Warner Losh 48f0136d52 Fix pointer arithmetic
Pointer math to find the size in bytes only works with char types.
Use correct pointer math to determine if we have enough of a header to
look at or not.

MFC After: 3 days
X-MFX-With: r339800
Noticed by: jhb@
Sponsored by: Netflix, Inc
2018-10-26 23:44:50 +00:00

1396 lines
37 KiB
C

/*-
* Copyright (c) 2008-2010 Rui Paulo
* Copyright (c) 2006 Marcel Moolenaar
* Copyright (c) 2018 Netflix, Inc
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <stand.h>
#include <sys/disk.h>
#include <sys/param.h>
#include <sys/reboot.h>
#include <sys/boot.h>
#include <stdint.h>
#include <string.h>
#include <setjmp.h>
#include <disk.h>
#include <efi.h>
#include <efilib.h>
#include <efichar.h>
#include <uuid.h>
#include <bootstrap.h>
#include <smbios.h>
#ifdef EFI_ZFS_BOOT
#include <libzfs.h>
#include "efizfs.h"
#endif
#include "loader_efi.h"
struct arch_switch archsw; /* MI/MD interface boundary */
EFI_GUID acpi = ACPI_TABLE_GUID;
EFI_GUID acpi20 = ACPI_20_TABLE_GUID;
EFI_GUID devid = DEVICE_PATH_PROTOCOL;
EFI_GUID imgid = LOADED_IMAGE_PROTOCOL;
EFI_GUID mps = MPS_TABLE_GUID;
EFI_GUID netid = EFI_SIMPLE_NETWORK_PROTOCOL;
EFI_GUID smbios = SMBIOS_TABLE_GUID;
EFI_GUID smbios3 = SMBIOS3_TABLE_GUID;
EFI_GUID dxe = DXE_SERVICES_TABLE_GUID;
EFI_GUID hoblist = HOB_LIST_TABLE_GUID;
EFI_GUID lzmadecomp = LZMA_DECOMPRESSION_GUID;
EFI_GUID mpcore = ARM_MP_CORE_INFO_TABLE_GUID;
EFI_GUID esrt = ESRT_TABLE_GUID;
EFI_GUID memtype = MEMORY_TYPE_INFORMATION_TABLE_GUID;
EFI_GUID debugimg = DEBUG_IMAGE_INFO_TABLE_GUID;
EFI_GUID fdtdtb = FDT_TABLE_GUID;
EFI_GUID inputid = SIMPLE_TEXT_INPUT_PROTOCOL;
/*
* Number of seconds to wait for a keystroke before exiting with failure
* in the event no currdev is found. -2 means always break, -1 means
* never break, 0 means poll once and then reboot, > 0 means wait for
* that many seconds. "fail_timeout" can be set in the environment as
* well.
*/
static int fail_timeout = 5;
/*
* Current boot variable
*/
UINT16 boot_current;
static bool
has_keyboard(void)
{
EFI_STATUS status;
EFI_DEVICE_PATH *path;
EFI_HANDLE *hin, *hin_end, *walker;
UINTN sz;
bool retval = false;
/*
* Find all the handles that support the SIMPLE_TEXT_INPUT_PROTOCOL and
* do the typical dance to get the right sized buffer.
*/
sz = 0;
hin = NULL;
status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 0);
if (status == EFI_BUFFER_TOO_SMALL) {
hin = (EFI_HANDLE *)malloc(sz);
status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz,
hin);
if (EFI_ERROR(status))
free(hin);
}
if (EFI_ERROR(status))
return retval;
/*
* Look at each of the handles. If it supports the device path protocol,
* use it to get the device path for this handle. Then see if that
* device path matches either the USB device path for keyboards or the
* legacy device path for keyboards.
*/
hin_end = &hin[sz / sizeof(*hin)];
for (walker = hin; walker < hin_end; walker++) {
status = BS->HandleProtocol(*walker, &devid, (VOID **)&path);
if (EFI_ERROR(status))
continue;
while (!IsDevicePathEnd(path)) {
/*
* Check for the ACPI keyboard node. All PNP3xx nodes
* are keyboards of different flavors. Note: It is
* unclear of there's always a keyboard node when
* there's a keyboard controller, or if there's only one
* when a keyboard is detected at boot.
*/
if (DevicePathType(path) == ACPI_DEVICE_PATH &&
(DevicePathSubType(path) == ACPI_DP ||
DevicePathSubType(path) == ACPI_EXTENDED_DP)) {
ACPI_HID_DEVICE_PATH *acpi;
acpi = (ACPI_HID_DEVICE_PATH *)(void *)path;
if ((EISA_ID_TO_NUM(acpi->HID) & 0xff00) == 0x300 &&
(acpi->HID & 0xffff) == PNP_EISA_ID_CONST) {
retval = true;
goto out;
}
/*
* Check for USB keyboard node, if present. Unlike a
* PS/2 keyboard, these definitely only appear when
* connected to the system.
*/
} else if (DevicePathType(path) == MESSAGING_DEVICE_PATH &&
DevicePathSubType(path) == MSG_USB_CLASS_DP) {
USB_CLASS_DEVICE_PATH *usb;
usb = (USB_CLASS_DEVICE_PATH *)(void *)path;
if (usb->DeviceClass == 3 && /* HID */
usb->DeviceSubClass == 1 && /* Boot devices */
usb->DeviceProtocol == 1) { /* Boot keyboards */
retval = true;
goto out;
}
}
path = NextDevicePathNode(path);
}
}
out:
free(hin);
return retval;
}
static void
set_currdev(const char *devname)
{
env_setenv("currdev", EV_VOLATILE, devname, efi_setcurrdev, env_nounset);
env_setenv("loaddev", EV_VOLATILE, devname, env_noset, env_nounset);
}
static void
set_currdev_devdesc(struct devdesc *currdev)
{
const char *devname;
devname = efi_fmtdev(currdev);
printf("Setting currdev to %s\n", devname);
set_currdev(devname);
}
static void
set_currdev_devsw(struct devsw *dev, int unit)
{
struct devdesc currdev;
currdev.d_dev = dev;
currdev.d_unit = unit;
set_currdev_devdesc(&currdev);
}
static void
set_currdev_pdinfo(pdinfo_t *dp)
{
/*
* Disks are special: they have partitions. if the parent
* pointer is non-null, we're a partition not a full disk
* and we need to adjust currdev appropriately.
*/
if (dp->pd_devsw->dv_type == DEVT_DISK) {
struct disk_devdesc currdev;
currdev.dd.d_dev = dp->pd_devsw;
if (dp->pd_parent == NULL) {
currdev.dd.d_unit = dp->pd_unit;
currdev.d_slice = -1;
currdev.d_partition = -1;
} else {
currdev.dd.d_unit = dp->pd_parent->pd_unit;
currdev.d_slice = dp->pd_unit;
currdev.d_partition = 255; /* Assumes GPT */
}
set_currdev_devdesc((struct devdesc *)&currdev);
} else {
set_currdev_devsw(dp->pd_devsw, dp->pd_unit);
}
}
static bool
sanity_check_currdev(void)
{
struct stat st;
return (stat("/boot/defaults/loader.conf", &st) == 0 ||
stat("/boot/kernel/kernel", &st) == 0);
}
#ifdef EFI_ZFS_BOOT
static bool
probe_zfs_currdev(uint64_t guid)
{
char *devname;
struct zfs_devdesc currdev;
currdev.dd.d_dev = &zfs_dev;
currdev.dd.d_unit = 0;
currdev.pool_guid = guid;
currdev.root_guid = 0;
set_currdev_devdesc((struct devdesc *)&currdev);
devname = efi_fmtdev(&currdev);
init_zfs_bootenv(devname);
return (sanity_check_currdev());
}
#endif
static bool
try_as_currdev(pdinfo_t *hd, pdinfo_t *pp)
{
uint64_t guid;
#ifdef EFI_ZFS_BOOT
/*
* If there's a zpool on this device, try it as a ZFS
* filesystem, which has somewhat different setup than all
* other types of fs due to imperfect loader integration.
* This all stems from ZFS being both a device (zpool) and
* a filesystem, plus the boot env feature.
*/
if (efizfs_get_guid_by_handle(pp->pd_handle, &guid))
return (probe_zfs_currdev(guid));
#endif
/*
* All other filesystems just need the pdinfo
* initialized in the standard way.
*/
set_currdev_pdinfo(pp);
return (sanity_check_currdev());
}
/*
* Sometimes we get filenames that are all upper case
* and/or have backslashes in them. Filter all this out
* if it looks like we need to do so.
*/
static void
fix_dosisms(char *p)
{
while (*p) {
if (isupper(*p))
*p = tolower(*p);
else if (*p == '\\')
*p = '/';
p++;
}
}
#define SIZE(dp, edp) (size_t)((intptr_t)(void *)edp - (intptr_t)(void *)dp)
enum { BOOT_INFO_OK = 0, BAD_CHOICE = 1, NOT_SPECIFIC = 2 };
static int
match_boot_info(EFI_LOADED_IMAGE *img __unused, char *boot_info, size_t bisz)
{
uint32_t attr;
uint16_t fplen;
size_t len;
char *walker, *ep;
EFI_DEVICE_PATH *dp, *edp, *first_dp, *last_dp;
pdinfo_t *pp;
CHAR16 *descr;
char *kernel = NULL;
FILEPATH_DEVICE_PATH *fp;
struct stat st;
CHAR16 *text;
/*
* FreeBSD encodes it's boot loading path into the boot loader
* BootXXXX variable. We look for the last one in the path
* and use that to load the kernel. However, if we only fine
* one DEVICE_PATH, then there's nothing specific and we should
* fall back.
*
* In an ideal world, we'd look at the image handle we were
* passed, match up with the loader we are and then return the
* next one in the path. This would be most flexible and cover
* many chain booting scenarios where you need to use this
* boot loader to get to the next boot loader. However, that
* doesn't work. We rarely have the path to the image booted
* (just the device) so we can't count on that. So, we do the
* enxt best thing, we look through the device path(s) passed
* in the BootXXXX varaible. If there's only one, we return
* NOT_SPECIFIC. Otherwise, we look at the last one and try to
* load that. If we can, we return BOOT_INFO_OK. Otherwise we
* return BAD_CHOICE for the caller to sort out.
*/
if (bisz < sizeof(attr) + sizeof(fplen) + sizeof(CHAR16))
return NOT_SPECIFIC;
walker = boot_info;
ep = walker + bisz;
memcpy(&attr, walker, sizeof(attr));
walker += sizeof(attr);
memcpy(&fplen, walker, sizeof(fplen));
walker += sizeof(fplen);
descr = (CHAR16 *)(intptr_t)walker;
len = ucs2len(descr);
walker += (len + 1) * sizeof(CHAR16);
last_dp = first_dp = dp = (EFI_DEVICE_PATH *)walker;
edp = (EFI_DEVICE_PATH *)(walker + fplen);
if ((char *)edp > ep)
return NOT_SPECIFIC;
while (dp < edp && SIZE(dp, edp) > sizeof(EFI_DEVICE_PATH)) {
text = efi_devpath_name(dp);
if (text != NULL) {
printf(" BootInfo Path: %S\n", text);
efi_free_devpath_name(text);
}
last_dp = dp;
dp = (EFI_DEVICE_PATH *)((char *)dp + efi_devpath_length(dp));
}
/*
* If there's only one item in the list, then nothing was
* specified. Or if the last path doesn't have a media
* path in it. Those show up as various VenHw() nodes
* which are basically opaque to us. Don't count those
* as something specifc.
*/
if (last_dp == first_dp) {
printf("Ignoring Boot%04x: Only one DP found\n", boot_current);
return NOT_SPECIFIC;
}
if (efi_devpath_to_media_path(last_dp) == NULL) {
printf("Ignoring Boot%04x: No Media Path\n", boot_current);
return NOT_SPECIFIC;
}
/*
* OK. At this point we either have a good path or a bad one.
* Let's check.
*/
pp = efiblk_get_pdinfo_by_device_path(last_dp);
if (pp == NULL) {
printf("Ignoring Boot%04x: Device Path not found\n", boot_current);
return BAD_CHOICE;
}
set_currdev_pdinfo(pp);
if (!sanity_check_currdev()) {
printf("Ignoring Boot%04x: sanity check failed\n", boot_current);
return BAD_CHOICE;
}
/*
* OK. We've found a device that matches, next we need to check the last
* component of the path. If it's a file, then we set the default kernel
* to that. Otherwise, just use this as the default root.
*
* Reminder: we're running very early, before we've parsed the defaults
* file, so we may need to have a hack override.
*/
dp = efi_devpath_last_node(last_dp);
if (DevicePathType(dp) != MEDIA_DEVICE_PATH ||
DevicePathSubType(dp) != MEDIA_FILEPATH_DP) {
printf("Using Boot%04x for root partition\n", boot_current);
return (BOOT_INFO_OK); /* use currdir, default kernel */
}
fp = (FILEPATH_DEVICE_PATH *)dp;
ucs2_to_utf8(fp->PathName, &kernel);
if (kernel == NULL) {
printf("Not using Boot%04x: can't decode kernel\n", boot_current);
return (BAD_CHOICE);
}
if (*kernel == '\\' || isupper(*kernel))
fix_dosisms(kernel);
if (stat(kernel, &st) != 0) {
free(kernel);
printf("Not using Boot%04x: can't find %s\n", boot_current,
kernel);
return (BAD_CHOICE);
}
setenv("kernel", kernel, 1);
free(kernel);
text = efi_devpath_name(last_dp);
if (text) {
printf("Using Boot%04x %S + %s\n", boot_current, text,
kernel);
efi_free_devpath_name(text);
}
return (BOOT_INFO_OK);
}
/*
* Look at the passed-in boot_info, if any. If we find it then we need
* to see if we can find ourselves in the boot chain. If we can, and
* there's another specified thing to boot next, assume that the file
* is loaded from / and use that for the root filesystem. If can't
* find the specified thing, we must fail the boot. If we're last on
* the list, then we fallback to looking for the first available /
* candidate (ZFS, if there's a bootable zpool, otherwise a UFS
* partition that has either /boot/defaults/loader.conf on it or
* /boot/kernel/kernel (the default kernel) that we can use.
*
* We always fail if we can't find the right thing. However, as
* a concession to buggy UEFI implementations, like u-boot, if
* we have determined that the host is violating the UEFI boot
* manager protocol, we'll signal the rest of the program that
* a drop to the OK boot loader prompt is possible.
*/
static int
find_currdev(EFI_LOADED_IMAGE *img, bool do_bootmgr, bool is_last,
char *boot_info, size_t boot_info_sz)
{
pdinfo_t *dp, *pp;
EFI_DEVICE_PATH *devpath, *copy;
EFI_HANDLE h;
CHAR16 *text;
struct devsw *dev;
int unit;
uint64_t extra;
int rv;
char *rootdev;
/*
* First choice: if rootdev is already set, use that, even if
* it's wrong.
*/
rootdev = getenv("rootdev");
if (rootdev != NULL) {
printf("Setting currdev to configured rootdev %s\n", rootdev);
set_currdev(rootdev);
return (0);
}
/*
* Second choice: If we can find out image boot_info, and there's
* a follow-on boot image in that boot_info, use that. In this
* case root will be the partition specified in that image and
* we'll load the kernel specified by the file path. Should there
* not be a filepath, we use the default. This filepath overrides
* loader.conf.
*/
if (do_bootmgr) {
rv = match_boot_info(img, boot_info, boot_info_sz);
switch (rv) {
case BOOT_INFO_OK: /* We found it */
return (0);
case BAD_CHOICE: /* specified file not found -> error */
/* XXX do we want to have an escape hatch for last in boot order? */
return (ENOENT);
} /* Nothing specified, try normal match */
}
#ifdef EFI_ZFS_BOOT
/*
* Did efi_zfs_probe() detect the boot pool? If so, use the zpool
* it found, if it's sane. ZFS is the only thing that looks for
* disks and pools to boot. This may change in the future, however,
* if we allow specifying which pool to boot from via UEFI variables
* rather than the bootenv stuff that FreeBSD uses today.
*/
if (pool_guid != 0) {
printf("Trying ZFS pool\n");
if (probe_zfs_currdev(pool_guid))
return (0);
}
#endif /* EFI_ZFS_BOOT */
/*
* Try to find the block device by its handle based on the
* image we're booting. If we can't find a sane partition,
* search all the other partitions of the disk. We do not
* search other disks because it's a violation of the UEFI
* boot protocol to do so. We fail and let UEFI go on to
* the next candidate.
*/
dp = efiblk_get_pdinfo_by_handle(img->DeviceHandle);
if (dp != NULL) {
text = efi_devpath_name(dp->pd_devpath);
if (text != NULL) {
printf("Trying ESP: %S\n", text);
efi_free_devpath_name(text);
}
set_currdev_pdinfo(dp);
if (sanity_check_currdev())
return (0);
if (dp->pd_parent != NULL) {
pdinfo_t *espdp = dp;
dp = dp->pd_parent;
STAILQ_FOREACH(pp, &dp->pd_part, pd_link) {
/* Already tried the ESP */
if (espdp == pp)
continue;
/*
* Roll up the ZFS special case
* for those partitions that have
* zpools on them.
*/
text = efi_devpath_name(pp->pd_devpath);
if (text != NULL) {
printf("Trying: %S\n", text);
efi_free_devpath_name(text);
}
if (try_as_currdev(dp, pp))
return (0);
}
}
}
/*
* Try the device handle from our loaded image first. If that
* fails, use the device path from the loaded image and see if
* any of the nodes in that path match one of the enumerated
* handles. Currently, this handle list is only for netboot.
*/
if (efi_handle_lookup(img->DeviceHandle, &dev, &unit, &extra) == 0) {
set_currdev_devsw(dev, unit);
if (sanity_check_currdev())
return (0);
}
copy = NULL;
devpath = efi_lookup_image_devpath(IH);
while (devpath != NULL) {
h = efi_devpath_handle(devpath);
if (h == NULL)
break;
free(copy);
copy = NULL;
if (efi_handle_lookup(h, &dev, &unit, &extra) == 0) {
set_currdev_devsw(dev, unit);
if (sanity_check_currdev())
return (0);
}
devpath = efi_lookup_devpath(h);
if (devpath != NULL) {
copy = efi_devpath_trim(devpath);
devpath = copy;
}
}
free(copy);
return (ENOENT);
}
static bool
interactive_interrupt(const char *msg)
{
time_t now, then, last;
last = 0;
now = then = getsecs();
printf("%s\n", msg);
if (fail_timeout == -2) /* Always break to OK */
return (true);
if (fail_timeout == -1) /* Never break to OK */
return (false);
do {
if (last != now) {
printf("press any key to interrupt reboot in %d seconds\r",
fail_timeout - (int)(now - then));
last = now;
}
/* XXX no pause or timeout wait for char */
if (ischar())
return (true);
now = getsecs();
} while (now - then < fail_timeout);
return (false);
}
static int
parse_args(int argc, CHAR16 *argv[])
{
int i, j, howto;
bool vargood;
char var[128];
/*
* Parse the args to set the console settings, etc
* boot1.efi passes these in, if it can read /boot.config or /boot/config
* or iPXE may be setup to pass these in. Or the optional argument in the
* boot environment was used to pass these arguments in (in which case
* neither /boot.config nor /boot/config are consulted).
*
* Loop through the args, and for each one that contains an '=' that is
* not the first character, add it to the environment. This allows
* loader and kernel env vars to be passed on the command line. Convert
* args from UCS-2 to ASCII (16 to 8 bit) as they are copied (though this
* method is flawed for non-ASCII characters).
*/
howto = 0;
for (i = 1; i < argc; i++) {
cpy16to8(argv[i], var, sizeof(var));
howto |= boot_parse_arg(var);
}
return (howto);
}
static void
setenv_int(const char *key, int val)
{
char buf[20];
snprintf(buf, sizeof(buf), "%d", val);
setenv(key, buf, 1);
}
/*
* Parse ConOut (the list of consoles active) and see if we can find a
* serial port and/or a video port. It would be nice to also walk the
* ACPI name space to map the UID for the serial port to a port. The
* latter is especially hard.
*/
static int
parse_uefi_con_out(void)
{
int how, rv;
int vid_seen = 0, com_seen = 0, seen = 0;
size_t sz;
char buf[4096], *ep;
EFI_DEVICE_PATH *node;
ACPI_HID_DEVICE_PATH *acpi;
UART_DEVICE_PATH *uart;
bool pci_pending;
how = 0;
sz = sizeof(buf);
rv = efi_global_getenv("ConOut", buf, &sz);
if (rv != EFI_SUCCESS)
goto out;
ep = buf + sz;
node = (EFI_DEVICE_PATH *)buf;
while ((char *)node < ep) {
pci_pending = false;
if (DevicePathType(node) == ACPI_DEVICE_PATH &&
DevicePathSubType(node) == ACPI_DP) {
/* Check for Serial node */
acpi = (void *)node;
if (EISA_ID_TO_NUM(acpi->HID) == 0x501) {
setenv_int("efi_8250_uid", acpi->UID);
com_seen = ++seen;
}
} else if (DevicePathType(node) == MESSAGING_DEVICE_PATH &&
DevicePathSubType(node) == MSG_UART_DP) {
uart = (void *)node;
setenv_int("efi_com_speed", uart->BaudRate);
} else if (DevicePathType(node) == ACPI_DEVICE_PATH &&
DevicePathSubType(node) == ACPI_ADR_DP) {
/* Check for AcpiAdr() Node for video */
vid_seen = ++seen;
} else if (DevicePathType(node) == HARDWARE_DEVICE_PATH &&
DevicePathSubType(node) == HW_PCI_DP) {
/*
* Note, vmware fusion has a funky console device
* PciRoot(0x0)/Pci(0xf,0x0)
* which we can only detect at the end since we also
* have to cope with:
* PciRoot(0x0)/Pci(0x1f,0x0)/Serial(0x1)
* so only match it if it's last.
*/
pci_pending = true;
}
node = NextDevicePathNode(node); /* Skip the end node */
}
if (pci_pending && vid_seen == 0)
vid_seen = ++seen;
/*
* Truth table for RB_MULTIPLE | RB_SERIAL
* Value Result
* 0 Use only video console
* RB_SERIAL Use only serial console
* RB_MULTIPLE Use both video and serial console
* (but video is primary so gets rc messages)
* both Use both video and serial console
* (but serial is primary so gets rc messages)
*
* Try to honor this as best we can. If only one of serial / video
* found, then use that. Otherwise, use the first one we found.
* This also implies if we found nothing, default to video.
*/
how = 0;
if (vid_seen && com_seen) {
how |= RB_MULTIPLE;
if (com_seen < vid_seen)
how |= RB_SERIAL;
} else if (com_seen)
how |= RB_SERIAL;
out:
return (how);
}
EFI_STATUS
main(int argc, CHAR16 *argv[])
{
EFI_GUID *guid;
int howto, i, uhowto;
UINTN k;
bool has_kbd, is_last;
char *s;
EFI_DEVICE_PATH *imgpath;
CHAR16 *text;
EFI_STATUS rv;
size_t sz, bosz = 0, bisz = 0;
UINT16 boot_order[100];
char boot_info[4096];
EFI_LOADED_IMAGE *img;
char buf[32];
bool uefi_boot_mgr;
archsw.arch_autoload = efi_autoload;
archsw.arch_getdev = efi_getdev;
archsw.arch_copyin = efi_copyin;
archsw.arch_copyout = efi_copyout;
archsw.arch_readin = efi_readin;
#ifdef EFI_ZFS_BOOT
/* Note this needs to be set before ZFS init. */
archsw.arch_zfs_probe = efi_zfs_probe;
#endif
/* Get our loaded image protocol interface structure. */
BS->HandleProtocol(IH, &imgid, (VOID**)&img);
#ifdef EFI_ZFS_BOOT
/* Tell ZFS probe code where we booted from */
efizfs_set_preferred(img->DeviceHandle);
#endif
/* Init the time source */
efi_time_init();
has_kbd = has_keyboard();
/*
* XXX Chicken-and-egg problem; we want to have console output
* early, but some console attributes may depend on reading from
* eg. the boot device, which we can't do yet. We can use
* printf() etc. once this is done.
*/
setenv("console", "efi", 1);
cons_probe();
/*
* Initialise the block cache. Set the upper limit.
*/
bcache_init(32768, 512);
howto = parse_args(argc, argv);
if (!has_kbd && (howto & RB_PROBE))
howto |= RB_SERIAL | RB_MULTIPLE;
howto &= ~RB_PROBE;
uhowto = parse_uefi_con_out();
/*
* We now have two notions of console. howto should be viewed as
* overrides. If console is already set, don't set it again.
*/
#define VIDEO_ONLY 0
#define SERIAL_ONLY RB_SERIAL
#define VID_SER_BOTH RB_MULTIPLE
#define SER_VID_BOTH (RB_SERIAL | RB_MULTIPLE)
#define CON_MASK (RB_SERIAL | RB_MULTIPLE)
if (strcmp(getenv("console"), "efi") == 0) {
if ((howto & CON_MASK) == 0) {
/* No override, uhowto is controlling and efi cons is perfect */
howto = howto | (uhowto & CON_MASK);
setenv("console", "efi", 1);
} else if ((howto & CON_MASK) == (uhowto & CON_MASK)) {
/* override matches what UEFI told us, efi console is perfect */
setenv("console", "efi", 1);
} else if ((uhowto & (CON_MASK)) != 0) {
/*
* We detected a serial console on ConOut. All possible
* overrides include serial. We can't really override what efi
* gives us, so we use it knowing it's the best choice.
*/
setenv("console", "efi", 1);
} else {
/*
* We detected some kind of serial in the override, but ConOut
* has no serial, so we have to sort out which case it really is.
*/
switch (howto & CON_MASK) {
case SERIAL_ONLY:
setenv("console", "comconsole", 1);
break;
case VID_SER_BOTH:
setenv("console", "efi comconsole", 1);
break;
case SER_VID_BOTH:
setenv("console", "comconsole efi", 1);
break;
/* case VIDEO_ONLY can't happen -- it's the first if above */
}
}
}
/*
* howto is set now how we want to export the flags to the kernel, so
* set the env based on it.
*/
boot_howto_to_env(howto);
if (efi_copy_init()) {
printf("failed to allocate staging area\n");
return (EFI_BUFFER_TOO_SMALL);
}
if ((s = getenv("fail_timeout")) != NULL)
fail_timeout = strtol(s, NULL, 10);
/*
* Scan the BLOCK IO MEDIA handles then
* march through the device switch probing for things.
*/
i = efipart_inithandles();
if (i != 0 && i != ENOENT) {
printf("efipart_inithandles failed with ERRNO %d, expect "
"failures\n", i);
}
for (i = 0; devsw[i] != NULL; i++)
if (devsw[i]->dv_init != NULL)
(devsw[i]->dv_init)();
printf("%s\n", bootprog_info);
printf(" Command line arguments:");
for (i = 0; i < argc; i++)
printf(" %S", argv[i]);
printf("\n");
printf(" EFI version: %d.%02d\n", ST->Hdr.Revision >> 16,
ST->Hdr.Revision & 0xffff);
printf(" EFI Firmware: %S (rev %d.%02d)\n", ST->FirmwareVendor,
ST->FirmwareRevision >> 16, ST->FirmwareRevision & 0xffff);
printf(" Console: %s (%#x)\n", getenv("console"), howto);
/* Determine the devpath of our image so we can prefer it. */
text = efi_devpath_name(img->FilePath);
if (text != NULL) {
printf(" Load Path: %S\n", text);
efi_setenv_freebsd_wcs("LoaderPath", text);
efi_free_devpath_name(text);
}
rv = BS->HandleProtocol(img->DeviceHandle, &devid, (void **)&imgpath);
if (rv == EFI_SUCCESS) {
text = efi_devpath_name(imgpath);
if (text != NULL) {
printf(" Load Device: %S\n", text);
efi_setenv_freebsd_wcs("LoaderDev", text);
efi_free_devpath_name(text);
}
}
uefi_boot_mgr = true;
boot_current = 0;
sz = sizeof(boot_current);
rv = efi_global_getenv("BootCurrent", &boot_current, &sz);
if (rv == EFI_SUCCESS)
printf(" BootCurrent: %04x\n", boot_current);
else {
boot_current = 0xffff;
uefi_boot_mgr = false;
}
sz = sizeof(boot_order);
rv = efi_global_getenv("BootOrder", &boot_order, &sz);
if (rv == EFI_SUCCESS) {
printf(" BootOrder:");
for (i = 0; i < sz / sizeof(boot_order[0]); i++)
printf(" %04x%s", boot_order[i],
boot_order[i] == boot_current ? "[*]" : "");
printf("\n");
is_last = boot_order[(sz / sizeof(boot_order[0])) - 1] == boot_current;
bosz = sz;
} else if (uefi_boot_mgr) {
/*
* u-boot doesn't set BootOrder, but otherwise participates in the
* boot manager protocol. So we fake it here and don't consider it
* a failure.
*/
bosz = sizeof(boot_order[0]);
boot_order[0] = boot_current;
is_last = true;
}
/*
* Next, find the boot info structure the UEFI boot manager is
* supposed to setup. We need this so we can walk through it to
* find where we are in the booting process and what to try to
* boot next.
*/
if (uefi_boot_mgr) {
snprintf(buf, sizeof(buf), "Boot%04X", boot_current);
sz = sizeof(boot_info);
rv = efi_global_getenv(buf, &boot_info, &sz);
if (rv == EFI_SUCCESS)
bisz = sz;
else
uefi_boot_mgr = false;
}
/*
* Disable the watchdog timer. By default the boot manager sets
* the timer to 5 minutes before invoking a boot option. If we
* want to return to the boot manager, we have to disable the
* watchdog timer and since we're an interactive program, we don't
* want to wait until the user types "quit". The timer may have
* fired by then. We don't care if this fails. It does not prevent
* normal functioning in any way...
*/
BS->SetWatchdogTimer(0, 0, 0, NULL);
/*
* Try and find a good currdev based on the image that was booted.
* It might be desirable here to have a short pause to allow falling
* through to the boot loader instead of returning instantly to follow
* the boot protocol and also allow an escape hatch for users wishing
* to try something different.
*/
if (find_currdev(img, uefi_boot_mgr, is_last, boot_info, bisz) != 0)
if (!interactive_interrupt("Failed to find bootable partition"))
return (EFI_NOT_FOUND);
efi_init_environment();
#if !defined(__arm__)
for (k = 0; k < ST->NumberOfTableEntries; k++) {
guid = &ST->ConfigurationTable[k].VendorGuid;
if (!memcmp(guid, &smbios, sizeof(EFI_GUID))) {
char buf[40];
snprintf(buf, sizeof(buf), "%p",
ST->ConfigurationTable[k].VendorTable);
setenv("hint.smbios.0.mem", buf, 1);
smbios_detect(ST->ConfigurationTable[k].VendorTable);
break;
}
}
#endif
interact(); /* doesn't return */
return (EFI_SUCCESS); /* keep compiler happy */
}
COMMAND_SET(poweroff, "poweroff", "power off the system", command_poweroff);
static int
command_poweroff(int argc __unused, char *argv[] __unused)
{
int i;
for (i = 0; devsw[i] != NULL; ++i)
if (devsw[i]->dv_cleanup != NULL)
(devsw[i]->dv_cleanup)();
RS->ResetSystem(EfiResetShutdown, EFI_SUCCESS, 0, NULL);
/* NOTREACHED */
return (CMD_ERROR);
}
COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot);
static int
command_reboot(int argc, char *argv[])
{
int i;
for (i = 0; devsw[i] != NULL; ++i)
if (devsw[i]->dv_cleanup != NULL)
(devsw[i]->dv_cleanup)();
RS->ResetSystem(EfiResetCold, EFI_SUCCESS, 0, NULL);
/* NOTREACHED */
return (CMD_ERROR);
}
COMMAND_SET(quit, "quit", "exit the loader", command_quit);
static int
command_quit(int argc, char *argv[])
{
exit(0);
return (CMD_OK);
}
COMMAND_SET(memmap, "memmap", "print memory map", command_memmap);
static int
command_memmap(int argc, char *argv[])
{
UINTN sz;
EFI_MEMORY_DESCRIPTOR *map, *p;
UINTN key, dsz;
UINT32 dver;
EFI_STATUS status;
int i, ndesc;
char line[80];
static char *types[] = {
"Reserved",
"LoaderCode",
"LoaderData",
"BootServicesCode",
"BootServicesData",
"RuntimeServicesCode",
"RuntimeServicesData",
"ConventionalMemory",
"UnusableMemory",
"ACPIReclaimMemory",
"ACPIMemoryNVS",
"MemoryMappedIO",
"MemoryMappedIOPortSpace",
"PalCode"
};
sz = 0;
status = BS->GetMemoryMap(&sz, 0, &key, &dsz, &dver);
if (status != EFI_BUFFER_TOO_SMALL) {
printf("Can't determine memory map size\n");
return (CMD_ERROR);
}
map = malloc(sz);
status = BS->GetMemoryMap(&sz, map, &key, &dsz, &dver);
if (EFI_ERROR(status)) {
printf("Can't read memory map\n");
return (CMD_ERROR);
}
ndesc = sz / dsz;
snprintf(line, sizeof(line), "%23s %12s %12s %8s %4s\n",
"Type", "Physical", "Virtual", "#Pages", "Attr");
pager_open();
if (pager_output(line)) {
pager_close();
return (CMD_OK);
}
for (i = 0, p = map; i < ndesc;
i++, p = NextMemoryDescriptor(p, dsz)) {
printf("%23s %012jx %012jx %08jx ", types[p->Type],
(uintmax_t)p->PhysicalStart, (uintmax_t)p->VirtualStart,
(uintmax_t)p->NumberOfPages);
if (p->Attribute & EFI_MEMORY_UC)
printf("UC ");
if (p->Attribute & EFI_MEMORY_WC)
printf("WC ");
if (p->Attribute & EFI_MEMORY_WT)
printf("WT ");
if (p->Attribute & EFI_MEMORY_WB)
printf("WB ");
if (p->Attribute & EFI_MEMORY_UCE)
printf("UCE ");
if (p->Attribute & EFI_MEMORY_WP)
printf("WP ");
if (p->Attribute & EFI_MEMORY_RP)
printf("RP ");
if (p->Attribute & EFI_MEMORY_XP)
printf("XP ");
if (pager_output("\n"))
break;
}
pager_close();
return (CMD_OK);
}
COMMAND_SET(configuration, "configuration", "print configuration tables",
command_configuration);
static const char *
guid_to_string(EFI_GUID *guid)
{
static char buf[40];
sprintf(buf, "%08x-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x",
guid->Data1, guid->Data2, guid->Data3, guid->Data4[0],
guid->Data4[1], guid->Data4[2], guid->Data4[3], guid->Data4[4],
guid->Data4[5], guid->Data4[6], guid->Data4[7]);
return (buf);
}
static int
command_configuration(int argc, char *argv[])
{
char line[80];
UINTN i;
snprintf(line, sizeof(line), "NumberOfTableEntries=%lu\n",
(unsigned long)ST->NumberOfTableEntries);
pager_open();
if (pager_output(line)) {
pager_close();
return (CMD_OK);
}
for (i = 0; i < ST->NumberOfTableEntries; i++) {
EFI_GUID *guid;
printf(" ");
guid = &ST->ConfigurationTable[i].VendorGuid;
if (!memcmp(guid, &mps, sizeof(EFI_GUID)))
printf("MPS Table");
else if (!memcmp(guid, &acpi, sizeof(EFI_GUID)))
printf("ACPI Table");
else if (!memcmp(guid, &acpi20, sizeof(EFI_GUID)))
printf("ACPI 2.0 Table");
else if (!memcmp(guid, &smbios, sizeof(EFI_GUID)))
printf("SMBIOS Table %p",
ST->ConfigurationTable[i].VendorTable);
else if (!memcmp(guid, &smbios3, sizeof(EFI_GUID)))
printf("SMBIOS3 Table");
else if (!memcmp(guid, &dxe, sizeof(EFI_GUID)))
printf("DXE Table");
else if (!memcmp(guid, &hoblist, sizeof(EFI_GUID)))
printf("HOB List Table");
else if (!memcmp(guid, &lzmadecomp, sizeof(EFI_GUID)))
printf("LZMA Compression");
else if (!memcmp(guid, &mpcore, sizeof(EFI_GUID)))
printf("ARM MpCore Information Table");
else if (!memcmp(guid, &esrt, sizeof(EFI_GUID)))
printf("ESRT Table");
else if (!memcmp(guid, &memtype, sizeof(EFI_GUID)))
printf("Memory Type Information Table");
else if (!memcmp(guid, &debugimg, sizeof(EFI_GUID)))
printf("Debug Image Info Table");
else if (!memcmp(guid, &fdtdtb, sizeof(EFI_GUID)))
printf("FDT Table");
else
printf("Unknown Table (%s)", guid_to_string(guid));
snprintf(line, sizeof(line), " at %p\n",
ST->ConfigurationTable[i].VendorTable);
if (pager_output(line))
break;
}
pager_close();
return (CMD_OK);
}
COMMAND_SET(mode, "mode", "change or display EFI text modes", command_mode);
static int
command_mode(int argc, char *argv[])
{
UINTN cols, rows;
unsigned int mode;
int i;
char *cp;
char rowenv[8];
EFI_STATUS status;
SIMPLE_TEXT_OUTPUT_INTERFACE *conout;
extern void HO(void);
conout = ST->ConOut;
if (argc > 1) {
mode = strtol(argv[1], &cp, 0);
if (cp[0] != '\0') {
printf("Invalid mode\n");
return (CMD_ERROR);
}
status = conout->QueryMode(conout, mode, &cols, &rows);
if (EFI_ERROR(status)) {
printf("invalid mode %d\n", mode);
return (CMD_ERROR);
}
status = conout->SetMode(conout, mode);
if (EFI_ERROR(status)) {
printf("couldn't set mode %d\n", mode);
return (CMD_ERROR);
}
sprintf(rowenv, "%u", (unsigned)rows);
setenv("LINES", rowenv, 1);
HO(); /* set cursor */
return (CMD_OK);
}
printf("Current mode: %d\n", conout->Mode->Mode);
for (i = 0; i <= conout->Mode->MaxMode; i++) {
status = conout->QueryMode(conout, i, &cols, &rows);
if (EFI_ERROR(status))
continue;
printf("Mode %d: %u columns, %u rows\n", i, (unsigned)cols,
(unsigned)rows);
}
if (i != 0)
printf("Select a mode with the command \"mode <number>\"\n");
return (CMD_OK);
}
#ifdef LOADER_FDT_SUPPORT
extern int command_fdt_internal(int argc, char *argv[]);
/*
* Since proper fdt command handling function is defined in fdt_loader_cmd.c,
* and declaring it as extern is in contradiction with COMMAND_SET() macro
* (which uses static pointer), we're defining wrapper function, which
* calls the proper fdt handling routine.
*/
static int
command_fdt(int argc, char *argv[])
{
return (command_fdt_internal(argc, argv));
}
COMMAND_SET(fdt, "fdt", "flattened device tree handling", command_fdt);
#endif
/*
* Chain load another efi loader.
*/
static int
command_chain(int argc, char *argv[])
{
EFI_GUID LoadedImageGUID = LOADED_IMAGE_PROTOCOL;
EFI_HANDLE loaderhandle;
EFI_LOADED_IMAGE *loaded_image;
EFI_STATUS status;
struct stat st;
struct devdesc *dev;
char *name, *path;
void *buf;
int fd;
if (argc < 2) {
command_errmsg = "wrong number of arguments";
return (CMD_ERROR);
}
name = argv[1];
if ((fd = open(name, O_RDONLY)) < 0) {
command_errmsg = "no such file";
return (CMD_ERROR);
}
if (fstat(fd, &st) < -1) {
command_errmsg = "stat failed";
close(fd);
return (CMD_ERROR);
}
status = BS->AllocatePool(EfiLoaderCode, (UINTN)st.st_size, &buf);
if (status != EFI_SUCCESS) {
command_errmsg = "failed to allocate buffer";
close(fd);
return (CMD_ERROR);
}
if (read(fd, buf, st.st_size) != st.st_size) {
command_errmsg = "error while reading the file";
(void)BS->FreePool(buf);
close(fd);
return (CMD_ERROR);
}
close(fd);
status = BS->LoadImage(FALSE, IH, NULL, buf, st.st_size, &loaderhandle);
(void)BS->FreePool(buf);
if (status != EFI_SUCCESS) {
command_errmsg = "LoadImage failed";
return (CMD_ERROR);
}
status = BS->HandleProtocol(loaderhandle, &LoadedImageGUID,
(void **)&loaded_image);
if (argc > 2) {
int i, len = 0;
CHAR16 *argp;
for (i = 2; i < argc; i++)
len += strlen(argv[i]) + 1;
len *= sizeof (*argp);
loaded_image->LoadOptions = argp = malloc (len);
loaded_image->LoadOptionsSize = len;
for (i = 2; i < argc; i++) {
char *ptr = argv[i];
while (*ptr)
*(argp++) = *(ptr++);
*(argp++) = ' ';
}
*(--argv) = 0;
}
if (efi_getdev((void **)&dev, name, (const char **)&path) == 0) {
#ifdef EFI_ZFS_BOOT
struct zfs_devdesc *z_dev;
#endif
struct disk_devdesc *d_dev;
pdinfo_t *hd, *pd;
switch (dev->d_dev->dv_type) {
#ifdef EFI_ZFS_BOOT
case DEVT_ZFS:
z_dev = (struct zfs_devdesc *)dev;
loaded_image->DeviceHandle =
efizfs_get_handle_by_guid(z_dev->pool_guid);
break;
#endif
case DEVT_NET:
loaded_image->DeviceHandle =
efi_find_handle(dev->d_dev, dev->d_unit);
break;
default:
hd = efiblk_get_pdinfo(dev);
if (STAILQ_EMPTY(&hd->pd_part)) {
loaded_image->DeviceHandle = hd->pd_handle;
break;
}
d_dev = (struct disk_devdesc *)dev;
STAILQ_FOREACH(pd, &hd->pd_part, pd_link) {
/*
* d_partition should be 255
*/
if (pd->pd_unit == (uint32_t)d_dev->d_slice) {
loaded_image->DeviceHandle =
pd->pd_handle;
break;
}
}
break;
}
}
dev_cleanup();
status = BS->StartImage(loaderhandle, NULL, NULL);
if (status != EFI_SUCCESS) {
command_errmsg = "StartImage failed";
free(loaded_image->LoadOptions);
loaded_image->LoadOptions = NULL;
status = BS->UnloadImage(loaded_image);
return (CMD_ERROR);
}
return (CMD_ERROR); /* not reached */
}
COMMAND_SET(chain, "chain", "chain load file", command_chain);