2bce8049c3
Matthew Ahrens
2bce8049c3
OpenZFS 7004 - dmu_tx_hold_zap() does dnode_hold() 7x on same object
Using a benchmark which has 32 threads creating 2 million files in the same directory, on a machine with 16 CPU cores, I observed poor performance. I noticed that dmu_tx_hold_zap() was using about 30% of all CPU, and doing dnode_hold() 7 times on the same object (the ZAP object that is being held). dmu_tx_hold_zap() keeps a hold on the dnode_t the entire time it is running, in dmu_tx_hold_t:txh_dnode, so it would be nice to use the dnode_t that we already have in hand, rather than repeatedly calling dnode_hold(). To do this, we need to pass the dnode_t down through all the intermediate calls that dmu_tx_hold_zap() makes, making these routines take the dnode_t* rather than an objset_t* and a uint64_t object number. In particular, the following routines will need to have analogous *_by_dnode() variants created: dmu_buf_hold_noread() dmu_buf_hold() zap_lookup() zap_lookup_norm() zap_count_write() zap_lockdir() zap_count_write() This can improve performance on the benchmark described above by 100%, from 30,000 file creations per second to 60,000. (This improvement is on top of that provided by working around the object allocation issue. Peak performance of ~90,000 creations per second was observed with 8 CPUs; adding CPUs past that decreased performance due to lock contention.) The CPU used by dmu_tx_hold_zap() was reduced by 88%, from 340 CPU-seconds to 40 CPU-seconds. Sponsored by: Intel Corp. Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/7004 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/109 Closes #4641 Closes #4972
Native ZFS for Linux!
ZFS is an advanced file system and volume manager which was originally developed for Solaris and is now maintained by the Illumos community.
ZFS on Linux, which is also known as ZoL, is currently feature complete. It includes fully functional and stable SPA, DMU, ZVOL, and ZPL layers.
Full documentation for installing ZoL on your favorite Linux distribution can be found at: http://zfsonlinux.org
Description
Languages
C
60.1%
C++
26.1%
Roff
4.9%
Shell
3%
Assembly
1.7%
Other
3.7%