2bb83c79f6
Convert IPv4 SAS to use new routing api.
1419 lines
35 KiB
C
1419 lines
35 KiB
C
/*-
|
|
* Copyright (c) 1982, 1986, 1988, 1990, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)ip_output.c 8.3 (Berkeley) 1/21/94
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_inet.h"
|
|
#include "opt_ipfw.h"
|
|
#include "opt_ipsec.h"
|
|
#include "opt_mbuf_stress_test.h"
|
|
#include "opt_mpath.h"
|
|
#include "opt_route.h"
|
|
#include "opt_sctp.h"
|
|
#include "opt_rss.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/sdt.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/ucred.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#include <net/if_llatbl.h>
|
|
#include <net/netisr.h>
|
|
#include <net/pfil.h>
|
|
#include <net/route.h>
|
|
#include <net/flowtable.h>
|
|
#ifdef RADIX_MPATH
|
|
#include <net/radix_mpath.h>
|
|
#endif
|
|
#include <net/vnet.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_kdtrace.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/in_pcb.h>
|
|
#include <netinet/in_rss.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/ip_var.h>
|
|
#include <netinet/ip_options.h>
|
|
#ifdef SCTP
|
|
#include <netinet/sctp.h>
|
|
#include <netinet/sctp_crc32.h>
|
|
#endif
|
|
|
|
#include <net/rt_nhops.h>
|
|
|
|
#ifdef IPSEC
|
|
#include <netinet/ip_ipsec.h>
|
|
#include <netipsec/ipsec.h>
|
|
#endif /* IPSEC*/
|
|
|
|
#include <machine/in_cksum.h>
|
|
|
|
#include <security/mac/mac_framework.h>
|
|
|
|
VNET_DEFINE(u_short, ip_id);
|
|
|
|
#ifdef MBUF_STRESS_TEST
|
|
static int mbuf_frag_size = 0;
|
|
SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
|
|
&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
|
|
#endif
|
|
|
|
static void ip_mloopback (struct ifnet *, struct mbuf *, int);
|
|
|
|
extern int in_mcast_loop;
|
|
extern struct protosw inetsw[];
|
|
|
|
/*
|
|
* IP output. The packet in mbuf chain m contains a skeletal IP
|
|
* header (with len, off, ttl, proto, tos, src, dst).
|
|
* The mbuf chain containing the packet will be freed.
|
|
* The mbuf opt, if present, will not be freed.
|
|
* If route ro is present and has ro_rt initialized, route lookup would be
|
|
* skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL,
|
|
* then result of route lookup is stored in ro->ro_rt.
|
|
*
|
|
* In the IP forwarding case, the packet will arrive with options already
|
|
* inserted, so must have a NULL opt pointer.
|
|
*/
|
|
int
|
|
ip_output(struct mbuf *m, struct mbuf *opt, struct route_info *ri, int flags,
|
|
struct ip_moptions *imo, struct inpcb *inp)
|
|
{
|
|
struct ip *ip;
|
|
struct ifnet *ifp = NULL; /* keep compiler happy */
|
|
struct mbuf *m0;
|
|
int hlen = sizeof (struct ip);
|
|
int mtu;
|
|
int error = 0;
|
|
struct in_addr dst, local_addr;
|
|
struct sockaddr_in gw_out, *tmp;
|
|
struct in_ifaddr *ia;
|
|
int isbroadcast;
|
|
uint16_t ip_len, ip_off;
|
|
struct nhop_data local_nh, *nh;
|
|
struct nhop4_extended nhe, *pnhe;
|
|
struct in_addr odst;
|
|
struct m_tag *fwd_tag = NULL;
|
|
uint32_t fibnum;
|
|
int needfiblookup;
|
|
#ifdef IPSEC
|
|
int no_route_but_check_spd = 0;
|
|
#endif
|
|
M_ASSERTPKTHDR(m);
|
|
|
|
if (inp != NULL) {
|
|
INP_LOCK_ASSERT(inp);
|
|
M_SETFIB(m, inp->inp_inc.inc_fibnum);
|
|
if (((flags & IP_NODEFAULTFLOWID) == 0) &&
|
|
inp->inp_flags & (INP_HW_FLOWID|INP_SW_FLOWID)) {
|
|
m->m_pkthdr.flowid = inp->inp_flowid;
|
|
M_HASHTYPE_SET(m, inp->inp_flowtype);
|
|
m->m_flags |= M_FLOWID;
|
|
}
|
|
}
|
|
|
|
nh = NULL;
|
|
|
|
#ifdef FLOWTABLE
|
|
if (ri->ri_nh == NULL)
|
|
(void )flowtable_lookup(AF_INET, m, ri);
|
|
#endif
|
|
|
|
if (opt) {
|
|
int len = 0;
|
|
m = ip_insertoptions(m, opt, &len);
|
|
if (len != 0)
|
|
hlen = len; /* ip->ip_hl is updated above */
|
|
}
|
|
ip = mtod(m, struct ip *);
|
|
ip_len = ntohs(ip->ip_len);
|
|
ip_off = ntohs(ip->ip_off);
|
|
|
|
/*
|
|
* Fill in IP header. If we are not allowing fragmentation,
|
|
* then the ip_id field is meaningless, but we don't set it
|
|
* to zero. Doing so causes various problems when devices along
|
|
* the path (routers, load balancers, firewalls, etc.) illegally
|
|
* disable DF on our packet. Note that a 16-bit counter
|
|
* will wrap around in less than 10 seconds at 100 Mbit/s on a
|
|
* medium with MTU 1500. See Steven M. Bellovin, "A Technique
|
|
* for Counting NATted Hosts", Proc. IMW'02, available at
|
|
* <http://www.cs.columbia.edu/~smb/papers/fnat.pdf>.
|
|
*/
|
|
if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
|
|
ip->ip_v = IPVERSION;
|
|
ip->ip_hl = hlen >> 2;
|
|
ip->ip_id = ip_newid();
|
|
IPSTAT_INC(ips_localout);
|
|
} else {
|
|
/* Header already set, fetch hlen from there */
|
|
hlen = ip->ip_hl << 2;
|
|
}
|
|
|
|
/*
|
|
* dst/gw handling:
|
|
*
|
|
* We start with @dst poiting to IPv4 destination.
|
|
* Pfil output hook can force us to repeat IPv4 lookup,
|
|
* in that case we either re-read IPv4 header or use
|
|
* provided @dst from fwd_tag.
|
|
*
|
|
* While sending, we have 2 cases:
|
|
* either we are doing broadcast/L2 multicast/route to IF -
|
|
* in that case there is no special gateway.
|
|
* or routing lookup - in that case we either have full
|
|
* prepend header so we don't need any L3 info anymore,
|
|
* or non-existent/imcomplete ARP entry - in that case
|
|
* we have GW info inside @nh.
|
|
*/
|
|
|
|
/* Make compiler happy */
|
|
dst.s_addr = INADDR_ANY;
|
|
|
|
fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m);
|
|
again:
|
|
local_addr = ip->ip_src;
|
|
if (fwd_tag == NULL)
|
|
dst = ip->ip_dst;
|
|
#if 0
|
|
/*
|
|
* If there is a cached route, check that it is to the same
|
|
* destination and is still up. If not, free it and try again.
|
|
* The address family should also be checked in case of sharing
|
|
* the cache with IPv6.
|
|
*/
|
|
rte = ro->ro_rt;
|
|
if (rte && ((rte->rt_flags & RTF_UP) == 0 ||
|
|
rte->rt_ifp == NULL ||
|
|
!RT_LINK_IS_UP(rte->rt_ifp) ||
|
|
dst->sin_family != AF_INET ||
|
|
dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
|
|
RO_RTFREE(ro);
|
|
ro->ro_lle = NULL;
|
|
rte = NULL;
|
|
gw = dst;
|
|
}
|
|
if (rte == NULL && fwd_tag == NULL) {
|
|
bzero(dst, sizeof(*dst));
|
|
dst->sin_family = AF_INET;
|
|
dst->sin_len = sizeof(*dst);
|
|
dst->sin_addr = ip->ip_dst;
|
|
}
|
|
#endif
|
|
|
|
if (nh != NULL) {
|
|
fib4_free_nh(fibnum, nh);
|
|
nh = NULL;
|
|
}
|
|
|
|
/*
|
|
* If routing to interface only, short circuit routing lookup.
|
|
* The use of an all-ones broadcast address implies this; an
|
|
* interface is specified by the broadcast address of an interface,
|
|
* or the destination address of a ptp interface.
|
|
*/
|
|
if (flags & IP_SENDONES) {
|
|
/* Use sockaddr API */
|
|
memset(&gw_out, 0, sizeof(gw_out));
|
|
gw_out.sin_len = sizeof(gw_out);
|
|
gw_out.sin_family = AF_INET;
|
|
gw_out.sin_addr = dst;
|
|
|
|
if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(&gw_out),
|
|
M_GETFIB(m)))) == NULL &&
|
|
(ia = ifatoia(ifa_ifwithdstaddr(sintosa(&gw_out),
|
|
M_GETFIB(m)))) == NULL) {
|
|
IPSTAT_INC(ips_noroute);
|
|
error = ENETUNREACH;
|
|
goto bad;
|
|
}
|
|
local_addr = IA_SIN(ia)->sin_addr;
|
|
ifp = ia->ia_ifp;
|
|
mtu = ifp->if_mtu;
|
|
ifa_free(&ia->ia_ifa);
|
|
ia = NULL;
|
|
|
|
ip->ip_dst.s_addr = INADDR_BROADCAST;
|
|
dst = ip->ip_dst;
|
|
ip->ip_ttl = 1;
|
|
isbroadcast = 1;
|
|
} else if (flags & IP_ROUTETOIF) {
|
|
/* Use sockaddr API */
|
|
memset(&gw_out, 0, sizeof(gw_out));
|
|
gw_out.sin_len = sizeof(gw_out);
|
|
gw_out.sin_family = AF_INET;
|
|
gw_out.sin_addr = dst;
|
|
|
|
if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(&gw_out),
|
|
M_GETFIB(m)))) == NULL &&
|
|
(ia = ifatoia(ifa_ifwithnet(sintosa(&gw_out), 0,
|
|
M_GETFIB(m)))) == NULL) {
|
|
IPSTAT_INC(ips_noroute);
|
|
error = ENETUNREACH;
|
|
goto bad;
|
|
}
|
|
local_addr = IA_SIN(ia)->sin_addr;
|
|
ifp = ia->ia_ifp;
|
|
mtu = ifp->if_mtu;
|
|
ifa_free(&ia->ia_ifa);
|
|
ia = NULL;
|
|
ip->ip_ttl = 1;
|
|
isbroadcast = in_broadcast(dst, ifp);
|
|
} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
|
|
imo != NULL && imo->imo_multicast_ifp != NULL) {
|
|
/*
|
|
* Bypass the normal routing lookup for multicast
|
|
* packets if the interface is specified.
|
|
*/
|
|
ifp = imo->imo_multicast_ifp;
|
|
mtu = ifp->if_mtu;
|
|
IFP_TO_IA(ifp, ia);
|
|
if (ia != NULL) {
|
|
local_addr = IA_SIN(ia)->sin_addr;
|
|
ifa_free(&ia->ia_ifa);
|
|
ia = NULL;
|
|
}
|
|
isbroadcast = 0; /* fool gcc */
|
|
} else {
|
|
|
|
/*
|
|
* We have to either use provided cached nexthop
|
|
* or do route lookup.
|
|
*/
|
|
if (local_addr.s_addr != INADDR_ANY)
|
|
pnhe = NULL;
|
|
else
|
|
pnhe = &nhe;
|
|
if (ri == NULL || ri->ri_nh == NULL) {
|
|
|
|
/*
|
|
* Do resolve ourselves
|
|
*/
|
|
error = fib4_lookup_prepend(fibnum, dst, m,
|
|
&local_nh, pnhe);
|
|
|
|
} else {
|
|
|
|
/*
|
|
* Got cached nexhop. Note that nexthop might
|
|
* be multipath so we need to need to "convert"
|
|
* it first. Assume caller provide locking guarantees
|
|
* for that.
|
|
*/
|
|
fib4_choose_prepend(fibnum, ri->ri_nh,
|
|
m->m_pkthdr.flowid, &local_nh, pnhe);
|
|
}
|
|
if (error != 0) {
|
|
#ifdef IPSEC
|
|
/*
|
|
* There is no route for this packet, but it is
|
|
* possible that a matching SPD entry exists.
|
|
*/
|
|
no_route_but_check_spd = 1;
|
|
mtu = 0; /* Silence GCC warning. */
|
|
goto sendit;
|
|
#endif
|
|
IPSTAT_INC(ips_noroute);
|
|
goto bad;
|
|
}
|
|
/* Get local address from extended nexthop info */
|
|
if (pnhe != NULL)
|
|
local_addr = nhe.nh_src;
|
|
nh = &local_nh;
|
|
ifp = NH_LIFP(nh);
|
|
mtu = nh->nh_mtu;
|
|
if (nh->nh_flags & (RTF_HOST|RTF_GATEWAY)) {
|
|
/* XXX: Set RTF_BROADCAST if GW address is broadcast */
|
|
isbroadcast = (nh->nh_flags & RTF_BROADCAST);
|
|
} else
|
|
isbroadcast = in_broadcast(dst, ifp);
|
|
}
|
|
|
|
/*
|
|
* XXX: Move somewhere to sendit
|
|
*/
|
|
if (ri != NULL) {
|
|
ri->ri_mtu = mtu;
|
|
}
|
|
|
|
|
|
/* Catch a possible divide by zero later. */
|
|
KASSERT(mtu > 0, ("%s: mtu %d <= 0, rte=%p (rt_flags=0x%08x) ifp=%p",
|
|
__func__, mtu, nh, (nh != NULL) ? nh->nh_flags : 0, ifp));
|
|
|
|
/*
|
|
* If source address not specified yet, use address
|
|
* of outgoing interface.
|
|
*/
|
|
if (ip->ip_src.s_addr == INADDR_ANY)
|
|
ip->ip_src = local_addr;
|
|
|
|
if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
|
|
m->m_flags |= M_MCAST;
|
|
/* IP destination address is multicast. */
|
|
|
|
/*
|
|
* See if the caller provided any multicast options
|
|
*/
|
|
if (imo != NULL) {
|
|
ip->ip_ttl = imo->imo_multicast_ttl;
|
|
if (imo->imo_multicast_vif != -1)
|
|
ip->ip_src.s_addr =
|
|
ip_mcast_src ?
|
|
ip_mcast_src(imo->imo_multicast_vif) :
|
|
INADDR_ANY;
|
|
} else
|
|
ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
|
|
/*
|
|
* Confirm that the outgoing interface supports multicast.
|
|
*/
|
|
if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
|
|
if ((ifp->if_flags & IFF_MULTICAST) == 0) {
|
|
IPSTAT_INC(ips_noroute);
|
|
error = ENETUNREACH;
|
|
goto bad;
|
|
}
|
|
}
|
|
|
|
if ((imo == NULL && in_mcast_loop) ||
|
|
(imo && imo->imo_multicast_loop)) {
|
|
/*
|
|
* Loop back multicast datagram if not expressly
|
|
* forbidden to do so, even if we are not a member
|
|
* of the group; ip_input() will filter it later,
|
|
* thus deferring a hash lookup and mutex acquisition
|
|
* at the expense of a cheap copy using m_copym().
|
|
*/
|
|
ip_mloopback(ifp, m, hlen);
|
|
} else {
|
|
/*
|
|
* If we are acting as a multicast router, perform
|
|
* multicast forwarding as if the packet had just
|
|
* arrived on the interface to which we are about
|
|
* to send. The multicast forwarding function
|
|
* recursively calls this function, using the
|
|
* IP_FORWARDING flag to prevent infinite recursion.
|
|
*
|
|
* Multicasts that are looped back by ip_mloopback(),
|
|
* above, will be forwarded by the ip_input() routine,
|
|
* if necessary.
|
|
*/
|
|
if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) {
|
|
/*
|
|
* If rsvp daemon is not running, do not
|
|
* set ip_moptions. This ensures that the packet
|
|
* is multicast and not just sent down one link
|
|
* as prescribed by rsvpd.
|
|
*/
|
|
if (!V_rsvp_on)
|
|
imo = NULL;
|
|
if (ip_mforward &&
|
|
ip_mforward(ip, ifp, m, imo) != 0) {
|
|
m_freem(m);
|
|
goto done;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Multicasts with a time-to-live of zero may be looped-
|
|
* back, above, but must not be transmitted on a network.
|
|
* Also, multicasts addressed to the loopback interface
|
|
* are not sent -- the above call to ip_mloopback() will
|
|
* loop back a copy. ip_input() will drop the copy if
|
|
* this host does not belong to the destination group on
|
|
* the loopback interface.
|
|
*/
|
|
if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
|
|
m_freem(m);
|
|
goto done;
|
|
}
|
|
|
|
goto sendit;
|
|
}
|
|
|
|
/*
|
|
* Look for broadcast address and
|
|
* verify user is allowed to send
|
|
* such a packet.
|
|
*/
|
|
if (isbroadcast) {
|
|
if ((ifp->if_flags & IFF_BROADCAST) == 0) {
|
|
error = EADDRNOTAVAIL;
|
|
goto bad;
|
|
}
|
|
if ((flags & IP_ALLOWBROADCAST) == 0) {
|
|
error = EACCES;
|
|
goto bad;
|
|
}
|
|
/* don't allow broadcast messages to be fragmented */
|
|
if (ip_len > mtu) {
|
|
error = EMSGSIZE;
|
|
goto bad;
|
|
}
|
|
m->m_flags |= M_BCAST;
|
|
} else {
|
|
m->m_flags &= ~M_BCAST;
|
|
}
|
|
|
|
sendit:
|
|
#ifdef IPSEC
|
|
switch(ip_ipsec_output(&m, inp, &flags, &error)) {
|
|
case 1:
|
|
goto bad;
|
|
case -1:
|
|
goto done;
|
|
case 0:
|
|
default:
|
|
break; /* Continue with packet processing. */
|
|
}
|
|
/*
|
|
* Check if there was a route for this packet; return error if not.
|
|
*/
|
|
if (no_route_but_check_spd) {
|
|
IPSTAT_INC(ips_noroute);
|
|
error = EHOSTUNREACH;
|
|
goto bad;
|
|
}
|
|
/* Update variables that are affected by ipsec4_output(). */
|
|
ip = mtod(m, struct ip *);
|
|
hlen = ip->ip_hl << 2;
|
|
#endif /* IPSEC */
|
|
|
|
/* Jump over all PFIL processing if hooks are not active. */
|
|
if (!PFIL_HOOKED(&V_inet_pfil_hook))
|
|
goto passout;
|
|
|
|
/* Run through list of hooks for output packets. */
|
|
odst.s_addr = ip->ip_dst.s_addr;
|
|
error = pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_OUT, inp);
|
|
if (error != 0 || m == NULL)
|
|
goto done;
|
|
|
|
ip = mtod(m, struct ip *);
|
|
needfiblookup = 0;
|
|
|
|
/* See if destination IP address was changed by packet filter. */
|
|
if (odst.s_addr != ip->ip_dst.s_addr) {
|
|
m->m_flags |= M_SKIP_FIREWALL;
|
|
/* If destination is now ourself drop to ip_input(). */
|
|
if (in_localip(ip->ip_dst)) {
|
|
m->m_flags |= M_FASTFWD_OURS;
|
|
if (m->m_pkthdr.rcvif == NULL)
|
|
m->m_pkthdr.rcvif = V_loif;
|
|
if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
|
|
m->m_pkthdr.csum_flags |=
|
|
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
|
|
m->m_pkthdr.csum_data = 0xffff;
|
|
}
|
|
m->m_pkthdr.csum_flags |=
|
|
CSUM_IP_CHECKED | CSUM_IP_VALID;
|
|
#ifdef SCTP
|
|
if (m->m_pkthdr.csum_flags & CSUM_SCTP)
|
|
m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
|
|
#endif
|
|
error = netisr_queue(NETISR_IP, m);
|
|
goto done;
|
|
} else {
|
|
needfiblookup = 1; /* Redo the routing table lookup. */
|
|
}
|
|
}
|
|
/* See if fib was changed by packet filter. */
|
|
if (fibnum != M_GETFIB(m)) {
|
|
m->m_flags |= M_SKIP_FIREWALL;
|
|
needfiblookup = 1;
|
|
}
|
|
if (needfiblookup) {
|
|
if (ri == NULL && nh != NULL) {
|
|
fib4_free_nh(fibnum, nh);
|
|
nh = NULL;
|
|
}
|
|
ri = NULL;
|
|
fibnum = M_GETFIB(m);
|
|
goto again;
|
|
}
|
|
|
|
/* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
|
|
if (m->m_flags & M_FASTFWD_OURS) {
|
|
if (m->m_pkthdr.rcvif == NULL)
|
|
m->m_pkthdr.rcvif = V_loif;
|
|
if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
|
|
m->m_pkthdr.csum_flags |=
|
|
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
|
|
m->m_pkthdr.csum_data = 0xffff;
|
|
}
|
|
#ifdef SCTP
|
|
if (m->m_pkthdr.csum_flags & CSUM_SCTP)
|
|
m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
|
|
#endif
|
|
m->m_pkthdr.csum_flags |=
|
|
CSUM_IP_CHECKED | CSUM_IP_VALID;
|
|
|
|
error = netisr_queue(NETISR_IP, m);
|
|
goto done;
|
|
}
|
|
/* Or forward to some other address? */
|
|
if ((m->m_flags & M_IP_NEXTHOP) &&
|
|
(fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
|
|
/* TODO: Check alignment guarantees */
|
|
tmp = (struct sockaddr_in *)(fwd_tag + 1);
|
|
dst = tmp->sin_addr;
|
|
m->m_flags |= M_SKIP_FIREWALL;
|
|
m->m_flags &= ~M_IP_NEXTHOP;
|
|
m_tag_delete(m, fwd_tag);
|
|
ri = NULL;
|
|
goto again;
|
|
}
|
|
|
|
passout:
|
|
/* 127/8 must not appear on wire - RFC1122. */
|
|
if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
|
|
(ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
|
|
if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
|
|
IPSTAT_INC(ips_badaddr);
|
|
error = EADDRNOTAVAIL;
|
|
goto bad;
|
|
}
|
|
}
|
|
|
|
m->m_pkthdr.csum_flags |= CSUM_IP;
|
|
if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) {
|
|
in_delayed_cksum(m);
|
|
m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
|
|
}
|
|
#ifdef SCTP
|
|
if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) {
|
|
sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2));
|
|
m->m_pkthdr.csum_flags &= ~CSUM_SCTP;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* If small enough for interface, or the interface will take
|
|
* care of the fragmentation for us, we can just send directly.
|
|
*/
|
|
if (ip_len <= mtu ||
|
|
(m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) {
|
|
ip->ip_sum = 0;
|
|
if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) {
|
|
ip->ip_sum = in_cksum(m, hlen);
|
|
m->m_pkthdr.csum_flags &= ~CSUM_IP;
|
|
}
|
|
|
|
#if 0
|
|
/*
|
|
* Record statistics for this interface address.
|
|
* With CSUM_TSO the byte/packet count will be slightly
|
|
* incorrect because we count the IP+TCP headers only
|
|
* once instead of for every generated packet.
|
|
*/
|
|
if (!(flags & IP_FORWARDING) && ia) {
|
|
if (m->m_pkthdr.csum_flags & CSUM_TSO)
|
|
counter_u64_add(ia->ia_ifa.ifa_opackets,
|
|
m->m_pkthdr.len / m->m_pkthdr.tso_segsz);
|
|
else
|
|
counter_u64_add(ia->ia_ifa.ifa_opackets, 1);
|
|
|
|
counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len);
|
|
}
|
|
#endif
|
|
#ifdef MBUF_STRESS_TEST
|
|
if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
|
|
m = m_fragment(m, M_NOWAIT, mbuf_frag_size);
|
|
#endif
|
|
/*
|
|
* Reset layer specific mbuf flags
|
|
* to avoid confusing lower layers.
|
|
*/
|
|
m_clrprotoflags(m);
|
|
IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL);
|
|
error = fib4_sendmbuf(ifp, m, nh, dst);
|
|
goto done;
|
|
}
|
|
|
|
/* Balk when DF bit is set or the interface didn't support TSO. */
|
|
if ((ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) {
|
|
error = EMSGSIZE;
|
|
IPSTAT_INC(ips_cantfrag);
|
|
goto bad;
|
|
}
|
|
|
|
/*
|
|
* Too large for interface; fragment if possible. If successful,
|
|
* on return, m will point to a list of packets to be sent.
|
|
*/
|
|
error = ip_fragment(ip, &m, mtu, ifp->if_hwassist);
|
|
if (error)
|
|
goto bad;
|
|
for (; m; m = m0) {
|
|
m0 = m->m_nextpkt;
|
|
m->m_nextpkt = 0;
|
|
if (error == 0) {
|
|
#if 0
|
|
/* Record statistics for this interface address. */
|
|
if (ia != NULL) {
|
|
counter_u64_add(ia->ia_ifa.ifa_opackets, 1);
|
|
counter_u64_add(ia->ia_ifa.ifa_obytes,
|
|
m->m_pkthdr.len);
|
|
}
|
|
#endif
|
|
/*
|
|
* Reset layer specific mbuf flags
|
|
* to avoid confusing upper layers.
|
|
*/
|
|
m_clrprotoflags(m);
|
|
|
|
IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL);
|
|
error = fib4_sendmbuf(ifp, m, nh, dst);
|
|
} else
|
|
m_freem(m);
|
|
}
|
|
|
|
if (error == 0)
|
|
IPSTAT_INC(ips_fragmented);
|
|
|
|
done:
|
|
if (ri == NULL && nh != NULL)
|
|
fib4_free_nh(fibnum, nh);
|
|
return (error);
|
|
bad:
|
|
m_freem(m);
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Create a chain of fragments which fit the given mtu. m_frag points to the
|
|
* mbuf to be fragmented; on return it points to the chain with the fragments.
|
|
* Return 0 if no error. If error, m_frag may contain a partially built
|
|
* chain of fragments that should be freed by the caller.
|
|
*
|
|
* if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
|
|
*/
|
|
int
|
|
ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
|
|
u_long if_hwassist_flags)
|
|
{
|
|
int error = 0;
|
|
int hlen = ip->ip_hl << 2;
|
|
int len = (mtu - hlen) & ~7; /* size of payload in each fragment */
|
|
int off;
|
|
struct mbuf *m0 = *m_frag; /* the original packet */
|
|
int firstlen;
|
|
struct mbuf **mnext;
|
|
int nfrags;
|
|
uint16_t ip_len, ip_off;
|
|
|
|
ip_len = ntohs(ip->ip_len);
|
|
ip_off = ntohs(ip->ip_off);
|
|
|
|
if (ip_off & IP_DF) { /* Fragmentation not allowed */
|
|
IPSTAT_INC(ips_cantfrag);
|
|
return EMSGSIZE;
|
|
}
|
|
|
|
/*
|
|
* Must be able to put at least 8 bytes per fragment.
|
|
*/
|
|
if (len < 8)
|
|
return EMSGSIZE;
|
|
|
|
/*
|
|
* If the interface will not calculate checksums on
|
|
* fragmented packets, then do it here.
|
|
*/
|
|
if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
|
|
in_delayed_cksum(m0);
|
|
m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
|
|
}
|
|
#ifdef SCTP
|
|
if (m0->m_pkthdr.csum_flags & CSUM_SCTP) {
|
|
sctp_delayed_cksum(m0, hlen);
|
|
m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
|
|
}
|
|
#endif
|
|
if (len > PAGE_SIZE) {
|
|
/*
|
|
* Fragment large datagrams such that each segment
|
|
* contains a multiple of PAGE_SIZE amount of data,
|
|
* plus headers. This enables a receiver to perform
|
|
* page-flipping zero-copy optimizations.
|
|
*
|
|
* XXX When does this help given that sender and receiver
|
|
* could have different page sizes, and also mtu could
|
|
* be less than the receiver's page size ?
|
|
*/
|
|
int newlen;
|
|
struct mbuf *m;
|
|
|
|
for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
|
|
off += m->m_len;
|
|
|
|
/*
|
|
* firstlen (off - hlen) must be aligned on an
|
|
* 8-byte boundary
|
|
*/
|
|
if (off < hlen)
|
|
goto smart_frag_failure;
|
|
off = ((off - hlen) & ~7) + hlen;
|
|
newlen = (~PAGE_MASK) & mtu;
|
|
if ((newlen + sizeof (struct ip)) > mtu) {
|
|
/* we failed, go back the default */
|
|
smart_frag_failure:
|
|
newlen = len;
|
|
off = hlen + len;
|
|
}
|
|
len = newlen;
|
|
|
|
} else {
|
|
off = hlen + len;
|
|
}
|
|
|
|
firstlen = off - hlen;
|
|
mnext = &m0->m_nextpkt; /* pointer to next packet */
|
|
|
|
/*
|
|
* Loop through length of segment after first fragment,
|
|
* make new header and copy data of each part and link onto chain.
|
|
* Here, m0 is the original packet, m is the fragment being created.
|
|
* The fragments are linked off the m_nextpkt of the original
|
|
* packet, which after processing serves as the first fragment.
|
|
*/
|
|
for (nfrags = 1; off < ip_len; off += len, nfrags++) {
|
|
struct ip *mhip; /* ip header on the fragment */
|
|
struct mbuf *m;
|
|
int mhlen = sizeof (struct ip);
|
|
|
|
m = m_gethdr(M_NOWAIT, MT_DATA);
|
|
if (m == NULL) {
|
|
error = ENOBUFS;
|
|
IPSTAT_INC(ips_odropped);
|
|
goto done;
|
|
}
|
|
m->m_flags |= (m0->m_flags & M_MCAST);
|
|
/*
|
|
* In the first mbuf, leave room for the link header, then
|
|
* copy the original IP header including options. The payload
|
|
* goes into an additional mbuf chain returned by m_copym().
|
|
*/
|
|
m->m_data += max_linkhdr;
|
|
mhip = mtod(m, struct ip *);
|
|
*mhip = *ip;
|
|
if (hlen > sizeof (struct ip)) {
|
|
mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
|
|
mhip->ip_v = IPVERSION;
|
|
mhip->ip_hl = mhlen >> 2;
|
|
}
|
|
m->m_len = mhlen;
|
|
/* XXX do we need to add ip_off below ? */
|
|
mhip->ip_off = ((off - hlen) >> 3) + ip_off;
|
|
if (off + len >= ip_len)
|
|
len = ip_len - off;
|
|
else
|
|
mhip->ip_off |= IP_MF;
|
|
mhip->ip_len = htons((u_short)(len + mhlen));
|
|
m->m_next = m_copym(m0, off, len, M_NOWAIT);
|
|
if (m->m_next == NULL) { /* copy failed */
|
|
m_free(m);
|
|
error = ENOBUFS; /* ??? */
|
|
IPSTAT_INC(ips_odropped);
|
|
goto done;
|
|
}
|
|
m->m_pkthdr.len = mhlen + len;
|
|
m->m_pkthdr.rcvif = NULL;
|
|
#ifdef MAC
|
|
mac_netinet_fragment(m0, m);
|
|
#endif
|
|
m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
|
|
mhip->ip_off = htons(mhip->ip_off);
|
|
mhip->ip_sum = 0;
|
|
if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) {
|
|
mhip->ip_sum = in_cksum(m, mhlen);
|
|
m->m_pkthdr.csum_flags &= ~CSUM_IP;
|
|
}
|
|
*mnext = m;
|
|
mnext = &m->m_nextpkt;
|
|
}
|
|
IPSTAT_ADD(ips_ofragments, nfrags);
|
|
|
|
/*
|
|
* Update first fragment by trimming what's been copied out
|
|
* and updating header.
|
|
*/
|
|
m_adj(m0, hlen + firstlen - ip_len);
|
|
m0->m_pkthdr.len = hlen + firstlen;
|
|
ip->ip_len = htons((u_short)m0->m_pkthdr.len);
|
|
ip->ip_off = htons(ip_off | IP_MF);
|
|
ip->ip_sum = 0;
|
|
if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) {
|
|
ip->ip_sum = in_cksum(m0, hlen);
|
|
m0->m_pkthdr.csum_flags &= ~CSUM_IP;
|
|
}
|
|
|
|
done:
|
|
*m_frag = m0;
|
|
return error;
|
|
}
|
|
|
|
void
|
|
in_delayed_cksum(struct mbuf *m)
|
|
{
|
|
struct ip *ip;
|
|
uint16_t csum, offset, ip_len;
|
|
|
|
ip = mtod(m, struct ip *);
|
|
offset = ip->ip_hl << 2 ;
|
|
ip_len = ntohs(ip->ip_len);
|
|
csum = in_cksum_skip(m, ip_len, offset);
|
|
if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
|
|
csum = 0xffff;
|
|
offset += m->m_pkthdr.csum_data; /* checksum offset */
|
|
|
|
/* find the mbuf in the chain where the checksum starts*/
|
|
while ((m != NULL) && (offset >= m->m_len)) {
|
|
offset -= m->m_len;
|
|
m = m->m_next;
|
|
}
|
|
KASSERT(m != NULL, ("in_delayed_cksum: checksum outside mbuf chain."));
|
|
KASSERT(offset + sizeof(u_short) <= m->m_len, ("in_delayed_cksum: checksum split between mbufs."));
|
|
*(u_short *)(m->m_data + offset) = csum;
|
|
}
|
|
|
|
/*
|
|
* IP socket option processing.
|
|
*/
|
|
int
|
|
ip_ctloutput(struct socket *so, struct sockopt *sopt)
|
|
{
|
|
struct inpcb *inp = sotoinpcb(so);
|
|
int error, optval;
|
|
#ifdef RSS
|
|
uint32_t rss_bucket;
|
|
int retval;
|
|
#endif
|
|
|
|
error = optval = 0;
|
|
if (sopt->sopt_level != IPPROTO_IP) {
|
|
error = EINVAL;
|
|
|
|
if (sopt->sopt_level == SOL_SOCKET &&
|
|
sopt->sopt_dir == SOPT_SET) {
|
|
switch (sopt->sopt_name) {
|
|
case SO_REUSEADDR:
|
|
INP_WLOCK(inp);
|
|
if ((so->so_options & SO_REUSEADDR) != 0)
|
|
inp->inp_flags2 |= INP_REUSEADDR;
|
|
else
|
|
inp->inp_flags2 &= ~INP_REUSEADDR;
|
|
INP_WUNLOCK(inp);
|
|
error = 0;
|
|
break;
|
|
case SO_REUSEPORT:
|
|
INP_WLOCK(inp);
|
|
if ((so->so_options & SO_REUSEPORT) != 0)
|
|
inp->inp_flags2 |= INP_REUSEPORT;
|
|
else
|
|
inp->inp_flags2 &= ~INP_REUSEPORT;
|
|
INP_WUNLOCK(inp);
|
|
error = 0;
|
|
break;
|
|
case SO_SETFIB:
|
|
INP_WLOCK(inp);
|
|
inp->inp_inc.inc_fibnum = so->so_fibnum;
|
|
INP_WUNLOCK(inp);
|
|
error = 0;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
switch (sopt->sopt_dir) {
|
|
case SOPT_SET:
|
|
switch (sopt->sopt_name) {
|
|
case IP_OPTIONS:
|
|
#ifdef notyet
|
|
case IP_RETOPTS:
|
|
#endif
|
|
{
|
|
struct mbuf *m;
|
|
if (sopt->sopt_valsize > MLEN) {
|
|
error = EMSGSIZE;
|
|
break;
|
|
}
|
|
m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
|
|
if (m == NULL) {
|
|
error = ENOBUFS;
|
|
break;
|
|
}
|
|
m->m_len = sopt->sopt_valsize;
|
|
error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
|
|
m->m_len);
|
|
if (error) {
|
|
m_free(m);
|
|
break;
|
|
}
|
|
INP_WLOCK(inp);
|
|
error = ip_pcbopts(inp, sopt->sopt_name, m);
|
|
INP_WUNLOCK(inp);
|
|
return (error);
|
|
}
|
|
|
|
case IP_BINDANY:
|
|
if (sopt->sopt_td != NULL) {
|
|
error = priv_check(sopt->sopt_td,
|
|
PRIV_NETINET_BINDANY);
|
|
if (error)
|
|
break;
|
|
}
|
|
/* FALLTHROUGH */
|
|
case IP_BINDMULTI:
|
|
#ifdef RSS
|
|
case IP_RSS_LISTEN_BUCKET:
|
|
#endif
|
|
case IP_TOS:
|
|
case IP_TTL:
|
|
case IP_MINTTL:
|
|
case IP_RECVOPTS:
|
|
case IP_RECVRETOPTS:
|
|
case IP_RECVDSTADDR:
|
|
case IP_RECVTTL:
|
|
case IP_RECVIF:
|
|
case IP_FAITH:
|
|
case IP_ONESBCAST:
|
|
case IP_DONTFRAG:
|
|
case IP_RECVTOS:
|
|
case IP_RECVFLOWID:
|
|
#ifdef RSS
|
|
case IP_RECVRSSBUCKETID:
|
|
#endif
|
|
error = sooptcopyin(sopt, &optval, sizeof optval,
|
|
sizeof optval);
|
|
if (error)
|
|
break;
|
|
|
|
switch (sopt->sopt_name) {
|
|
case IP_TOS:
|
|
inp->inp_ip_tos = optval;
|
|
break;
|
|
|
|
case IP_TTL:
|
|
inp->inp_ip_ttl = optval;
|
|
break;
|
|
|
|
case IP_MINTTL:
|
|
if (optval >= 0 && optval <= MAXTTL)
|
|
inp->inp_ip_minttl = optval;
|
|
else
|
|
error = EINVAL;
|
|
break;
|
|
|
|
#define OPTSET(bit) do { \
|
|
INP_WLOCK(inp); \
|
|
if (optval) \
|
|
inp->inp_flags |= bit; \
|
|
else \
|
|
inp->inp_flags &= ~bit; \
|
|
INP_WUNLOCK(inp); \
|
|
} while (0)
|
|
|
|
#define OPTSET2(bit, val) do { \
|
|
INP_WLOCK(inp); \
|
|
if (val) \
|
|
inp->inp_flags2 |= bit; \
|
|
else \
|
|
inp->inp_flags2 &= ~bit; \
|
|
INP_WUNLOCK(inp); \
|
|
} while (0)
|
|
|
|
case IP_RECVOPTS:
|
|
OPTSET(INP_RECVOPTS);
|
|
break;
|
|
|
|
case IP_RECVRETOPTS:
|
|
OPTSET(INP_RECVRETOPTS);
|
|
break;
|
|
|
|
case IP_RECVDSTADDR:
|
|
OPTSET(INP_RECVDSTADDR);
|
|
break;
|
|
|
|
case IP_RECVTTL:
|
|
OPTSET(INP_RECVTTL);
|
|
break;
|
|
|
|
case IP_RECVIF:
|
|
OPTSET(INP_RECVIF);
|
|
break;
|
|
|
|
case IP_FAITH:
|
|
OPTSET(INP_FAITH);
|
|
break;
|
|
|
|
case IP_ONESBCAST:
|
|
OPTSET(INP_ONESBCAST);
|
|
break;
|
|
case IP_DONTFRAG:
|
|
OPTSET(INP_DONTFRAG);
|
|
break;
|
|
case IP_BINDANY:
|
|
OPTSET(INP_BINDANY);
|
|
break;
|
|
case IP_RECVTOS:
|
|
OPTSET(INP_RECVTOS);
|
|
break;
|
|
case IP_BINDMULTI:
|
|
OPTSET2(INP_BINDMULTI, optval);
|
|
break;
|
|
case IP_RECVFLOWID:
|
|
OPTSET2(INP_RECVFLOWID, optval);
|
|
break;
|
|
#ifdef RSS
|
|
case IP_RSS_LISTEN_BUCKET:
|
|
if ((optval >= 0) &&
|
|
(optval < rss_getnumbuckets())) {
|
|
inp->inp_rss_listen_bucket = optval;
|
|
OPTSET2(INP_RSS_BUCKET_SET, 1);
|
|
} else {
|
|
error = EINVAL;
|
|
}
|
|
break;
|
|
case IP_RECVRSSBUCKETID:
|
|
OPTSET2(INP_RECVRSSBUCKETID, optval);
|
|
break;
|
|
#endif
|
|
}
|
|
break;
|
|
#undef OPTSET
|
|
#undef OPTSET2
|
|
|
|
/*
|
|
* Multicast socket options are processed by the in_mcast
|
|
* module.
|
|
*/
|
|
case IP_MULTICAST_IF:
|
|
case IP_MULTICAST_VIF:
|
|
case IP_MULTICAST_TTL:
|
|
case IP_MULTICAST_LOOP:
|
|
case IP_ADD_MEMBERSHIP:
|
|
case IP_DROP_MEMBERSHIP:
|
|
case IP_ADD_SOURCE_MEMBERSHIP:
|
|
case IP_DROP_SOURCE_MEMBERSHIP:
|
|
case IP_BLOCK_SOURCE:
|
|
case IP_UNBLOCK_SOURCE:
|
|
case IP_MSFILTER:
|
|
case MCAST_JOIN_GROUP:
|
|
case MCAST_LEAVE_GROUP:
|
|
case MCAST_JOIN_SOURCE_GROUP:
|
|
case MCAST_LEAVE_SOURCE_GROUP:
|
|
case MCAST_BLOCK_SOURCE:
|
|
case MCAST_UNBLOCK_SOURCE:
|
|
error = inp_setmoptions(inp, sopt);
|
|
break;
|
|
|
|
case IP_PORTRANGE:
|
|
error = sooptcopyin(sopt, &optval, sizeof optval,
|
|
sizeof optval);
|
|
if (error)
|
|
break;
|
|
|
|
INP_WLOCK(inp);
|
|
switch (optval) {
|
|
case IP_PORTRANGE_DEFAULT:
|
|
inp->inp_flags &= ~(INP_LOWPORT);
|
|
inp->inp_flags &= ~(INP_HIGHPORT);
|
|
break;
|
|
|
|
case IP_PORTRANGE_HIGH:
|
|
inp->inp_flags &= ~(INP_LOWPORT);
|
|
inp->inp_flags |= INP_HIGHPORT;
|
|
break;
|
|
|
|
case IP_PORTRANGE_LOW:
|
|
inp->inp_flags &= ~(INP_HIGHPORT);
|
|
inp->inp_flags |= INP_LOWPORT;
|
|
break;
|
|
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
INP_WUNLOCK(inp);
|
|
break;
|
|
|
|
#ifdef IPSEC
|
|
case IP_IPSEC_POLICY:
|
|
{
|
|
caddr_t req;
|
|
struct mbuf *m;
|
|
|
|
if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
|
|
break;
|
|
if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
|
|
break;
|
|
req = mtod(m, caddr_t);
|
|
error = ipsec_set_policy(inp, sopt->sopt_name, req,
|
|
m->m_len, (sopt->sopt_td != NULL) ?
|
|
sopt->sopt_td->td_ucred : NULL);
|
|
m_freem(m);
|
|
break;
|
|
}
|
|
#endif /* IPSEC */
|
|
|
|
default:
|
|
error = ENOPROTOOPT;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case SOPT_GET:
|
|
switch (sopt->sopt_name) {
|
|
case IP_OPTIONS:
|
|
case IP_RETOPTS:
|
|
if (inp->inp_options)
|
|
error = sooptcopyout(sopt,
|
|
mtod(inp->inp_options,
|
|
char *),
|
|
inp->inp_options->m_len);
|
|
else
|
|
sopt->sopt_valsize = 0;
|
|
break;
|
|
|
|
case IP_TOS:
|
|
case IP_TTL:
|
|
case IP_MINTTL:
|
|
case IP_RECVOPTS:
|
|
case IP_RECVRETOPTS:
|
|
case IP_RECVDSTADDR:
|
|
case IP_RECVTTL:
|
|
case IP_RECVIF:
|
|
case IP_PORTRANGE:
|
|
case IP_FAITH:
|
|
case IP_ONESBCAST:
|
|
case IP_DONTFRAG:
|
|
case IP_BINDANY:
|
|
case IP_RECVTOS:
|
|
case IP_BINDMULTI:
|
|
case IP_FLOWID:
|
|
case IP_FLOWTYPE:
|
|
case IP_RECVFLOWID:
|
|
#ifdef RSS
|
|
case IP_RSSBUCKETID:
|
|
case IP_RECVRSSBUCKETID:
|
|
#endif
|
|
switch (sopt->sopt_name) {
|
|
|
|
case IP_TOS:
|
|
optval = inp->inp_ip_tos;
|
|
break;
|
|
|
|
case IP_TTL:
|
|
optval = inp->inp_ip_ttl;
|
|
break;
|
|
|
|
case IP_MINTTL:
|
|
optval = inp->inp_ip_minttl;
|
|
break;
|
|
|
|
#define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
|
|
#define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0)
|
|
|
|
case IP_RECVOPTS:
|
|
optval = OPTBIT(INP_RECVOPTS);
|
|
break;
|
|
|
|
case IP_RECVRETOPTS:
|
|
optval = OPTBIT(INP_RECVRETOPTS);
|
|
break;
|
|
|
|
case IP_RECVDSTADDR:
|
|
optval = OPTBIT(INP_RECVDSTADDR);
|
|
break;
|
|
|
|
case IP_RECVTTL:
|
|
optval = OPTBIT(INP_RECVTTL);
|
|
break;
|
|
|
|
case IP_RECVIF:
|
|
optval = OPTBIT(INP_RECVIF);
|
|
break;
|
|
|
|
case IP_PORTRANGE:
|
|
if (inp->inp_flags & INP_HIGHPORT)
|
|
optval = IP_PORTRANGE_HIGH;
|
|
else if (inp->inp_flags & INP_LOWPORT)
|
|
optval = IP_PORTRANGE_LOW;
|
|
else
|
|
optval = 0;
|
|
break;
|
|
|
|
case IP_FAITH:
|
|
optval = OPTBIT(INP_FAITH);
|
|
break;
|
|
|
|
case IP_ONESBCAST:
|
|
optval = OPTBIT(INP_ONESBCAST);
|
|
break;
|
|
case IP_DONTFRAG:
|
|
optval = OPTBIT(INP_DONTFRAG);
|
|
break;
|
|
case IP_BINDANY:
|
|
optval = OPTBIT(INP_BINDANY);
|
|
break;
|
|
case IP_RECVTOS:
|
|
optval = OPTBIT(INP_RECVTOS);
|
|
break;
|
|
case IP_FLOWID:
|
|
optval = inp->inp_flowid;
|
|
break;
|
|
case IP_FLOWTYPE:
|
|
optval = inp->inp_flowtype;
|
|
break;
|
|
case IP_RECVFLOWID:
|
|
optval = OPTBIT2(INP_RECVFLOWID);
|
|
break;
|
|
#ifdef RSS
|
|
case IP_RSSBUCKETID:
|
|
retval = rss_hash2bucket(inp->inp_flowid,
|
|
inp->inp_flowtype,
|
|
&rss_bucket);
|
|
if (retval == 0)
|
|
optval = rss_bucket;
|
|
else
|
|
error = EINVAL;
|
|
break;
|
|
case IP_RECVRSSBUCKETID:
|
|
optval = OPTBIT2(INP_RECVRSSBUCKETID);
|
|
break;
|
|
#endif
|
|
case IP_BINDMULTI:
|
|
optval = OPTBIT2(INP_BINDMULTI);
|
|
break;
|
|
}
|
|
error = sooptcopyout(sopt, &optval, sizeof optval);
|
|
break;
|
|
|
|
/*
|
|
* Multicast socket options are processed by the in_mcast
|
|
* module.
|
|
*/
|
|
case IP_MULTICAST_IF:
|
|
case IP_MULTICAST_VIF:
|
|
case IP_MULTICAST_TTL:
|
|
case IP_MULTICAST_LOOP:
|
|
case IP_MSFILTER:
|
|
error = inp_getmoptions(inp, sopt);
|
|
break;
|
|
|
|
#ifdef IPSEC
|
|
case IP_IPSEC_POLICY:
|
|
{
|
|
struct mbuf *m = NULL;
|
|
caddr_t req = NULL;
|
|
size_t len = 0;
|
|
|
|
if (m != 0) {
|
|
req = mtod(m, caddr_t);
|
|
len = m->m_len;
|
|
}
|
|
error = ipsec_get_policy(sotoinpcb(so), req, len, &m);
|
|
if (error == 0)
|
|
error = soopt_mcopyout(sopt, m); /* XXX */
|
|
if (error == 0)
|
|
m_freem(m);
|
|
break;
|
|
}
|
|
#endif /* IPSEC */
|
|
|
|
default:
|
|
error = ENOPROTOOPT;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Routine called from ip_output() to loop back a copy of an IP multicast
|
|
* packet to the input queue of a specified interface. Note that this
|
|
* calls the output routine of the loopback "driver", but with an interface
|
|
* pointer that might NOT be a loopback interface -- evil, but easier than
|
|
* replicating that code here.
|
|
*/
|
|
static void
|
|
ip_mloopback(struct ifnet *ifp, struct mbuf *m, int hlen)
|
|
{
|
|
register struct ip *ip;
|
|
struct mbuf *copym;
|
|
|
|
/*
|
|
* Make a deep copy of the packet because we're going to
|
|
* modify the pack in order to generate checksums.
|
|
*/
|
|
copym = m_dup(m, M_NOWAIT);
|
|
if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
|
|
copym = m_pullup(copym, hlen);
|
|
if (copym != NULL) {
|
|
/* If needed, compute the checksum and mark it as valid. */
|
|
if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
|
|
in_delayed_cksum(copym);
|
|
copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
|
|
copym->m_pkthdr.csum_flags |=
|
|
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
|
|
copym->m_pkthdr.csum_data = 0xffff;
|
|
}
|
|
/*
|
|
* We don't bother to fragment if the IP length is greater
|
|
* than the interface's MTU. Can this possibly matter?
|
|
*/
|
|
ip = mtod(copym, struct ip *);
|
|
ip->ip_sum = 0;
|
|
ip->ip_sum = in_cksum(copym, hlen);
|
|
if_simloop(ifp, copym, AF_INET, 0);
|
|
}
|
|
}
|