freebsd-nq/module/zfs/zil.c
Brian Behlendorf c409e4647f Add missing ZFS tunables
This commit adds module options for all existing zfs tunables.
Ideally the average user should never need to modify any of these
values.  However, in practice sometimes you do need to tweak these
values for one reason or another.  In those cases it's nice not to
have to resort to rebuilding from source.  All tunables are visable
to modinfo and the list is as follows:

$ modinfo module/zfs/zfs.ko
filename:       module/zfs/zfs.ko
license:        CDDL
author:         Sun Microsystems/Oracle, Lawrence Livermore National Laboratory
description:    ZFS
srcversion:     8EAB1D71DACE05B5AA61567
depends:        spl,znvpair,zcommon,zunicode,zavl
vermagic:       2.6.32-131.0.5.el6.x86_64 SMP mod_unload modversions
parm:           zvol_major:Major number for zvol device (uint)
parm:           zvol_threads:Number of threads for zvol device (uint)
parm:           zio_injection_enabled:Enable fault injection (int)
parm:           zio_bulk_flags:Additional flags to pass to bulk buffers (int)
parm:           zio_delay_max:Max zio millisec delay before posting event (int)
parm:           zio_requeue_io_start_cut_in_line:Prioritize requeued I/O (bool)
parm:           zil_replay_disable:Disable intent logging replay (int)
parm:           zfs_nocacheflush:Disable cache flushes (bool)
parm:           zfs_read_chunk_size:Bytes to read per chunk (long)
parm:           zfs_vdev_max_pending:Max pending per-vdev I/Os (int)
parm:           zfs_vdev_min_pending:Min pending per-vdev I/Os (int)
parm:           zfs_vdev_aggregation_limit:Max vdev I/O aggregation size (int)
parm:           zfs_vdev_time_shift:Deadline time shift for vdev I/O (int)
parm:           zfs_vdev_ramp_rate:Exponential I/O issue ramp-up rate (int)
parm:           zfs_vdev_read_gap_limit:Aggregate read I/O over gap (int)
parm:           zfs_vdev_write_gap_limit:Aggregate write I/O over gap (int)
parm:           zfs_vdev_scheduler:I/O scheduler (charp)
parm:           zfs_vdev_cache_max:Inflate reads small than max (int)
parm:           zfs_vdev_cache_size:Total size of the per-disk cache (int)
parm:           zfs_vdev_cache_bshift:Shift size to inflate reads too (int)
parm:           zfs_scrub_limit:Max scrub/resilver I/O per leaf vdev (int)
parm:           zfs_recover:Set to attempt to recover from fatal errors (int)
parm:           spa_config_path:SPA config file (/etc/zfs/zpool.cache) (charp)
parm:           zfs_zevent_len_max:Max event queue length (int)
parm:           zfs_zevent_cols:Max event column width (int)
parm:           zfs_zevent_console:Log events to the console (int)
parm:           zfs_top_maxinflight:Max I/Os per top-level (int)
parm:           zfs_resilver_delay:Number of ticks to delay resilver (int)
parm:           zfs_scrub_delay:Number of ticks to delay scrub (int)
parm:           zfs_scan_idle:Idle window in clock ticks (int)
parm:           zfs_scan_min_time_ms:Min millisecs to scrub per txg (int)
parm:           zfs_free_min_time_ms:Min millisecs to free per txg (int)
parm:           zfs_resilver_min_time_ms:Min millisecs to resilver per txg (int)
parm:           zfs_no_scrub_io:Set to disable scrub I/O (bool)
parm:           zfs_no_scrub_prefetch:Set to disable scrub prefetching (bool)
parm:           zfs_txg_timeout:Max seconds worth of delta per txg (int)
parm:           zfs_no_write_throttle:Disable write throttling (int)
parm:           zfs_write_limit_shift:log2(fraction of memory) per txg (int)
parm:           zfs_txg_synctime_ms:Target milliseconds between tgx sync (int)
parm:           zfs_write_limit_min:Min tgx write limit (ulong)
parm:           zfs_write_limit_max:Max tgx write limit (ulong)
parm:           zfs_write_limit_inflated:Inflated tgx write limit (ulong)
parm:           zfs_write_limit_override:Override tgx write limit (ulong)
parm:           zfs_prefetch_disable:Disable all ZFS prefetching (int)
parm:           zfetch_max_streams:Max number of streams per zfetch (uint)
parm:           zfetch_min_sec_reap:Min time before stream reclaim (uint)
parm:           zfetch_block_cap:Max number of blocks to fetch at a time (uint)
parm:           zfetch_array_rd_sz:Number of bytes in a array_read (ulong)
parm:           zfs_pd_blks_max:Max number of blocks to prefetch (int)
parm:           zfs_dedup_prefetch:Enable prefetching dedup-ed blks (int)
parm:           zfs_arc_min:Min arc size (ulong)
parm:           zfs_arc_max:Max arc size (ulong)
parm:           zfs_arc_meta_limit:Meta limit for arc size (ulong)
parm:           zfs_arc_reduce_dnlc_percent:Meta reclaim percentage (int)
parm:           zfs_arc_grow_retry:Seconds before growing arc size (int)
parm:           zfs_arc_shrink_shift:log2(fraction of arc to reclaim) (int)
parm:           zfs_arc_p_min_shift:arc_c shift to calc min/max arc_p (int)
2011-05-04 10:02:37 -07:00

2006 lines
53 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
*/
/* Portions Copyright 2010 Robert Milkowski */
#include <sys/zfs_context.h>
#include <sys/spa.h>
#include <sys/dmu.h>
#include <sys/zap.h>
#include <sys/arc.h>
#include <sys/stat.h>
#include <sys/resource.h>
#include <sys/zil.h>
#include <sys/zil_impl.h>
#include <sys/dsl_dataset.h>
#include <sys/vdev_impl.h>
#include <sys/dmu_tx.h>
#include <sys/dsl_pool.h>
/*
* The zfs intent log (ZIL) saves transaction records of system calls
* that change the file system in memory with enough information
* to be able to replay them. These are stored in memory until
* either the DMU transaction group (txg) commits them to the stable pool
* and they can be discarded, or they are flushed to the stable log
* (also in the pool) due to a fsync, O_DSYNC or other synchronous
* requirement. In the event of a panic or power fail then those log
* records (transactions) are replayed.
*
* There is one ZIL per file system. Its on-disk (pool) format consists
* of 3 parts:
*
* - ZIL header
* - ZIL blocks
* - ZIL records
*
* A log record holds a system call transaction. Log blocks can
* hold many log records and the blocks are chained together.
* Each ZIL block contains a block pointer (blkptr_t) to the next
* ZIL block in the chain. The ZIL header points to the first
* block in the chain. Note there is not a fixed place in the pool
* to hold blocks. They are dynamically allocated and freed as
* needed from the blocks available. Figure X shows the ZIL structure:
*/
/*
* This global ZIL switch affects all pools
*/
int zil_replay_disable = 0; /* disable intent logging replay */
/*
* Tunable parameter for debugging or performance analysis. Setting
* zfs_nocacheflush will cause corruption on power loss if a volatile
* out-of-order write cache is enabled.
*/
int zfs_nocacheflush = 0;
static kmem_cache_t *zil_lwb_cache;
static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
#define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
/*
* ziltest is by and large an ugly hack, but very useful in
* checking replay without tedious work.
* When running ziltest we want to keep all itx's and so maintain
* a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG
* We subtract TXG_CONCURRENT_STATES to allow for common code.
*/
#define ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES)
static int
zil_bp_compare(const void *x1, const void *x2)
{
const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
return (-1);
if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
return (1);
if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
return (-1);
if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
return (1);
return (0);
}
static void
zil_bp_tree_init(zilog_t *zilog)
{
avl_create(&zilog->zl_bp_tree, zil_bp_compare,
sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
}
static void
zil_bp_tree_fini(zilog_t *zilog)
{
avl_tree_t *t = &zilog->zl_bp_tree;
zil_bp_node_t *zn;
void *cookie = NULL;
while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
kmem_free(zn, sizeof (zil_bp_node_t));
avl_destroy(t);
}
int
zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
{
avl_tree_t *t = &zilog->zl_bp_tree;
const dva_t *dva = BP_IDENTITY(bp);
zil_bp_node_t *zn;
avl_index_t where;
if (avl_find(t, dva, &where) != NULL)
return (EEXIST);
zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
zn->zn_dva = *dva;
avl_insert(t, zn, where);
return (0);
}
static zil_header_t *
zil_header_in_syncing_context(zilog_t *zilog)
{
return ((zil_header_t *)zilog->zl_header);
}
static void
zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
{
zio_cksum_t *zc = &bp->blk_cksum;
zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
}
/*
* Read a log block and make sure it's valid.
*/
static int
zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
char **end)
{
enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
uint32_t aflags = ARC_WAIT;
arc_buf_t *abuf = NULL;
zbookmark_t zb;
int error;
if (zilog->zl_header->zh_claim_txg == 0)
zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
zio_flags |= ZIO_FLAG_SPECULATIVE;
SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
error = dsl_read_nolock(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
if (error == 0) {
zio_cksum_t cksum = bp->blk_cksum;
/*
* Validate the checksummed log block.
*
* Sequence numbers should be... sequential. The checksum
* verifier for the next block should be bp's checksum plus 1.
*
* Also check the log chain linkage and size used.
*/
cksum.zc_word[ZIL_ZC_SEQ]++;
if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
zil_chain_t *zilc = abuf->b_data;
char *lr = (char *)(zilc + 1);
uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
error = ECKSUM;
} else {
bcopy(lr, dst, len);
*end = (char *)dst + len;
*nbp = zilc->zc_next_blk;
}
} else {
char *lr = abuf->b_data;
uint64_t size = BP_GET_LSIZE(bp);
zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
(zilc->zc_nused > (size - sizeof (*zilc)))) {
error = ECKSUM;
} else {
bcopy(lr, dst, zilc->zc_nused);
*end = (char *)dst + zilc->zc_nused;
*nbp = zilc->zc_next_blk;
}
}
VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1);
}
return (error);
}
/*
* Read a TX_WRITE log data block.
*/
static int
zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
{
enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
const blkptr_t *bp = &lr->lr_blkptr;
uint32_t aflags = ARC_WAIT;
arc_buf_t *abuf = NULL;
zbookmark_t zb;
int error;
if (BP_IS_HOLE(bp)) {
if (wbuf != NULL)
bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
return (0);
}
if (zilog->zl_header->zh_claim_txg == 0)
zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
error = arc_read_nolock(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
if (error == 0) {
if (wbuf != NULL)
bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
(void) arc_buf_remove_ref(abuf, &abuf);
}
return (error);
}
/*
* Parse the intent log, and call parse_func for each valid record within.
*/
int
zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
{
const zil_header_t *zh = zilog->zl_header;
boolean_t claimed = !!zh->zh_claim_txg;
uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
uint64_t max_blk_seq = 0;
uint64_t max_lr_seq = 0;
uint64_t blk_count = 0;
uint64_t lr_count = 0;
blkptr_t blk, next_blk;
char *lrbuf, *lrp;
int error = 0;
bzero(&next_blk, sizeof(blkptr_t));
/*
* Old logs didn't record the maximum zh_claim_lr_seq.
*/
if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
claim_lr_seq = UINT64_MAX;
/*
* Starting at the block pointed to by zh_log we read the log chain.
* For each block in the chain we strongly check that block to
* ensure its validity. We stop when an invalid block is found.
* For each block pointer in the chain we call parse_blk_func().
* For each record in each valid block we call parse_lr_func().
* If the log has been claimed, stop if we encounter a sequence
* number greater than the highest claimed sequence number.
*/
lrbuf = zio_buf_alloc(SPA_MAXBLOCKSIZE);
zil_bp_tree_init(zilog);
for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
int reclen;
char *end = NULL;
if (blk_seq > claim_blk_seq)
break;
if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
break;
ASSERT3U(max_blk_seq, <, blk_seq);
max_blk_seq = blk_seq;
blk_count++;
if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
break;
error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
if (error)
break;
for (lrp = lrbuf; lrp < end; lrp += reclen) {
lr_t *lr = (lr_t *)lrp;
reclen = lr->lrc_reclen;
ASSERT3U(reclen, >=, sizeof (lr_t));
if (lr->lrc_seq > claim_lr_seq)
goto done;
if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
goto done;
ASSERT3U(max_lr_seq, <, lr->lrc_seq);
max_lr_seq = lr->lrc_seq;
lr_count++;
}
}
done:
zilog->zl_parse_error = error;
zilog->zl_parse_blk_seq = max_blk_seq;
zilog->zl_parse_lr_seq = max_lr_seq;
zilog->zl_parse_blk_count = blk_count;
zilog->zl_parse_lr_count = lr_count;
ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
(max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
zil_bp_tree_fini(zilog);
zio_buf_free(lrbuf, SPA_MAXBLOCKSIZE);
return (error);
}
static int
zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
{
/*
* Claim log block if not already committed and not already claimed.
* If tx == NULL, just verify that the block is claimable.
*/
if (bp->blk_birth < first_txg || zil_bp_tree_add(zilog, bp) != 0)
return (0);
return (zio_wait(zio_claim(NULL, zilog->zl_spa,
tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
}
static int
zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
{
lr_write_t *lr = (lr_write_t *)lrc;
int error;
if (lrc->lrc_txtype != TX_WRITE)
return (0);
/*
* If the block is not readable, don't claim it. This can happen
* in normal operation when a log block is written to disk before
* some of the dmu_sync() blocks it points to. In this case, the
* transaction cannot have been committed to anyone (we would have
* waited for all writes to be stable first), so it is semantically
* correct to declare this the end of the log.
*/
if (lr->lr_blkptr.blk_birth >= first_txg &&
(error = zil_read_log_data(zilog, lr, NULL)) != 0)
return (error);
return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
}
/* ARGSUSED */
static int
zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
{
zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
return (0);
}
static int
zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
{
lr_write_t *lr = (lr_write_t *)lrc;
blkptr_t *bp = &lr->lr_blkptr;
/*
* If we previously claimed it, we need to free it.
*/
if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0)
zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
return (0);
}
static lwb_t *
zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg)
{
lwb_t *lwb;
lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
lwb->lwb_zilog = zilog;
lwb->lwb_blk = *bp;
lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
lwb->lwb_max_txg = txg;
lwb->lwb_zio = NULL;
lwb->lwb_tx = NULL;
if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
lwb->lwb_nused = sizeof (zil_chain_t);
lwb->lwb_sz = BP_GET_LSIZE(bp);
} else {
lwb->lwb_nused = 0;
lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
}
mutex_enter(&zilog->zl_lock);
list_insert_tail(&zilog->zl_lwb_list, lwb);
mutex_exit(&zilog->zl_lock);
return (lwb);
}
/*
* Create an on-disk intent log.
*/
static lwb_t *
zil_create(zilog_t *zilog)
{
const zil_header_t *zh = zilog->zl_header;
lwb_t *lwb = NULL;
uint64_t txg = 0;
dmu_tx_t *tx = NULL;
blkptr_t blk;
int error = 0;
/*
* Wait for any previous destroy to complete.
*/
txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
ASSERT(zh->zh_claim_txg == 0);
ASSERT(zh->zh_replay_seq == 0);
blk = zh->zh_log;
/*
* Allocate an initial log block if:
* - there isn't one already
* - the existing block is the wrong endianess
*/
if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
tx = dmu_tx_create(zilog->zl_os);
VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
txg = dmu_tx_get_txg(tx);
if (!BP_IS_HOLE(&blk)) {
zio_free_zil(zilog->zl_spa, txg, &blk);
BP_ZERO(&blk);
}
error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL,
ZIL_MIN_BLKSZ, zilog->zl_logbias == ZFS_LOGBIAS_LATENCY);
if (error == 0)
zil_init_log_chain(zilog, &blk);
}
/*
* Allocate a log write buffer (lwb) for the first log block.
*/
if (error == 0)
lwb = zil_alloc_lwb(zilog, &blk, txg);
/*
* If we just allocated the first log block, commit our transaction
* and wait for zil_sync() to stuff the block poiner into zh_log.
* (zh is part of the MOS, so we cannot modify it in open context.)
*/
if (tx != NULL) {
dmu_tx_commit(tx);
txg_wait_synced(zilog->zl_dmu_pool, txg);
}
ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
return (lwb);
}
/*
* In one tx, free all log blocks and clear the log header.
* If keep_first is set, then we're replaying a log with no content.
* We want to keep the first block, however, so that the first
* synchronous transaction doesn't require a txg_wait_synced()
* in zil_create(). We don't need to txg_wait_synced() here either
* when keep_first is set, because both zil_create() and zil_destroy()
* will wait for any in-progress destroys to complete.
*/
void
zil_destroy(zilog_t *zilog, boolean_t keep_first)
{
const zil_header_t *zh = zilog->zl_header;
lwb_t *lwb;
dmu_tx_t *tx;
uint64_t txg;
/*
* Wait for any previous destroy to complete.
*/
txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
zilog->zl_old_header = *zh; /* debugging aid */
if (BP_IS_HOLE(&zh->zh_log))
return;
tx = dmu_tx_create(zilog->zl_os);
VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
txg = dmu_tx_get_txg(tx);
mutex_enter(&zilog->zl_lock);
ASSERT3U(zilog->zl_destroy_txg, <, txg);
zilog->zl_destroy_txg = txg;
zilog->zl_keep_first = keep_first;
if (!list_is_empty(&zilog->zl_lwb_list)) {
ASSERT(zh->zh_claim_txg == 0);
ASSERT(!keep_first);
while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
list_remove(&zilog->zl_lwb_list, lwb);
if (lwb->lwb_buf != NULL)
zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk);
kmem_cache_free(zil_lwb_cache, lwb);
}
} else if (!keep_first) {
(void) zil_parse(zilog, zil_free_log_block,
zil_free_log_record, tx, zh->zh_claim_txg);
}
mutex_exit(&zilog->zl_lock);
dmu_tx_commit(tx);
}
int
zil_claim(const char *osname, void *txarg)
{
dmu_tx_t *tx = txarg;
uint64_t first_txg = dmu_tx_get_txg(tx);
zilog_t *zilog;
zil_header_t *zh;
objset_t *os;
int error;
error = dmu_objset_hold(osname, FTAG, &os);
if (error) {
cmn_err(CE_WARN, "can't open objset for %s", osname);
return (0);
}
zilog = dmu_objset_zil(os);
zh = zil_header_in_syncing_context(zilog);
if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
if (!BP_IS_HOLE(&zh->zh_log))
zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
BP_ZERO(&zh->zh_log);
dsl_dataset_dirty(dmu_objset_ds(os), tx);
dmu_objset_rele(os, FTAG);
return (0);
}
/*
* Claim all log blocks if we haven't already done so, and remember
* the highest claimed sequence number. This ensures that if we can
* read only part of the log now (e.g. due to a missing device),
* but we can read the entire log later, we will not try to replay
* or destroy beyond the last block we successfully claimed.
*/
ASSERT3U(zh->zh_claim_txg, <=, first_txg);
if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
(void) zil_parse(zilog, zil_claim_log_block,
zil_claim_log_record, tx, first_txg);
zh->zh_claim_txg = first_txg;
zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
zh->zh_flags |= ZIL_REPLAY_NEEDED;
zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
dsl_dataset_dirty(dmu_objset_ds(os), tx);
}
ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
dmu_objset_rele(os, FTAG);
return (0);
}
/*
* Check the log by walking the log chain.
* Checksum errors are ok as they indicate the end of the chain.
* Any other error (no device or read failure) returns an error.
*/
int
zil_check_log_chain(const char *osname, void *tx)
{
zilog_t *zilog;
objset_t *os;
blkptr_t *bp;
int error;
ASSERT(tx == NULL);
error = dmu_objset_hold(osname, FTAG, &os);
if (error) {
cmn_err(CE_WARN, "can't open objset for %s", osname);
return (0);
}
zilog = dmu_objset_zil(os);
bp = (blkptr_t *)&zilog->zl_header->zh_log;
/*
* Check the first block and determine if it's on a log device
* which may have been removed or faulted prior to loading this
* pool. If so, there's no point in checking the rest of the log
* as its content should have already been synced to the pool.
*/
if (!BP_IS_HOLE(bp)) {
vdev_t *vd;
boolean_t valid = B_TRUE;
spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
if (vd->vdev_islog && vdev_is_dead(vd))
valid = vdev_log_state_valid(vd);
spa_config_exit(os->os_spa, SCL_STATE, FTAG);
if (!valid) {
dmu_objset_rele(os, FTAG);
return (0);
}
}
/*
* Because tx == NULL, zil_claim_log_block() will not actually claim
* any blocks, but just determine whether it is possible to do so.
* In addition to checking the log chain, zil_claim_log_block()
* will invoke zio_claim() with a done func of spa_claim_notify(),
* which will update spa_max_claim_txg. See spa_load() for details.
*/
error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
dmu_objset_rele(os, FTAG);
return ((error == ECKSUM || error == ENOENT) ? 0 : error);
}
static int
zil_vdev_compare(const void *x1, const void *x2)
{
const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
if (v1 < v2)
return (-1);
if (v1 > v2)
return (1);
return (0);
}
void
zil_add_block(zilog_t *zilog, const blkptr_t *bp)
{
avl_tree_t *t = &zilog->zl_vdev_tree;
avl_index_t where;
zil_vdev_node_t *zv, zvsearch;
int ndvas = BP_GET_NDVAS(bp);
int i;
if (zfs_nocacheflush)
return;
ASSERT(zilog->zl_writer);
/*
* Even though we're zl_writer, we still need a lock because the
* zl_get_data() callbacks may have dmu_sync() done callbacks
* that will run concurrently.
*/
mutex_enter(&zilog->zl_vdev_lock);
for (i = 0; i < ndvas; i++) {
zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
if (avl_find(t, &zvsearch, &where) == NULL) {
zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
zv->zv_vdev = zvsearch.zv_vdev;
avl_insert(t, zv, where);
}
}
mutex_exit(&zilog->zl_vdev_lock);
}
static void
zil_flush_vdevs(zilog_t *zilog)
{
spa_t *spa = zilog->zl_spa;
avl_tree_t *t = &zilog->zl_vdev_tree;
void *cookie = NULL;
zil_vdev_node_t *zv;
zio_t *zio;
ASSERT(zilog->zl_writer);
/*
* We don't need zl_vdev_lock here because we're the zl_writer,
* and all zl_get_data() callbacks are done.
*/
if (avl_numnodes(t) == 0)
return;
spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
if (vd != NULL)
zio_flush(zio, vd);
kmem_free(zv, sizeof (*zv));
}
/*
* Wait for all the flushes to complete. Not all devices actually
* support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
*/
(void) zio_wait(zio);
spa_config_exit(spa, SCL_STATE, FTAG);
}
/*
* Function called when a log block write completes
*/
static void
zil_lwb_write_done(zio_t *zio)
{
lwb_t *lwb = zio->io_private;
zilog_t *zilog = lwb->lwb_zilog;
dmu_tx_t *tx = lwb->lwb_tx;
ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
ASSERT(!BP_IS_GANG(zio->io_bp));
ASSERT(!BP_IS_HOLE(zio->io_bp));
ASSERT(zio->io_bp->blk_fill == 0);
/*
* Ensure the lwb buffer pointer is cleared before releasing
* the txg. If we have had an allocation failure and
* the txg is waiting to sync then we want want zil_sync()
* to remove the lwb so that it's not picked up as the next new
* one in zil_commit_writer(). zil_sync() will only remove
* the lwb if lwb_buf is null.
*/
zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
mutex_enter(&zilog->zl_lock);
lwb->lwb_buf = NULL;
lwb->lwb_tx = NULL;
mutex_exit(&zilog->zl_lock);
/*
* Now that we've written this log block, we have a stable pointer
* to the next block in the chain, so it's OK to let the txg in
* which we allocated the next block sync.
*/
dmu_tx_commit(tx);
}
/*
* Initialize the io for a log block.
*/
static void
zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
{
zbookmark_t zb;
SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
if (zilog->zl_root_zio == NULL) {
zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
ZIO_FLAG_CANFAIL);
}
if (lwb->lwb_zio == NULL) {
lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk),
zil_lwb_write_done, lwb, ZIO_PRIORITY_LOG_WRITE,
ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
}
}
/*
* Define a limited set of intent log block sizes.
* These must be a multiple of 4KB. Note only the amount used (again
* aligned to 4KB) actually gets written. However, we can't always just
* allocate SPA_MAXBLOCKSIZE as the slog space could be exhausted.
*/
uint64_t zil_block_buckets[] = {
4096, /* non TX_WRITE */
8192+4096, /* data base */
32*1024 + 4096, /* NFS writes */
UINT64_MAX
};
/*
* Use the slog as long as the logbias is 'latency' and the current commit size
* is less than the limit or the total list size is less than 2X the limit.
* Limit checking is disabled by setting zil_slog_limit to UINT64_MAX.
*/
uint64_t zil_slog_limit = 1024 * 1024;
#define USE_SLOG(zilog) (((zilog)->zl_logbias == ZFS_LOGBIAS_LATENCY) && \
(((zilog)->zl_cur_used < zil_slog_limit) || \
((zilog)->zl_itx_list_sz < (zil_slog_limit << 1))))
/*
* Start a log block write and advance to the next log block.
* Calls are serialized.
*/
static lwb_t *
zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
{
lwb_t *nlwb = NULL;
zil_chain_t *zilc;
spa_t *spa = zilog->zl_spa;
blkptr_t *bp;
dmu_tx_t *tx;
uint64_t txg;
uint64_t zil_blksz, wsz;
int i, error;
if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
zilc = (zil_chain_t *)lwb->lwb_buf;
bp = &zilc->zc_next_blk;
} else {
zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
bp = &zilc->zc_next_blk;
}
ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
/*
* Allocate the next block and save its address in this block
* before writing it in order to establish the log chain.
* Note that if the allocation of nlwb synced before we wrote
* the block that points at it (lwb), we'd leak it if we crashed.
* Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
* We dirty the dataset to ensure that zil_sync() will be called
* to clean up in the event of allocation failure or I/O failure.
*/
tx = dmu_tx_create(zilog->zl_os);
VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
txg = dmu_tx_get_txg(tx);
lwb->lwb_tx = tx;
/*
* Log blocks are pre-allocated. Here we select the size of the next
* block, based on size used in the last block.
* - first find the smallest bucket that will fit the block from a
* limited set of block sizes. This is because it's faster to write
* blocks allocated from the same metaslab as they are adjacent or
* close.
* - next find the maximum from the new suggested size and an array of
* previous sizes. This lessens a picket fence effect of wrongly
* guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
* requests.
*
* Note we only write what is used, but we can't just allocate
* the maximum block size because we can exhaust the available
* pool log space.
*/
zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
continue;
zil_blksz = zil_block_buckets[i];
if (zil_blksz == UINT64_MAX)
zil_blksz = SPA_MAXBLOCKSIZE;
zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
for (i = 0; i < ZIL_PREV_BLKS; i++)
zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
BP_ZERO(bp);
/* pass the old blkptr in order to spread log blocks across devs */
error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz,
USE_SLOG(zilog));
if (!error) {
ASSERT3U(bp->blk_birth, ==, txg);
bp->blk_cksum = lwb->lwb_blk.blk_cksum;
bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
/*
* Allocate a new log write buffer (lwb).
*/
nlwb = zil_alloc_lwb(zilog, bp, txg);
/* Record the block for later vdev flushing */
zil_add_block(zilog, &lwb->lwb_blk);
}
if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
/* For Slim ZIL only write what is used. */
wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
ASSERT3U(wsz, <=, lwb->lwb_sz);
zio_shrink(lwb->lwb_zio, wsz);
} else {
wsz = lwb->lwb_sz;
}
zilc->zc_pad = 0;
zilc->zc_nused = lwb->lwb_nused;
zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
/*
* clear unused data for security
*/
bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */
/*
* If there was an allocation failure then nlwb will be null which
* forces a txg_wait_synced().
*/
return (nlwb);
}
static lwb_t *
zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
{
lr_t *lrc = &itx->itx_lr; /* common log record */
lr_write_t *lrw = (lr_write_t *)lrc;
char *lr_buf;
uint64_t txg = lrc->lrc_txg;
uint64_t reclen = lrc->lrc_reclen;
uint64_t dlen = 0;
if (lwb == NULL)
return (NULL);
ASSERT(lwb->lwb_buf != NULL);
if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY)
dlen = P2ROUNDUP_TYPED(
lrw->lr_length, sizeof (uint64_t), uint64_t);
zilog->zl_cur_used += (reclen + dlen);
zil_lwb_write_init(zilog, lwb);
/*
* If this record won't fit in the current log block, start a new one.
*/
if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
lwb = zil_lwb_write_start(zilog, lwb);
if (lwb == NULL)
return (NULL);
zil_lwb_write_init(zilog, lwb);
ASSERT(LWB_EMPTY(lwb));
if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
txg_wait_synced(zilog->zl_dmu_pool, txg);
return (lwb);
}
}
lr_buf = lwb->lwb_buf + lwb->lwb_nused;
bcopy(lrc, lr_buf, reclen);
lrc = (lr_t *)lr_buf;
lrw = (lr_write_t *)lrc;
/*
* If it's a write, fetch the data or get its blkptr as appropriate.
*/
if (lrc->lrc_txtype == TX_WRITE) {
if (txg > spa_freeze_txg(zilog->zl_spa))
txg_wait_synced(zilog->zl_dmu_pool, txg);
if (itx->itx_wr_state != WR_COPIED) {
char *dbuf;
int error;
if (dlen) {
ASSERT(itx->itx_wr_state == WR_NEED_COPY);
dbuf = lr_buf + reclen;
lrw->lr_common.lrc_reclen += dlen;
} else {
ASSERT(itx->itx_wr_state == WR_INDIRECT);
dbuf = NULL;
}
error = zilog->zl_get_data(
itx->itx_private, lrw, dbuf, lwb->lwb_zio);
if (error == EIO) {
txg_wait_synced(zilog->zl_dmu_pool, txg);
return (lwb);
}
if (error) {
ASSERT(error == ENOENT || error == EEXIST ||
error == EALREADY);
return (lwb);
}
}
}
/*
* We're actually making an entry, so update lrc_seq to be the
* log record sequence number. Note that this is generally not
* equal to the itx sequence number because not all transactions
* are synchronous, and sometimes spa_sync() gets there first.
*/
lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
lwb->lwb_nused += reclen + dlen;
lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
ASSERT3U(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)), ==, 0);
return (lwb);
}
itx_t *
zil_itx_create(uint64_t txtype, size_t lrsize)
{
itx_t *itx;
lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize,
KM_PUSHPAGE | KM_NODEBUG);
itx->itx_lr.lrc_txtype = txtype;
itx->itx_lr.lrc_reclen = lrsize;
itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */
itx->itx_lr.lrc_seq = 0; /* defensive */
itx->itx_sync = B_TRUE; /* default is synchronous */
return (itx);
}
void
zil_itx_destroy(itx_t *itx)
{
kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
}
/*
* Free up the sync and async itxs. The itxs_t has already been detached
* so no locks are needed.
*/
static void
zil_itxg_clean(itxs_t *itxs)
{
itx_t *itx;
list_t *list;
avl_tree_t *t;
void *cookie;
itx_async_node_t *ian;
list = &itxs->i_sync_list;
while ((itx = list_head(list)) != NULL) {
list_remove(list, itx);
kmem_free(itx, offsetof(itx_t, itx_lr) +
itx->itx_lr.lrc_reclen);
}
cookie = NULL;
t = &itxs->i_async_tree;
while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
list = &ian->ia_list;
while ((itx = list_head(list)) != NULL) {
list_remove(list, itx);
kmem_free(itx, offsetof(itx_t, itx_lr) +
itx->itx_lr.lrc_reclen);
}
list_destroy(list);
kmem_free(ian, sizeof (itx_async_node_t));
}
avl_destroy(t);
kmem_free(itxs, sizeof (itxs_t));
}
static int
zil_aitx_compare(const void *x1, const void *x2)
{
const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
if (o1 < o2)
return (-1);
if (o1 > o2)
return (1);
return (0);
}
/*
* Remove all async itx with the given oid.
*/
static void
zil_remove_async(zilog_t *zilog, uint64_t oid)
{
uint64_t otxg, txg;
itx_async_node_t *ian;
avl_tree_t *t;
avl_index_t where;
list_t clean_list;
itx_t *itx;
ASSERT(oid != 0);
list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
otxg = ZILTEST_TXG;
else
otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
mutex_enter(&itxg->itxg_lock);
if (itxg->itxg_txg != txg) {
mutex_exit(&itxg->itxg_lock);
continue;
}
/*
* Locate the object node and append its list.
*/
t = &itxg->itxg_itxs->i_async_tree;
ian = avl_find(t, &oid, &where);
if (ian != NULL)
list_move_tail(&clean_list, &ian->ia_list);
mutex_exit(&itxg->itxg_lock);
}
while ((itx = list_head(&clean_list)) != NULL) {
list_remove(&clean_list, itx);
kmem_free(itx, offsetof(itx_t, itx_lr) +
itx->itx_lr.lrc_reclen);
}
list_destroy(&clean_list);
}
void
zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
{
uint64_t txg;
itxg_t *itxg;
itxs_t *itxs, *clean = NULL;
/*
* Object ids can be re-instantiated in the next txg so
* remove any async transactions to avoid future leaks.
* This can happen if a fsync occurs on the re-instantiated
* object for a WR_INDIRECT or WR_NEED_COPY write, which gets
* the new file data and flushes a write record for the old object.
*/
if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
zil_remove_async(zilog, itx->itx_oid);
/*
* Ensure the data of a renamed file is committed before the rename.
*/
if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
zil_async_to_sync(zilog, itx->itx_oid);
if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
txg = ZILTEST_TXG;
else
txg = dmu_tx_get_txg(tx);
itxg = &zilog->zl_itxg[txg & TXG_MASK];
mutex_enter(&itxg->itxg_lock);
itxs = itxg->itxg_itxs;
if (itxg->itxg_txg != txg) {
if (itxs != NULL) {
/*
* The zil_clean callback hasn't got around to cleaning
* this itxg. Save the itxs for release below.
* This should be rare.
*/
atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
itxg->itxg_sod = 0;
clean = itxg->itxg_itxs;
}
ASSERT(itxg->itxg_sod == 0);
itxg->itxg_txg = txg;
itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
list_create(&itxs->i_sync_list, sizeof (itx_t),
offsetof(itx_t, itx_node));
avl_create(&itxs->i_async_tree, zil_aitx_compare,
sizeof (itx_async_node_t),
offsetof(itx_async_node_t, ia_node));
}
if (itx->itx_sync) {
list_insert_tail(&itxs->i_sync_list, itx);
atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod);
itxg->itxg_sod += itx->itx_sod;
} else {
avl_tree_t *t = &itxs->i_async_tree;
uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
itx_async_node_t *ian;
avl_index_t where;
ian = avl_find(t, &foid, &where);
if (ian == NULL) {
ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
list_create(&ian->ia_list, sizeof (itx_t),
offsetof(itx_t, itx_node));
ian->ia_foid = foid;
avl_insert(t, ian, where);
}
list_insert_tail(&ian->ia_list, itx);
}
itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
mutex_exit(&itxg->itxg_lock);
/* Release the old itxs now we've dropped the lock */
if (clean != NULL)
zil_itxg_clean(clean);
}
/*
* If there are any in-memory intent log transactions which have now been
* synced then start up a taskq to free them.
*/
void
zil_clean(zilog_t *zilog, uint64_t synced_txg)
{
itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
itxs_t *clean_me;
mutex_enter(&itxg->itxg_lock);
if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
mutex_exit(&itxg->itxg_lock);
return;
}
ASSERT3U(itxg->itxg_txg, <=, synced_txg);
ASSERT(itxg->itxg_txg != 0);
ASSERT(zilog->zl_clean_taskq != NULL);
atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
itxg->itxg_sod = 0;
clean_me = itxg->itxg_itxs;
itxg->itxg_itxs = NULL;
itxg->itxg_txg = 0;
mutex_exit(&itxg->itxg_lock);
/*
* Preferably start a task queue to free up the old itxs but
* if taskq_dispatch can't allocate resources to do that then
* free it in-line. This should be rare. Note, using TQ_SLEEP
* created a bad performance problem.
*/
if (taskq_dispatch(zilog->zl_clean_taskq,
(void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 0)
zil_itxg_clean(clean_me);
}
/*
* Get the list of itxs to commit into zl_itx_commit_list.
*/
static void
zil_get_commit_list(zilog_t *zilog)
{
uint64_t otxg, txg;
list_t *commit_list = &zilog->zl_itx_commit_list;
uint64_t push_sod = 0;
if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
otxg = ZILTEST_TXG;
else
otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
mutex_enter(&itxg->itxg_lock);
if (itxg->itxg_txg != txg) {
mutex_exit(&itxg->itxg_lock);
continue;
}
list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
push_sod += itxg->itxg_sod;
itxg->itxg_sod = 0;
mutex_exit(&itxg->itxg_lock);
}
atomic_add_64(&zilog->zl_itx_list_sz, -push_sod);
}
/*
* Move the async itxs for a specified object to commit into sync lists.
*/
static void
zil_async_to_sync(zilog_t *zilog, uint64_t foid)
{
uint64_t otxg, txg;
itx_async_node_t *ian;
avl_tree_t *t;
avl_index_t where;
if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
otxg = ZILTEST_TXG;
else
otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
mutex_enter(&itxg->itxg_lock);
if (itxg->itxg_txg != txg) {
mutex_exit(&itxg->itxg_lock);
continue;
}
/*
* If a foid is specified then find that node and append its
* list. Otherwise walk the tree appending all the lists
* to the sync list. We add to the end rather than the
* beginning to ensure the create has happened.
*/
t = &itxg->itxg_itxs->i_async_tree;
if (foid != 0) {
ian = avl_find(t, &foid, &where);
if (ian != NULL) {
list_move_tail(&itxg->itxg_itxs->i_sync_list,
&ian->ia_list);
}
} else {
void *cookie = NULL;
while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
list_move_tail(&itxg->itxg_itxs->i_sync_list,
&ian->ia_list);
list_destroy(&ian->ia_list);
kmem_free(ian, sizeof (itx_async_node_t));
}
}
mutex_exit(&itxg->itxg_lock);
}
}
static void
zil_commit_writer(zilog_t *zilog)
{
uint64_t txg;
itx_t *itx;
lwb_t *lwb;
spa_t *spa = zilog->zl_spa;
int error = 0;
ASSERT(zilog->zl_root_zio == NULL);
mutex_exit(&zilog->zl_lock);
zil_get_commit_list(zilog);
/*
* Return if there's nothing to commit before we dirty the fs by
* calling zil_create().
*/
if (list_head(&zilog->zl_itx_commit_list) == NULL) {
mutex_enter(&zilog->zl_lock);
return;
}
if (zilog->zl_suspend) {
lwb = NULL;
} else {
lwb = list_tail(&zilog->zl_lwb_list);
if (lwb == NULL)
lwb = zil_create(zilog);
}
DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
while ((itx = list_head(&zilog->zl_itx_commit_list))) {
txg = itx->itx_lr.lrc_txg;
ASSERT(txg);
if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa))
lwb = zil_lwb_commit(zilog, itx, lwb);
list_remove(&zilog->zl_itx_commit_list, itx);
kmem_free(itx, offsetof(itx_t, itx_lr)
+ itx->itx_lr.lrc_reclen);
}
DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
/* write the last block out */
if (lwb != NULL && lwb->lwb_zio != NULL)
lwb = zil_lwb_write_start(zilog, lwb);
zilog->zl_cur_used = 0;
/*
* Wait if necessary for the log blocks to be on stable storage.
*/
if (zilog->zl_root_zio) {
error = zio_wait(zilog->zl_root_zio);
zilog->zl_root_zio = NULL;
zil_flush_vdevs(zilog);
}
if (error || lwb == NULL)
txg_wait_synced(zilog->zl_dmu_pool, 0);
mutex_enter(&zilog->zl_lock);
/*
* Remember the highest committed log sequence number for ztest.
* We only update this value when all the log writes succeeded,
* because ztest wants to ASSERT that it got the whole log chain.
*/
if (error == 0 && lwb != NULL)
zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
}
/*
* Commit zfs transactions to stable storage.
* If foid is 0 push out all transactions, otherwise push only those
* for that object or might reference that object.
*
* itxs are committed in batches. In a heavily stressed zil there will be
* a commit writer thread who is writing out a bunch of itxs to the log
* for a set of committing threads (cthreads) in the same batch as the writer.
* Those cthreads are all waiting on the same cv for that batch.
*
* There will also be a different and growing batch of threads that are
* waiting to commit (qthreads). When the committing batch completes
* a transition occurs such that the cthreads exit and the qthreads become
* cthreads. One of the new cthreads becomes the writer thread for the
* batch. Any new threads arriving become new qthreads.
*
* Only 2 condition variables are needed and there's no transition
* between the two cvs needed. They just flip-flop between qthreads
* and cthreads.
*
* Using this scheme we can efficiently wakeup up only those threads
* that have been committed.
*/
void
zil_commit(zilog_t *zilog, uint64_t foid)
{
uint64_t mybatch;
if (zilog->zl_sync == ZFS_SYNC_DISABLED)
return;
/* move the async itxs for the foid to the sync queues */
zil_async_to_sync(zilog, foid);
mutex_enter(&zilog->zl_lock);
mybatch = zilog->zl_next_batch;
while (zilog->zl_writer) {
cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock);
if (mybatch <= zilog->zl_com_batch) {
mutex_exit(&zilog->zl_lock);
return;
}
}
zilog->zl_next_batch++;
zilog->zl_writer = B_TRUE;
zil_commit_writer(zilog);
zilog->zl_com_batch = mybatch;
zilog->zl_writer = B_FALSE;
mutex_exit(&zilog->zl_lock);
/* wake up one thread to become the next writer */
cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]);
/* wake up all threads waiting for this batch to be committed */
cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]);
}
/*
* Called in syncing context to free committed log blocks and update log header.
*/
void
zil_sync(zilog_t *zilog, dmu_tx_t *tx)
{
zil_header_t *zh = zil_header_in_syncing_context(zilog);
uint64_t txg = dmu_tx_get_txg(tx);
spa_t *spa = zilog->zl_spa;
uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
lwb_t *lwb;
/*
* We don't zero out zl_destroy_txg, so make sure we don't try
* to destroy it twice.
*/
if (spa_sync_pass(spa) != 1)
return;
mutex_enter(&zilog->zl_lock);
ASSERT(zilog->zl_stop_sync == 0);
if (*replayed_seq != 0) {
ASSERT(zh->zh_replay_seq < *replayed_seq);
zh->zh_replay_seq = *replayed_seq;
*replayed_seq = 0;
}
if (zilog->zl_destroy_txg == txg) {
blkptr_t blk = zh->zh_log;
ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
bzero(zh, sizeof (zil_header_t));
bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
if (zilog->zl_keep_first) {
/*
* If this block was part of log chain that couldn't
* be claimed because a device was missing during
* zil_claim(), but that device later returns,
* then this block could erroneously appear valid.
* To guard against this, assign a new GUID to the new
* log chain so it doesn't matter what blk points to.
*/
zil_init_log_chain(zilog, &blk);
zh->zh_log = blk;
}
}
while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
zh->zh_log = lwb->lwb_blk;
if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
break;
list_remove(&zilog->zl_lwb_list, lwb);
zio_free_zil(spa, txg, &lwb->lwb_blk);
kmem_cache_free(zil_lwb_cache, lwb);
/*
* If we don't have anything left in the lwb list then
* we've had an allocation failure and we need to zero
* out the zil_header blkptr so that we don't end
* up freeing the same block twice.
*/
if (list_head(&zilog->zl_lwb_list) == NULL)
BP_ZERO(&zh->zh_log);
}
mutex_exit(&zilog->zl_lock);
}
void
zil_init(void)
{
zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
}
void
zil_fini(void)
{
kmem_cache_destroy(zil_lwb_cache);
}
void
zil_set_sync(zilog_t *zilog, uint64_t sync)
{
zilog->zl_sync = sync;
}
void
zil_set_logbias(zilog_t *zilog, uint64_t logbias)
{
zilog->zl_logbias = logbias;
}
zilog_t *
zil_alloc(objset_t *os, zil_header_t *zh_phys)
{
zilog_t *zilog;
int i;
zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
zilog->zl_header = zh_phys;
zilog->zl_os = os;
zilog->zl_spa = dmu_objset_spa(os);
zilog->zl_dmu_pool = dmu_objset_pool(os);
zilog->zl_destroy_txg = TXG_INITIAL - 1;
zilog->zl_logbias = dmu_objset_logbias(os);
zilog->zl_sync = dmu_objset_syncprop(os);
zilog->zl_next_batch = 1;
mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
for (i = 0; i < TXG_SIZE; i++) {
mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
MUTEX_DEFAULT, NULL);
}
list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
offsetof(lwb_t, lwb_node));
list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
offsetof(itx_t, itx_node));
mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL);
cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL);
return (zilog);
}
void
zil_free(zilog_t *zilog)
{
lwb_t *head_lwb;
int i;
zilog->zl_stop_sync = 1;
/*
* After zil_close() there should only be one lwb with a buffer.
*/
head_lwb = list_head(&zilog->zl_lwb_list);
if (head_lwb) {
ASSERT(head_lwb == list_tail(&zilog->zl_lwb_list));
list_remove(&zilog->zl_lwb_list, head_lwb);
zio_buf_free(head_lwb->lwb_buf, head_lwb->lwb_sz);
kmem_cache_free(zil_lwb_cache, head_lwb);
}
list_destroy(&zilog->zl_lwb_list);
avl_destroy(&zilog->zl_vdev_tree);
mutex_destroy(&zilog->zl_vdev_lock);
ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
list_destroy(&zilog->zl_itx_commit_list);
for (i = 0; i < TXG_SIZE; i++) {
/*
* It's possible for an itx to be generated that doesn't dirty
* a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
* callback to remove the entry. We remove those here.
*
* Also free up the ziltest itxs.
*/
if (zilog->zl_itxg[i].itxg_itxs)
zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
}
mutex_destroy(&zilog->zl_lock);
cv_destroy(&zilog->zl_cv_writer);
cv_destroy(&zilog->zl_cv_suspend);
cv_destroy(&zilog->zl_cv_batch[0]);
cv_destroy(&zilog->zl_cv_batch[1]);
kmem_free(zilog, sizeof (zilog_t));
}
/*
* Open an intent log.
*/
zilog_t *
zil_open(objset_t *os, zil_get_data_t *get_data)
{
zilog_t *zilog = dmu_objset_zil(os);
zilog->zl_get_data = get_data;
zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri,
2, 2, TASKQ_PREPOPULATE);
return (zilog);
}
/*
* Close an intent log.
*/
void
zil_close(zilog_t *zilog)
{
lwb_t *tail_lwb;
uint64_t txg = 0;
zil_commit(zilog, 0); /* commit all itx */
/*
* The lwb_max_txg for the stubby lwb will reflect the last activity
* for the zil. After a txg_wait_synced() on the txg we know all the
* callbacks have occurred that may clean the zil. Only then can we
* destroy the zl_clean_taskq.
*/
mutex_enter(&zilog->zl_lock);
tail_lwb = list_tail(&zilog->zl_lwb_list);
if (tail_lwb != NULL)
txg = tail_lwb->lwb_max_txg;
mutex_exit(&zilog->zl_lock);
if (txg)
txg_wait_synced(zilog->zl_dmu_pool, txg);
taskq_destroy(zilog->zl_clean_taskq);
zilog->zl_clean_taskq = NULL;
zilog->zl_get_data = NULL;
}
/*
* Suspend an intent log. While in suspended mode, we still honor
* synchronous semantics, but we rely on txg_wait_synced() to do it.
* We suspend the log briefly when taking a snapshot so that the snapshot
* contains all the data it's supposed to, and has an empty intent log.
*/
int
zil_suspend(zilog_t *zilog)
{
const zil_header_t *zh = zilog->zl_header;
mutex_enter(&zilog->zl_lock);
if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */
mutex_exit(&zilog->zl_lock);
return (EBUSY);
}
if (zilog->zl_suspend++ != 0) {
/*
* Someone else already began a suspend.
* Just wait for them to finish.
*/
while (zilog->zl_suspending)
cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
mutex_exit(&zilog->zl_lock);
return (0);
}
zilog->zl_suspending = B_TRUE;
mutex_exit(&zilog->zl_lock);
zil_commit(zilog, 0);
zil_destroy(zilog, B_FALSE);
mutex_enter(&zilog->zl_lock);
zilog->zl_suspending = B_FALSE;
cv_broadcast(&zilog->zl_cv_suspend);
mutex_exit(&zilog->zl_lock);
return (0);
}
void
zil_resume(zilog_t *zilog)
{
mutex_enter(&zilog->zl_lock);
ASSERT(zilog->zl_suspend != 0);
zilog->zl_suspend--;
mutex_exit(&zilog->zl_lock);
}
typedef struct zil_replay_arg {
zil_replay_func_t **zr_replay;
void *zr_arg;
boolean_t zr_byteswap;
char *zr_lr;
} zil_replay_arg_t;
static int
zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
{
char name[MAXNAMELEN];
zilog->zl_replaying_seq--; /* didn't actually replay this one */
dmu_objset_name(zilog->zl_os, name);
cmn_err(CE_WARN, "ZFS replay transaction error %d, "
"dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
(u_longlong_t)lr->lrc_seq,
(u_longlong_t)(lr->lrc_txtype & ~TX_CI),
(lr->lrc_txtype & TX_CI) ? "CI" : "");
return (error);
}
static int
zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
{
zil_replay_arg_t *zr = zra;
const zil_header_t *zh = zilog->zl_header;
uint64_t reclen = lr->lrc_reclen;
uint64_t txtype = lr->lrc_txtype;
int error = 0;
zilog->zl_replaying_seq = lr->lrc_seq;
if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */
return (0);
if (lr->lrc_txg < claim_txg) /* already committed */
return (0);
/* Strip case-insensitive bit, still present in log record */
txtype &= ~TX_CI;
if (txtype == 0 || txtype >= TX_MAX_TYPE)
return (zil_replay_error(zilog, lr, EINVAL));
/*
* If this record type can be logged out of order, the object
* (lr_foid) may no longer exist. That's legitimate, not an error.
*/
if (TX_OOO(txtype)) {
error = dmu_object_info(zilog->zl_os,
((lr_ooo_t *)lr)->lr_foid, NULL);
if (error == ENOENT || error == EEXIST)
return (0);
}
/*
* Make a copy of the data so we can revise and extend it.
*/
bcopy(lr, zr->zr_lr, reclen);
/*
* If this is a TX_WRITE with a blkptr, suck in the data.
*/
if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
error = zil_read_log_data(zilog, (lr_write_t *)lr,
zr->zr_lr + reclen);
if (error)
return (zil_replay_error(zilog, lr, error));
}
/*
* The log block containing this lr may have been byteswapped
* so that we can easily examine common fields like lrc_txtype.
* However, the log is a mix of different record types, and only the
* replay vectors know how to byteswap their records. Therefore, if
* the lr was byteswapped, undo it before invoking the replay vector.
*/
if (zr->zr_byteswap)
byteswap_uint64_array(zr->zr_lr, reclen);
/*
* We must now do two things atomically: replay this log record,
* and update the log header sequence number to reflect the fact that
* we did so. At the end of each replay function the sequence number
* is updated if we are in replay mode.
*/
error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
if (error) {
/*
* The DMU's dnode layer doesn't see removes until the txg
* commits, so a subsequent claim can spuriously fail with
* EEXIST. So if we receive any error we try syncing out
* any removes then retry the transaction. Note that we
* specify B_FALSE for byteswap now, so we don't do it twice.
*/
txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
if (error)
return (zil_replay_error(zilog, lr, error));
}
return (0);
}
/* ARGSUSED */
static int
zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
{
zilog->zl_replay_blks++;
return (0);
}
/*
* If this dataset has a non-empty intent log, replay it and destroy it.
*/
void
zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
{
zilog_t *zilog = dmu_objset_zil(os);
const zil_header_t *zh = zilog->zl_header;
zil_replay_arg_t zr;
if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
zil_destroy(zilog, B_TRUE);
return;
}
zr.zr_replay = replay_func;
zr.zr_arg = arg;
zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
/*
* Wait for in-progress removes to sync before starting replay.
*/
txg_wait_synced(zilog->zl_dmu_pool, 0);
zilog->zl_replay = B_TRUE;
zilog->zl_replay_time = ddi_get_lbolt();
ASSERT(zilog->zl_replay_blks == 0);
(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
zh->zh_claim_txg);
vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
zil_destroy(zilog, B_FALSE);
txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
zilog->zl_replay = B_FALSE;
}
boolean_t
zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
{
if (zilog->zl_sync == ZFS_SYNC_DISABLED)
return (B_TRUE);
if (zilog->zl_replay) {
dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
zilog->zl_replaying_seq;
return (B_TRUE);
}
return (B_FALSE);
}
/* ARGSUSED */
int
zil_vdev_offline(const char *osname, void *arg)
{
objset_t *os;
zilog_t *zilog;
int error;
error = dmu_objset_hold(osname, FTAG, &os);
if (error)
return (error);
zilog = dmu_objset_zil(os);
if (zil_suspend(zilog) != 0)
error = EEXIST;
else
zil_resume(zilog);
dmu_objset_rele(os, FTAG);
return (error);
}
#if defined(_KERNEL) && defined(HAVE_SPL)
module_param(zil_replay_disable, int, 0644);
MODULE_PARM_DESC(zil_replay_disable, "Disable intent logging replay");
module_param(zfs_nocacheflush, int, 0644);
MODULE_PARM_DESC(zfs_nocacheflush, "Disable cache flushes");
#endif