48f0136d52
Pointer math to find the size in bytes only works with char types. Use correct pointer math to determine if we have enough of a header to look at or not. MFC After: 3 days X-MFX-With: r339800 Noticed by: jhb@ Sponsored by: Netflix, Inc
1396 lines
37 KiB
C
1396 lines
37 KiB
C
/*-
|
|
* Copyright (c) 2008-2010 Rui Paulo
|
|
* Copyright (c) 2006 Marcel Moolenaar
|
|
* Copyright (c) 2018 Netflix, Inc
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <stand.h>
|
|
|
|
#include <sys/disk.h>
|
|
#include <sys/param.h>
|
|
#include <sys/reboot.h>
|
|
#include <sys/boot.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <setjmp.h>
|
|
#include <disk.h>
|
|
|
|
#include <efi.h>
|
|
#include <efilib.h>
|
|
#include <efichar.h>
|
|
|
|
#include <uuid.h>
|
|
|
|
#include <bootstrap.h>
|
|
#include <smbios.h>
|
|
|
|
#ifdef EFI_ZFS_BOOT
|
|
#include <libzfs.h>
|
|
#include "efizfs.h"
|
|
#endif
|
|
|
|
#include "loader_efi.h"
|
|
|
|
struct arch_switch archsw; /* MI/MD interface boundary */
|
|
|
|
EFI_GUID acpi = ACPI_TABLE_GUID;
|
|
EFI_GUID acpi20 = ACPI_20_TABLE_GUID;
|
|
EFI_GUID devid = DEVICE_PATH_PROTOCOL;
|
|
EFI_GUID imgid = LOADED_IMAGE_PROTOCOL;
|
|
EFI_GUID mps = MPS_TABLE_GUID;
|
|
EFI_GUID netid = EFI_SIMPLE_NETWORK_PROTOCOL;
|
|
EFI_GUID smbios = SMBIOS_TABLE_GUID;
|
|
EFI_GUID smbios3 = SMBIOS3_TABLE_GUID;
|
|
EFI_GUID dxe = DXE_SERVICES_TABLE_GUID;
|
|
EFI_GUID hoblist = HOB_LIST_TABLE_GUID;
|
|
EFI_GUID lzmadecomp = LZMA_DECOMPRESSION_GUID;
|
|
EFI_GUID mpcore = ARM_MP_CORE_INFO_TABLE_GUID;
|
|
EFI_GUID esrt = ESRT_TABLE_GUID;
|
|
EFI_GUID memtype = MEMORY_TYPE_INFORMATION_TABLE_GUID;
|
|
EFI_GUID debugimg = DEBUG_IMAGE_INFO_TABLE_GUID;
|
|
EFI_GUID fdtdtb = FDT_TABLE_GUID;
|
|
EFI_GUID inputid = SIMPLE_TEXT_INPUT_PROTOCOL;
|
|
|
|
/*
|
|
* Number of seconds to wait for a keystroke before exiting with failure
|
|
* in the event no currdev is found. -2 means always break, -1 means
|
|
* never break, 0 means poll once and then reboot, > 0 means wait for
|
|
* that many seconds. "fail_timeout" can be set in the environment as
|
|
* well.
|
|
*/
|
|
static int fail_timeout = 5;
|
|
|
|
/*
|
|
* Current boot variable
|
|
*/
|
|
UINT16 boot_current;
|
|
|
|
static bool
|
|
has_keyboard(void)
|
|
{
|
|
EFI_STATUS status;
|
|
EFI_DEVICE_PATH *path;
|
|
EFI_HANDLE *hin, *hin_end, *walker;
|
|
UINTN sz;
|
|
bool retval = false;
|
|
|
|
/*
|
|
* Find all the handles that support the SIMPLE_TEXT_INPUT_PROTOCOL and
|
|
* do the typical dance to get the right sized buffer.
|
|
*/
|
|
sz = 0;
|
|
hin = NULL;
|
|
status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 0);
|
|
if (status == EFI_BUFFER_TOO_SMALL) {
|
|
hin = (EFI_HANDLE *)malloc(sz);
|
|
status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz,
|
|
hin);
|
|
if (EFI_ERROR(status))
|
|
free(hin);
|
|
}
|
|
if (EFI_ERROR(status))
|
|
return retval;
|
|
|
|
/*
|
|
* Look at each of the handles. If it supports the device path protocol,
|
|
* use it to get the device path for this handle. Then see if that
|
|
* device path matches either the USB device path for keyboards or the
|
|
* legacy device path for keyboards.
|
|
*/
|
|
hin_end = &hin[sz / sizeof(*hin)];
|
|
for (walker = hin; walker < hin_end; walker++) {
|
|
status = BS->HandleProtocol(*walker, &devid, (VOID **)&path);
|
|
if (EFI_ERROR(status))
|
|
continue;
|
|
|
|
while (!IsDevicePathEnd(path)) {
|
|
/*
|
|
* Check for the ACPI keyboard node. All PNP3xx nodes
|
|
* are keyboards of different flavors. Note: It is
|
|
* unclear of there's always a keyboard node when
|
|
* there's a keyboard controller, or if there's only one
|
|
* when a keyboard is detected at boot.
|
|
*/
|
|
if (DevicePathType(path) == ACPI_DEVICE_PATH &&
|
|
(DevicePathSubType(path) == ACPI_DP ||
|
|
DevicePathSubType(path) == ACPI_EXTENDED_DP)) {
|
|
ACPI_HID_DEVICE_PATH *acpi;
|
|
|
|
acpi = (ACPI_HID_DEVICE_PATH *)(void *)path;
|
|
if ((EISA_ID_TO_NUM(acpi->HID) & 0xff00) == 0x300 &&
|
|
(acpi->HID & 0xffff) == PNP_EISA_ID_CONST) {
|
|
retval = true;
|
|
goto out;
|
|
}
|
|
/*
|
|
* Check for USB keyboard node, if present. Unlike a
|
|
* PS/2 keyboard, these definitely only appear when
|
|
* connected to the system.
|
|
*/
|
|
} else if (DevicePathType(path) == MESSAGING_DEVICE_PATH &&
|
|
DevicePathSubType(path) == MSG_USB_CLASS_DP) {
|
|
USB_CLASS_DEVICE_PATH *usb;
|
|
|
|
usb = (USB_CLASS_DEVICE_PATH *)(void *)path;
|
|
if (usb->DeviceClass == 3 && /* HID */
|
|
usb->DeviceSubClass == 1 && /* Boot devices */
|
|
usb->DeviceProtocol == 1) { /* Boot keyboards */
|
|
retval = true;
|
|
goto out;
|
|
}
|
|
}
|
|
path = NextDevicePathNode(path);
|
|
}
|
|
}
|
|
out:
|
|
free(hin);
|
|
return retval;
|
|
}
|
|
|
|
static void
|
|
set_currdev(const char *devname)
|
|
{
|
|
|
|
env_setenv("currdev", EV_VOLATILE, devname, efi_setcurrdev, env_nounset);
|
|
env_setenv("loaddev", EV_VOLATILE, devname, env_noset, env_nounset);
|
|
}
|
|
|
|
static void
|
|
set_currdev_devdesc(struct devdesc *currdev)
|
|
{
|
|
const char *devname;
|
|
|
|
devname = efi_fmtdev(currdev);
|
|
printf("Setting currdev to %s\n", devname);
|
|
set_currdev(devname);
|
|
}
|
|
|
|
static void
|
|
set_currdev_devsw(struct devsw *dev, int unit)
|
|
{
|
|
struct devdesc currdev;
|
|
|
|
currdev.d_dev = dev;
|
|
currdev.d_unit = unit;
|
|
|
|
set_currdev_devdesc(&currdev);
|
|
}
|
|
|
|
static void
|
|
set_currdev_pdinfo(pdinfo_t *dp)
|
|
{
|
|
|
|
/*
|
|
* Disks are special: they have partitions. if the parent
|
|
* pointer is non-null, we're a partition not a full disk
|
|
* and we need to adjust currdev appropriately.
|
|
*/
|
|
if (dp->pd_devsw->dv_type == DEVT_DISK) {
|
|
struct disk_devdesc currdev;
|
|
|
|
currdev.dd.d_dev = dp->pd_devsw;
|
|
if (dp->pd_parent == NULL) {
|
|
currdev.dd.d_unit = dp->pd_unit;
|
|
currdev.d_slice = -1;
|
|
currdev.d_partition = -1;
|
|
} else {
|
|
currdev.dd.d_unit = dp->pd_parent->pd_unit;
|
|
currdev.d_slice = dp->pd_unit;
|
|
currdev.d_partition = 255; /* Assumes GPT */
|
|
}
|
|
set_currdev_devdesc((struct devdesc *)&currdev);
|
|
} else {
|
|
set_currdev_devsw(dp->pd_devsw, dp->pd_unit);
|
|
}
|
|
}
|
|
|
|
static bool
|
|
sanity_check_currdev(void)
|
|
{
|
|
struct stat st;
|
|
|
|
return (stat("/boot/defaults/loader.conf", &st) == 0 ||
|
|
stat("/boot/kernel/kernel", &st) == 0);
|
|
}
|
|
|
|
#ifdef EFI_ZFS_BOOT
|
|
static bool
|
|
probe_zfs_currdev(uint64_t guid)
|
|
{
|
|
char *devname;
|
|
struct zfs_devdesc currdev;
|
|
|
|
currdev.dd.d_dev = &zfs_dev;
|
|
currdev.dd.d_unit = 0;
|
|
currdev.pool_guid = guid;
|
|
currdev.root_guid = 0;
|
|
set_currdev_devdesc((struct devdesc *)&currdev);
|
|
devname = efi_fmtdev(&currdev);
|
|
init_zfs_bootenv(devname);
|
|
|
|
return (sanity_check_currdev());
|
|
}
|
|
#endif
|
|
|
|
static bool
|
|
try_as_currdev(pdinfo_t *hd, pdinfo_t *pp)
|
|
{
|
|
uint64_t guid;
|
|
|
|
#ifdef EFI_ZFS_BOOT
|
|
/*
|
|
* If there's a zpool on this device, try it as a ZFS
|
|
* filesystem, which has somewhat different setup than all
|
|
* other types of fs due to imperfect loader integration.
|
|
* This all stems from ZFS being both a device (zpool) and
|
|
* a filesystem, plus the boot env feature.
|
|
*/
|
|
if (efizfs_get_guid_by_handle(pp->pd_handle, &guid))
|
|
return (probe_zfs_currdev(guid));
|
|
#endif
|
|
/*
|
|
* All other filesystems just need the pdinfo
|
|
* initialized in the standard way.
|
|
*/
|
|
set_currdev_pdinfo(pp);
|
|
return (sanity_check_currdev());
|
|
}
|
|
|
|
/*
|
|
* Sometimes we get filenames that are all upper case
|
|
* and/or have backslashes in them. Filter all this out
|
|
* if it looks like we need to do so.
|
|
*/
|
|
static void
|
|
fix_dosisms(char *p)
|
|
{
|
|
while (*p) {
|
|
if (isupper(*p))
|
|
*p = tolower(*p);
|
|
else if (*p == '\\')
|
|
*p = '/';
|
|
p++;
|
|
}
|
|
}
|
|
|
|
#define SIZE(dp, edp) (size_t)((intptr_t)(void *)edp - (intptr_t)(void *)dp)
|
|
|
|
enum { BOOT_INFO_OK = 0, BAD_CHOICE = 1, NOT_SPECIFIC = 2 };
|
|
static int
|
|
match_boot_info(EFI_LOADED_IMAGE *img __unused, char *boot_info, size_t bisz)
|
|
{
|
|
uint32_t attr;
|
|
uint16_t fplen;
|
|
size_t len;
|
|
char *walker, *ep;
|
|
EFI_DEVICE_PATH *dp, *edp, *first_dp, *last_dp;
|
|
pdinfo_t *pp;
|
|
CHAR16 *descr;
|
|
char *kernel = NULL;
|
|
FILEPATH_DEVICE_PATH *fp;
|
|
struct stat st;
|
|
CHAR16 *text;
|
|
|
|
/*
|
|
* FreeBSD encodes it's boot loading path into the boot loader
|
|
* BootXXXX variable. We look for the last one in the path
|
|
* and use that to load the kernel. However, if we only fine
|
|
* one DEVICE_PATH, then there's nothing specific and we should
|
|
* fall back.
|
|
*
|
|
* In an ideal world, we'd look at the image handle we were
|
|
* passed, match up with the loader we are and then return the
|
|
* next one in the path. This would be most flexible and cover
|
|
* many chain booting scenarios where you need to use this
|
|
* boot loader to get to the next boot loader. However, that
|
|
* doesn't work. We rarely have the path to the image booted
|
|
* (just the device) so we can't count on that. So, we do the
|
|
* enxt best thing, we look through the device path(s) passed
|
|
* in the BootXXXX varaible. If there's only one, we return
|
|
* NOT_SPECIFIC. Otherwise, we look at the last one and try to
|
|
* load that. If we can, we return BOOT_INFO_OK. Otherwise we
|
|
* return BAD_CHOICE for the caller to sort out.
|
|
*/
|
|
if (bisz < sizeof(attr) + sizeof(fplen) + sizeof(CHAR16))
|
|
return NOT_SPECIFIC;
|
|
walker = boot_info;
|
|
ep = walker + bisz;
|
|
memcpy(&attr, walker, sizeof(attr));
|
|
walker += sizeof(attr);
|
|
memcpy(&fplen, walker, sizeof(fplen));
|
|
walker += sizeof(fplen);
|
|
descr = (CHAR16 *)(intptr_t)walker;
|
|
len = ucs2len(descr);
|
|
walker += (len + 1) * sizeof(CHAR16);
|
|
last_dp = first_dp = dp = (EFI_DEVICE_PATH *)walker;
|
|
edp = (EFI_DEVICE_PATH *)(walker + fplen);
|
|
if ((char *)edp > ep)
|
|
return NOT_SPECIFIC;
|
|
while (dp < edp && SIZE(dp, edp) > sizeof(EFI_DEVICE_PATH)) {
|
|
text = efi_devpath_name(dp);
|
|
if (text != NULL) {
|
|
printf(" BootInfo Path: %S\n", text);
|
|
efi_free_devpath_name(text);
|
|
}
|
|
last_dp = dp;
|
|
dp = (EFI_DEVICE_PATH *)((char *)dp + efi_devpath_length(dp));
|
|
}
|
|
|
|
/*
|
|
* If there's only one item in the list, then nothing was
|
|
* specified. Or if the last path doesn't have a media
|
|
* path in it. Those show up as various VenHw() nodes
|
|
* which are basically opaque to us. Don't count those
|
|
* as something specifc.
|
|
*/
|
|
if (last_dp == first_dp) {
|
|
printf("Ignoring Boot%04x: Only one DP found\n", boot_current);
|
|
return NOT_SPECIFIC;
|
|
}
|
|
if (efi_devpath_to_media_path(last_dp) == NULL) {
|
|
printf("Ignoring Boot%04x: No Media Path\n", boot_current);
|
|
return NOT_SPECIFIC;
|
|
}
|
|
|
|
/*
|
|
* OK. At this point we either have a good path or a bad one.
|
|
* Let's check.
|
|
*/
|
|
pp = efiblk_get_pdinfo_by_device_path(last_dp);
|
|
if (pp == NULL) {
|
|
printf("Ignoring Boot%04x: Device Path not found\n", boot_current);
|
|
return BAD_CHOICE;
|
|
}
|
|
set_currdev_pdinfo(pp);
|
|
if (!sanity_check_currdev()) {
|
|
printf("Ignoring Boot%04x: sanity check failed\n", boot_current);
|
|
return BAD_CHOICE;
|
|
}
|
|
|
|
/*
|
|
* OK. We've found a device that matches, next we need to check the last
|
|
* component of the path. If it's a file, then we set the default kernel
|
|
* to that. Otherwise, just use this as the default root.
|
|
*
|
|
* Reminder: we're running very early, before we've parsed the defaults
|
|
* file, so we may need to have a hack override.
|
|
*/
|
|
dp = efi_devpath_last_node(last_dp);
|
|
if (DevicePathType(dp) != MEDIA_DEVICE_PATH ||
|
|
DevicePathSubType(dp) != MEDIA_FILEPATH_DP) {
|
|
printf("Using Boot%04x for root partition\n", boot_current);
|
|
return (BOOT_INFO_OK); /* use currdir, default kernel */
|
|
}
|
|
fp = (FILEPATH_DEVICE_PATH *)dp;
|
|
ucs2_to_utf8(fp->PathName, &kernel);
|
|
if (kernel == NULL) {
|
|
printf("Not using Boot%04x: can't decode kernel\n", boot_current);
|
|
return (BAD_CHOICE);
|
|
}
|
|
if (*kernel == '\\' || isupper(*kernel))
|
|
fix_dosisms(kernel);
|
|
if (stat(kernel, &st) != 0) {
|
|
free(kernel);
|
|
printf("Not using Boot%04x: can't find %s\n", boot_current,
|
|
kernel);
|
|
return (BAD_CHOICE);
|
|
}
|
|
setenv("kernel", kernel, 1);
|
|
free(kernel);
|
|
text = efi_devpath_name(last_dp);
|
|
if (text) {
|
|
printf("Using Boot%04x %S + %s\n", boot_current, text,
|
|
kernel);
|
|
efi_free_devpath_name(text);
|
|
}
|
|
|
|
return (BOOT_INFO_OK);
|
|
}
|
|
|
|
/*
|
|
* Look at the passed-in boot_info, if any. If we find it then we need
|
|
* to see if we can find ourselves in the boot chain. If we can, and
|
|
* there's another specified thing to boot next, assume that the file
|
|
* is loaded from / and use that for the root filesystem. If can't
|
|
* find the specified thing, we must fail the boot. If we're last on
|
|
* the list, then we fallback to looking for the first available /
|
|
* candidate (ZFS, if there's a bootable zpool, otherwise a UFS
|
|
* partition that has either /boot/defaults/loader.conf on it or
|
|
* /boot/kernel/kernel (the default kernel) that we can use.
|
|
*
|
|
* We always fail if we can't find the right thing. However, as
|
|
* a concession to buggy UEFI implementations, like u-boot, if
|
|
* we have determined that the host is violating the UEFI boot
|
|
* manager protocol, we'll signal the rest of the program that
|
|
* a drop to the OK boot loader prompt is possible.
|
|
*/
|
|
static int
|
|
find_currdev(EFI_LOADED_IMAGE *img, bool do_bootmgr, bool is_last,
|
|
char *boot_info, size_t boot_info_sz)
|
|
{
|
|
pdinfo_t *dp, *pp;
|
|
EFI_DEVICE_PATH *devpath, *copy;
|
|
EFI_HANDLE h;
|
|
CHAR16 *text;
|
|
struct devsw *dev;
|
|
int unit;
|
|
uint64_t extra;
|
|
int rv;
|
|
char *rootdev;
|
|
|
|
/*
|
|
* First choice: if rootdev is already set, use that, even if
|
|
* it's wrong.
|
|
*/
|
|
rootdev = getenv("rootdev");
|
|
if (rootdev != NULL) {
|
|
printf("Setting currdev to configured rootdev %s\n", rootdev);
|
|
set_currdev(rootdev);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Second choice: If we can find out image boot_info, and there's
|
|
* a follow-on boot image in that boot_info, use that. In this
|
|
* case root will be the partition specified in that image and
|
|
* we'll load the kernel specified by the file path. Should there
|
|
* not be a filepath, we use the default. This filepath overrides
|
|
* loader.conf.
|
|
*/
|
|
if (do_bootmgr) {
|
|
rv = match_boot_info(img, boot_info, boot_info_sz);
|
|
switch (rv) {
|
|
case BOOT_INFO_OK: /* We found it */
|
|
return (0);
|
|
case BAD_CHOICE: /* specified file not found -> error */
|
|
/* XXX do we want to have an escape hatch for last in boot order? */
|
|
return (ENOENT);
|
|
} /* Nothing specified, try normal match */
|
|
}
|
|
|
|
#ifdef EFI_ZFS_BOOT
|
|
/*
|
|
* Did efi_zfs_probe() detect the boot pool? If so, use the zpool
|
|
* it found, if it's sane. ZFS is the only thing that looks for
|
|
* disks and pools to boot. This may change in the future, however,
|
|
* if we allow specifying which pool to boot from via UEFI variables
|
|
* rather than the bootenv stuff that FreeBSD uses today.
|
|
*/
|
|
if (pool_guid != 0) {
|
|
printf("Trying ZFS pool\n");
|
|
if (probe_zfs_currdev(pool_guid))
|
|
return (0);
|
|
}
|
|
#endif /* EFI_ZFS_BOOT */
|
|
|
|
/*
|
|
* Try to find the block device by its handle based on the
|
|
* image we're booting. If we can't find a sane partition,
|
|
* search all the other partitions of the disk. We do not
|
|
* search other disks because it's a violation of the UEFI
|
|
* boot protocol to do so. We fail and let UEFI go on to
|
|
* the next candidate.
|
|
*/
|
|
dp = efiblk_get_pdinfo_by_handle(img->DeviceHandle);
|
|
if (dp != NULL) {
|
|
text = efi_devpath_name(dp->pd_devpath);
|
|
if (text != NULL) {
|
|
printf("Trying ESP: %S\n", text);
|
|
efi_free_devpath_name(text);
|
|
}
|
|
set_currdev_pdinfo(dp);
|
|
if (sanity_check_currdev())
|
|
return (0);
|
|
if (dp->pd_parent != NULL) {
|
|
pdinfo_t *espdp = dp;
|
|
dp = dp->pd_parent;
|
|
STAILQ_FOREACH(pp, &dp->pd_part, pd_link) {
|
|
/* Already tried the ESP */
|
|
if (espdp == pp)
|
|
continue;
|
|
/*
|
|
* Roll up the ZFS special case
|
|
* for those partitions that have
|
|
* zpools on them.
|
|
*/
|
|
text = efi_devpath_name(pp->pd_devpath);
|
|
if (text != NULL) {
|
|
printf("Trying: %S\n", text);
|
|
efi_free_devpath_name(text);
|
|
}
|
|
if (try_as_currdev(dp, pp))
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Try the device handle from our loaded image first. If that
|
|
* fails, use the device path from the loaded image and see if
|
|
* any of the nodes in that path match one of the enumerated
|
|
* handles. Currently, this handle list is only for netboot.
|
|
*/
|
|
if (efi_handle_lookup(img->DeviceHandle, &dev, &unit, &extra) == 0) {
|
|
set_currdev_devsw(dev, unit);
|
|
if (sanity_check_currdev())
|
|
return (0);
|
|
}
|
|
|
|
copy = NULL;
|
|
devpath = efi_lookup_image_devpath(IH);
|
|
while (devpath != NULL) {
|
|
h = efi_devpath_handle(devpath);
|
|
if (h == NULL)
|
|
break;
|
|
|
|
free(copy);
|
|
copy = NULL;
|
|
|
|
if (efi_handle_lookup(h, &dev, &unit, &extra) == 0) {
|
|
set_currdev_devsw(dev, unit);
|
|
if (sanity_check_currdev())
|
|
return (0);
|
|
}
|
|
|
|
devpath = efi_lookup_devpath(h);
|
|
if (devpath != NULL) {
|
|
copy = efi_devpath_trim(devpath);
|
|
devpath = copy;
|
|
}
|
|
}
|
|
free(copy);
|
|
|
|
return (ENOENT);
|
|
}
|
|
|
|
static bool
|
|
interactive_interrupt(const char *msg)
|
|
{
|
|
time_t now, then, last;
|
|
|
|
last = 0;
|
|
now = then = getsecs();
|
|
printf("%s\n", msg);
|
|
if (fail_timeout == -2) /* Always break to OK */
|
|
return (true);
|
|
if (fail_timeout == -1) /* Never break to OK */
|
|
return (false);
|
|
do {
|
|
if (last != now) {
|
|
printf("press any key to interrupt reboot in %d seconds\r",
|
|
fail_timeout - (int)(now - then));
|
|
last = now;
|
|
}
|
|
|
|
/* XXX no pause or timeout wait for char */
|
|
if (ischar())
|
|
return (true);
|
|
now = getsecs();
|
|
} while (now - then < fail_timeout);
|
|
return (false);
|
|
}
|
|
|
|
static int
|
|
parse_args(int argc, CHAR16 *argv[])
|
|
{
|
|
int i, j, howto;
|
|
bool vargood;
|
|
char var[128];
|
|
|
|
/*
|
|
* Parse the args to set the console settings, etc
|
|
* boot1.efi passes these in, if it can read /boot.config or /boot/config
|
|
* or iPXE may be setup to pass these in. Or the optional argument in the
|
|
* boot environment was used to pass these arguments in (in which case
|
|
* neither /boot.config nor /boot/config are consulted).
|
|
*
|
|
* Loop through the args, and for each one that contains an '=' that is
|
|
* not the first character, add it to the environment. This allows
|
|
* loader and kernel env vars to be passed on the command line. Convert
|
|
* args from UCS-2 to ASCII (16 to 8 bit) as they are copied (though this
|
|
* method is flawed for non-ASCII characters).
|
|
*/
|
|
howto = 0;
|
|
for (i = 1; i < argc; i++) {
|
|
cpy16to8(argv[i], var, sizeof(var));
|
|
howto |= boot_parse_arg(var);
|
|
}
|
|
|
|
return (howto);
|
|
}
|
|
|
|
static void
|
|
setenv_int(const char *key, int val)
|
|
{
|
|
char buf[20];
|
|
|
|
snprintf(buf, sizeof(buf), "%d", val);
|
|
setenv(key, buf, 1);
|
|
}
|
|
|
|
/*
|
|
* Parse ConOut (the list of consoles active) and see if we can find a
|
|
* serial port and/or a video port. It would be nice to also walk the
|
|
* ACPI name space to map the UID for the serial port to a port. The
|
|
* latter is especially hard.
|
|
*/
|
|
static int
|
|
parse_uefi_con_out(void)
|
|
{
|
|
int how, rv;
|
|
int vid_seen = 0, com_seen = 0, seen = 0;
|
|
size_t sz;
|
|
char buf[4096], *ep;
|
|
EFI_DEVICE_PATH *node;
|
|
ACPI_HID_DEVICE_PATH *acpi;
|
|
UART_DEVICE_PATH *uart;
|
|
bool pci_pending;
|
|
|
|
how = 0;
|
|
sz = sizeof(buf);
|
|
rv = efi_global_getenv("ConOut", buf, &sz);
|
|
if (rv != EFI_SUCCESS)
|
|
goto out;
|
|
ep = buf + sz;
|
|
node = (EFI_DEVICE_PATH *)buf;
|
|
while ((char *)node < ep) {
|
|
pci_pending = false;
|
|
if (DevicePathType(node) == ACPI_DEVICE_PATH &&
|
|
DevicePathSubType(node) == ACPI_DP) {
|
|
/* Check for Serial node */
|
|
acpi = (void *)node;
|
|
if (EISA_ID_TO_NUM(acpi->HID) == 0x501) {
|
|
setenv_int("efi_8250_uid", acpi->UID);
|
|
com_seen = ++seen;
|
|
}
|
|
} else if (DevicePathType(node) == MESSAGING_DEVICE_PATH &&
|
|
DevicePathSubType(node) == MSG_UART_DP) {
|
|
|
|
uart = (void *)node;
|
|
setenv_int("efi_com_speed", uart->BaudRate);
|
|
} else if (DevicePathType(node) == ACPI_DEVICE_PATH &&
|
|
DevicePathSubType(node) == ACPI_ADR_DP) {
|
|
/* Check for AcpiAdr() Node for video */
|
|
vid_seen = ++seen;
|
|
} else if (DevicePathType(node) == HARDWARE_DEVICE_PATH &&
|
|
DevicePathSubType(node) == HW_PCI_DP) {
|
|
/*
|
|
* Note, vmware fusion has a funky console device
|
|
* PciRoot(0x0)/Pci(0xf,0x0)
|
|
* which we can only detect at the end since we also
|
|
* have to cope with:
|
|
* PciRoot(0x0)/Pci(0x1f,0x0)/Serial(0x1)
|
|
* so only match it if it's last.
|
|
*/
|
|
pci_pending = true;
|
|
}
|
|
node = NextDevicePathNode(node); /* Skip the end node */
|
|
}
|
|
if (pci_pending && vid_seen == 0)
|
|
vid_seen = ++seen;
|
|
|
|
/*
|
|
* Truth table for RB_MULTIPLE | RB_SERIAL
|
|
* Value Result
|
|
* 0 Use only video console
|
|
* RB_SERIAL Use only serial console
|
|
* RB_MULTIPLE Use both video and serial console
|
|
* (but video is primary so gets rc messages)
|
|
* both Use both video and serial console
|
|
* (but serial is primary so gets rc messages)
|
|
*
|
|
* Try to honor this as best we can. If only one of serial / video
|
|
* found, then use that. Otherwise, use the first one we found.
|
|
* This also implies if we found nothing, default to video.
|
|
*/
|
|
how = 0;
|
|
if (vid_seen && com_seen) {
|
|
how |= RB_MULTIPLE;
|
|
if (com_seen < vid_seen)
|
|
how |= RB_SERIAL;
|
|
} else if (com_seen)
|
|
how |= RB_SERIAL;
|
|
out:
|
|
return (how);
|
|
}
|
|
|
|
EFI_STATUS
|
|
main(int argc, CHAR16 *argv[])
|
|
{
|
|
EFI_GUID *guid;
|
|
int howto, i, uhowto;
|
|
UINTN k;
|
|
bool has_kbd, is_last;
|
|
char *s;
|
|
EFI_DEVICE_PATH *imgpath;
|
|
CHAR16 *text;
|
|
EFI_STATUS rv;
|
|
size_t sz, bosz = 0, bisz = 0;
|
|
UINT16 boot_order[100];
|
|
char boot_info[4096];
|
|
EFI_LOADED_IMAGE *img;
|
|
char buf[32];
|
|
bool uefi_boot_mgr;
|
|
|
|
archsw.arch_autoload = efi_autoload;
|
|
archsw.arch_getdev = efi_getdev;
|
|
archsw.arch_copyin = efi_copyin;
|
|
archsw.arch_copyout = efi_copyout;
|
|
archsw.arch_readin = efi_readin;
|
|
#ifdef EFI_ZFS_BOOT
|
|
/* Note this needs to be set before ZFS init. */
|
|
archsw.arch_zfs_probe = efi_zfs_probe;
|
|
#endif
|
|
|
|
/* Get our loaded image protocol interface structure. */
|
|
BS->HandleProtocol(IH, &imgid, (VOID**)&img);
|
|
|
|
#ifdef EFI_ZFS_BOOT
|
|
/* Tell ZFS probe code where we booted from */
|
|
efizfs_set_preferred(img->DeviceHandle);
|
|
#endif
|
|
/* Init the time source */
|
|
efi_time_init();
|
|
|
|
has_kbd = has_keyboard();
|
|
|
|
/*
|
|
* XXX Chicken-and-egg problem; we want to have console output
|
|
* early, but some console attributes may depend on reading from
|
|
* eg. the boot device, which we can't do yet. We can use
|
|
* printf() etc. once this is done.
|
|
*/
|
|
setenv("console", "efi", 1);
|
|
cons_probe();
|
|
|
|
/*
|
|
* Initialise the block cache. Set the upper limit.
|
|
*/
|
|
bcache_init(32768, 512);
|
|
|
|
howto = parse_args(argc, argv);
|
|
if (!has_kbd && (howto & RB_PROBE))
|
|
howto |= RB_SERIAL | RB_MULTIPLE;
|
|
howto &= ~RB_PROBE;
|
|
uhowto = parse_uefi_con_out();
|
|
|
|
/*
|
|
* We now have two notions of console. howto should be viewed as
|
|
* overrides. If console is already set, don't set it again.
|
|
*/
|
|
#define VIDEO_ONLY 0
|
|
#define SERIAL_ONLY RB_SERIAL
|
|
#define VID_SER_BOTH RB_MULTIPLE
|
|
#define SER_VID_BOTH (RB_SERIAL | RB_MULTIPLE)
|
|
#define CON_MASK (RB_SERIAL | RB_MULTIPLE)
|
|
if (strcmp(getenv("console"), "efi") == 0) {
|
|
if ((howto & CON_MASK) == 0) {
|
|
/* No override, uhowto is controlling and efi cons is perfect */
|
|
howto = howto | (uhowto & CON_MASK);
|
|
setenv("console", "efi", 1);
|
|
} else if ((howto & CON_MASK) == (uhowto & CON_MASK)) {
|
|
/* override matches what UEFI told us, efi console is perfect */
|
|
setenv("console", "efi", 1);
|
|
} else if ((uhowto & (CON_MASK)) != 0) {
|
|
/*
|
|
* We detected a serial console on ConOut. All possible
|
|
* overrides include serial. We can't really override what efi
|
|
* gives us, so we use it knowing it's the best choice.
|
|
*/
|
|
setenv("console", "efi", 1);
|
|
} else {
|
|
/*
|
|
* We detected some kind of serial in the override, but ConOut
|
|
* has no serial, so we have to sort out which case it really is.
|
|
*/
|
|
switch (howto & CON_MASK) {
|
|
case SERIAL_ONLY:
|
|
setenv("console", "comconsole", 1);
|
|
break;
|
|
case VID_SER_BOTH:
|
|
setenv("console", "efi comconsole", 1);
|
|
break;
|
|
case SER_VID_BOTH:
|
|
setenv("console", "comconsole efi", 1);
|
|
break;
|
|
/* case VIDEO_ONLY can't happen -- it's the first if above */
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* howto is set now how we want to export the flags to the kernel, so
|
|
* set the env based on it.
|
|
*/
|
|
boot_howto_to_env(howto);
|
|
|
|
if (efi_copy_init()) {
|
|
printf("failed to allocate staging area\n");
|
|
return (EFI_BUFFER_TOO_SMALL);
|
|
}
|
|
|
|
if ((s = getenv("fail_timeout")) != NULL)
|
|
fail_timeout = strtol(s, NULL, 10);
|
|
|
|
/*
|
|
* Scan the BLOCK IO MEDIA handles then
|
|
* march through the device switch probing for things.
|
|
*/
|
|
i = efipart_inithandles();
|
|
if (i != 0 && i != ENOENT) {
|
|
printf("efipart_inithandles failed with ERRNO %d, expect "
|
|
"failures\n", i);
|
|
}
|
|
|
|
for (i = 0; devsw[i] != NULL; i++)
|
|
if (devsw[i]->dv_init != NULL)
|
|
(devsw[i]->dv_init)();
|
|
|
|
printf("%s\n", bootprog_info);
|
|
printf(" Command line arguments:");
|
|
for (i = 0; i < argc; i++)
|
|
printf(" %S", argv[i]);
|
|
printf("\n");
|
|
|
|
printf(" EFI version: %d.%02d\n", ST->Hdr.Revision >> 16,
|
|
ST->Hdr.Revision & 0xffff);
|
|
printf(" EFI Firmware: %S (rev %d.%02d)\n", ST->FirmwareVendor,
|
|
ST->FirmwareRevision >> 16, ST->FirmwareRevision & 0xffff);
|
|
printf(" Console: %s (%#x)\n", getenv("console"), howto);
|
|
|
|
|
|
|
|
/* Determine the devpath of our image so we can prefer it. */
|
|
text = efi_devpath_name(img->FilePath);
|
|
if (text != NULL) {
|
|
printf(" Load Path: %S\n", text);
|
|
efi_setenv_freebsd_wcs("LoaderPath", text);
|
|
efi_free_devpath_name(text);
|
|
}
|
|
|
|
rv = BS->HandleProtocol(img->DeviceHandle, &devid, (void **)&imgpath);
|
|
if (rv == EFI_SUCCESS) {
|
|
text = efi_devpath_name(imgpath);
|
|
if (text != NULL) {
|
|
printf(" Load Device: %S\n", text);
|
|
efi_setenv_freebsd_wcs("LoaderDev", text);
|
|
efi_free_devpath_name(text);
|
|
}
|
|
}
|
|
|
|
uefi_boot_mgr = true;
|
|
boot_current = 0;
|
|
sz = sizeof(boot_current);
|
|
rv = efi_global_getenv("BootCurrent", &boot_current, &sz);
|
|
if (rv == EFI_SUCCESS)
|
|
printf(" BootCurrent: %04x\n", boot_current);
|
|
else {
|
|
boot_current = 0xffff;
|
|
uefi_boot_mgr = false;
|
|
}
|
|
|
|
sz = sizeof(boot_order);
|
|
rv = efi_global_getenv("BootOrder", &boot_order, &sz);
|
|
if (rv == EFI_SUCCESS) {
|
|
printf(" BootOrder:");
|
|
for (i = 0; i < sz / sizeof(boot_order[0]); i++)
|
|
printf(" %04x%s", boot_order[i],
|
|
boot_order[i] == boot_current ? "[*]" : "");
|
|
printf("\n");
|
|
is_last = boot_order[(sz / sizeof(boot_order[0])) - 1] == boot_current;
|
|
bosz = sz;
|
|
} else if (uefi_boot_mgr) {
|
|
/*
|
|
* u-boot doesn't set BootOrder, but otherwise participates in the
|
|
* boot manager protocol. So we fake it here and don't consider it
|
|
* a failure.
|
|
*/
|
|
bosz = sizeof(boot_order[0]);
|
|
boot_order[0] = boot_current;
|
|
is_last = true;
|
|
}
|
|
|
|
/*
|
|
* Next, find the boot info structure the UEFI boot manager is
|
|
* supposed to setup. We need this so we can walk through it to
|
|
* find where we are in the booting process and what to try to
|
|
* boot next.
|
|
*/
|
|
if (uefi_boot_mgr) {
|
|
snprintf(buf, sizeof(buf), "Boot%04X", boot_current);
|
|
sz = sizeof(boot_info);
|
|
rv = efi_global_getenv(buf, &boot_info, &sz);
|
|
if (rv == EFI_SUCCESS)
|
|
bisz = sz;
|
|
else
|
|
uefi_boot_mgr = false;
|
|
}
|
|
|
|
/*
|
|
* Disable the watchdog timer. By default the boot manager sets
|
|
* the timer to 5 minutes before invoking a boot option. If we
|
|
* want to return to the boot manager, we have to disable the
|
|
* watchdog timer and since we're an interactive program, we don't
|
|
* want to wait until the user types "quit". The timer may have
|
|
* fired by then. We don't care if this fails. It does not prevent
|
|
* normal functioning in any way...
|
|
*/
|
|
BS->SetWatchdogTimer(0, 0, 0, NULL);
|
|
|
|
/*
|
|
* Try and find a good currdev based on the image that was booted.
|
|
* It might be desirable here to have a short pause to allow falling
|
|
* through to the boot loader instead of returning instantly to follow
|
|
* the boot protocol and also allow an escape hatch for users wishing
|
|
* to try something different.
|
|
*/
|
|
if (find_currdev(img, uefi_boot_mgr, is_last, boot_info, bisz) != 0)
|
|
if (!interactive_interrupt("Failed to find bootable partition"))
|
|
return (EFI_NOT_FOUND);
|
|
|
|
efi_init_environment();
|
|
|
|
#if !defined(__arm__)
|
|
for (k = 0; k < ST->NumberOfTableEntries; k++) {
|
|
guid = &ST->ConfigurationTable[k].VendorGuid;
|
|
if (!memcmp(guid, &smbios, sizeof(EFI_GUID))) {
|
|
char buf[40];
|
|
|
|
snprintf(buf, sizeof(buf), "%p",
|
|
ST->ConfigurationTable[k].VendorTable);
|
|
setenv("hint.smbios.0.mem", buf, 1);
|
|
smbios_detect(ST->ConfigurationTable[k].VendorTable);
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
interact(); /* doesn't return */
|
|
|
|
return (EFI_SUCCESS); /* keep compiler happy */
|
|
}
|
|
|
|
COMMAND_SET(poweroff, "poweroff", "power off the system", command_poweroff);
|
|
|
|
static int
|
|
command_poweroff(int argc __unused, char *argv[] __unused)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; devsw[i] != NULL; ++i)
|
|
if (devsw[i]->dv_cleanup != NULL)
|
|
(devsw[i]->dv_cleanup)();
|
|
|
|
RS->ResetSystem(EfiResetShutdown, EFI_SUCCESS, 0, NULL);
|
|
|
|
/* NOTREACHED */
|
|
return (CMD_ERROR);
|
|
}
|
|
|
|
COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot);
|
|
|
|
static int
|
|
command_reboot(int argc, char *argv[])
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; devsw[i] != NULL; ++i)
|
|
if (devsw[i]->dv_cleanup != NULL)
|
|
(devsw[i]->dv_cleanup)();
|
|
|
|
RS->ResetSystem(EfiResetCold, EFI_SUCCESS, 0, NULL);
|
|
|
|
/* NOTREACHED */
|
|
return (CMD_ERROR);
|
|
}
|
|
|
|
COMMAND_SET(quit, "quit", "exit the loader", command_quit);
|
|
|
|
static int
|
|
command_quit(int argc, char *argv[])
|
|
{
|
|
exit(0);
|
|
return (CMD_OK);
|
|
}
|
|
|
|
COMMAND_SET(memmap, "memmap", "print memory map", command_memmap);
|
|
|
|
static int
|
|
command_memmap(int argc, char *argv[])
|
|
{
|
|
UINTN sz;
|
|
EFI_MEMORY_DESCRIPTOR *map, *p;
|
|
UINTN key, dsz;
|
|
UINT32 dver;
|
|
EFI_STATUS status;
|
|
int i, ndesc;
|
|
char line[80];
|
|
static char *types[] = {
|
|
"Reserved",
|
|
"LoaderCode",
|
|
"LoaderData",
|
|
"BootServicesCode",
|
|
"BootServicesData",
|
|
"RuntimeServicesCode",
|
|
"RuntimeServicesData",
|
|
"ConventionalMemory",
|
|
"UnusableMemory",
|
|
"ACPIReclaimMemory",
|
|
"ACPIMemoryNVS",
|
|
"MemoryMappedIO",
|
|
"MemoryMappedIOPortSpace",
|
|
"PalCode"
|
|
};
|
|
|
|
sz = 0;
|
|
status = BS->GetMemoryMap(&sz, 0, &key, &dsz, &dver);
|
|
if (status != EFI_BUFFER_TOO_SMALL) {
|
|
printf("Can't determine memory map size\n");
|
|
return (CMD_ERROR);
|
|
}
|
|
map = malloc(sz);
|
|
status = BS->GetMemoryMap(&sz, map, &key, &dsz, &dver);
|
|
if (EFI_ERROR(status)) {
|
|
printf("Can't read memory map\n");
|
|
return (CMD_ERROR);
|
|
}
|
|
|
|
ndesc = sz / dsz;
|
|
snprintf(line, sizeof(line), "%23s %12s %12s %8s %4s\n",
|
|
"Type", "Physical", "Virtual", "#Pages", "Attr");
|
|
pager_open();
|
|
if (pager_output(line)) {
|
|
pager_close();
|
|
return (CMD_OK);
|
|
}
|
|
|
|
for (i = 0, p = map; i < ndesc;
|
|
i++, p = NextMemoryDescriptor(p, dsz)) {
|
|
printf("%23s %012jx %012jx %08jx ", types[p->Type],
|
|
(uintmax_t)p->PhysicalStart, (uintmax_t)p->VirtualStart,
|
|
(uintmax_t)p->NumberOfPages);
|
|
if (p->Attribute & EFI_MEMORY_UC)
|
|
printf("UC ");
|
|
if (p->Attribute & EFI_MEMORY_WC)
|
|
printf("WC ");
|
|
if (p->Attribute & EFI_MEMORY_WT)
|
|
printf("WT ");
|
|
if (p->Attribute & EFI_MEMORY_WB)
|
|
printf("WB ");
|
|
if (p->Attribute & EFI_MEMORY_UCE)
|
|
printf("UCE ");
|
|
if (p->Attribute & EFI_MEMORY_WP)
|
|
printf("WP ");
|
|
if (p->Attribute & EFI_MEMORY_RP)
|
|
printf("RP ");
|
|
if (p->Attribute & EFI_MEMORY_XP)
|
|
printf("XP ");
|
|
if (pager_output("\n"))
|
|
break;
|
|
}
|
|
|
|
pager_close();
|
|
return (CMD_OK);
|
|
}
|
|
|
|
COMMAND_SET(configuration, "configuration", "print configuration tables",
|
|
command_configuration);
|
|
|
|
static const char *
|
|
guid_to_string(EFI_GUID *guid)
|
|
{
|
|
static char buf[40];
|
|
|
|
sprintf(buf, "%08x-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x",
|
|
guid->Data1, guid->Data2, guid->Data3, guid->Data4[0],
|
|
guid->Data4[1], guid->Data4[2], guid->Data4[3], guid->Data4[4],
|
|
guid->Data4[5], guid->Data4[6], guid->Data4[7]);
|
|
return (buf);
|
|
}
|
|
|
|
static int
|
|
command_configuration(int argc, char *argv[])
|
|
{
|
|
char line[80];
|
|
UINTN i;
|
|
|
|
snprintf(line, sizeof(line), "NumberOfTableEntries=%lu\n",
|
|
(unsigned long)ST->NumberOfTableEntries);
|
|
pager_open();
|
|
if (pager_output(line)) {
|
|
pager_close();
|
|
return (CMD_OK);
|
|
}
|
|
|
|
for (i = 0; i < ST->NumberOfTableEntries; i++) {
|
|
EFI_GUID *guid;
|
|
|
|
printf(" ");
|
|
guid = &ST->ConfigurationTable[i].VendorGuid;
|
|
if (!memcmp(guid, &mps, sizeof(EFI_GUID)))
|
|
printf("MPS Table");
|
|
else if (!memcmp(guid, &acpi, sizeof(EFI_GUID)))
|
|
printf("ACPI Table");
|
|
else if (!memcmp(guid, &acpi20, sizeof(EFI_GUID)))
|
|
printf("ACPI 2.0 Table");
|
|
else if (!memcmp(guid, &smbios, sizeof(EFI_GUID)))
|
|
printf("SMBIOS Table %p",
|
|
ST->ConfigurationTable[i].VendorTable);
|
|
else if (!memcmp(guid, &smbios3, sizeof(EFI_GUID)))
|
|
printf("SMBIOS3 Table");
|
|
else if (!memcmp(guid, &dxe, sizeof(EFI_GUID)))
|
|
printf("DXE Table");
|
|
else if (!memcmp(guid, &hoblist, sizeof(EFI_GUID)))
|
|
printf("HOB List Table");
|
|
else if (!memcmp(guid, &lzmadecomp, sizeof(EFI_GUID)))
|
|
printf("LZMA Compression");
|
|
else if (!memcmp(guid, &mpcore, sizeof(EFI_GUID)))
|
|
printf("ARM MpCore Information Table");
|
|
else if (!memcmp(guid, &esrt, sizeof(EFI_GUID)))
|
|
printf("ESRT Table");
|
|
else if (!memcmp(guid, &memtype, sizeof(EFI_GUID)))
|
|
printf("Memory Type Information Table");
|
|
else if (!memcmp(guid, &debugimg, sizeof(EFI_GUID)))
|
|
printf("Debug Image Info Table");
|
|
else if (!memcmp(guid, &fdtdtb, sizeof(EFI_GUID)))
|
|
printf("FDT Table");
|
|
else
|
|
printf("Unknown Table (%s)", guid_to_string(guid));
|
|
snprintf(line, sizeof(line), " at %p\n",
|
|
ST->ConfigurationTable[i].VendorTable);
|
|
if (pager_output(line))
|
|
break;
|
|
}
|
|
|
|
pager_close();
|
|
return (CMD_OK);
|
|
}
|
|
|
|
|
|
COMMAND_SET(mode, "mode", "change or display EFI text modes", command_mode);
|
|
|
|
static int
|
|
command_mode(int argc, char *argv[])
|
|
{
|
|
UINTN cols, rows;
|
|
unsigned int mode;
|
|
int i;
|
|
char *cp;
|
|
char rowenv[8];
|
|
EFI_STATUS status;
|
|
SIMPLE_TEXT_OUTPUT_INTERFACE *conout;
|
|
extern void HO(void);
|
|
|
|
conout = ST->ConOut;
|
|
|
|
if (argc > 1) {
|
|
mode = strtol(argv[1], &cp, 0);
|
|
if (cp[0] != '\0') {
|
|
printf("Invalid mode\n");
|
|
return (CMD_ERROR);
|
|
}
|
|
status = conout->QueryMode(conout, mode, &cols, &rows);
|
|
if (EFI_ERROR(status)) {
|
|
printf("invalid mode %d\n", mode);
|
|
return (CMD_ERROR);
|
|
}
|
|
status = conout->SetMode(conout, mode);
|
|
if (EFI_ERROR(status)) {
|
|
printf("couldn't set mode %d\n", mode);
|
|
return (CMD_ERROR);
|
|
}
|
|
sprintf(rowenv, "%u", (unsigned)rows);
|
|
setenv("LINES", rowenv, 1);
|
|
HO(); /* set cursor */
|
|
return (CMD_OK);
|
|
}
|
|
|
|
printf("Current mode: %d\n", conout->Mode->Mode);
|
|
for (i = 0; i <= conout->Mode->MaxMode; i++) {
|
|
status = conout->QueryMode(conout, i, &cols, &rows);
|
|
if (EFI_ERROR(status))
|
|
continue;
|
|
printf("Mode %d: %u columns, %u rows\n", i, (unsigned)cols,
|
|
(unsigned)rows);
|
|
}
|
|
|
|
if (i != 0)
|
|
printf("Select a mode with the command \"mode <number>\"\n");
|
|
|
|
return (CMD_OK);
|
|
}
|
|
|
|
#ifdef LOADER_FDT_SUPPORT
|
|
extern int command_fdt_internal(int argc, char *argv[]);
|
|
|
|
/*
|
|
* Since proper fdt command handling function is defined in fdt_loader_cmd.c,
|
|
* and declaring it as extern is in contradiction with COMMAND_SET() macro
|
|
* (which uses static pointer), we're defining wrapper function, which
|
|
* calls the proper fdt handling routine.
|
|
*/
|
|
static int
|
|
command_fdt(int argc, char *argv[])
|
|
{
|
|
|
|
return (command_fdt_internal(argc, argv));
|
|
}
|
|
|
|
COMMAND_SET(fdt, "fdt", "flattened device tree handling", command_fdt);
|
|
#endif
|
|
|
|
/*
|
|
* Chain load another efi loader.
|
|
*/
|
|
static int
|
|
command_chain(int argc, char *argv[])
|
|
{
|
|
EFI_GUID LoadedImageGUID = LOADED_IMAGE_PROTOCOL;
|
|
EFI_HANDLE loaderhandle;
|
|
EFI_LOADED_IMAGE *loaded_image;
|
|
EFI_STATUS status;
|
|
struct stat st;
|
|
struct devdesc *dev;
|
|
char *name, *path;
|
|
void *buf;
|
|
int fd;
|
|
|
|
if (argc < 2) {
|
|
command_errmsg = "wrong number of arguments";
|
|
return (CMD_ERROR);
|
|
}
|
|
|
|
name = argv[1];
|
|
|
|
if ((fd = open(name, O_RDONLY)) < 0) {
|
|
command_errmsg = "no such file";
|
|
return (CMD_ERROR);
|
|
}
|
|
|
|
if (fstat(fd, &st) < -1) {
|
|
command_errmsg = "stat failed";
|
|
close(fd);
|
|
return (CMD_ERROR);
|
|
}
|
|
|
|
status = BS->AllocatePool(EfiLoaderCode, (UINTN)st.st_size, &buf);
|
|
if (status != EFI_SUCCESS) {
|
|
command_errmsg = "failed to allocate buffer";
|
|
close(fd);
|
|
return (CMD_ERROR);
|
|
}
|
|
if (read(fd, buf, st.st_size) != st.st_size) {
|
|
command_errmsg = "error while reading the file";
|
|
(void)BS->FreePool(buf);
|
|
close(fd);
|
|
return (CMD_ERROR);
|
|
}
|
|
close(fd);
|
|
status = BS->LoadImage(FALSE, IH, NULL, buf, st.st_size, &loaderhandle);
|
|
(void)BS->FreePool(buf);
|
|
if (status != EFI_SUCCESS) {
|
|
command_errmsg = "LoadImage failed";
|
|
return (CMD_ERROR);
|
|
}
|
|
status = BS->HandleProtocol(loaderhandle, &LoadedImageGUID,
|
|
(void **)&loaded_image);
|
|
|
|
if (argc > 2) {
|
|
int i, len = 0;
|
|
CHAR16 *argp;
|
|
|
|
for (i = 2; i < argc; i++)
|
|
len += strlen(argv[i]) + 1;
|
|
|
|
len *= sizeof (*argp);
|
|
loaded_image->LoadOptions = argp = malloc (len);
|
|
loaded_image->LoadOptionsSize = len;
|
|
for (i = 2; i < argc; i++) {
|
|
char *ptr = argv[i];
|
|
while (*ptr)
|
|
*(argp++) = *(ptr++);
|
|
*(argp++) = ' ';
|
|
}
|
|
*(--argv) = 0;
|
|
}
|
|
|
|
if (efi_getdev((void **)&dev, name, (const char **)&path) == 0) {
|
|
#ifdef EFI_ZFS_BOOT
|
|
struct zfs_devdesc *z_dev;
|
|
#endif
|
|
struct disk_devdesc *d_dev;
|
|
pdinfo_t *hd, *pd;
|
|
|
|
switch (dev->d_dev->dv_type) {
|
|
#ifdef EFI_ZFS_BOOT
|
|
case DEVT_ZFS:
|
|
z_dev = (struct zfs_devdesc *)dev;
|
|
loaded_image->DeviceHandle =
|
|
efizfs_get_handle_by_guid(z_dev->pool_guid);
|
|
break;
|
|
#endif
|
|
case DEVT_NET:
|
|
loaded_image->DeviceHandle =
|
|
efi_find_handle(dev->d_dev, dev->d_unit);
|
|
break;
|
|
default:
|
|
hd = efiblk_get_pdinfo(dev);
|
|
if (STAILQ_EMPTY(&hd->pd_part)) {
|
|
loaded_image->DeviceHandle = hd->pd_handle;
|
|
break;
|
|
}
|
|
d_dev = (struct disk_devdesc *)dev;
|
|
STAILQ_FOREACH(pd, &hd->pd_part, pd_link) {
|
|
/*
|
|
* d_partition should be 255
|
|
*/
|
|
if (pd->pd_unit == (uint32_t)d_dev->d_slice) {
|
|
loaded_image->DeviceHandle =
|
|
pd->pd_handle;
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
dev_cleanup();
|
|
status = BS->StartImage(loaderhandle, NULL, NULL);
|
|
if (status != EFI_SUCCESS) {
|
|
command_errmsg = "StartImage failed";
|
|
free(loaded_image->LoadOptions);
|
|
loaded_image->LoadOptions = NULL;
|
|
status = BS->UnloadImage(loaded_image);
|
|
return (CMD_ERROR);
|
|
}
|
|
|
|
return (CMD_ERROR); /* not reached */
|
|
}
|
|
|
|
COMMAND_SET(chain, "chain", "chain load file", command_chain);
|