags.qla_callout_init)
callout_stop(&ha->tx_callout);
if (ha->ifp != NULL)
ether_ifdetach(ha->ifp);
ql_free_drvr_state_buffer(ha);
ql_free_dma(ha);
qla_free_parent_dma_tag(ha);
if (ha->mbx_handle)
(void)bus_teardown_intr(dev, ha->mbx_irq, ha->mbx_handle);
if (ha->mbx_irq)
(void) bus_release_resource(dev, SYS_RES_IRQ, ha->mbx_irq_rid,
ha->mbx_irq);
for (i = 0; i < ha->hw.num_sds_rings; i++) {
if (ha->irq_vec[i].handle) {
(void)bus_teardown_intr(dev, ha->irq_vec[i].irq,
ha->irq_vec[i].handle);
}
if (ha->irq_vec[i].irq) {
(void)bus_release_resource(dev, SYS_RES_IRQ,
ha->irq_vec[i].irq_rid,
ha->irq_vec[i].irq);
}
qla_free_tx_br(ha, &ha->tx_fp[i]);
}
qla_destroy_fp_taskqueues(ha);
if (ha->msix_count)
pci_release_msi(dev);
// if (ha->flags.lock_init) {
// mtx_destroy(&ha->hw_lock);
// }
if (ha->pci_reg)
(void) bus_release_resource(dev, SYS_RES_MEMORY, ha->reg_rid,
ha->pci_reg);
if (ha->pci_reg1)
(void) bus_release_resource(dev, SYS_RES_MEMORY, ha->reg_rid1,
ha->pci_reg1);
return;
}
/*
* DMA Related Functions
*/
static void
qla_dmamap_callback(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
*((bus_addr_t *)arg) = 0;
if (error) {
printf("%s: bus_dmamap_load failed (%d)\n", __func__, error);
return;
}
*((bus_addr_t *)arg) = segs[0].ds_addr;
return;
}
int
ql_alloc_dmabuf(qla_host_t *ha, qla_dma_t *dma_buf)
{
int ret = 0;
device_t dev;
bus_addr_t b_addr;
dev = ha->pci_dev;
QL_DPRINT2(ha, (dev, "%s: enter\n", __func__));
ret = bus_dma_tag_create(
ha->parent_tag,/* parent */
dma_buf->alignment,
((bus_size_t)(1ULL << 32)),/* boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
dma_buf->size, /* maxsize */
1, /* nsegments */
dma_buf->size, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&dma_buf->dma_tag);
if (ret) {
device_printf(dev, "%s: could not create dma tag\n", __func__);
goto ql_alloc_dmabuf_exit;
}
ret = bus_dmamem_alloc(dma_buf->dma_tag,
(void **)&dma_buf->dma_b,
(BUS_DMA_ZERO | BUS_DMA_COHERENT | BUS_DMA_NOWAIT),
&dma_buf->dma_map);
if (ret) {
bus_dma_tag_destroy(dma_buf->dma_tag);
device_printf(dev, "%s: bus_dmamem_alloc failed\n", __func__);
goto ql_alloc_dmabuf_exit;
}
ret = bus_dmamap_load(dma_buf->dma_tag,
dma_buf->dma_map,
dma_buf->dma_b,
dma_buf->size,
qla_dmamap_callback,
&b_addr, BUS_DMA_NOWAIT);
if (ret || !b_addr) {
bus_dma_tag_destroy(dma_buf->dma_tag);
bus_dmamem_free(dma_buf->dma_tag, dma_buf->dma_b,
dma_buf->dma_map);
ret = -1;
goto ql_alloc_dmabuf_exit;
}
dma_buf->dma_addr = b_addr;
ql_alloc_dmabuf_exit:
QL_DPRINT2(ha, (dev, "%s: exit ret 0x%08x tag %p map %p b %p sz 0x%x\n",
__func__, ret, (void *)dma_buf->dma_tag,
(void *)dma_buf->dma_map, (void *)dma_buf->dma_b,
dma_buf->size));
return ret;
}
void
ql_free_dmabuf(qla_host_t *ha, qla_dma_t *dma_buf)
{
bus_dmamap_unload(dma_buf->dma_tag, dma_buf->dma_map);
bus_dmamem_free(dma_buf->dma_tag, dma_buf->dma_b, dma_buf->dma_map);
bus_dma_tag_destroy(dma_buf->dma_tag);
}
static int
qla_alloc_parent_dma_tag(qla_host_t *ha)
{
int ret;
device_t dev;
dev = ha->pci_dev;
/*
* Allocate parent DMA Tag
*/
ret = bus_dma_tag_create(
bus_get_dma_tag(dev), /* parent */
1,((bus_size_t)(1ULL << 32)),/* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
0, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&ha->parent_tag);
if (ret) {
device_printf(dev, "%s: could not create parent dma tag\n",
__func__);
return (-1);
}
ha->flags.parent_tag = 1;
return (0);
}
static void
qla_free_parent_dma_tag(qla_host_t *ha)
{
if (ha->flags.parent_tag) {
bus_dma_tag_destroy(ha->parent_tag);
ha->flags.parent_tag = 0;
}
}
/*
* Name: qla_init_ifnet
* Function: Creates the Network Device Interface and Registers it with the O.S
*/
static void
qla_init_ifnet(device_t dev, qla_host_t *ha)
{
struct ifnet *ifp;
QL_DPRINT2(ha, (dev, "%s: enter\n", __func__));
ifp = ha->ifp = if_alloc(IFT_ETHER);
if (ifp == NULL)
panic("%s: cannot if_alloc()\n", device_get_nameunit(dev));
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_baudrate = IF_Gbps(10);
ifp->if_capabilities = IFCAP_LINKSTATE;
ifp->if_mtu = ETHERMTU;
ifp->if_init = qla_init;
ifp->if_softc = ha;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = qla_ioctl;
ifp->if_transmit = qla_transmit;
ifp->if_qflush = qla_qflush;
IFQ_SET_MAXLEN(&ifp->if_snd, qla_get_ifq_snd_maxlen(ha));
ifp->if_snd.ifq_drv_maxlen = qla_get_ifq_snd_maxlen(ha);
IFQ_SET_READY(&ifp->if_snd);
ha->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
ether_ifattach(ifp, qla_get_mac_addr(ha));
ifp->if_capabilities |= IFCAP_HWCSUM |
IFCAP_TSO4 |
IFCAP_JUMBO_MTU |
IFCAP_VLAN_HWTAGGING |
IFCAP_VLAN_MTU |
IFCAP_VLAN_HWTSO |
IFCAP_LRO;
ifp->if_capenable = ifp->if_capabilities;
ifp->if_hdrlen = sizeof(struct ether_vlan_header);
ifmedia_init(&ha->media, IFM_IMASK, qla_media_change, qla_media_status);
ifmedia_add(&ha->media, (IFM_ETHER | qla_get_optics(ha) | IFM_FDX), 0,
NULL);
ifmedia_add(&ha->media, (IFM_ETHER | IFM_AUTO), 0, NULL);
ifmedia_set(&ha->media, (IFM_ETHER | IFM_AUTO));
QL_DPRINT2(ha, (dev, "%s: exit\n", __func__));
return;
}
static void
qla_init_locked(qla_host_t *ha)
{
struct ifnet *ifp = ha->ifp;
qla_stop(ha);
if (qla_alloc_xmt_bufs(ha) != 0)
return;
qla_confirm_9kb_enable(ha);
if (qla_alloc_rcv_bufs(ha) != 0)
return;
bcopy(IF_LLADDR(ha->ifp), ha->hw.mac_addr, ETHER_ADDR_LEN);
ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_TSO;
ifp->if_hwassist |= CSUM_TCP_IPV6 | CSUM_UDP_IPV6;
ha->stop_rcv = 0;
if (ql_init_hw_if(ha) == 0) {
ifp = ha->ifp;
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ha->qla_watchdog_pause = 0;
ha->hw_vlan_tx_frames = 0;
ha->tx_tso_frames = 0;
ha->qla_interface_up = 1;
ql_update_link_state(ha);
}
return;
}
static void
qla_init(void *arg)
{
qla_host_t *ha;
ha = (qla_host_t *)arg;
QL_DPRINT2(ha, (ha->pci_dev, "%s: enter\n", __func__));
if (QLA_LOCK(ha, __func__, -1, 0) != 0)
return;
qla_init_locked(ha);
QLA_UNLOCK(ha, __func__);
QL_DPRINT2(ha, (ha->pci_dev, "%s: exit\n", __func__));
}
static int
qla_set_multi(qla_host_t *ha, uint32_t add_multi)
{
uint8_t mta[Q8_MAX_NUM_MULTICAST_ADDRS * Q8_MAC_ADDR_LEN];
struct ifmultiaddr *ifma;
int mcnt = 0;
struct ifnet *ifp = ha->ifp;
int ret = 0;
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
if (mcnt == Q8_MAX_NUM_MULTICAST_ADDRS)
break;
bcopy(LLADDR((struct sockaddr_dl *) ifma->ifma_addr),
&mta[mcnt * Q8_MAC_ADDR_LEN], Q8_MAC_ADDR_LEN);
mcnt++;
}
if_maddr_runlock(ifp);
if (QLA_LOCK(ha, __func__, QLA_LOCK_DEFAULT_MS_TIMEOUT,
QLA_LOCK_NO_SLEEP) != 0)
return (-1);
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
if (!add_multi) {
ret = qla_hw_del_all_mcast(ha);
if (ret)
device_printf(ha->pci_dev,
"%s: qla_hw_del_all_mcast() failed\n",
__func__);
}
if (!ret)
ret = ql_hw_set_multi(ha, mta, mcnt, 1);
}
QLA_UNLOCK(ha, __func__);
return (ret);
}
static int
qla_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
int ret = 0;
struct ifreq *ifr = (struct ifreq *)data;
struct ifaddr *ifa = (struct ifaddr *)data;
qla_host_t *ha;
ha = (qla_host_t *)ifp->if_softc;
switch (cmd) {
case SIOCSIFADDR:
QL_DPRINT4(ha, (ha->pci_dev, "%s: SIOCSIFADDR (0x%lx)\n",
__func__, cmd));
if (ifa->ifa_addr->sa_family == AF_INET) {
ret = QLA_LOCK(ha, __func__,
QLA_LOCK_DEFAULT_MS_TIMEOUT,
QLA_LOCK_NO_SLEEP);
if (ret)
break;
ifp->if_flags |= IFF_UP;
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
qla_init_locked(ha);
}
QLA_UNLOCK(ha, __func__);
QL_DPRINT4(ha, (ha->pci_dev,
"%s: SIOCSIFADDR (0x%lx) ipv4 [0x%08x]\n",
__func__, cmd,
ntohl(IA_SIN(ifa)->sin_addr.s_addr)));
arp_ifinit(ifp, ifa);
} else {
ether_ioctl(ifp, cmd, data);
}
break;
case SIOCSIFMTU:
QL_DPRINT4(ha, (ha->pci_dev, "%s: SIOCSIFMTU (0x%lx)\n",
__func__, cmd));
if (ifr->ifr_mtu > QLA_MAX_MTU) {
ret = EINVAL;
} else {
ret = QLA_LOCK(ha, __func__, QLA_LOCK_DEFAULT_MS_TIMEOUT,
QLA_LOCK_NO_SLEEP);
if (ret)
break;
ifp->if_mtu = ifr->ifr_mtu;
ha->max_frame_size =
ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
qla_init_locked(ha);
}
if (ifp->if_mtu > ETHERMTU)
ha->std_replenish = QL_JUMBO_REPLENISH_THRES;
else
ha->std_replenish = QL_STD_REPLENISH_THRES;
QLA_UNLOCK(ha, __func__);
}
break;
case SIOCSIFFLAGS:
QL_DPRINT4(ha, (ha->pci_dev, "%s: SIOCSIFFLAGS (0x%lx)\n",
__func__, cmd));
ret = QLA_LOCK(ha, __func__, QLA_LOCK_DEFAULT_MS_TIMEOUT,
QLA_LOCK_NO_SLEEP);
if (ret)
break;
if (ifp->if_flags & IFF_UP) {
ha->max_frame_size = ifp->if_mtu +
ETHER_HDR_LEN + ETHER_CRC_LEN;
qla_init_locked(ha);
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
if ((ifp->if_flags ^ ha->if_flags) &
IFF_PROMISC) {
ret = ql_set_promisc(ha);
} else if ((ifp->if_flags ^ ha->if_flags) &
IFF_ALLMULTI) {
ret = ql_set_allmulti(ha);
}
}
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
qla_stop(ha);
ha->if_flags = ifp->if_flags;
}
QLA_UNLOCK(ha, __func__);
break;
case SIOCADDMULTI:
QL_DPRINT4(ha, (ha->pci_dev,
"%s: %s (0x%lx)\n", __func__, "SIOCADDMULTI", cmd));
if (qla_set_multi(ha, 1))
ret = EINVAL;
break;
case SIOCDELMULTI:
QL_DPRINT4(ha, (ha->pci_dev,
"%s: %s (0x%lx)\n", __func__, "SIOCDELMULTI", cmd));
if (qla_set_multi(ha, 0))
ret = EINVAL;
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
QL_DPRINT4(ha, (ha->pci_dev,
"%s: SIOCSIFMEDIA/SIOCGIFMEDIA (0x%lx)\n",
__func__, cmd));
ret = ifmedia_ioctl(ifp, ifr, &ha->media, cmd);
break;
case SIOCSIFCAP:
{
int mask = ifr->ifr_reqcap ^ ifp->if_capenable;
QL_DPRINT4(ha, (ha->pci_dev, "%s: SIOCSIFCAP (0x%lx)\n",
__func__, cmd));
if (mask & IFCAP_HWCSUM)
ifp->if_capenable ^= IFCAP_HWCSUM;
if (mask & IFCAP_TSO4)
ifp->if_capenable ^= IFCAP_TSO4;
if (mask & IFCAP_TSO6)
ifp->if_capenable ^= IFCAP_TSO6;
if (mask & IFCAP_VLAN_HWTAGGING)
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
if (mask & IFCAP_VLAN_HWTSO)
ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
if (mask & IFCAP_LRO)
ifp->if_capenable ^= IFCAP_LRO;
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
ret = QLA_LOCK(ha, __func__, QLA_LOCK_DEFAULT_MS_TIMEOUT,
QLA_LOCK_NO_SLEEP);
if (ret)
break;
qla_init_locked(ha);
QLA_UNLOCK(ha, __func__);
}
VLAN_CAPABILITIES(ifp);
break;
}
default:
QL_DPRINT4(ha, (ha->pci_dev, "%s: default (0x%lx)\n",
__func__, cmd));
ret = ether_ioctl(ifp, cmd, data);
break;
}
return (ret);
}
static int
qla_media_change(struct ifnet *ifp)
{
qla_host_t *ha;
struct ifmedia *ifm;
int ret = 0;
ha = (qla_host_t *)ifp->if_softc;
QL_DPRINT2(ha, (ha->pci_dev, "%s: enter\n", __func__));
ifm = &ha->media;
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
ret = EINVAL;
QL_DPRINT2(ha, (ha->pci_dev, "%s: exit\n", __func__));
return (ret);
}
static void
qla_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
{
qla_host_t *ha;
ha = (qla_host_t *)ifp->if_softc;
QL_DPRINT2(ha, (ha->pci_dev, "%s: enter\n", __func__));
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
ql_update_link_state(ha);
if (ha->hw.link_up) {
ifmr->ifm_status |= IFM_ACTIVE;
ifmr->ifm_active |= (IFM_FDX | qla_get_optics(ha));
}
QL_DPRINT2(ha, (ha->pci_dev, "%s: exit (%s)\n", __func__,\
(ha->hw.link_up ? "link_up" : "link_down")));
return;
}
static int
qla_send(qla_host_t *ha, struct mbuf **m_headp, uint32_t txr_idx,
uint32_t iscsi_pdu)
{
bus_dma_segment_t segs[QLA_MAX_SEGMENTS];
bus_dmamap_t map;
int nsegs;
int ret = -1;
uint32_t tx_idx;
struct mbuf *m_head = *m_headp;
QL_DPRINT8(ha, (ha->pci_dev, "%s: enter\n", __func__));
tx_idx = ha->hw.tx_cntxt[txr_idx].txr_next;
if (NULL != ha->tx_ring[txr_idx].tx_buf[tx_idx].m_head) {
QL_ASSERT(ha, 0, ("%s [%d]: txr_idx = %d tx_idx = %d "\
"mbuf = %p\n", __func__, __LINE__, txr_idx, tx_idx,\
ha->tx_ring[txr_idx].tx_buf[tx_idx].m_head));
if (m_head)
m_freem(m_head);
*m_headp = NULL;
return (ret);
}
map = ha->tx_ring[txr_idx].tx_buf[tx_idx].map;
ret = bus_dmamap_load_mbuf_sg(ha->tx_tag, map, m_head, segs, &nsegs,
BUS_DMA_NOWAIT);
if (ret == EFBIG) {
struct mbuf *m;
QL_DPRINT8(ha, (ha->pci_dev, "%s: EFBIG [%d]\n", __func__,
m_head->m_pkthdr.len));
m = m_defrag(m_head, M_NOWAIT);
if (m == NULL) {
ha->err_tx_defrag++;
m_freem(m_head);
*m_headp = NULL;
device_printf(ha->pci_dev,
"%s: m_defrag() = NULL [%d]\n",
__func__, ret);
return (ENOBUFS);
}
m_head = m;
*m_headp = m_head;
if ((ret = bus_dmamap_load_mbuf_sg(ha->tx_tag, map, m_head,
segs, &nsegs, BUS_DMA_NOWAIT))) {
ha->err_tx_dmamap_load++;
device_printf(ha->pci_dev,
"%s: bus_dmamap_load_mbuf_sg failed0[%d, %d]\n",
__func__, ret, m_head->m_pkthdr.len);
if (ret != ENOMEM) {
m_freem(m_head);
*m_headp = NULL;
}
return (ret);
}
} else if (ret) {
ha->err_tx_dmamap_load++;
device_printf(ha->pci_dev,
"%s: bus_dmamap_load_mbuf_sg failed1[%d, %d]\n",
__func__, ret, m_head->m_pkthdr.len);
if (ret != ENOMEM) {
m_freem(m_head);
*m_headp = NULL;
}
return (ret);
}
QL_ASSERT(ha, (nsegs != 0), ("qla_send: empty packet"));
bus_dmamap_sync(ha->tx_tag, map, BUS_DMASYNC_PREWRITE);
if (!(ret = ql_hw_send(ha, segs, nsegs, tx_idx, m_head, txr_idx,
iscsi_pdu))) {
ha->tx_ring[txr_idx].count++;
if (iscsi_pdu)
ha->tx_ring[txr_idx].iscsi_pkt_count++;
ha->tx_ring[txr_idx].tx_buf[tx_idx].m_head = m_head;
} else {
bus_dmamap_unload(ha->tx_tag, map);
if (ret == EINVAL) {
if (m_head)
m_freem(m_head);
*m_headp = NULL;
}
}
QL_DPRINT8(ha, (ha->pci_dev, "%s: exit\n", __func__));
return (ret);
}
static int
qla_alloc_tx_br(qla_host_t *ha, qla_tx_fp_t *fp)
{
snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
"qla%d_fp%d_tx_mq_lock", ha->pci_func, fp->txr_idx);
mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
fp->tx_br = buf_ring_alloc(NUM_TX_DESCRIPTORS, M_DEVBUF,
M_NOWAIT, &fp->tx_mtx);
if (fp->tx_br == NULL) {
QL_DPRINT1(ha, (ha->pci_dev, "buf_ring_alloc failed for "
" fp[%d, %d]\n", ha->pci_func, fp->txr_idx));
return (-ENOMEM);
}
return 0;
}
static void
qla_free_tx_br(qla_host_t *ha, qla_tx_fp_t *fp)
{
struct mbuf *mp;
struct ifnet *ifp = ha->ifp;
if (mtx_initialized(&fp->tx_mtx)) {
if (fp->tx_br != NULL) {
mtx_lock(&fp->tx_mtx);
while ((mp = drbr_dequeue(ifp, fp->tx_br)) != NULL) {
m_freem(mp);
}
mtx_unlock(&fp->tx_mtx);
buf_ring_free(fp->tx_br, M_DEVBUF);
fp->tx_br = NULL;
}
mtx_destroy(&fp->tx_mtx);
}
return;
}
static void
qla_fp_taskqueue(void *context, int pending)
{
qla_tx_fp_t *fp;
qla_host_t *ha;
struct ifnet *ifp;
struct mbuf *mp;
int ret;
uint32_t txr_idx;
uint32_t iscsi_pdu = 0;
uint32_t rx_pkts_left = -1;
fp = context;
if (fp == NULL)
return;
ha = (qla_host_t *)fp->ha;
ifp = ha->ifp;
txr_idx = fp->txr_idx;
mtx_lock(&fp->tx_mtx);
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING) || (!ha->hw.link_up)) {
mtx_unlock(&fp->tx_mtx);
goto qla_fp_taskqueue_exit;
}
while (rx_pkts_left && !ha->stop_rcv &&
(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
rx_pkts_left = ql_rcv_isr(ha, fp->txr_idx, 64);
#ifdef QL_ENABLE_ISCSI_TLV
ql_hw_tx_done_locked(ha, fp->txr_idx);
ql_hw_tx_done_locked(ha, (fp->txr_idx + (ha->hw.num_tx_rings >> 1)));
#else
ql_hw_tx_done_locked(ha, fp->txr_idx);
#endif /* #ifdef QL_ENABLE_ISCSI_TLV */
mp = drbr_peek(ifp, fp->tx_br);
while (mp != NULL) {
if (M_HASHTYPE_GET(mp) != M_HASHTYPE_NONE) {
#ifdef QL_ENABLE_ISCSI_TLV
if (ql_iscsi_pdu(ha, mp) == 0) {
txr_idx = txr_idx +
(ha->hw.num_tx_rings >> 1);
iscsi_pdu = 1;
} else {
iscsi_pdu = 0;
txr_idx = fp->txr_idx;
}
#endif /* #ifdef QL_ENABLE_ISCSI_TLV */
}
ret = qla_send(ha, &mp, txr_idx, iscsi_pdu);
if (ret) {
if (mp != NULL)
drbr_putback(ifp, fp->tx_br, mp);
else {
drbr_advance(ifp, fp->tx_br);
}
mtx_unlock(&fp->tx_mtx);
goto qla_fp_taskqueue_exit0;
} else {
drbr_advance(ifp, fp->tx_br);
}
/* Send a copy of the frame to the BPF listener */
ETHER_BPF_MTAP(ifp, mp);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
break;
mp = drbr_peek(ifp, fp->tx_br);
}
}
mtx_unlock(&fp->tx_mtx);
qla_fp_taskqueue_exit0:
if (rx_pkts_left || ((mp != NULL) && ret)) {
taskqueue_enqueue(fp->fp_taskqueue, &fp->fp_task);
} else {
if (!ha->stop_rcv) {
QL_ENABLE_INTERRUPTS(ha, fp->txr_idx);
}
}
qla_fp_taskqueue_exit:
QL_DPRINT2(ha, (ha->pci_dev, "%s: exit ret = %d\n", __func__, ret));
return;
}
static int
qla_create_fp_taskqueues(qla_host_t *ha)
{
int i;
uint8_t tq_name[32];
for (i = 0; i < ha->hw.num_sds_rings; i++) {
qla_tx_fp_t *fp = &ha->tx_fp[i];
bzero(tq_name, sizeof (tq_name));
snprintf(tq_name, sizeof (tq_name), "ql_fp_tq_%d", i);
TASK_INIT(&fp->fp_task, 0, qla_fp_taskqueue, fp);
fp->fp_taskqueue = taskqueue_create_fast(tq_name, M_NOWAIT,
taskqueue_thread_enqueue,
&fp->fp_taskqueue);
if (fp->fp_taskqueue == NULL)
return (-1);
taskqueue_start_threads(&fp->fp_taskqueue, 1, PI_NET, "%s",
tq_name);
QL_DPRINT1(ha, (ha->pci_dev, "%s: %p\n", __func__,
fp->fp_taskqueue));
}
return (0);
}
static void
qla_destroy_fp_taskqueues(qla_host_t *ha)
{
int i;
for (i = 0; i < ha->hw.num_sds_rings; i++) {
qla_tx_fp_t *fp = &ha->tx_fp[i];
if (fp->fp_taskqueue != NULL) {
taskqueue_drain(fp->fp_taskqueue, &fp->fp_task);
taskqueue_free(fp->fp_taskqueue);
fp->fp_taskqueue = NULL;
}
}
return;
}
static void
qla_drain_fp_taskqueues(qla_host_t *ha)
{
int i;
for (i = 0; i < ha->hw.num_sds_rings; i++) {
qla_tx_fp_t *fp = &ha->tx_fp[i];
if (fp->fp_taskqueue != NULL) {
taskqueue_drain(fp->fp_taskqueue, &fp->fp_task);
}
}
return;
}
static int
qla_transmit(struct ifnet *ifp, struct mbuf *mp)
{
qla_host_t *ha = (qla_host_t *)ifp->if_softc;
qla_tx_fp_t *fp;
int rss_id = 0;
int ret = 0;
QL_DPRINT2(ha, (ha->pci_dev, "%s: enter\n", __func__));
#if __FreeBSD_version >= 1100000
if (M_HASHTYPE_GET(mp) != M_HASHTYPE_NONE)
#else
if (mp->m_flags & M_FLOWID)
#endif
rss_id = (mp->m_pkthdr.flowid & Q8_RSS_IND_TBL_MAX_IDX) %
ha->hw.num_sds_rings;
fp = &ha->tx_fp[rss_id];
if (fp->tx_br == NULL) {
ret = EINVAL;
goto qla_transmit_exit;
}
if (mp != NULL) {
ret = drbr_enqueue(ifp, fp->tx_br, mp);
}
if (fp->fp_taskqueue != NULL)
taskqueue_enqueue(fp->fp_taskqueue, &fp->fp_task);
ret = 0;
qla_transmit_exit:
QL_DPRINT2(ha, (ha->pci_dev, "%s: exit ret = %d\n", __func__, ret));
return ret;
}
static void
qla_qflush(struct ifnet *ifp)
{
int i;
qla_tx_fp_t *fp;
struct mbuf *mp;
qla_host_t *ha;
ha = (qla_host_t *)ifp->if_softc;
QL_DPRINT2(ha, (ha->pci_dev, "%s: enter\n", __func__));
for (i = 0; i < ha->hw.num_sds_rings; i++) {
fp = &ha->tx_fp[i];
if (fp == NULL)
continue;
if (fp->tx_br) {
mtx_lock(&fp->tx_mtx);
while ((mp = drbr_dequeue(ifp, fp->tx_br)) != NULL) {
m_freem(mp);
}
mtx_unlock(&fp->tx_mtx);
}
}
QL_DPRINT2(ha, (ha->pci_dev, "%s: exit\n", __func__));
return;
}
static void
qla_stop(qla_host_t *ha)
{
struct ifnet *ifp = ha->ifp;
device_t dev;
int i = 0;
dev = ha->pci_dev;
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
ha->qla_watchdog_pause = 1;
for (i = 0; i < ha->hw.num_sds_rings; i++) {
qla_tx_fp_t *fp;
fp = &ha->tx_fp[i];
if (fp == NULL)
continue;
if (fp->tx_br != NULL) {
mtx_lock(&fp->tx_mtx);
mtx_unlock(&fp->tx_mtx);
}
}
while (!ha->qla_watchdog_paused)
qla_mdelay(__func__, 1);
ha->qla_interface_up = 0;
qla_drain_fp_taskqueues(ha);
ql_del_hw_if(ha);
qla_free_xmt_bufs(ha);
qla_free_rcv_bufs(ha);
return;
}
/*
* Buffer Management Functions for Transmit and Receive Rings
*/
static int
qla_alloc_xmt_bufs(qla_host_t *ha)
{
int ret = 0;
uint32_t i, j;
qla_tx_buf_t *txb;
if (bus_dma_tag_create(NULL, /* parent */
1, 0, /* alignment, bounds */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
QLA_MAX_TSO_FRAME_SIZE, /* maxsize */
QLA_MAX_SEGMENTS, /* nsegments */
PAGE_SIZE, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, /* lockfunc */
NULL, /* lockfuncarg */
&ha->tx_tag)) {
device_printf(ha->pci_dev, "%s: tx_tag alloc failed\n",
__func__);
return (ENOMEM);
}
for (i = 0; i < ha->hw.num_tx_rings; i++) {
bzero((void *)ha->tx_ring[i].tx_buf,
(sizeof(qla_tx_buf_t) * NUM_TX_DESCRIPTORS));
}
for (j = 0; j < ha->hw.num_tx_rings; j++) {
for (i = 0; i < NUM_TX_DESCRIPTORS; i++) {
txb = &ha->tx_ring[j].tx_buf[i];
if ((ret = bus_dmamap_create(ha->tx_tag,
BUS_DMA_NOWAIT, &txb->map))) {
ha->err_tx_dmamap_create++;
device_printf(ha->pci_dev,
"%s: bus_dmamap_create failed[%d]\n",
__func__, ret);
qla_free_xmt_bufs(ha);
return (ret);
}
}
}
return 0;
}
/*
* Release mbuf after it sent on the wire
*/
static void
qla_clear_tx_buf(qla_host_t *ha, qla_tx_buf_t *txb)
{
QL_DPRINT2(ha, (ha->pci_dev, "%s: enter\n", __func__));
if (txb->m_head) {
bus_dmamap_sync(ha->tx_tag, txb->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ha->tx_tag, txb->map);
m_freem(txb->m_head);
txb->m_head = NULL;
bus_dmamap_destroy(ha->tx_tag, txb->map);
txb->map = NULL;
}
if (txb->map) {
bus_dmamap_unload(ha->tx_tag, txb->map);
bus_dmamap_destroy(ha->tx_tag, txb->map);
txb->map = NULL;
}
QL_DPRINT2(ha, (ha->pci_dev, "%s: exit\n", __func__));
}
static void
qla_free_xmt_bufs(qla_host_t *ha)
{
int i, j;
for (j = 0; j < ha->hw.num_tx_rings; j++) {
for (i = 0; i < NUM_TX_DESCRIPTORS; i++)
qla_clear_tx_buf(ha, &ha->tx_ring[j].tx_buf[i]);
}
if (ha->tx_tag != NULL) {
bus_dma_tag_destroy(ha->tx_tag);
ha->tx_tag = NULL;
}
for (i = 0; i < ha->hw.num_tx_rings; i++) {
bzero((void *)ha->tx_ring[i].tx_buf,
(sizeof(qla_tx_buf_t) * NUM_TX_DESCRIPTORS));
}
return;
}
static int
qla_alloc_rcv_std(qla_host_t *ha)
{
int i, j, k, r, ret = 0;
qla_rx_buf_t *rxb;
qla_rx_ring_t *rx_ring;
for (r = 0; r < ha->hw.num_rds_rings; r++) {
rx_ring = &ha->rx_ring[r];
for (i = 0; i < NUM_RX_DESCRIPTORS; i++) {
rxb = &rx_ring->rx_buf[i];
ret = bus_dmamap_create(ha->rx_tag, BUS_DMA_NOWAIT,
&rxb->map);
if (ret) {
device_printf(ha->pci_dev,
"%s: dmamap[%d, %d] failed\n",
__func__, r, i);
for (k = 0; k < r; k++) {
for (j = 0; j < NUM_RX_DESCRIPTORS;
j++) {
rxb = &ha->rx_ring[k].rx_buf[j];
bus_dmamap_destroy(ha->rx_tag,
rxb->map);
}
}
for (j = 0; j < i; j++) {
bus_dmamap_destroy(ha->rx_tag,
rx_ring->rx_buf[j].map);
}
goto qla_alloc_rcv_std_err;
}
}
}
qla_init_hw_rcv_descriptors(ha);
for (r = 0; r < ha->hw.num_rds_rings; r++) {
rx_ring = &ha->rx_ring[r];
for (i = 0; i < NUM_RX_DESCRIPTORS; i++) {
rxb = &rx_ring->rx_buf[i];
rxb->handle = i;
if (!(ret = ql_get_mbuf(ha, rxb, NULL))) {
/*
* set the physical address in the
* corresponding descriptor entry in the
* receive ring/queue for the hba
*/
qla_set_hw_rcv_desc(ha, r, i, rxb->handle,
rxb->paddr,
(rxb->m_head)->m_pkthdr.len);
} else {
device_printf(ha->pci_dev,
"%s: ql_get_mbuf [%d, %d] failed\n",
__func__, r, i);
bus_dmamap_destroy(ha->rx_tag, rxb->map);
goto qla_alloc_rcv_std_err;
}
}
}
return 0;
qla_alloc_rcv_std_err:
return (-1);
}
static void
qla_free_rcv_std(qla_host_t *ha)
{
int i, r;
qla_rx_buf_t *rxb;
for (r = 0; r < ha->hw.num_rds_rings; r++) {
for (i = 0; i < NUM_RX_DESCRIPTORS; i++) {
rxb = &ha->rx_ring[r].rx_buf[i];
if (rxb->m_head != NULL) {
bus_dmamap_unload(ha->rx_tag, rxb->map);
bus_dmamap_destroy(ha->rx_tag, rxb->map);
m_freem(rxb->m_head);
rxb->m_head = NULL;
}
}
}
return;
}
static int
qla_alloc_rcv_bufs(qla_host_t *ha)
{
int i, ret = 0;
if (bus_dma_tag_create(NULL, /* parent */
1, 0, /* alignment, bounds */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MJUM9BYTES, /* maxsize */
1, /* nsegments */
MJUM9BYTES, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, /* lockfunc */
NULL, /* lockfuncarg */
&ha->rx_tag)) {
device_printf(ha->pci_dev, "%s: rx_tag alloc failed\n",
__func__);
return (ENOMEM);
}
bzero((void *)ha->rx_ring, (sizeof(qla_rx_ring_t) * MAX_RDS_RINGS));
for (i = 0; i < ha->hw.num_sds_rings; i++) {
ha->hw.sds[i].sdsr_next = 0;
ha->hw.sds[i].rxb_free = NULL;
ha->hw.sds[i].rx_free = 0;
}
ret = qla_alloc_rcv_std(ha);
return (ret);
}
static void
qla_free_rcv_bufs(qla_host_t *ha)
{
int i;
qla_free_rcv_std(ha);
if (ha->rx_tag != NULL) {
bus_dma_tag_destroy(ha->rx_tag);
ha->rx_tag = NULL;
}
bzero((void *)ha->rx_ring, (sizeof(qla_rx_ring_t) * MAX_RDS_RINGS));
for (i = 0; i < ha->hw.num_sds_rings; i++) {
ha->hw.sds[i].sdsr_next = 0;
ha->hw.sds[i].rxb_free = NULL;
ha->hw.sds[i].rx_free = 0;
}
return;
}
int
ql_get_mbuf(qla_host_t *ha, qla_rx_buf_t *rxb, struct mbuf *nmp)
{
register struct mbuf *mp = nmp;
struct ifnet *ifp;
int ret = 0;
uint32_t offset;
bus_dma_segment_t segs[1];
int nsegs, mbuf_size;
QL_DPRINT2(ha, (ha->pci_dev, "%s: enter\n", __func__));
ifp = ha->ifp;
if (ha->hw.enable_9kb)
mbuf_size = MJUM9BYTES;
else
mbuf_size = MCLBYTES;
if (mp == NULL) {
if (QL_ERR_INJECT(ha, INJCT_M_GETCL_M_GETJCL_FAILURE))
return(-1);
if (ha->hw.enable_9kb)
mp = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, mbuf_size);
else
mp = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (mp == NULL) {
ha->err_m_getcl++;
ret = ENOBUFS;
device_printf(ha->pci_dev,
"%s: m_getcl failed\n", __func__);
goto exit_ql_get_mbuf;
}
mp->m_len = mp->m_pkthdr.len = mbuf_size;
} else {
mp->m_len = mp->m_pkthdr.len = mbuf_size;
mp->m_data = mp->m_ext.ext_buf;
mp->m_next = NULL;
}
offset = (uint32_t)((unsigned long long)mp->m_data & 0x7ULL);
if (offset) {
offset = 8 - offset;
m_adj(mp, offset);
}
/*
* Using memory from the mbuf cluster pool, invoke the bus_dma
* machinery to arrange the memory mapping.
*/
ret = bus_dmamap_load_mbuf_sg(ha->rx_tag, rxb->map,
mp, segs, &nsegs, BUS_DMA_NOWAIT);
rxb->paddr = segs[0].ds_addr;
if (ret || !rxb->paddr || (nsegs != 1)) {
m_free(mp);
rxb->m_head = NULL;
device_printf(ha->pci_dev,
"%s: bus_dmamap_load failed[%d, 0x%016llx, %d]\n",
__func__, ret, (long long unsigned int)rxb->paddr,
nsegs);
ret = -1;
goto exit_ql_get_mbuf;
}
rxb->m_head = mp;
bus_dmamap_sync(ha->rx_tag, rxb->map, BUS_DMASYNC_PREREAD);
exit_ql_get_mbuf:
QL_DPRINT2(ha, (ha->pci_dev, "%s: exit ret = 0x%08x\n", __func__, ret));
return (ret);
}
static void
qla_get_peer(qla_host_t *ha)
{
device_t *peers;
int count, i, slot;
int my_slot = pci_get_slot(ha->pci_dev);
if (device_get_children(device_get_parent(ha->pci_dev), &peers, &count))
return;
for (i = 0; i < count; i++) {
slot = pci_get_slot(peers[i]);
if ((slot >= 0) && (slot == my_slot) &&
(pci_get_device(peers[i]) ==
pci_get_device(ha->pci_dev))) {
if (ha->pci_dev != peers[i])
ha->peer_dev = peers[i];
}
}
}
static void
qla_send_msg_to_peer(qla_host_t *ha, uint32_t msg_to_peer)
{
qla_host_t *ha_peer;
if (ha->peer_dev) {
if ((ha_peer = device_get_softc(ha->peer_dev)) != NULL) {
ha_peer->msg_from_peer = msg_to_peer;
}
}
}
static void
qla_error_recovery(void *context, int pending)
{
qla_host_t *ha = context;
uint32_t msecs_100 = 100;
struct ifnet *ifp = ha->ifp;
int i = 0;
device_printf(ha->pci_dev, "%s: \n", __func__);
ha->hw.imd_compl = 1;
if (QLA_LOCK(ha, __func__, -1, 0) != 0)
return;
device_printf(ha->pci_dev, "%s: enter\n", __func__);
if (ha->qla_interface_up) {
qla_mdelay(__func__, 300);
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
for (i = 0; i < ha->hw.num_sds_rings; i++) {
qla_tx_fp_t *fp;
fp = &ha->tx_fp[i];
if (fp == NULL)
continue;
if (fp->tx_br != NULL) {
mtx_lock(&fp->tx_mtx);
mtx_unlock(&fp->tx_mtx);
}
}
}
qla_drain_fp_taskqueues(ha);
if ((ha->pci_func & 0x1) == 0) {
if (!ha->msg_from_peer) {
qla_send_msg_to_peer(ha, QL_PEER_MSG_RESET);
while ((ha->msg_from_peer != QL_PEER_MSG_ACK) &&
msecs_100--)
qla_mdelay(__func__, 100);
}
ha->msg_from_peer = 0;
if (ha->enable_minidump)
ql_minidump(ha);
(void) ql_init_hw(ha);
if (ha->qla_interface_up) {
qla_free_xmt_bufs(ha);
qla_free_rcv_bufs(ha);
}
qla_send_msg_to_peer(ha, QL_PEER_MSG_ACK);
} else {
if (ha->msg_from_peer == QL_PEER_MSG_RESET) {
ha->msg_from_peer = 0;
qla_send_msg_to_peer(ha, QL_PEER_MSG_ACK);
} else {
qla_send_msg_to_peer(ha, QL_PEER_MSG_RESET);
}
while ((ha->msg_from_peer != QL_PEER_MSG_ACK) && msecs_100--)
qla_mdelay(__func__, 100);
ha->msg_from_peer = 0;
(void) ql_init_hw(ha);
qla_mdelay(__func__, 1000);
if (ha->qla_interface_up) {
qla_free_xmt_bufs(ha);
qla_free_rcv_bufs(ha);
}
}
if (ha->qla_interface_up) {
if (qla_alloc_xmt_bufs(ha) != 0) {
goto qla_error_recovery_exit;
}
qla_confirm_9kb_enable(ha);
if (qla_alloc_rcv_bufs(ha) != 0) {
goto qla_error_recovery_exit;
}
ha->stop_rcv = 0;
if (ql_init_hw_if(ha) == 0) {
ifp = ha->ifp;
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ha->qla_watchdog_pause = 0;
}
} else
ha->qla_watchdog_pause = 0;
qla_error_recovery_exit:
device_printf(ha->pci_dev, "%s: exit\n", __func__);
QLA_UNLOCK(ha, __func__);
callout_reset(&ha->tx_callout, QLA_WATCHDOG_CALLOUT_TICKS,
qla_watchdog, ha);
return;
}
static void
qla_async_event(void *context, int pending)
{
qla_host_t *ha = context;
if (QLA_LOCK(ha, __func__, -1, 0) != 0)
return;
if (ha->async_event) {
ha->async_event = 0;
qla_hw_async_event(ha);
}
QLA_UNLOCK(ha, __func__);
return;
}
static void
qla_stats(void *context, int pending)
{
qla_host_t *ha;
ha = context;
ql_get_stats(ha);
return;
}