1980 lines
52 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#if defined(sun)
#include <sys/sysmacros.h>
#else
#define ABS(a) ((a) < 0 ? -(a) : (a))
#endif
#include <string.h>
#include <strings.h>
#include <stdlib.h>
#if defined(sun)
#include <alloca.h>
#endif
#include <assert.h>
#include <ctype.h>
#include <errno.h>
#include <limits.h>
#include <dt_printf.h>
#include <dt_string.h>
#include <dt_impl.h>
/*ARGSUSED*/
static int
pfcheck_addr(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp)
{
return (dt_node_is_pointer(dnp) || dt_node_is_integer(dnp));
}
/*ARGSUSED*/
static int
pfcheck_kaddr(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp)
{
return (dt_node_is_pointer(dnp) || dt_node_is_integer(dnp) ||
dt_node_is_symaddr(dnp));
}
/*ARGSUSED*/
static int
pfcheck_uaddr(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp)
{
dtrace_hdl_t *dtp = pfv->pfv_dtp;
dt_ident_t *idp = dt_idhash_lookup(dtp->dt_macros, "target");
if (dt_node_is_usymaddr(dnp))
return (1);
if (idp == NULL || idp->di_id == 0)
return (0);
return (dt_node_is_pointer(dnp) || dt_node_is_integer(dnp));
}
/*ARGSUSED*/
static int
pfcheck_stack(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp)
{
return (dt_node_is_stack(dnp));
}
/*ARGSUSED*/
static int
pfcheck_time(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp)
{
return (dt_node_is_integer(dnp) &&
dt_node_type_size(dnp) == sizeof (uint64_t));
}
/*ARGSUSED*/
static int
pfcheck_str(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp)
{
ctf_file_t *ctfp;
ctf_encoding_t e;
ctf_arinfo_t r;
ctf_id_t base;
uint_t kind;
if (dt_node_is_string(dnp))
return (1);
ctfp = dnp->dn_ctfp;
base = ctf_type_resolve(ctfp, dnp->dn_type);
kind = ctf_type_kind(ctfp, base);
return (kind == CTF_K_ARRAY && ctf_array_info(ctfp, base, &r) == 0 &&
(base = ctf_type_resolve(ctfp, r.ctr_contents)) != CTF_ERR &&
ctf_type_encoding(ctfp, base, &e) == 0 && IS_CHAR(e));
}
/*ARGSUSED*/
static int
pfcheck_wstr(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp)
{
ctf_file_t *ctfp = dnp->dn_ctfp;
ctf_id_t base = ctf_type_resolve(ctfp, dnp->dn_type);
uint_t kind = ctf_type_kind(ctfp, base);
ctf_encoding_t e;
ctf_arinfo_t r;
return (kind == CTF_K_ARRAY && ctf_array_info(ctfp, base, &r) == 0 &&
(base = ctf_type_resolve(ctfp, r.ctr_contents)) != CTF_ERR &&
ctf_type_kind(ctfp, base) == CTF_K_INTEGER &&
ctf_type_encoding(ctfp, base, &e) == 0 && e.cte_bits == 32);
}
/*ARGSUSED*/
static int
pfcheck_csi(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp)
{
return (dt_node_is_integer(dnp) &&
dt_node_type_size(dnp) <= sizeof (int));
}
/*ARGSUSED*/
static int
pfcheck_fp(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp)
{
return (dt_node_is_float(dnp));
}
/*ARGSUSED*/
static int
pfcheck_xint(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp)
{
return (dt_node_is_integer(dnp));
}
/*ARGSUSED*/
static int
pfcheck_dint(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp)
{
if (dnp->dn_flags & DT_NF_SIGNED)
pfd->pfd_flags |= DT_PFCONV_SIGNED;
else
pfd->pfd_fmt[strlen(pfd->pfd_fmt) - 1] = 'u';
return (dt_node_is_integer(dnp));
}
/*ARGSUSED*/
static int
pfcheck_xshort(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp)
{
ctf_file_t *ctfp = dnp->dn_ctfp;
ctf_id_t type = ctf_type_resolve(ctfp, dnp->dn_type);
char n[DT_TYPE_NAMELEN];
return (ctf_type_name(ctfp, type, n, sizeof (n)) != NULL && (
strcmp(n, "short") == 0 || strcmp(n, "signed short") == 0 ||
strcmp(n, "unsigned short") == 0));
}
/*ARGSUSED*/
static int
pfcheck_xlong(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp)
{
ctf_file_t *ctfp = dnp->dn_ctfp;
ctf_id_t type = ctf_type_resolve(ctfp, dnp->dn_type);
char n[DT_TYPE_NAMELEN];
return (ctf_type_name(ctfp, type, n, sizeof (n)) != NULL && (
strcmp(n, "long") == 0 || strcmp(n, "signed long") == 0 ||
strcmp(n, "unsigned long") == 0));
}
/*ARGSUSED*/
static int
pfcheck_xlonglong(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp)
{
ctf_file_t *ctfp = dnp->dn_ctfp;
ctf_id_t type = dnp->dn_type;
char n[DT_TYPE_NAMELEN];
if (ctf_type_name(ctfp, ctf_type_resolve(ctfp, type), n,
sizeof (n)) != NULL && (strcmp(n, "long long") == 0 ||
strcmp(n, "signed long long") == 0 ||
strcmp(n, "unsigned long long") == 0))
return (1);
/*
* If the type used for %llx or %llX is not an [unsigned] long long, we
* also permit it to be a [u]int64_t or any typedef thereof. We know
* that these typedefs are guaranteed to work with %ll[xX] in either
* compilation environment even though they alias to "long" in LP64.
*/
while (ctf_type_kind(ctfp, type) == CTF_K_TYPEDEF) {
if (ctf_type_name(ctfp, type, n, sizeof (n)) != NULL &&
(strcmp(n, "int64_t") == 0 || strcmp(n, "uint64_t") == 0))
return (1);
type = ctf_type_reference(ctfp, type);
}
return (0);
}
/*ARGSUSED*/
static int
pfcheck_type(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp)
{
return (ctf_type_compat(dnp->dn_ctfp, ctf_type_resolve(dnp->dn_ctfp,
dnp->dn_type), pfd->pfd_conv->pfc_dctfp, pfd->pfd_conv->pfc_dtype));
}
/*ARGSUSED*/
static int
pfprint_sint(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t unormal)
{
int64_t normal = (int64_t)unormal;
int32_t n = (int32_t)normal;
switch (size) {
case sizeof (int8_t):
return (dt_printf(dtp, fp, format,
(int32_t)*((int8_t *)addr) / n));
case sizeof (int16_t):
return (dt_printf(dtp, fp, format,
(int32_t)*((int16_t *)addr) / n));
case sizeof (int32_t):
return (dt_printf(dtp, fp, format,
*((int32_t *)addr) / n));
case sizeof (int64_t):
return (dt_printf(dtp, fp, format,
*((int64_t *)addr) / normal));
default:
return (dt_set_errno(dtp, EDT_DMISMATCH));
}
}
/*ARGSUSED*/
static int
pfprint_uint(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal)
{
uint32_t n = (uint32_t)normal;
switch (size) {
case sizeof (uint8_t):
return (dt_printf(dtp, fp, format,
(uint32_t)*((uint8_t *)addr) / n));
case sizeof (uint16_t):
return (dt_printf(dtp, fp, format,
(uint32_t)*((uint16_t *)addr) / n));
case sizeof (uint32_t):
return (dt_printf(dtp, fp, format,
*((uint32_t *)addr) / n));
case sizeof (uint64_t):
return (dt_printf(dtp, fp, format,
*((uint64_t *)addr) / normal));
default:
return (dt_set_errno(dtp, EDT_DMISMATCH));
}
}
static int
pfprint_dint(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal)
{
if (pfd->pfd_flags & DT_PFCONV_SIGNED)
return (pfprint_sint(dtp, fp, format, pfd, addr, size, normal));
else
return (pfprint_uint(dtp, fp, format, pfd, addr, size, normal));
}
/*ARGSUSED*/
static int
pfprint_fp(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal)
{
double n = (double)normal;
long double ldn = (long double)normal;
switch (size) {
case sizeof (float):
return (dt_printf(dtp, fp, format,
(double)*((float *)addr) / n));
case sizeof (double):
return (dt_printf(dtp, fp, format,
*((double *)addr) / n));
#if !defined(__arm__) && !defined(__powerpc__) && !defined(__mips__)
case sizeof (long double):
return (dt_printf(dtp, fp, format,
*((long double *)addr) / ldn));
#endif
default:
return (dt_set_errno(dtp, EDT_DMISMATCH));
}
}
/*ARGSUSED*/
static int
pfprint_addr(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal)
{
char *s;
int n, len = 256;
uint64_t val;
switch (size) {
case sizeof (uint32_t):
val = *((uint32_t *)addr);
break;
case sizeof (uint64_t):
val = *((uint64_t *)addr);
break;
default:
return (dt_set_errno(dtp, EDT_DMISMATCH));
}
do {
n = len;
s = alloca(n);
} while ((len = dtrace_addr2str(dtp, val, s, n)) >= n);
return (dt_printf(dtp, fp, format, s));
}
/*ARGSUSED*/
static int
pfprint_mod(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal)
{
return (dt_print_mod(dtp, fp, format, (caddr_t)addr));
}
/*ARGSUSED*/
static int
pfprint_umod(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal)
{
return (dt_print_umod(dtp, fp, format, (caddr_t)addr));
}
/*ARGSUSED*/
static int
pfprint_uaddr(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal)
{
char *s;
int n, len = 256;
uint64_t val, pid = 0;
dt_ident_t *idp = dt_idhash_lookup(dtp->dt_macros, "target");
switch (size) {
case sizeof (uint32_t):
val = (u_longlong_t)*((uint32_t *)addr);
break;
case sizeof (uint64_t):
val = (u_longlong_t)*((uint64_t *)addr);
break;
case sizeof (uint64_t) * 2:
pid = ((uint64_t *)(uintptr_t)addr)[0];
val = ((uint64_t *)(uintptr_t)addr)[1];
break;
default:
return (dt_set_errno(dtp, EDT_DMISMATCH));
}
if (pid == 0 && dtp->dt_vector == NULL && idp != NULL)
pid = idp->di_id;
do {
n = len;
s = alloca(n);
} while ((len = dtrace_uaddr2str(dtp, pid, val, s, n)) >= n);
return (dt_printf(dtp, fp, format, s));
}
/*ARGSUSED*/
static int
pfprint_stack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *vaddr, size_t size, uint64_t normal)
{
int width;
dtrace_optval_t saved = dtp->dt_options[DTRACEOPT_STACKINDENT];
const dtrace_recdesc_t *rec = pfd->pfd_rec;
caddr_t addr = (caddr_t)vaddr;
int err = 0;
/*
* We have stashed the value of the STACKINDENT option, and we will
* now override it for the purposes of formatting the stack. If the
* field has been specified as left-aligned (i.e. (%-#), we set the
* indentation to be the width. This is a slightly odd semantic, but
* it's useful functionality -- and it's slightly odd to begin with to
* be using a single format specifier to be formatting multiple lines
* of text...
*/
if (pfd->pfd_dynwidth < 0) {
assert(pfd->pfd_flags & DT_PFCONV_DYNWIDTH);
width = -pfd->pfd_dynwidth;
} else if (pfd->pfd_flags & DT_PFCONV_LEFT) {
width = pfd->pfd_dynwidth ? pfd->pfd_dynwidth : pfd->pfd_width;
} else {
width = 0;
}
dtp->dt_options[DTRACEOPT_STACKINDENT] = width;
switch (rec->dtrd_action) {
case DTRACEACT_USTACK:
case DTRACEACT_JSTACK:
err = dt_print_ustack(dtp, fp, format, addr, rec->dtrd_arg);
break;
case DTRACEACT_STACK:
err = dt_print_stack(dtp, fp, format, addr, rec->dtrd_arg,
rec->dtrd_size / rec->dtrd_arg);
break;
default:
assert(0);
}
dtp->dt_options[DTRACEOPT_STACKINDENT] = saved;
return (err);
}
/*ARGSUSED*/
static int
pfprint_time(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal)
{
char src[32], buf[32], *dst = buf;
hrtime_t time = *((uint64_t *)addr);
time_t sec = (time_t)(time / NANOSEC);
int i;
/*
* ctime(3C) returns a string of the form "Dec 3 17:20:00 1973\n\0".
* Below, we turn this into the canonical adb/mdb /[yY] format,
* "1973 Dec 3 17:20:00".
*/
#if defined(sun)
(void) ctime_r(&sec, src, sizeof (src));
#else
(void) ctime_r(&sec, src);
#endif
/*
* Place the 4-digit year at the head of the string...
*/
for (i = 20; i < 24; i++)
*dst++ = src[i];
/*
* ...and follow it with the remainder (month, day, hh:mm:ss).
*/
for (i = 3; i < 19; i++)
*dst++ = src[i];
*dst = '\0';
return (dt_printf(dtp, fp, format, buf));
}
/*
* This prints the time in RFC 822 standard form. This is useful for emitting
* notions of time that are consumed by standard tools (e.g., as part of an
* RSS feed).
*/
/*ARGSUSED*/
static int
pfprint_time822(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal)
{
hrtime_t time = *((uint64_t *)addr);
time_t sec = (time_t)(time / NANOSEC);
struct tm tm;
char buf[64];
(void) localtime_r(&sec, &tm);
(void) strftime(buf, sizeof (buf), "%a, %d %b %G %T %Z", &tm);
return (dt_printf(dtp, fp, format, buf));
}
/*ARGSUSED*/
static int
pfprint_cstr(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal)
{
char *s = alloca(size + 1);
bcopy(addr, s, size);
s[size] = '\0';
return (dt_printf(dtp, fp, format, s));
}
/*ARGSUSED*/
static int
pfprint_wstr(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal)
{
wchar_t *ws = alloca(size + sizeof (wchar_t));
bcopy(addr, ws, size);
ws[size / sizeof (wchar_t)] = L'\0';
return (dt_printf(dtp, fp, format, ws));
}
/*ARGSUSED*/
static int
pfprint_estr(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal)
{
char *s;
int n;
if ((s = strchr2esc(addr, size)) == NULL)
return (dt_set_errno(dtp, EDT_NOMEM));
n = dt_printf(dtp, fp, format, s);
free(s);
return (n);
}
static int
pfprint_echr(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal)
{
char c;
switch (size) {
case sizeof (int8_t):
c = *(int8_t *)addr;
break;
case sizeof (int16_t):
c = *(int16_t *)addr;
break;
case sizeof (int32_t):
c = *(int32_t *)addr;
break;
default:
return (dt_set_errno(dtp, EDT_DMISMATCH));
}
return (pfprint_estr(dtp, fp, format, pfd, &c, 1, normal));
}
/*ARGSUSED*/
static int
pfprint_pct(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal)
{
return (dt_printf(dtp, fp, "%%"));
}
static const char pfproto_xint[] = "char, short, int, long, or long long";
static const char pfproto_csi[] = "char, short, or int";
static const char pfproto_fp[] = "float, double, or long double";
static const char pfproto_addr[] = "pointer or integer";
static const char pfproto_uaddr[] =
"pointer or integer (with -p/-c) or _usymaddr (without -p/-c)";
static const char pfproto_cstr[] = "char [] or string (or use stringof)";
static const char pfproto_wstr[] = "wchar_t []";
/*
* Printf format conversion dictionary. This table should match the set of
* conversions offered by printf(3C), as well as some additional extensions.
* The second parameter is an ASCII string which is either an actual type
* name we should look up (if pfcheck_type is specified), or just a descriptive
* string of the types expected for use in error messages.
*/
static const dt_pfconv_t _dtrace_conversions[] = {
{ "a", "s", pfproto_addr, pfcheck_kaddr, pfprint_addr },
{ "A", "s", pfproto_uaddr, pfcheck_uaddr, pfprint_uaddr },
{ "c", "c", pfproto_csi, pfcheck_csi, pfprint_sint },
{ "C", "s", pfproto_csi, pfcheck_csi, pfprint_echr },
{ "d", "d", pfproto_xint, pfcheck_dint, pfprint_dint },
{ "e", "e", pfproto_fp, pfcheck_fp, pfprint_fp },
{ "E", "E", pfproto_fp, pfcheck_fp, pfprint_fp },
{ "f", "f", pfproto_fp, pfcheck_fp, pfprint_fp },
{ "g", "g", pfproto_fp, pfcheck_fp, pfprint_fp },
{ "G", "G", pfproto_fp, pfcheck_fp, pfprint_fp },
{ "hd", "d", "short", pfcheck_type, pfprint_sint },
{ "hi", "i", "short", pfcheck_type, pfprint_sint },
{ "ho", "o", "unsigned short", pfcheck_type, pfprint_uint },
{ "hu", "u", "unsigned short", pfcheck_type, pfprint_uint },
{ "hx", "x", "short", pfcheck_xshort, pfprint_uint },
{ "hX", "X", "short", pfcheck_xshort, pfprint_uint },
{ "i", "i", pfproto_xint, pfcheck_dint, pfprint_dint },
{ "k", "s", "stack", pfcheck_stack, pfprint_stack },
{ "lc", "lc", "int", pfcheck_type, pfprint_sint }, /* a.k.a. wint_t */
{ "ld", "d", "long", pfcheck_type, pfprint_sint },
{ "li", "i", "long", pfcheck_type, pfprint_sint },
{ "lo", "o", "unsigned long", pfcheck_type, pfprint_uint },
{ "lu", "u", "unsigned long", pfcheck_type, pfprint_uint },
{ "ls", "ls", pfproto_wstr, pfcheck_wstr, pfprint_wstr },
{ "lx", "x", "long", pfcheck_xlong, pfprint_uint },
{ "lX", "X", "long", pfcheck_xlong, pfprint_uint },
{ "lld", "d", "long long", pfcheck_type, pfprint_sint },
{ "lli", "i", "long long", pfcheck_type, pfprint_sint },
{ "llo", "o", "unsigned long long", pfcheck_type, pfprint_uint },
{ "llu", "u", "unsigned long long", pfcheck_type, pfprint_uint },
{ "llx", "x", "long long", pfcheck_xlonglong, pfprint_uint },
{ "llX", "X", "long long", pfcheck_xlonglong, pfprint_uint },
{ "Le", "e", "long double", pfcheck_type, pfprint_fp },
{ "LE", "E", "long double", pfcheck_type, pfprint_fp },
{ "Lf", "f", "long double", pfcheck_type, pfprint_fp },
{ "Lg", "g", "long double", pfcheck_type, pfprint_fp },
{ "LG", "G", "long double", pfcheck_type, pfprint_fp },
{ "o", "o", pfproto_xint, pfcheck_xint, pfprint_uint },
{ "p", "x", pfproto_addr, pfcheck_addr, pfprint_uint },
{ "s", "s", "char [] or string (or use stringof)", pfcheck_str, pfprint_cstr },
{ "S", "s", pfproto_cstr, pfcheck_str, pfprint_estr },
{ "T", "s", "int64_t", pfcheck_time, pfprint_time822 },
{ "u", "u", pfproto_xint, pfcheck_xint, pfprint_uint },
{ "wc", "wc", "int", pfcheck_type, pfprint_sint }, /* a.k.a. wchar_t */
{ "ws", "ws", pfproto_wstr, pfcheck_wstr, pfprint_wstr },
{ "x", "x", pfproto_xint, pfcheck_xint, pfprint_uint },
{ "X", "X", pfproto_xint, pfcheck_xint, pfprint_uint },
{ "Y", "s", "int64_t", pfcheck_time, pfprint_time },
{ "%", "%", "void", pfcheck_type, pfprint_pct },
{ NULL, NULL, NULL, NULL, NULL }
};
int
dt_pfdict_create(dtrace_hdl_t *dtp)
{
uint_t n = _dtrace_strbuckets;
const dt_pfconv_t *pfd;
dt_pfdict_t *pdi;
if ((pdi = malloc(sizeof (dt_pfdict_t))) == NULL ||
(pdi->pdi_buckets = malloc(sizeof (dt_pfconv_t *) * n)) == NULL) {
free(pdi);
return (dt_set_errno(dtp, EDT_NOMEM));
}
dtp->dt_pfdict = pdi;
bzero(pdi->pdi_buckets, sizeof (dt_pfconv_t *) * n);
pdi->pdi_nbuckets = n;
for (pfd = _dtrace_conversions; pfd->pfc_name != NULL; pfd++) {
dtrace_typeinfo_t dtt;
dt_pfconv_t *pfc;
uint_t h;
if ((pfc = malloc(sizeof (dt_pfconv_t))) == NULL) {
dt_pfdict_destroy(dtp);
return (dt_set_errno(dtp, EDT_NOMEM));
}
bcopy(pfd, pfc, sizeof (dt_pfconv_t));
h = dt_strtab_hash(pfc->pfc_name, NULL) % n;
pfc->pfc_next = pdi->pdi_buckets[h];
pdi->pdi_buckets[h] = pfc;
dtt.dtt_ctfp = NULL;
dtt.dtt_type = CTF_ERR;
/*
* The "D" container or its parent must contain a definition of
* any type referenced by a printf conversion. If none can be
* found, we fail to initialize the printf dictionary.
*/
if (pfc->pfc_check == &pfcheck_type && dtrace_lookup_by_type(
dtp, DTRACE_OBJ_DDEFS, pfc->pfc_tstr, &dtt) != 0) {
dt_pfdict_destroy(dtp);
return (dt_set_errno(dtp, EDT_NOCONV));
}
pfc->pfc_dctfp = dtt.dtt_ctfp;
pfc->pfc_dtype = dtt.dtt_type;
/*
* The "C" container may contain an alternate definition of an
* explicit conversion type. If it does, use it; otherwise
* just set pfc_ctype to pfc_dtype so it is always valid.
*/
if (pfc->pfc_check == &pfcheck_type && dtrace_lookup_by_type(
dtp, DTRACE_OBJ_CDEFS, pfc->pfc_tstr, &dtt) == 0) {
pfc->pfc_cctfp = dtt.dtt_ctfp;
pfc->pfc_ctype = dtt.dtt_type;
} else {
pfc->pfc_cctfp = pfc->pfc_dctfp;
pfc->pfc_ctype = pfc->pfc_dtype;
}
if (pfc->pfc_check == NULL || pfc->pfc_print == NULL ||
pfc->pfc_ofmt == NULL || pfc->pfc_tstr == NULL) {
dt_pfdict_destroy(dtp);
return (dt_set_errno(dtp, EDT_BADCONV));
}
dt_dprintf("loaded printf conversion %%%s\n", pfc->pfc_name);
}
return (0);
}
void
dt_pfdict_destroy(dtrace_hdl_t *dtp)
{
dt_pfdict_t *pdi = dtp->dt_pfdict;
dt_pfconv_t *pfc, *nfc;
uint_t i;
if (pdi == NULL)
return;
for (i = 0; i < pdi->pdi_nbuckets; i++) {
for (pfc = pdi->pdi_buckets[i]; pfc != NULL; pfc = nfc) {
nfc = pfc->pfc_next;
free(pfc);
}
}
free(pdi->pdi_buckets);
free(pdi);
dtp->dt_pfdict = NULL;
}
static const dt_pfconv_t *
dt_pfdict_lookup(dtrace_hdl_t *dtp, const char *name)
{
dt_pfdict_t *pdi = dtp->dt_pfdict;
uint_t h = dt_strtab_hash(name, NULL) % pdi->pdi_nbuckets;
const dt_pfconv_t *pfc;
for (pfc = pdi->pdi_buckets[h]; pfc != NULL; pfc = pfc->pfc_next) {
if (strcmp(pfc->pfc_name, name) == 0)
break;
}
return (pfc);
}
static dt_pfargv_t *
dt_printf_error(dtrace_hdl_t *dtp, int err)
{
if (yypcb != NULL)
longjmp(yypcb->pcb_jmpbuf, err);
(void) dt_set_errno(dtp, err);
return (NULL);
}
dt_pfargv_t *
dt_printf_create(dtrace_hdl_t *dtp, const char *s)
{
dt_pfargd_t *pfd, *nfd = NULL;
dt_pfargv_t *pfv;
const char *p, *q;
char *format;
if ((pfv = malloc(sizeof (dt_pfargv_t))) == NULL ||
(format = strdup(s)) == NULL) {
free(pfv);
return (dt_printf_error(dtp, EDT_NOMEM));
}
pfv->pfv_format = format;
pfv->pfv_argv = NULL;
pfv->pfv_argc = 0;
pfv->pfv_flags = 0;
pfv->pfv_dtp = dtp;
for (q = format; (p = strchr(q, '%')) != NULL; q = *p ? p + 1 : p) {
uint_t namelen = 0;
int digits = 0;
int dot = 0;
char name[8];
char c;
int n;
if ((pfd = malloc(sizeof (dt_pfargd_t))) == NULL) {
dt_printf_destroy(pfv);
return (dt_printf_error(dtp, EDT_NOMEM));
}
if (pfv->pfv_argv != NULL)
nfd->pfd_next = pfd;
else
pfv->pfv_argv = pfd;
bzero(pfd, sizeof (dt_pfargd_t));
pfv->pfv_argc++;
nfd = pfd;
if (p > q) {
pfd->pfd_preflen = (size_t)(p - q);
pfd->pfd_prefix = q;
}
fmt_switch:
switch (c = *++p) {
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
if (dot == 0 && digits == 0 && c == '0') {
pfd->pfd_flags |= DT_PFCONV_ZPAD;
pfd->pfd_flags &= ~DT_PFCONV_LEFT;
goto fmt_switch;
}
for (n = 0; isdigit(c); c = *++p)
n = n * 10 + c - '0';
if (dot)
pfd->pfd_prec = n;
else
pfd->pfd_width = n;
p--;
digits++;
goto fmt_switch;
case '#':
pfd->pfd_flags |= DT_PFCONV_ALT;
goto fmt_switch;
case '*':
n = dot ? DT_PFCONV_DYNPREC : DT_PFCONV_DYNWIDTH;
if (pfd->pfd_flags & n) {
yywarn("format conversion #%u has more than "
"one '*' specified for the output %s\n",
pfv->pfv_argc, n ? "precision" : "width");
dt_printf_destroy(pfv);
return (dt_printf_error(dtp, EDT_COMPILER));
}
pfd->pfd_flags |= n;
goto fmt_switch;
case '+':
pfd->pfd_flags |= DT_PFCONV_SPOS;
goto fmt_switch;
case '-':
pfd->pfd_flags |= DT_PFCONV_LEFT;
pfd->pfd_flags &= ~DT_PFCONV_ZPAD;
goto fmt_switch;
case '.':
if (dot++ != 0) {
yywarn("format conversion #%u has more than "
"one '.' specified\n", pfv->pfv_argc);
dt_printf_destroy(pfv);
return (dt_printf_error(dtp, EDT_COMPILER));
}
digits = 0;
goto fmt_switch;
case '?':
if (dtp->dt_conf.dtc_ctfmodel == CTF_MODEL_LP64)
pfd->pfd_width = 16;
else
pfd->pfd_width = 8;
goto fmt_switch;
case '@':
pfd->pfd_flags |= DT_PFCONV_AGG;
goto fmt_switch;
case '\'':
pfd->pfd_flags |= DT_PFCONV_GROUP;
goto fmt_switch;
case ' ':
pfd->pfd_flags |= DT_PFCONV_SPACE;
goto fmt_switch;
case '$':
yywarn("format conversion #%u uses unsupported "
"positional format (%%n$)\n", pfv->pfv_argc);
dt_printf_destroy(pfv);
return (dt_printf_error(dtp, EDT_COMPILER));
case '%':
if (p[-1] == '%')
goto default_lbl; /* if %% then use "%" conv */
yywarn("format conversion #%u cannot be combined "
"with other format flags: %%%%\n", pfv->pfv_argc);
dt_printf_destroy(pfv);
return (dt_printf_error(dtp, EDT_COMPILER));
case '\0':
yywarn("format conversion #%u name expected before "
"end of format string\n", pfv->pfv_argc);
dt_printf_destroy(pfv);
return (dt_printf_error(dtp, EDT_COMPILER));
case 'h':
case 'l':
case 'L':
case 'w':
if (namelen < sizeof (name) - 2)
name[namelen++] = c;
goto fmt_switch;
default_lbl:
default:
name[namelen++] = c;
name[namelen] = '\0';
}
pfd->pfd_conv = dt_pfdict_lookup(dtp, name);
if (pfd->pfd_conv == NULL) {
yywarn("format conversion #%u is undefined: %%%s\n",
pfv->pfv_argc, name);
dt_printf_destroy(pfv);
return (dt_printf_error(dtp, EDT_COMPILER));
}
}
if (*q != '\0' || *format == '\0') {
if ((pfd = malloc(sizeof (dt_pfargd_t))) == NULL) {
dt_printf_destroy(pfv);
return (dt_printf_error(dtp, EDT_NOMEM));
}
if (pfv->pfv_argv != NULL)
nfd->pfd_next = pfd;
else
pfv->pfv_argv = pfd;
bzero(pfd, sizeof (dt_pfargd_t));
pfv->pfv_argc++;
pfd->pfd_prefix = q;
pfd->pfd_preflen = strlen(q);
}
return (pfv);
}
void
dt_printf_destroy(dt_pfargv_t *pfv)
{
dt_pfargd_t *pfd, *nfd;
for (pfd = pfv->pfv_argv; pfd != NULL; pfd = nfd) {
nfd = pfd->pfd_next;
free(pfd);
}
free(pfv->pfv_format);
free(pfv);
}
void
dt_printf_validate(dt_pfargv_t *pfv, uint_t flags,
dt_ident_t *idp, int foff, dtrace_actkind_t kind, dt_node_t *dnp)
{
dt_pfargd_t *pfd = pfv->pfv_argv;
const char *func = idp->di_name;
char n[DT_TYPE_NAMELEN];
dtrace_typeinfo_t dtt;
const char *aggtype;
dt_node_t aggnode;
int i, j;
if (pfv->pfv_format[0] == '\0') {
xyerror(D_PRINTF_FMT_EMPTY,
"%s( ) format string is empty\n", func);
}
pfv->pfv_flags = flags;
/*
* We fake up a parse node representing the type that can be used with
* an aggregation result conversion, which -- for all but count() --
* is a signed quantity.
*/
if (kind != DTRACEAGG_COUNT)
aggtype = "int64_t";
else
aggtype = "uint64_t";
if (dt_type_lookup(aggtype, &dtt) != 0)
xyerror(D_TYPE_ERR, "failed to lookup agg type %s\n", aggtype);
bzero(&aggnode, sizeof (aggnode));
dt_node_type_assign(&aggnode, dtt.dtt_ctfp, dtt.dtt_type);
for (i = 0, j = 0; i < pfv->pfv_argc; i++, pfd = pfd->pfd_next) {
const dt_pfconv_t *pfc = pfd->pfd_conv;
const char *dyns[2];
int dync = 0;
char vname[64];
dt_node_t *vnp;
if (pfc == NULL)
continue; /* no checking if argd is just a prefix */
if (pfc->pfc_print == &pfprint_pct) {
(void) strcat(pfd->pfd_fmt, pfc->pfc_ofmt);
continue;
}
if (pfd->pfd_flags & DT_PFCONV_DYNPREC)
dyns[dync++] = ".*";
if (pfd->pfd_flags & DT_PFCONV_DYNWIDTH)
dyns[dync++] = "*";
for (; dync != 0; dync--) {
if (dnp == NULL) {
xyerror(D_PRINTF_DYN_PROTO,
"%s( ) prototype mismatch: conversion "
"#%d (%%%s) is missing a corresponding "
"\"%s\" argument\n", func, i + 1,
pfc->pfc_name, dyns[dync - 1]);
}
if (dt_node_is_integer(dnp) == 0) {
xyerror(D_PRINTF_DYN_TYPE,
"%s( ) argument #%d is incompatible "
"with conversion #%d prototype:\n"
"\tconversion: %% %s %s\n"
"\t prototype: int\n\t argument: %s\n",
func, j + foff + 1, i + 1,
dyns[dync - 1], pfc->pfc_name,
dt_node_type_name(dnp, n, sizeof (n)));
}
dnp = dnp->dn_list;
j++;
}
/*
* If this conversion is consuming the aggregation data, set
* the value node pointer (vnp) to a fake node based on the
* aggregating function result type. Otherwise assign vnp to
* the next parse node in the argument list, if there is one.
*/
if (pfd->pfd_flags & DT_PFCONV_AGG) {
if (!(flags & DT_PRINTF_AGGREGATION)) {
xyerror(D_PRINTF_AGG_CONV,
"%%@ conversion requires an aggregation"
" and is not for use with %s( )\n", func);
}
(void) strlcpy(vname, "aggregating action",
sizeof (vname));
vnp = &aggnode;
} else if (dnp == NULL) {
xyerror(D_PRINTF_ARG_PROTO,
"%s( ) prototype mismatch: conversion #%d (%%"
"%s) is missing a corresponding value argument\n",
func, i + 1, pfc->pfc_name);
} else {
(void) snprintf(vname, sizeof (vname),
"argument #%d", j + foff + 1);
vnp = dnp;
dnp = dnp->dn_list;
j++;
}
/*
* Fill in the proposed final format string by prepending any
* size-related prefixes to the pfconv's format string. The
* pfc_check() function below may optionally modify the format
* as part of validating the type of the input argument.
*/
if (pfc->pfc_print == &pfprint_sint ||
pfc->pfc_print == &pfprint_uint ||
pfc->pfc_print == &pfprint_dint) {
if (dt_node_type_size(vnp) == sizeof (uint64_t))
(void) strcpy(pfd->pfd_fmt, "ll");
} else if (pfc->pfc_print == &pfprint_fp) {
if (dt_node_type_size(vnp) == sizeof (long double))
(void) strcpy(pfd->pfd_fmt, "L");
}
(void) strcat(pfd->pfd_fmt, pfc->pfc_ofmt);
/*
* Validate the format conversion against the value node type.
* If the conversion is good, create the descriptor format
* string by concatenating together any required printf(3C)
* size prefixes with the conversion's native format string.
*/
if (pfc->pfc_check(pfv, pfd, vnp) == 0) {
xyerror(D_PRINTF_ARG_TYPE,
"%s( ) %s is incompatible with "
"conversion #%d prototype:\n\tconversion: %%%s\n"
"\t prototype: %s\n\t argument: %s\n", func,
vname, i + 1, pfc->pfc_name, pfc->pfc_tstr,
dt_node_type_name(vnp, n, sizeof (n)));
}
}
if ((flags & DT_PRINTF_EXACTLEN) && dnp != NULL) {
xyerror(D_PRINTF_ARG_EXTRA,
"%s( ) prototype mismatch: only %d arguments "
"required by this format string\n", func, j);
}
}
void
dt_printa_validate(dt_node_t *lhs, dt_node_t *rhs)
{
dt_ident_t *lid, *rid;
dt_node_t *lproto, *rproto;
int largc, rargc, argn;
char n1[DT_TYPE_NAMELEN];
char n2[DT_TYPE_NAMELEN];
assert(lhs->dn_kind == DT_NODE_AGG);
assert(rhs->dn_kind == DT_NODE_AGG);
lid = lhs->dn_ident;
rid = rhs->dn_ident;
lproto = ((dt_idsig_t *)lid->di_data)->dis_args;
rproto = ((dt_idsig_t *)rid->di_data)->dis_args;
/*
* First, get an argument count on each side. These must match.
*/
for (largc = 0; lproto != NULL; lproto = lproto->dn_list)
largc++;
for (rargc = 0; rproto != NULL; rproto = rproto->dn_list)
rargc++;
if (largc != rargc) {
xyerror(D_PRINTA_AGGKEY, "printa( ): @%s and @%s do not have "
"matching key signatures: @%s has %d key%s, @%s has %d "
"key%s", lid->di_name, rid->di_name,
lid->di_name, largc, largc == 1 ? "" : "s",
rid->di_name, rargc, rargc == 1 ? "" : "s");
}
/*
* Now iterate over the keys to verify that each type matches.
*/
lproto = ((dt_idsig_t *)lid->di_data)->dis_args;
rproto = ((dt_idsig_t *)rid->di_data)->dis_args;
for (argn = 1; lproto != NULL; argn++, lproto = lproto->dn_list,
rproto = rproto->dn_list) {
assert(rproto != NULL);
if (dt_node_is_argcompat(lproto, rproto))
continue;
xyerror(D_PRINTA_AGGPROTO, "printa( ): @%s[ ] key #%d is "
"incompatible with @%s:\n%9s key #%d: %s\n"
"%9s key #%d: %s\n",
rid->di_name, argn, lid->di_name, lid->di_name, argn,
dt_node_type_name(lproto, n1, sizeof (n1)), rid->di_name,
argn, dt_node_type_name(rproto, n2, sizeof (n2)));
}
}
static int
dt_printf_getint(dtrace_hdl_t *dtp, const dtrace_recdesc_t *recp,
uint_t nrecs, const void *buf, size_t len, int *ip)
{
uintptr_t addr;
if (nrecs == 0)
return (dt_set_errno(dtp, EDT_DMISMATCH));
addr = (uintptr_t)buf + recp->dtrd_offset;
if (addr + sizeof (int) > (uintptr_t)buf + len)
return (dt_set_errno(dtp, EDT_DOFFSET));
if (addr & (recp->dtrd_alignment - 1))
return (dt_set_errno(dtp, EDT_DALIGN));
switch (recp->dtrd_size) {
case sizeof (int8_t):
*ip = (int)*((int8_t *)addr);
break;
case sizeof (int16_t):
*ip = (int)*((int16_t *)addr);
break;
case sizeof (int32_t):
*ip = (int)*((int32_t *)addr);
break;
case sizeof (int64_t):
*ip = (int)*((int64_t *)addr);
break;
default:
return (dt_set_errno(dtp, EDT_DMISMATCH));
}
return (0);
}
/*ARGSUSED*/
static int
pfprint_average(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal)
{
const uint64_t *data = addr;
if (size != sizeof (uint64_t) * 2)
return (dt_set_errno(dtp, EDT_DMISMATCH));
return (dt_printf(dtp, fp, format,
data[0] ? data[1] / normal / data[0] : 0));
}
/*ARGSUSED*/
static int
pfprint_quantize(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal)
{
return (dt_print_quantize(dtp, fp, addr, size, normal));
}
/*ARGSUSED*/
static int
pfprint_lquantize(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal)
{
return (dt_print_lquantize(dtp, fp, addr, size, normal));
}
static int
dt_printf_format(dtrace_hdl_t *dtp, FILE *fp, const dt_pfargv_t *pfv,
const dtrace_recdesc_t *recs, uint_t nrecs, const void *buf,
size_t len, const dtrace_aggdata_t **aggsdata, int naggvars)
{
dt_pfargd_t *pfd = pfv->pfv_argv;
const dtrace_recdesc_t *recp = recs;
const dtrace_aggdata_t *aggdata;
dtrace_aggdesc_t *agg;
caddr_t lim = (caddr_t)buf + len, limit;
char format[64] = "%";
int i, aggrec, curagg = -1;
uint64_t normal;
/*
* If we are formatting an aggregation, set 'aggrec' to the index of
* the final record description (the aggregation result) so we can use
* this record index with any conversion where DT_PFCONV_AGG is set.
* (The actual aggregation used will vary as we increment through the
* aggregation variables that we have been passed.) Finally, we
* decrement nrecs to prevent this record from being used with any
* other conversion.
*/
if (pfv->pfv_flags & DT_PRINTF_AGGREGATION) {
assert(aggsdata != NULL);
assert(naggvars > 0);
if (nrecs == 0)
return (dt_set_errno(dtp, EDT_DMISMATCH));
curagg = naggvars > 1 ? 1 : 0;
aggdata = aggsdata[0];
aggrec = aggdata->dtada_desc->dtagd_nrecs - 1;
nrecs--;
}
for (i = 0; i < pfv->pfv_argc; i++, pfd = pfd->pfd_next) {
const dt_pfconv_t *pfc = pfd->pfd_conv;
int width = pfd->pfd_width;
int prec = pfd->pfd_prec;
int rval;
char *f = format + 1; /* skip initial '%' */
const dtrace_recdesc_t *rec;
dt_pfprint_f *func;
caddr_t addr;
size_t size;
uint32_t flags;
if (pfd->pfd_preflen != 0) {
char *tmp = alloca(pfd->pfd_preflen + 1);
bcopy(pfd->pfd_prefix, tmp, pfd->pfd_preflen);
tmp[pfd->pfd_preflen] = '\0';
if ((rval = dt_printf(dtp, fp, tmp)) < 0)
return (rval);
if (pfv->pfv_flags & DT_PRINTF_AGGREGATION) {
/*
* For printa(), we flush the buffer after each
* prefix, setting the flags to indicate that
* this is part of the printa() format string.
*/
flags = DTRACE_BUFDATA_AGGFORMAT;
if (pfc == NULL && i == pfv->pfv_argc - 1)
flags |= DTRACE_BUFDATA_AGGLAST;
if (dt_buffered_flush(dtp, NULL, NULL,
aggdata, flags) < 0)
return (-1);
}
}
if (pfc == NULL) {
if (pfv->pfv_argc == 1)
return (nrecs != 0);
continue;
}
/*
* If the conversion is %%, just invoke the print callback
* with no data record and continue; it consumes no record.
*/
if (pfc->pfc_print == &pfprint_pct) {
if (pfc->pfc_print(dtp, fp, NULL, pfd, NULL, 0, 1) >= 0)
continue;
return (-1); /* errno is set for us */
}
if (pfd->pfd_flags & DT_PFCONV_DYNWIDTH) {
if (dt_printf_getint(dtp, recp++, nrecs--, buf,
len, &width) == -1)
return (-1); /* errno is set for us */
pfd->pfd_dynwidth = width;
} else {
pfd->pfd_dynwidth = 0;
}
if ((pfd->pfd_flags & DT_PFCONV_DYNPREC) && dt_printf_getint(
dtp, recp++, nrecs--, buf, len, &prec) == -1)
return (-1); /* errno is set for us */
if (pfd->pfd_flags & DT_PFCONV_AGG) {
/*
* This should be impossible -- the compiler shouldn't
* create a DT_PFCONV_AGG conversion without an
* aggregation present. Still, we'd rather fail
* gracefully than blow up...
*/
if (aggsdata == NULL)
return (dt_set_errno(dtp, EDT_DMISMATCH));
aggdata = aggsdata[curagg];
agg = aggdata->dtada_desc;
/*
* We increment the current aggregation variable, but
* not beyond the number of aggregation variables that
* we're printing. This has the (desired) effect that
* DT_PFCONV_AGG conversions beyond the number of
* aggregation variables (re-)convert the aggregation
* value of the last aggregation variable.
*/
if (curagg < naggvars - 1)
curagg++;
rec = &agg->dtagd_rec[aggrec];
addr = aggdata->dtada_data + rec->dtrd_offset;
limit = addr + aggdata->dtada_size;
normal = aggdata->dtada_normal;
flags = DTRACE_BUFDATA_AGGVAL;
} else {
if (nrecs == 0)
return (dt_set_errno(dtp, EDT_DMISMATCH));
if (pfv->pfv_flags & DT_PRINTF_AGGREGATION) {
/*
* When printing aggregation keys, we always
* set the aggdata to be the representative
* (zeroth) aggregation. The aggdata isn't
* actually used here in this case, but it is
* passed to the buffer handler and must
* therefore still be correct.
*/
aggdata = aggsdata[0];
flags = DTRACE_BUFDATA_AGGKEY;
}
rec = recp++;
nrecs--;
addr = (caddr_t)buf + rec->dtrd_offset;
limit = lim;
normal = 1;
}
size = rec->dtrd_size;
if (addr + size > limit) {
dt_dprintf("bad size: addr=%p size=0x%x lim=%p\n",
(void *)addr, rec->dtrd_size, (void *)lim);
return (dt_set_errno(dtp, EDT_DOFFSET));
}
if (rec->dtrd_alignment != 0 &&
((uintptr_t)addr & (rec->dtrd_alignment - 1)) != 0) {
dt_dprintf("bad align: addr=%p size=0x%x align=0x%x\n",
(void *)addr, rec->dtrd_size, rec->dtrd_alignment);
return (dt_set_errno(dtp, EDT_DALIGN));
}
switch (rec->dtrd_action) {
case DTRACEAGG_AVG:
func = pfprint_average;
break;
case DTRACEAGG_QUANTIZE:
func = pfprint_quantize;
break;
case DTRACEAGG_LQUANTIZE:
func = pfprint_lquantize;
break;
case DTRACEACT_MOD:
func = pfprint_mod;
break;
case DTRACEACT_UMOD:
func = pfprint_umod;
break;
default:
func = pfc->pfc_print;
break;
}
if (pfd->pfd_flags & DT_PFCONV_ALT)
*f++ = '#';
if (pfd->pfd_flags & DT_PFCONV_ZPAD)
*f++ = '0';
if (width < 0 || (pfd->pfd_flags & DT_PFCONV_LEFT))
*f++ = '-';
if (pfd->pfd_flags & DT_PFCONV_SPOS)
*f++ = '+';
if (pfd->pfd_flags & DT_PFCONV_GROUP)
*f++ = '\'';
if (pfd->pfd_flags & DT_PFCONV_SPACE)
*f++ = ' ';
/*
* If we're printing a stack and DT_PFCONV_LEFT is set, we
* don't add the width to the format string. See the block
* comment in pfprint_stack() for a description of the
* behavior in this case.
*/
if (func == pfprint_stack && (pfd->pfd_flags & DT_PFCONV_LEFT))
width = 0;
if (width != 0)
f += snprintf(f, sizeof (format), "%d", ABS(width));
if (prec > 0)
f += snprintf(f, sizeof (format), ".%d", prec);
(void) strcpy(f, pfd->pfd_fmt);
pfd->pfd_rec = rec;
if (func(dtp, fp, format, pfd, addr, size, normal) < 0)
return (-1); /* errno is set for us */
if (pfv->pfv_flags & DT_PRINTF_AGGREGATION) {
/*
* For printa(), we flush the buffer after each tuple
* element, inidicating that this is the last record
* as appropriate.
*/
if (i == pfv->pfv_argc - 1)
flags |= DTRACE_BUFDATA_AGGLAST;
if (dt_buffered_flush(dtp, NULL,
rec, aggdata, flags) < 0)
return (-1);
}
}
return ((int)(recp - recs));
}
int
dtrace_sprintf(dtrace_hdl_t *dtp, FILE *fp, void *fmtdata,
const dtrace_recdesc_t *recp, uint_t nrecs, const void *buf, size_t len)
{
dtrace_optval_t size;
int rval;
rval = dtrace_getopt(dtp, "strsize", &size);
assert(rval == 0);
assert(dtp->dt_sprintf_buflen == 0);
if (dtp->dt_sprintf_buf != NULL)
free(dtp->dt_sprintf_buf);
if ((dtp->dt_sprintf_buf = malloc(size)) == NULL)
return (dt_set_errno(dtp, EDT_NOMEM));
bzero(dtp->dt_sprintf_buf, size);
dtp->dt_sprintf_buflen = size;
rval = dt_printf_format(dtp, fp, fmtdata, recp, nrecs, buf, len,
NULL, 0);
dtp->dt_sprintf_buflen = 0;
if (rval == -1)
free(dtp->dt_sprintf_buf);
return (rval);
}
/*ARGSUSED*/
int
dtrace_system(dtrace_hdl_t *dtp, FILE *fp, void *fmtdata,
const dtrace_probedata_t *data, const dtrace_recdesc_t *recp,
uint_t nrecs, const void *buf, size_t len)
{
int rval = dtrace_sprintf(dtp, fp, fmtdata, recp, nrecs, buf, len);
if (rval == -1)
return (rval);
/*
* Before we execute the specified command, flush fp to assure that
* any prior dt_printf()'s appear before the output of the command
* not after it.
*/
(void) fflush(fp);
if (system(dtp->dt_sprintf_buf) == -1)
return (dt_set_errno(dtp, errno));
return (rval);
}
int
dtrace_freopen(dtrace_hdl_t *dtp, FILE *fp, void *fmtdata,
const dtrace_probedata_t *data, const dtrace_recdesc_t *recp,
uint_t nrecs, const void *buf, size_t len)
{
char selfbuf[40], restorebuf[40], *filename;
FILE *nfp;
int rval, errval;
dt_pfargv_t *pfv = fmtdata;
dt_pfargd_t *pfd = pfv->pfv_argv;
rval = dtrace_sprintf(dtp, fp, fmtdata, recp, nrecs, buf, len);
if (rval == -1 || fp == NULL)
return (rval);
#if defined(sun)
if (pfd->pfd_preflen != 0 &&
strcmp(pfd->pfd_prefix, DT_FREOPEN_RESTORE) == 0) {
/*
* The only way to have the format string set to the value
* DT_FREOPEN_RESTORE is via the empty freopen() string --
* denoting that we should restore the old stdout.
*/
assert(strcmp(dtp->dt_sprintf_buf, DT_FREOPEN_RESTORE) == 0);
if (dtp->dt_stdout_fd == -1) {
/*
* We could complain here by generating an error,
* but it seems like overkill: it seems that calling
* freopen() to restore stdout when freopen() has
* never before been called should just be a no-op,
* so we just return in this case.
*/
return (rval);
}
(void) snprintf(restorebuf, sizeof (restorebuf),
"/dev/fd/%d", dtp->dt_stdout_fd);
filename = restorebuf;
} else {
filename = dtp->dt_sprintf_buf;
}
/*
* freopen(3C) will always close the specified stream and underlying
* file descriptor -- even if the specified file can't be opened.
* Even for the semantic cesspool that is standard I/O, this is
* surprisingly brain-dead behavior: it means that any failure to
* open the specified file destroys the specified stream in the
* process -- which is particularly relevant when the specified stream
* happens (or rather, happened) to be stdout. This could be resolved
* were there an "fdreopen()" equivalent of freopen() that allowed one
* to pass a file descriptor instead of the name of a file, but there
* is no such thing. However, we can effect this ourselves by first
* fopen()'ing the desired file, and then (assuming that that works),
* freopen()'ing "/dev/fd/[fileno]", where [fileno] is the underlying
* file descriptor for the fopen()'d file. This way, if the fopen()
* fails, we can fail the operation without destroying stdout.
*/
if ((nfp = fopen(filename, "aF")) == NULL) {
char *msg = strerror(errno);
char *faultstr;
int len = 80;
len += strlen(msg) + strlen(filename);
faultstr = alloca(len);
(void) snprintf(faultstr, len, "couldn't freopen() \"%s\": %s",
filename, strerror(errno));
if ((errval = dt_handle_liberr(dtp, data, faultstr)) == 0)
return (rval);
return (errval);
}
(void) snprintf(selfbuf, sizeof (selfbuf), "/dev/fd/%d", fileno(nfp));
if (dtp->dt_stdout_fd == -1) {
/*
* If this is the first time that we're calling freopen(),
* we're going to stash away the file descriptor for stdout.
* We don't expect the dup(2) to fail, so if it does we must
* return failure.
*/
if ((dtp->dt_stdout_fd = dup(fileno(fp))) == -1) {
(void) fclose(nfp);
return (dt_set_errno(dtp, errno));
}
}
if (freopen(selfbuf, "aF", fp) == NULL) {
(void) fclose(nfp);
return (dt_set_errno(dtp, errno));
}
(void) fclose(nfp);
#else
/*
* The 'standard output' (which is not necessarily stdout)
* treatment on FreeBSD is implemented differently than on
* Solaris because FreeBSD's freopen() will attempt to re-use
* the current file descriptor, causing the previous file to
* be closed and thereby preventing it from be re-activated
* later.
*
* For FreeBSD we use the concept of setting an output file
* pointer in the DTrace handle if a dtrace_freopen() has
* enabled another output file and we leave the caller's
* file pointer untouched. If it was actually stdout, then
* stdout remains open. If it was another file, then that
* file remains open. While a dtrace_freopen() has activated
* another file, we keep a pointer to that which we use in
* the output functions by preference and only use the caller's
* file pointer if no dtrace_freopen() call has been made.
*
* The check to see if we're re-activating the caller's
* output file is much the same as on Solaris.
*/
if (pfd->pfd_preflen != 0 &&
strcmp(pfd->pfd_prefix, DT_FREOPEN_RESTORE) == 0) {
/*
* The only way to have the format string set to the value
* DT_FREOPEN_RESTORE is via the empty freopen() string --
* denoting that we should restore the old stdout.
*/
assert(strcmp(dtp->dt_sprintf_buf, DT_FREOPEN_RESTORE) == 0);
if (dtp->dt_freopen_fp == NULL) {
/*
* We could complain here by generating an error,
* but it seems like overkill: it seems that calling
* freopen() to restore stdout when freopen() has
* never before been called should just be a no-op,
* so we just return in this case.
*/
return (rval);
}
/*
* At this point, to re-active the original output file,
* on FreeBSD we only code the current file that this
* function opened previously.
*/
(void) fclose(dtp->dt_freopen_fp);
dtp->dt_freopen_fp = NULL;
return (rval);
}
if ((nfp = fopen(dtp->dt_sprintf_buf, "a")) == NULL) {
char *msg = strerror(errno);
char *faultstr;
int len = 80;
len += strlen(msg) + strlen(dtp->dt_sprintf_buf);
faultstr = alloca(len);
(void) snprintf(faultstr, len, "couldn't freopen() \"%s\": %s",
dtp->dt_sprintf_buf, strerror(errno));
if ((errval = dt_handle_liberr(dtp, data, faultstr)) == 0)
return (rval);
return (errval);
}
if (dtp->dt_freopen_fp != NULL)
(void) fclose(dtp->dt_freopen_fp);
/* Remember that the output has been redirected to the new file. */
dtp->dt_freopen_fp = nfp;
#endif
return (rval);
}
/*ARGSUSED*/
int
dtrace_fprintf(dtrace_hdl_t *dtp, FILE *fp, void *fmtdata,
const dtrace_probedata_t *data, const dtrace_recdesc_t *recp,
uint_t nrecs, const void *buf, size_t len)
{
return (dt_printf_format(dtp, fp, fmtdata,
recp, nrecs, buf, len, NULL, 0));
}
void *
dtrace_printf_create(dtrace_hdl_t *dtp, const char *s)
{
dt_pfargv_t *pfv = dt_printf_create(dtp, s);
dt_pfargd_t *pfd;
int i;
if (pfv == NULL)
return (NULL); /* errno has been set for us */
pfd = pfv->pfv_argv;
for (i = 0; i < pfv->pfv_argc; i++, pfd = pfd->pfd_next) {
const dt_pfconv_t *pfc = pfd->pfd_conv;
if (pfc == NULL)
continue;
/*
* If the output format is not %s then we assume that we have
* been given a correctly-sized format string, so we copy the
* true format name including the size modifier. If the output
* format is %s, then either the input format is %s as well or
* it is one of our custom formats (e.g. pfprint_addr), so we
* must set pfd_fmt to be the output format conversion "s".
*/
if (strcmp(pfc->pfc_ofmt, "s") != 0)
(void) strcat(pfd->pfd_fmt, pfc->pfc_name);
else
(void) strcat(pfd->pfd_fmt, pfc->pfc_ofmt);
}
return (pfv);
}
void *
dtrace_printa_create(dtrace_hdl_t *dtp, const char *s)
{
dt_pfargv_t *pfv = dtrace_printf_create(dtp, s);
if (pfv == NULL)
return (NULL); /* errno has been set for us */
pfv->pfv_flags |= DT_PRINTF_AGGREGATION;
return (pfv);
}
/*ARGSUSED*/
size_t
dtrace_printf_format(dtrace_hdl_t *dtp, void *fmtdata, char *s, size_t len)
{
dt_pfargv_t *pfv = fmtdata;
dt_pfargd_t *pfd = pfv->pfv_argv;
/*
* An upper bound on the string length is the length of the original
* format string, plus three times the number of conversions (each
* conversion could add up an additional "ll" and/or pfd_width digit
* in the case of converting %? to %16) plus one for a terminating \0.
*/
size_t formatlen = strlen(pfv->pfv_format) + 3 * pfv->pfv_argc + 1;
char *format = alloca(formatlen);
char *f = format;
int i, j;
for (i = 0; i < pfv->pfv_argc; i++, pfd = pfd->pfd_next) {
const dt_pfconv_t *pfc = pfd->pfd_conv;
const char *str;
int width = pfd->pfd_width;
int prec = pfd->pfd_prec;
if (pfd->pfd_preflen != 0) {
for (j = 0; j < pfd->pfd_preflen; j++)
*f++ = pfd->pfd_prefix[j];
}
if (pfc == NULL)
continue;
*f++ = '%';
if (pfd->pfd_flags & DT_PFCONV_ALT)
*f++ = '#';
if (pfd->pfd_flags & DT_PFCONV_ZPAD)
*f++ = '0';
if (pfd->pfd_flags & DT_PFCONV_LEFT)
*f++ = '-';
if (pfd->pfd_flags & DT_PFCONV_SPOS)
*f++ = '+';
if (pfd->pfd_flags & DT_PFCONV_DYNWIDTH)
*f++ = '*';
if (pfd->pfd_flags & DT_PFCONV_DYNPREC) {
*f++ = '.';
*f++ = '*';
}
if (pfd->pfd_flags & DT_PFCONV_GROUP)
*f++ = '\'';
if (pfd->pfd_flags & DT_PFCONV_SPACE)
*f++ = ' ';
if (pfd->pfd_flags & DT_PFCONV_AGG)
*f++ = '@';
if (width != 0)
f += snprintf(f, sizeof (format), "%d", width);
if (prec != 0)
f += snprintf(f, sizeof (format), ".%d", prec);
/*
* If the output format is %s, then either %s is the underlying
* conversion or the conversion is one of our customized ones,
* e.g. pfprint_addr. In these cases, put the original string
* name of the conversion (pfc_name) into the pickled format
* string rather than the derived conversion (pfd_fmt).
*/
if (strcmp(pfc->pfc_ofmt, "s") == 0)
str = pfc->pfc_name;
else
str = pfd->pfd_fmt;
for (j = 0; str[j] != '\0'; j++)
*f++ = str[j];
}
*f = '\0'; /* insert nul byte; do not count in return value */
assert(f < format + formatlen);
(void) strncpy(s, format, len);
return ((size_t)(f - format));
}
static int
dt_fprinta(const dtrace_aggdata_t *adp, void *arg)
{
const dtrace_aggdesc_t *agg = adp->dtada_desc;
const dtrace_recdesc_t *recp = &agg->dtagd_rec[0];
uint_t nrecs = agg->dtagd_nrecs;
dt_pfwalk_t *pfw = arg;
dtrace_hdl_t *dtp = pfw->pfw_argv->pfv_dtp;
int id;
if (dt_printf_getint(dtp, recp++, nrecs--,
adp->dtada_data, adp->dtada_size, &id) != 0 || pfw->pfw_aid != id)
return (0); /* no aggregation id or id does not match */
if (dt_printf_format(dtp, pfw->pfw_fp, pfw->pfw_argv,
recp, nrecs, adp->dtada_data, adp->dtada_size, &adp, 1) == -1)
return (pfw->pfw_err = dtp->dt_errno);
/*
* Cast away the const to set the bit indicating that this aggregation
* has been printed.
*/
((dtrace_aggdesc_t *)agg)->dtagd_flags |= DTRACE_AGD_PRINTED;
return (0);
}
static int
dt_fprintas(const dtrace_aggdata_t **aggsdata, int naggvars, void *arg)
{
const dtrace_aggdata_t *aggdata = aggsdata[0];
const dtrace_aggdesc_t *agg = aggdata->dtada_desc;
const dtrace_recdesc_t *rec = &agg->dtagd_rec[1];
uint_t nrecs = agg->dtagd_nrecs - 1;
dt_pfwalk_t *pfw = arg;
dtrace_hdl_t *dtp = pfw->pfw_argv->pfv_dtp;
int i;
if (dt_printf_format(dtp, pfw->pfw_fp, pfw->pfw_argv,
rec, nrecs, aggdata->dtada_data, aggdata->dtada_size,
aggsdata, naggvars) == -1)
return (pfw->pfw_err = dtp->dt_errno);
/*
* For each aggregation, indicate that it has been printed, casting
* away the const as necessary.
*/
for (i = 1; i < naggvars; i++) {
agg = aggsdata[i]->dtada_desc;
((dtrace_aggdesc_t *)agg)->dtagd_flags |= DTRACE_AGD_PRINTED;
}
return (0);
}
/*ARGSUSED*/
int
dtrace_fprinta(dtrace_hdl_t *dtp, FILE *fp, void *fmtdata,
const dtrace_probedata_t *data, const dtrace_recdesc_t *recs,
uint_t nrecs, const void *buf, size_t len)
{
dt_pfwalk_t pfw;
int i, naggvars = 0;
dtrace_aggvarid_t *aggvars;
aggvars = alloca(nrecs * sizeof (dtrace_aggvarid_t));
/*
* This might be a printa() with multiple aggregation variables. We
* need to scan forward through the records until we find a record from
* a different statement.
*/
for (i = 0; i < nrecs; i++) {
const dtrace_recdesc_t *nrec = &recs[i];
if (nrec->dtrd_uarg != recs->dtrd_uarg)
break;
if (nrec->dtrd_action != recs->dtrd_action)
return (dt_set_errno(dtp, EDT_BADAGG));
aggvars[naggvars++] =
/* LINTED - alignment */
*((dtrace_aggvarid_t *)((caddr_t)buf + nrec->dtrd_offset));
}
if (naggvars == 0)
return (dt_set_errno(dtp, EDT_BADAGG));
pfw.pfw_argv = fmtdata;
pfw.pfw_fp = fp;
pfw.pfw_err = 0;
if (naggvars == 1) {
pfw.pfw_aid = aggvars[0];
if (dtrace_aggregate_walk_sorted(dtp,
dt_fprinta, &pfw) == -1 || pfw.pfw_err != 0)
return (-1); /* errno is set for us */
} else {
if (dtrace_aggregate_walk_joined(dtp, aggvars, naggvars,
dt_fprintas, &pfw) == -1 || pfw.pfw_err != 0)
return (-1); /* errno is set for us */
}
return (i);
}