freebsd-nq/sys/dev/ata/ata-raid.c
Søren Schmidt a7a120f649 Overhaul of the timeout/reinit framework. This should clear up most
of the leftovers from the old version that really doesn't work anymore.

Add a reset function for host-end of the ATA channel. This is needed
for the SiI3112 in order to whack it back to reality if a device
locks up the SATA interface (thereby preventing that we can reset the
device). The result is that ATA now recovers from the timeouts that
happens with the SiI3112A and more or less all disks based on old
PATA electronics with a Marvell PATA->SATA converter. This includes
lots of the popular SATA dongles and the WDC Raptor disks..
2004-01-11 22:08:34 +00:00

1700 lines
49 KiB
C

/*-
* Copyright (c) 2000 - 2004 Søren Schmidt <sos@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ata.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/ata.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/malloc.h>
#include <sys/bio.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/disk.h>
#include <sys/cons.h>
#include <sys/unistd.h>
#include <sys/kthread.h>
#include <sys/sema.h>
#include <sys/taskqueue.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <geom/geom_disk.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#include <dev/ata/ata-all.h>
#include <dev/ata/ata-pci.h>
#include <dev/ata/ata-disk.h>
#include <dev/ata/ata-raid.h>
/* device structures */
static disk_strategy_t arstrategy;
static dumper_t ardump;
/* prototypes */
static void ar_attach_raid(struct ar_softc *, int);
static void ar_done(struct bio *);
static void ar_config_changed(struct ar_softc *, int);
static void ar_rebuild(void *);
static int ar_highpoint_read_conf(struct ad_softc *, struct ar_softc **);
static int ar_highpoint_write_conf(struct ar_softc *);
static int ar_promise_read_conf(struct ad_softc *, struct ar_softc **, int);
static int ar_promise_write_conf(struct ar_softc *);
static int ar_rw(struct ad_softc *, u_int32_t, int, caddr_t, int);
static struct ata_device *ar_locate_disk(int);
static void ar_print_conf(struct ar_softc *);
/* internal vars */
static struct ar_softc **ar_table = NULL;
static MALLOC_DEFINE(M_AR, "AR driver", "ATA RAID driver");
#define AR_REBUILD_SIZE 128
int
ata_raiddisk_attach(struct ad_softc *adp)
{
struct ar_softc *rdp;
int array, disk;
if (ar_table) {
for (array = 0; array < MAX_ARRAYS; array++) {
if (!(rdp = ar_table[array]) || !rdp->flags)
continue;
for (disk = 0; disk < rdp->total_disks; disk++) {
if ((rdp->disks[disk].flags & AR_DF_ASSIGNED) &&
rdp->disks[disk].device == adp->device) {
ata_prtdev(rdp->disks[disk].device,
"inserted into ar%d disk%d as spare\n",
array, disk);
rdp->disks[disk].flags |= (AR_DF_PRESENT | AR_DF_SPARE);
AD_SOFTC(rdp->disks[disk])->flags |= AD_F_RAID_SUBDISK;
ar_config_changed(rdp, 1);
return 1;
}
}
}
}
if (!ar_table)
ar_table = malloc(sizeof(struct ar_soft *) * MAX_ARRAYS,
M_AR, M_NOWAIT | M_ZERO);
if (!ar_table) {
ata_prtdev(adp->device, "no memory for ATA raid array\n");
return 0;
}
switch(pci_get_vendor(device_get_parent(adp->device->channel->dev))) {
case ATA_PROMISE_ID:
/* test RAID bit in PCI reg XXX */
return (ar_promise_read_conf(adp, ar_table, 0));
case ATA_HIGHPOINT_ID:
return (ar_highpoint_read_conf(adp, ar_table));
default:
return (ar_promise_read_conf(adp, ar_table, 1));
}
return 0;
}
int
ata_raiddisk_detach(struct ad_softc *adp)
{
struct ar_softc *rdp;
int array, disk;
if (ar_table) {
for (array = 0; array < MAX_ARRAYS; array++) {
if (!(rdp = ar_table[array]) || !rdp->flags)
continue;
for (disk = 0; disk < rdp->total_disks; disk++) {
if (rdp->disks[disk].device == adp->device) {
ata_prtdev(rdp->disks[disk].device,
"deleted from ar%d disk%d\n", array, disk);
rdp->disks[disk].flags &= ~(AR_DF_PRESENT | AR_DF_ONLINE);
AD_SOFTC(rdp->disks[disk])->flags &= ~AD_F_RAID_SUBDISK;
rdp->disks[disk].device = NULL;
ar_config_changed(rdp, 1);
return 1;
}
}
}
}
return 0;
}
void
ata_raid_attach()
{
struct ar_softc *rdp;
int array;
if (!ar_table)
return;
for (array = 0; array < MAX_ARRAYS; array++) {
if (!(rdp = ar_table[array]) || !rdp->flags)
continue;
if (bootverbose)
ar_print_conf(rdp);
ar_attach_raid(rdp, 0);
}
}
static void
ar_attach_raid(struct ar_softc *rdp, int update)
{
int disk;
ar_config_changed(rdp, update);
rdp->disk.d_strategy = arstrategy;
rdp->disk.d_dump = ardump;
rdp->disk.d_name = "ar";
rdp->disk.d_sectorsize = DEV_BSIZE;
rdp->disk.d_mediasize = (off_t)rdp->total_sectors * DEV_BSIZE;
rdp->disk.d_fwsectors = rdp->sectors;
rdp->disk.d_fwheads = rdp->heads;
rdp->disk.d_maxsize = 128 * DEV_BSIZE;
rdp->disk.d_drv1 = rdp;
disk_create(rdp->lun, &rdp->disk, 0, NULL, NULL);
printf("ar%d: %lluMB <ATA ", rdp->lun, (unsigned long long)
(rdp->total_sectors / ((1024L * 1024L) / DEV_BSIZE)));
switch (rdp->flags & (AR_F_RAID0 | AR_F_RAID1 | AR_F_SPAN)) {
case AR_F_RAID0:
printf("RAID0 "); break;
case AR_F_RAID1:
printf("RAID1 "); break;
case AR_F_SPAN:
printf("SPAN "); break;
case (AR_F_RAID0 | AR_F_RAID1):
printf("RAID0+1 "); break;
default:
printf("unknown 0x%x> ", rdp->flags);
return;
}
printf("array> [%d/%d/%d] status: ",
rdp->cylinders, rdp->heads, rdp->sectors);
switch (rdp->flags & (AR_F_DEGRADED | AR_F_READY)) {
case AR_F_READY:
printf("READY");
break;
case (AR_F_DEGRADED | AR_F_READY):
printf("DEGRADED");
break;
default:
printf("BROKEN");
break;
}
printf(" subdisks:\n");
for (disk = 0; disk < rdp->total_disks; disk++) {
if (rdp->disks[disk].device &&
AD_SOFTC(rdp->disks[disk])->flags & AD_F_RAID_SUBDISK) {
if (rdp->disks[disk].flags & AR_DF_PRESENT) {
if (rdp->disks[disk].flags & AR_DF_ONLINE)
printf(" disk%d READY ", disk);
else if (rdp->disks[disk].flags & AR_DF_SPARE)
printf(" disk%d SPARE ", disk);
else
printf(" disk%d FREE ", disk);
printf("on %s at ata%d-%s\n", rdp->disks[disk].device->name,
device_get_unit(rdp->disks[disk].device->channel->dev),
(rdp->disks[disk].device->unit == ATA_MASTER) ?
"master" : "slave");
}
else if (rdp->disks[disk].flags & AR_DF_ASSIGNED)
printf(" disk%d DOWN\n", disk);
else
printf(" disk%d INVALID no RAID config on this disk\n", disk);
}
else
printf(" disk%d DOWN no device found for this disk\n", disk);
}
}
int
ata_raid_addspare(int array, int disk)
{
struct ar_softc *rdp;
struct ata_device *atadev;
int i;
if (!ar_table || !(rdp = ar_table[array]))
return ENXIO;
if (!(rdp->flags & AR_F_RAID1))
return EPERM;
if (rdp->flags & AR_F_REBUILDING)
return EBUSY;
if (!(rdp->flags & AR_F_DEGRADED) || !(rdp->flags & AR_F_READY))
return ENXIO;
for (i = 0; i < rdp->total_disks; i++ ) {
if (((rdp->disks[i].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
(AR_DF_PRESENT | AR_DF_ONLINE)) && rdp->disks[i].device)
continue;
if ((atadev = ar_locate_disk(disk))) {
if (((struct ad_softc*)(atadev->softc))->flags & AD_F_RAID_SUBDISK)
return EBUSY;
rdp->disks[i].device = atadev;
rdp->disks[i].flags |= (AR_DF_PRESENT|AR_DF_ASSIGNED|AR_DF_SPARE);
AD_SOFTC(rdp->disks[i])->flags |= AD_F_RAID_SUBDISK;
ata_prtdev(rdp->disks[i].device,
"inserted into ar%d disk%d as spare\n", array, i);
ar_config_changed(rdp, 1);
return 0;
}
}
return ENXIO;
}
int
ata_raid_create(struct raid_setup *setup)
{
struct ata_device *atadev;
struct ar_softc *rdp;
int array, disk;
int ctlr = 0, disk_size = 0, total_disks = 0;
if (!ar_table)
ar_table = malloc(sizeof(struct ar_soft *) * MAX_ARRAYS,
M_AR, M_NOWAIT | M_ZERO);
if (!ar_table) {
printf("ar: no memory for ATA raid array\n");
return 0;
}
for (array = 0; array < MAX_ARRAYS; array++) {
if (!ar_table[array])
break;
}
if (array >= MAX_ARRAYS)
return ENOSPC;
if (!(rdp = (struct ar_softc*)malloc(sizeof(struct ar_softc), M_AR,
M_NOWAIT | M_ZERO))) {
printf("ar%d: failed to allocate raid config storage\n", array);
return ENOMEM;
}
for (disk = 0; disk < setup->total_disks; disk++) {
if ((atadev = ar_locate_disk(setup->disks[disk]))) {
rdp->disks[disk].device = atadev;
if (AD_SOFTC(rdp->disks[disk])->flags & AD_F_RAID_SUBDISK) {
setup->disks[disk] = -1;
free(rdp, M_AR);
return EBUSY;
}
switch(pci_get_vendor(device_get_parent(
rdp->disks[disk].device->channel->dev))) {
case ATA_HIGHPOINT_ID:
ctlr |= AR_F_HIGHPOINT_RAID;
rdp->disks[disk].disk_sectors =
AD_SOFTC(rdp->disks[disk])->total_secs;
break;
default:
ctlr |= AR_F_FREEBSD_RAID;
/* FALLTHROUGH */
case ATA_PROMISE_ID:
ctlr |= AR_F_PROMISE_RAID;
rdp->disks[disk].disk_sectors =
PR_LBA(AD_SOFTC(rdp->disks[disk]));
break;
}
if (rdp->flags & (AR_F_PROMISE_RAID|AR_F_HIGHPOINT_RAID) &&
(rdp->flags & (AR_F_PROMISE_RAID|AR_F_HIGHPOINT_RAID)) !=
(ctlr & (AR_F_PROMISE_RAID|AR_F_HIGHPOINT_RAID))) {
free(rdp, M_AR);
return EXDEV;
}
else
rdp->flags |= ctlr;
if (disk_size)
disk_size = min(rdp->disks[disk].disk_sectors, disk_size);
else
disk_size = rdp->disks[disk].disk_sectors;
rdp->disks[disk].flags =
(AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
total_disks++;
}
else {
setup->disks[disk] = -1;
free(rdp, M_AR);
return ENXIO;
}
}
if (!total_disks) {
free(rdp, M_AR);
return ENODEV;
}
switch (setup->type) {
case 1:
rdp->flags |= AR_F_RAID0;
break;
case 2:
rdp->flags |= AR_F_RAID1;
if (total_disks != 2) {
free(rdp, M_AR);
return EPERM;
}
break;
case 3:
rdp->flags |= (AR_F_RAID0 | AR_F_RAID1);
if (total_disks % 2 != 0) {
free(rdp, M_AR);
return EPERM;
}
break;
case 4:
rdp->flags |= AR_F_SPAN;
break;
}
for (disk = 0; disk < total_disks; disk++)
AD_SOFTC(rdp->disks[disk])->flags |= AD_F_RAID_SUBDISK;
rdp->lun = array;
if (rdp->flags & AR_F_RAID0) {
int bit = 0;
while (setup->interleave >>= 1)
bit++;
if (rdp->flags & AR_F_PROMISE_RAID)
rdp->interleave = min(max(2, 1 << bit), 2048);
if (rdp->flags & AR_F_HIGHPOINT_RAID)
rdp->interleave = min(max(32, 1 << bit), 128);
}
rdp->total_disks = total_disks;
rdp->width = total_disks / ((rdp->flags & AR_F_RAID1) ? 2 : 1);
rdp->total_sectors = disk_size * rdp->width;
rdp->heads = 255;
rdp->sectors = 63;
rdp->cylinders = rdp->total_sectors / (255 * 63);
if (rdp->flags & AR_F_PROMISE_RAID) {
rdp->offset = 0;
rdp->reserved = 63;
}
if (rdp->flags & AR_F_HIGHPOINT_RAID) {
rdp->offset = HPT_LBA + 1;
rdp->reserved = HPT_LBA + 1;
}
rdp->lock_start = rdp->lock_end = 0xffffffff;
rdp->flags |= AR_F_READY;
ar_table[array] = rdp;
#if 0
/* kick off rebuild here */
if (setup->type == 2) {
rdp->disks[1].flags &= ~AR_DF_ONLINE;
rdp->disks[1].flags |= AR_DF_SPARE;
}
#endif
ar_attach_raid(rdp, 1);
ata_raid_rebuild(array);
setup->unit = array;
return 0;
}
int
ata_raid_delete(int array)
{
struct ar_softc *rdp;
int disk;
if (!ar_table) {
printf("ar: no memory for ATA raid array\n");
return 0;
}
if (!(rdp = ar_table[array]))
return ENXIO;
rdp->flags &= ~AR_F_READY;
for (disk = 0; disk < rdp->total_disks; disk++) {
if ((rdp->disks[disk].flags&AR_DF_PRESENT) && rdp->disks[disk].device) {
AD_SOFTC(rdp->disks[disk])->flags &= ~AD_F_RAID_SUBDISK;
/* SOS
ata_enclosure_leds(rdp->disks[disk].device, ATA_LED_GREEN);
XXX */
rdp->disks[disk].flags = 0;
}
}
if (rdp->flags & AR_F_PROMISE_RAID)
ar_promise_write_conf(rdp);
else
ar_highpoint_write_conf(rdp);
disk_destroy(&rdp->disk);
free(rdp, M_AR);
ar_table[array] = NULL;
return 0;
}
int
ata_raid_status(int array, struct raid_status *status)
{
struct ar_softc *rdp;
int i;
if (!ar_table || !(rdp = ar_table[array]))
return ENXIO;
switch (rdp->flags & (AR_F_RAID0 | AR_F_RAID1 | AR_F_SPAN)) {
case AR_F_RAID0:
status->type = AR_RAID0;
break;
case AR_F_RAID1:
status->type = AR_RAID1;
break;
case AR_F_RAID0 | AR_F_RAID1:
status->type = AR_RAID0 | AR_RAID1;
break;
case AR_F_SPAN:
status->type = AR_SPAN;
break;
}
status->total_disks = rdp->total_disks;
for (i = 0; i < rdp->total_disks; i++ ) {
if ((rdp->disks[i].flags & AR_DF_PRESENT) && rdp->disks[i].device)
status->disks[i] = AD_SOFTC(rdp->disks[i])->lun;
else
status->disks[i] = -1;
}
status->interleave = rdp->interleave;
status->status = 0;
if (rdp->flags & AR_F_READY)
status->status |= AR_READY;
if (rdp->flags & AR_F_DEGRADED)
status->status |= AR_DEGRADED;
if (rdp->flags & AR_F_REBUILDING) {
status->status |= AR_REBUILDING;
status->progress = 100*rdp->lock_start/(rdp->total_sectors/rdp->width);
}
return 0;
}
int
ata_raid_rebuild(int array)
{
struct ar_softc *rdp;
if (!ar_table || !(rdp = ar_table[array]))
return ENXIO;
if (rdp->flags & AR_F_REBUILDING)
return EBUSY;
return kthread_create(ar_rebuild, rdp, &rdp->pid, RFNOWAIT, 0,
"rebuilding ar%d", array);
}
static int
ardump(void *arg, void *virtual, vm_offset_t physical,
off_t offset, size_t length)
{
struct ar_softc *rdp;
struct disk *dp, *ap;
vm_offset_t pdata;
caddr_t vdata;
int blkno, count, chunk, error1, error2, lba, lbs, tmplba;
int drv = 0;
dp = arg;
rdp = dp->d_drv1;
if (!rdp || !(rdp->flags & AR_F_READY))
return ENXIO;
if (length == 0) {
for (drv = 0; drv < rdp->total_disks; drv++) {
if (rdp->disks[drv].flags & AR_DF_ONLINE) {
ap = &AD_SOFTC(rdp->disks[drv])->disk;
(void) ap->d_dump(ap, NULL, 0, 0, 0);
}
}
return 0;
}
blkno = offset / DEV_BSIZE;
vdata = virtual;
pdata = physical;
for (count = howmany(length, DEV_BSIZE); count > 0;
count -= chunk, blkno += chunk, vdata += (chunk * DEV_BSIZE),
pdata += (chunk * DEV_BSIZE)) {
switch (rdp->flags & (AR_F_RAID0 | AR_F_RAID1 | AR_F_SPAN)) {
case AR_F_SPAN:
lba = blkno;
while (lba >= AD_SOFTC(rdp->disks[drv])->total_secs-rdp->reserved)
lba -= AD_SOFTC(rdp->disks[drv++])->total_secs-rdp->reserved;
chunk = min(AD_SOFTC(rdp->disks[drv])->total_secs-rdp->reserved-lba,
count);
break;
case AR_F_RAID0:
case AR_F_RAID0 | AR_F_RAID1:
tmplba = blkno / rdp->interleave;
chunk = blkno % rdp->interleave;
if (blkno >= (rdp->total_sectors / (rdp->interleave * rdp->width)) *
(rdp->interleave * rdp->width) ) {
lbs = (rdp->total_sectors -
((rdp->total_sectors / (rdp->interleave * rdp->width)) *
(rdp->interleave * rdp->width))) / rdp->width;
drv = (blkno -
((rdp->total_sectors / (rdp->interleave * rdp->width)) *
(rdp->interleave * rdp->width))) / lbs;
lba = ((tmplba / rdp->width) * rdp->interleave) +
(blkno - ((tmplba / rdp->width) * rdp->interleave)) % lbs;
chunk = min(count, lbs);
}
else {
drv = tmplba % rdp->width;
lba = ((tmplba / rdp->width) * rdp->interleave) + chunk;
chunk = min(count, rdp->interleave - chunk);
}
break;
case AR_F_RAID1:
drv = 0;
lba = blkno;
chunk = count;
break;
default:
printf("ar%d: unknown array type in ardump\n", rdp->lun);
return EIO;
}
if (drv > 0)
lba += rdp->offset;
switch (rdp->flags & (AR_F_RAID0 | AR_F_RAID1 | AR_F_SPAN)) {
case AR_F_SPAN:
case AR_F_RAID0:
if (rdp->disks[drv].flags & AR_DF_ONLINE) {
ap = &AD_SOFTC(rdp->disks[drv])->disk;
error1 = ap->d_dump(ap, vdata, pdata,
(off_t) lba * DEV_BSIZE,
chunk * DEV_BSIZE);
} else
error1 = EIO;
if (error1)
return error1;
break;
case AR_F_RAID1:
case AR_F_RAID0 | AR_F_RAID1:
if ((rdp->disks[drv].flags & AR_DF_ONLINE) ||
((rdp->flags & AR_F_REBUILDING) &&
(rdp->disks[drv].flags & AR_DF_SPARE))) {
ap = &AD_SOFTC(rdp->disks[drv])->disk;
error1 = ap->d_dump(ap, vdata, pdata,
(off_t) lba * DEV_BSIZE,
chunk * DEV_BSIZE);
} else
error1 = EIO;
if ((rdp->disks[drv + rdp->width].flags & AR_DF_ONLINE) ||
((rdp->flags & AR_F_REBUILDING) &&
(rdp->disks[drv + rdp->width].flags & AR_DF_SPARE))) {
ap = &AD_SOFTC(rdp->disks[drv + rdp->width])->disk;
error2 = ap->d_dump(ap, vdata, pdata,
(off_t) lba * DEV_BSIZE,
chunk * DEV_BSIZE);
} else
error2 = EIO;
if (error1 && error2)
return error1;
break;
default:
printf("ar%d: unknown array type in ardump\n", rdp->lun);
return EIO;
}
}
return 0;
}
static void
arstrategy(struct bio *bp)
{
struct ar_softc *rdp = bp->bio_disk->d_drv1;
int blkno, count, chunk, lba, lbs, tmplba;
int drv = 0, change = 0;
caddr_t data;
if (!(rdp->flags & AR_F_READY)) {
bp->bio_flags |= BIO_ERROR;
bp->bio_error = EIO;
biodone(bp);
return;
}
bp->bio_resid = bp->bio_bcount;
blkno = bp->bio_pblkno;
data = bp->bio_data;
for (count = howmany(bp->bio_bcount, DEV_BSIZE); count > 0;
count -= chunk, blkno += chunk, data += (chunk * DEV_BSIZE)) {
struct ar_buf *buf1, *buf2;
switch (rdp->flags & (AR_F_RAID0 | AR_F_RAID1 | AR_F_SPAN)) {
case AR_F_SPAN:
lba = blkno;
while (lba >= AD_SOFTC(rdp->disks[drv])->total_secs-rdp->reserved)
lba -= AD_SOFTC(rdp->disks[drv++])->total_secs-rdp->reserved;
chunk = min(AD_SOFTC(rdp->disks[drv])->total_secs-rdp->reserved-lba,
count);
break;
case AR_F_RAID0:
case AR_F_RAID0 | AR_F_RAID1:
tmplba = blkno / rdp->interleave;
chunk = blkno % rdp->interleave;
if (blkno >= (rdp->total_sectors / (rdp->interleave * rdp->width)) *
(rdp->interleave * rdp->width) ) {
lbs = (rdp->total_sectors -
((rdp->total_sectors / (rdp->interleave * rdp->width)) *
(rdp->interleave * rdp->width))) / rdp->width;
drv = (blkno -
((rdp->total_sectors / (rdp->interleave * rdp->width)) *
(rdp->interleave * rdp->width))) / lbs;
lba = ((tmplba / rdp->width) * rdp->interleave) +
(blkno - ((tmplba / rdp->width) * rdp->interleave)) % lbs;
chunk = min(count, lbs);
}
else {
drv = tmplba % rdp->width;
lba = ((tmplba / rdp->width) * rdp->interleave) + chunk;
chunk = min(count, rdp->interleave - chunk);
}
break;
case AR_F_RAID1:
drv = 0;
lba = blkno;
chunk = count;
break;
default:
printf("ar%d: unknown array type in arstrategy\n", rdp->lun);
bp->bio_flags |= BIO_ERROR;
bp->bio_error = EIO;
biodone(bp);
return;
}
buf1 = malloc(sizeof(struct ar_buf), M_AR, M_NOWAIT | M_ZERO); /* XXX */
buf1->bp.bio_pblkno = lba;
if ((buf1->drive = drv) > 0)
buf1->bp.bio_pblkno += rdp->offset;
buf1->bp.bio_driver1 = (void *)rdp;
buf1->bp.bio_bcount = chunk * DEV_BSIZE;
buf1->bp.bio_data = data;
buf1->bp.bio_cmd = bp->bio_cmd;
buf1->bp.bio_flags = bp->bio_flags;
buf1->bp.bio_done = ar_done;
buf1->org = bp;
switch (rdp->flags & (AR_F_RAID0 | AR_F_RAID1 | AR_F_SPAN)) {
case AR_F_SPAN:
case AR_F_RAID0:
if ((rdp->disks[buf1->drive].flags &
(AR_DF_PRESENT|AR_DF_ONLINE))==(AR_DF_PRESENT|AR_DF_ONLINE) &&
!rdp->disks[buf1->drive].device->softc) {
rdp->disks[buf1->drive].flags &= ~AR_DF_ONLINE;
ar_config_changed(rdp, 1);
free(buf1, M_AR);
bp->bio_flags |= BIO_ERROR;
bp->bio_error = EIO;
biodone(bp);
return;
}
buf1->bp.bio_disk = &AD_SOFTC(rdp->disks[buf1->drive])->disk;
AR_STRATEGY((struct bio *)buf1);
break;
case AR_F_RAID1:
case AR_F_RAID0 | AR_F_RAID1:
if (rdp->flags & AR_F_REBUILDING && bp->bio_cmd == BIO_WRITE) {
if ((bp->bio_pblkno >= rdp->lock_start &&
bp->bio_pblkno < rdp->lock_end) ||
((bp->bio_pblkno + chunk) > rdp->lock_start &&
(bp->bio_pblkno + chunk) <= rdp->lock_end)) {
tsleep(rdp, PRIBIO, "arwait", 0);
}
}
if ((rdp->disks[buf1->drive].flags &
(AR_DF_PRESENT|AR_DF_ONLINE))==(AR_DF_PRESENT|AR_DF_ONLINE) &&
!rdp->disks[buf1->drive].device->softc) {
rdp->disks[buf1->drive].flags &= ~AR_DF_ONLINE;
change = 1;
}
if ((rdp->disks[buf1->drive + rdp->width].flags &
(AR_DF_PRESENT|AR_DF_ONLINE))==(AR_DF_PRESENT|AR_DF_ONLINE) &&
!rdp->disks[buf1->drive + rdp->width].device->softc) {
rdp->disks[buf1->drive + rdp->width].flags &= ~AR_DF_ONLINE;
change = 1;
}
if (change)
ar_config_changed(rdp, 1);
if (!(rdp->flags & AR_F_READY)) {
free(buf1, M_AR);
bp->bio_flags |= BIO_ERROR;
bp->bio_error = EIO;
biodone(bp);
return;
}
if (bp->bio_cmd == BIO_READ) {
int src_online =
(rdp->disks[buf1->drive].flags & AR_DF_ONLINE);
int mir_online =
(rdp->disks[buf1->drive+rdp->width].flags & AR_DF_ONLINE);
/* if mirror gone or close to last access on source */
if (!mir_online ||
((src_online) &&
buf1->bp.bio_pblkno >=
(rdp->disks[buf1->drive].last_lba - AR_PROXIMITY) &&
buf1->bp.bio_pblkno <=
(rdp->disks[buf1->drive].last_lba + AR_PROXIMITY))) {
rdp->flags &= ~AR_F_TOGGLE;
}
/* if source gone or close to last access on mirror */
else if (!src_online ||
((mir_online) &&
buf1->bp.bio_pblkno >=
(rdp->disks[buf1->drive + rdp->width].last_lba -
AR_PROXIMITY) &&
buf1->bp.bio_pblkno <=
(rdp->disks[buf1->drive + rdp->width].last_lba +
AR_PROXIMITY))) {
buf1->drive = buf1->drive + rdp->width;
rdp->flags |= AR_F_TOGGLE;
}
/* not close to any previous access, toggle */
else {
if (rdp->flags & AR_F_TOGGLE)
rdp->flags &= ~AR_F_TOGGLE;
else {
buf1->drive = buf1->drive + rdp->width;
rdp->flags |= AR_F_TOGGLE;
}
}
}
if (bp->bio_cmd == BIO_WRITE) {
if ((rdp->disks[buf1->drive+rdp->width].flags & AR_DF_ONLINE) ||
((rdp->flags & AR_F_REBUILDING) &&
(rdp->disks[buf1->drive+rdp->width].flags & AR_DF_SPARE) &&
buf1->bp.bio_pblkno < rdp->lock_start)) {
if ((rdp->disks[buf1->drive].flags & AR_DF_ONLINE) ||
((rdp->flags & AR_F_REBUILDING) &&
(rdp->disks[buf1->drive].flags & AR_DF_SPARE) &&
buf1->bp.bio_pblkno < rdp->lock_start)) {
buf2 = malloc(sizeof(struct ar_buf), M_AR, M_NOWAIT); /* XXX */
bcopy(buf1, buf2, sizeof(struct ar_buf));
buf1->mirror = buf2;
buf2->mirror = buf1;
buf2->drive = buf1->drive + rdp->width;
buf2->bp.bio_disk =
&AD_SOFTC(rdp->disks[buf2->drive])->disk;
AR_STRATEGY((struct bio *)buf2);
rdp->disks[buf2->drive].last_lba =
buf2->bp.bio_pblkno + chunk;
}
else
buf1->drive = buf1->drive + rdp->width;
}
}
buf1->bp.bio_disk = &AD_SOFTC(rdp->disks[buf1->drive])->disk;
AR_STRATEGY((struct bio *)buf1);
rdp->disks[buf1->drive].last_lba = buf1->bp.bio_pblkno + chunk;
break;
default:
printf("ar%d: unknown array type in arstrategy\n", rdp->lun);
}
}
}
static void
ar_done(struct bio *bp)
{
struct ar_softc *rdp = (struct ar_softc *)bp->bio_driver1;
struct ar_buf *buf = (struct ar_buf *)bp;
switch (rdp->flags & (AR_F_RAID0 | AR_F_RAID1 | AR_F_SPAN)) {
case AR_F_SPAN:
case AR_F_RAID0:
if (buf->bp.bio_flags & BIO_ERROR) {
rdp->disks[buf->drive].flags &= ~AR_DF_ONLINE;
ar_config_changed(rdp, 1);
buf->org->bio_flags |= BIO_ERROR;
buf->org->bio_error = EIO;
biodone(buf->org);
}
else {
buf->org->bio_resid -= buf->bp.bio_bcount;
if (buf->org->bio_resid == 0)
biodone(buf->org);
}
break;
case AR_F_RAID1:
case AR_F_RAID0 | AR_F_RAID1:
if (buf->bp.bio_flags & BIO_ERROR) {
rdp->disks[buf->drive].flags &= ~AR_DF_ONLINE;
ar_config_changed(rdp, 1);
if (rdp->flags & AR_F_READY) {
if (buf->bp.bio_cmd == BIO_READ) {
if (buf->drive < rdp->width)
buf->drive = buf->drive + rdp->width;
else
buf->drive = buf->drive - rdp->width;
buf->bp.bio_disk = &AD_SOFTC(rdp->disks[buf->drive])->disk;
buf->bp.bio_flags = buf->org->bio_flags;
buf->bp.bio_error = 0;
AR_STRATEGY((struct bio *)buf);
return;
}
if (buf->bp.bio_cmd == BIO_WRITE) {
if (buf->flags & AB_F_DONE) {
buf->org->bio_resid -= buf->bp.bio_bcount;
if (buf->org->bio_resid == 0)
biodone(buf->org);
}
else
buf->mirror->flags |= AB_F_DONE;
}
}
else {
buf->org->bio_flags |= BIO_ERROR;
buf->org->bio_error = EIO;
biodone(buf->org);
}
}
else {
if (buf->bp.bio_cmd == BIO_WRITE) {
if (buf->mirror && !(buf->flags & AB_F_DONE)){
buf->mirror->flags |= AB_F_DONE;
break;
}
}
buf->org->bio_resid -= buf->bp.bio_bcount;
if (buf->org->bio_resid == 0)
biodone(buf->org);
}
break;
default:
printf("ar%d: unknown array type in ar_done\n", rdp->lun);
}
free(buf, M_AR);
}
static void
ar_config_changed(struct ar_softc *rdp, int writeback)
{
int disk, flags;
flags = rdp->flags;
rdp->flags |= AR_F_READY;
rdp->flags &= ~AR_F_DEGRADED;
for (disk = 0; disk < rdp->total_disks; disk++)
if (!(rdp->disks[disk].flags & AR_DF_PRESENT))
rdp->disks[disk].flags &= ~AR_DF_ONLINE;
for (disk = 0; disk < rdp->total_disks; disk++) {
switch (rdp->flags & (AR_F_RAID0 | AR_F_RAID1 | AR_F_SPAN)) {
case AR_F_SPAN:
case AR_F_RAID0:
if (!(rdp->disks[disk].flags & AR_DF_ONLINE)) {
rdp->flags &= ~AR_F_READY;
printf("ar%d: ERROR - array broken\n", rdp->lun);
}
break;
case AR_F_RAID1:
case AR_F_RAID0 | AR_F_RAID1:
if (disk < rdp->width) {
if (!(rdp->disks[disk].flags & AR_DF_ONLINE) &&
!(rdp->disks[disk + rdp->width].flags & AR_DF_ONLINE)) {
rdp->flags &= ~AR_F_READY;
printf("ar%d: ERROR - array broken\n", rdp->lun);
}
else if (((rdp->disks[disk].flags & AR_DF_ONLINE) &&
!(rdp->disks
[disk + rdp->width].flags & AR_DF_ONLINE))||
(!(rdp->disks[disk].flags & AR_DF_ONLINE) &&
(rdp->disks
[disk + rdp->width].flags & AR_DF_ONLINE))) {
rdp->flags |= AR_F_DEGRADED;
if (!(flags & AR_F_DEGRADED))
printf("ar%d: WARNING - mirror lost\n", rdp->lun);
}
}
break;
}
if ((rdp->disks[disk].flags&AR_DF_PRESENT) && rdp->disks[disk].device) {
/* SOS
if (rdp->disks[disk].flags & AR_DF_ONLINE)
ata_enclosure_leds(rdp->disks[disk].device, ATA_LED_GREEN);
else
ata_enclosure_leds(rdp->disks[disk].device, ATA_LED_RED);
XXX */
}
}
if (writeback) {
if (rdp->flags & AR_F_PROMISE_RAID)
ar_promise_write_conf(rdp);
if (rdp->flags & AR_F_HIGHPOINT_RAID)
ar_highpoint_write_conf(rdp);
}
}
static void
ar_rebuild(void *arg)
{
struct ar_softc *rdp = arg;
int disk, s, count = 0, error = 0;
caddr_t buffer;
mtx_lock(&Giant);
if ((rdp->flags & (AR_F_READY|AR_F_DEGRADED)) != (AR_F_READY|AR_F_DEGRADED))
kthread_exit(EEXIST);
for (disk = 0; disk < rdp->total_disks; disk++) {
if (((rdp->disks[disk].flags&(AR_DF_PRESENT|AR_DF_ONLINE|AR_DF_SPARE))==
(AR_DF_PRESENT | AR_DF_SPARE)) && rdp->disks[disk].device) {
if (AD_SOFTC(rdp->disks[disk])->total_secs <
rdp->disks[disk].disk_sectors) {
ata_prtdev(rdp->disks[disk].device,
"disk capacity too small for this RAID config\n");
#if 0
rdp->disks[disk].flags &= ~AR_DF_SPARE;
AD_SOFTC(rdp->disks[disk])->flags &= ~AD_F_RAID_SUBDISK;
#endif
continue;
}
/* SOS
ata_enclosure_leds(rdp->disks[disk].device, ATA_LED_ORANGE);
XXX */
count++;
}
}
if (!count)
kthread_exit(ENODEV);
/* setup start conditions */
s = splbio();
rdp->lock_start = 0;
rdp->lock_end = rdp->lock_start + AR_REBUILD_SIZE;
rdp->flags |= AR_F_REBUILDING;
splx(s);
buffer = malloc(AR_REBUILD_SIZE * DEV_BSIZE, M_AR, M_NOWAIT | M_ZERO); /* XXX */
/* now go copy entire disk(s) */
while (rdp->lock_end < (rdp->total_sectors / rdp->width)) {
int size = min(AR_REBUILD_SIZE,
(rdp->total_sectors / rdp->width) - rdp->lock_end);
for (disk = 0; disk < rdp->width; disk++) {
struct ad_softc *adp;
if (((rdp->disks[disk].flags & AR_DF_ONLINE) &&
(rdp->disks[disk + rdp->width].flags & AR_DF_ONLINE)) ||
((rdp->disks[disk].flags & AR_DF_ONLINE) &&
!(rdp->disks[disk + rdp->width].flags & AR_DF_SPARE)) ||
((rdp->disks[disk + rdp->width].flags & AR_DF_ONLINE) &&
!(rdp->disks[disk].flags & AR_DF_SPARE)))
continue;
if (rdp->disks[disk].flags & AR_DF_ONLINE)
adp = AD_SOFTC(rdp->disks[disk]);
else
adp = AD_SOFTC(rdp->disks[disk + rdp->width]);
if ((error = ar_rw(adp, rdp->lock_start,
size * DEV_BSIZE, buffer, AR_READ | AR_WAIT)))
break;
if (rdp->disks[disk].flags & AR_DF_ONLINE)
adp = AD_SOFTC(rdp->disks[disk + rdp->width]);
else
adp = AD_SOFTC(rdp->disks[disk]);
if ((error = ar_rw(adp, rdp->lock_start,
size * DEV_BSIZE, buffer, AR_WRITE | AR_WAIT)))
break;
}
if (error) {
wakeup(rdp);
free(buffer, M_AR);
kthread_exit(error);
}
s = splbio();
rdp->lock_start = rdp->lock_end;
rdp->lock_end = rdp->lock_start + size;
splx(s);
wakeup(rdp);
sprintf(rdp->pid->p_comm, "rebuilding ar%d %lld%%", rdp->lun,
(unsigned long long)(100 * rdp->lock_start /
(rdp->total_sectors / rdp->width)));
}
free(buffer, M_AR);
for (disk = 0; disk < rdp->total_disks; disk++) {
if ((rdp->disks[disk].flags&(AR_DF_PRESENT|AR_DF_ONLINE|AR_DF_SPARE))==
(AR_DF_PRESENT | AR_DF_SPARE)) {
rdp->disks[disk].flags &= ~AR_DF_SPARE;
rdp->disks[disk].flags |= (AR_DF_ASSIGNED | AR_DF_ONLINE);
}
}
s = splbio();
rdp->lock_start = 0xffffffff;
rdp->lock_end = 0xffffffff;
rdp->flags &= ~AR_F_REBUILDING;
splx(s);
ar_config_changed(rdp, 1);
kthread_exit(0);
}
static int
ar_highpoint_read_conf(struct ad_softc *adp, struct ar_softc **raidp)
{
struct highpoint_raid_conf *info;
struct ar_softc *raid = NULL;
int array, disk_number = 0, retval = 0;
if (!(info = (struct highpoint_raid_conf *)
malloc(sizeof(struct highpoint_raid_conf), M_AR, M_NOWAIT | M_ZERO)))
return retval;
if (ar_rw(adp, HPT_LBA, sizeof(struct highpoint_raid_conf),
(caddr_t)info, AR_READ | AR_WAIT)) {
if (bootverbose)
printf("ar: HighPoint read conf failed\n");
goto highpoint_out;
}
/* check if this is a HighPoint RAID struct */
if (info->magic != HPT_MAGIC_OK && info->magic != HPT_MAGIC_BAD) {
if (bootverbose)
printf("ar: HighPoint check1 failed\n");
goto highpoint_out;
}
/* is this disk defined, or an old leftover/spare ? */
if (!info->magic_0) {
if (bootverbose)
printf("ar: HighPoint check2 failed\n");
goto highpoint_out;
}
/* now convert HighPoint config info into our generic form */
for (array = 0; array < MAX_ARRAYS; array++) {
if (!raidp[array]) {
raidp[array] =
(struct ar_softc*)malloc(sizeof(struct ar_softc), M_AR,
M_NOWAIT | M_ZERO);
if (!raidp[array]) {
printf("ar%d: failed to allocate raid config storage\n", array);
goto highpoint_out;
}
}
raid = raidp[array];
if (raid->flags & AR_F_PROMISE_RAID)
continue;
switch (info->type) {
case HPT_T_RAID0:
if ((info->order & (HPT_O_RAID0|HPT_O_OK))==(HPT_O_RAID0|HPT_O_OK))
goto highpoint_raid1;
if (info->order & (HPT_O_RAID0 | HPT_O_RAID1))
goto highpoint_raid01;
if (raid->magic_0 && raid->magic_0 != info->magic_0)
continue;
raid->magic_0 = info->magic_0;
raid->flags |= AR_F_RAID0;
raid->interleave = 1 << info->stripe_shift;
disk_number = info->disk_number;
if (!(info->order & HPT_O_OK))
info->magic = 0; /* mark bad */
break;
case HPT_T_RAID1:
highpoint_raid1:
if (raid->magic_0 && raid->magic_0 != info->magic_0)
continue;
raid->magic_0 = info->magic_0;
raid->flags |= AR_F_RAID1;
disk_number = (info->disk_number > 0);
break;
case HPT_T_RAID01_RAID0:
highpoint_raid01:
if (info->order & HPT_O_RAID0) {
if ((raid->magic_0 && raid->magic_0 != info->magic_0) ||
(raid->magic_1 && raid->magic_1 != info->magic_1))
continue;
raid->magic_0 = info->magic_0;
raid->magic_1 = info->magic_1;
raid->flags |= (AR_F_RAID0 | AR_F_RAID1);
raid->interleave = 1 << info->stripe_shift;
disk_number = info->disk_number;
}
else {
if (raid->magic_1 && raid->magic_1 != info->magic_1)
continue;
raid->magic_1 = info->magic_1;
raid->flags |= (AR_F_RAID0 | AR_F_RAID1);
raid->interleave = 1 << info->stripe_shift;
disk_number = info->disk_number + info->array_width;
if (!(info->order & HPT_O_RAID1))
info->magic = 0; /* mark bad */
}
break;
case HPT_T_SPAN:
if (raid->magic_0 && raid->magic_0 != info->magic_0)
continue;
raid->magic_0 = info->magic_0;
raid->flags |= AR_F_SPAN;
disk_number = info->disk_number;
break;
default:
printf("ar%d: HighPoint unknown RAID type 0x%02x\n",
array, info->type);
goto highpoint_out;
}
raid->flags |= AR_F_HIGHPOINT_RAID;
raid->disks[disk_number].device = adp->device;
raid->disks[disk_number].flags = (AR_DF_PRESENT | AR_DF_ASSIGNED);
AD_SOFTC(raid->disks[disk_number])->flags |= AD_F_RAID_SUBDISK;
raid->lun = array;
if (info->magic == HPT_MAGIC_OK) {
raid->disks[disk_number].flags |= AR_DF_ONLINE;
raid->flags |= AR_F_READY;
raid->width = info->array_width;
raid->heads = 255;
raid->sectors = 63;
raid->cylinders = info->total_sectors / (63 * 255);
raid->total_sectors = info->total_sectors;
raid->offset = HPT_LBA + 1;
raid->reserved = HPT_LBA + 1;
raid->lock_start = raid->lock_end = info->rebuild_lba;
raid->disks[disk_number].disk_sectors =
info->total_sectors / info->array_width;
}
else
raid->disks[disk_number].flags &= ~ AR_DF_ONLINE;
if ((raid->flags & AR_F_RAID0) && (raid->total_disks < raid->width))
raid->total_disks = raid->width;
if (disk_number >= raid->total_disks)
raid->total_disks = disk_number + 1;
retval = 1;
break;
}
highpoint_out:
free(info, M_AR);
return retval;
}
static int
ar_highpoint_write_conf(struct ar_softc *rdp)
{
struct highpoint_raid_conf *config;
struct timeval timestamp;
int disk;
microtime(&timestamp);
rdp->magic_0 = timestamp.tv_sec + 2;
rdp->magic_1 = timestamp.tv_sec;
for (disk = 0; disk < rdp->total_disks; disk++) {
if (!(config = (struct highpoint_raid_conf *)
malloc(sizeof(struct highpoint_raid_conf),
M_AR, M_NOWAIT | M_ZERO))) {
printf("ar%d: Highpoint write conf failed\n", rdp->lun);
return -1;
}
if ((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
(AR_DF_PRESENT | AR_DF_ONLINE))
config->magic = HPT_MAGIC_OK;
if (rdp->disks[disk].flags & AR_DF_ASSIGNED) {
config->magic_0 = rdp->magic_0;
strcpy(config->name_1, "FreeBSD");
}
config->disk_number = disk;
switch (rdp->flags & (AR_F_RAID0 | AR_F_RAID1 | AR_F_SPAN)) {
case AR_F_RAID0:
config->type = HPT_T_RAID0;
strcpy(config->name_2, "RAID 0");
if (rdp->disks[disk].flags & AR_DF_ONLINE)
config->order = HPT_O_OK;
break;
case AR_F_RAID1:
config->type = HPT_T_RAID0;
strcpy(config->name_2, "RAID 1");
config->disk_number = (disk < rdp->width) ? disk : disk + 5;
config->order = HPT_O_RAID0 | HPT_O_OK;
break;
case AR_F_RAID0 | AR_F_RAID1:
config->type = HPT_T_RAID01_RAID0;
strcpy(config->name_2, "RAID 0+1");
if (rdp->disks[disk].flags & AR_DF_ONLINE) {
if (disk < rdp->width) {
config->order = (HPT_O_RAID0 | HPT_O_RAID1);
config->magic_0 = rdp->magic_0 - 1;
}
else {
config->order = HPT_O_RAID1;
config->disk_number -= rdp->width;
}
}
else
config->magic_0 = rdp->magic_0 - 1;
config->magic_1 = rdp->magic_1;
break;
case AR_F_SPAN:
config->type = HPT_T_SPAN;
strcpy(config->name_2, "SPAN");
break;
}
config->array_width = rdp->width;
config->stripe_shift = (rdp->width > 1) ? (ffs(rdp->interleave)-1) : 0;
config->total_sectors = rdp->total_sectors;
config->rebuild_lba = rdp->lock_start;
if (rdp->disks[disk].device && rdp->disks[disk].device->softc &&
!(rdp->disks[disk].device->flags & ATA_D_DETACHING)) {
if (ar_rw(AD_SOFTC(rdp->disks[disk]), HPT_LBA,
sizeof(struct highpoint_raid_conf),
(caddr_t)config, AR_WRITE)) {
printf("ar%d: Highpoint write conf failed\n", rdp->lun);
return -1;
}
}
}
return 0;
}
static int
ar_promise_read_conf(struct ad_softc *adp, struct ar_softc **raidp, int local)
{
struct promise_raid_conf *info;
struct ar_softc *raid;
u_int32_t magic, cksum, *ckptr;
int array, count, disk, disksum = 0, retval = 0;
if (!(info = (struct promise_raid_conf *)
malloc(sizeof(struct promise_raid_conf), M_AR, M_NOWAIT | M_ZERO)))
return retval;
if (ar_rw(adp, PR_LBA(adp), sizeof(struct promise_raid_conf),
(caddr_t)info, AR_READ | AR_WAIT)) {
if (bootverbose)
printf("ar: %s read conf failed\n", local ? "FreeBSD" : "Promise");
goto promise_out;
}
/* check if this is a Promise RAID struct (or our local one) */
if (local) {
if (strncmp(info->promise_id, ATA_MAGIC, sizeof(ATA_MAGIC))) {
if (bootverbose)
printf("ar: FreeBSD check1 failed\n");
goto promise_out;
}
}
else {
if (strncmp(info->promise_id, PR_MAGIC, sizeof(PR_MAGIC))) {
if (bootverbose)
printf("ar: Promise check1 failed\n");
goto promise_out;
}
}
/* check if the checksum is OK */
for (cksum = 0, ckptr = (int32_t *)info, count = 0; count < 511; count++)
cksum += *ckptr++;
if (cksum != *ckptr) {
if (bootverbose)
printf("ar: %s check2 failed\n", local ? "FreeBSD" : "Promise");
goto promise_out;
}
/* now convert Promise config info into our generic form */
if (info->raid.integrity != PR_I_VALID) {
if (bootverbose)
printf("ar: %s check3 failed\n", local ? "FreeBSD" : "Promise");
goto promise_out;
}
for (array = 0; array < MAX_ARRAYS; array++) {
if (!raidp[array]) {
raidp[array] =
(struct ar_softc*)malloc(sizeof(struct ar_softc), M_AR,
M_NOWAIT | M_ZERO);
if (!raidp[array]) {
printf("ar%d: failed to allocate raid config storage\n", array);
goto promise_out;
}
}
raid = raidp[array];
if (raid->flags & AR_F_HIGHPOINT_RAID)
continue;
magic = (pci_get_device(device_get_parent(
adp->device->channel->dev)) >> 16) |
(info->raid.array_number << 16);
if (raid->flags & AR_F_PROMISE_RAID && magic != raid->magic_0)
continue;
/* update our knowledge about the array config based on generation */
if (!info->raid.generation || info->raid.generation > raid->generation){
raid->generation = info->raid.generation;
raid->flags = AR_F_PROMISE_RAID;
if (local)
raid->flags |= AR_F_FREEBSD_RAID;
raid->magic_0 = magic;
raid->lun = array;
if ((info->raid.status &
(PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY)) ==
(PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY)) {
raid->flags |= AR_F_READY;
if (info->raid.status & PR_S_DEGRADED)
raid->flags |= AR_F_DEGRADED;
}
else
raid->flags &= ~AR_F_READY;
switch (info->raid.type) {
case PR_T_RAID0:
raid->flags |= AR_F_RAID0;
break;
case PR_T_RAID1:
raid->flags |= AR_F_RAID1;
if (info->raid.array_width > 1)
raid->flags |= AR_F_RAID0;
break;
case PR_T_SPAN:
raid->flags |= AR_F_SPAN;
break;
default:
printf("ar%d: %s unknown RAID type 0x%02x\n",
array, local ? "FreeBSD" : "Promise", info->raid.type);
goto promise_out;
}
raid->interleave = 1 << info->raid.stripe_shift;
raid->width = info->raid.array_width;
raid->total_disks = info->raid.total_disks;
raid->heads = info->raid.heads + 1;
raid->sectors = info->raid.sectors;
raid->cylinders = info->raid.cylinders + 1;
raid->total_sectors = info->raid.total_sectors;
raid->offset = 0;
raid->reserved = 63;
raid->lock_start = raid->lock_end = info->raid.rebuild_lba;
/* convert disk flags to our internal types */
for (disk = 0; disk < info->raid.total_disks; disk++) {
raid->disks[disk].flags = 0;
disksum += info->raid.disk[disk].flags;
if (info->raid.disk[disk].flags & PR_F_ONLINE)
raid->disks[disk].flags |= AR_DF_ONLINE;
if (info->raid.disk[disk].flags & PR_F_ASSIGNED)
raid->disks[disk].flags |= AR_DF_ASSIGNED;
if (info->raid.disk[disk].flags & PR_F_SPARE) {
raid->disks[disk].flags &= ~AR_DF_ONLINE;
raid->disks[disk].flags |= AR_DF_SPARE;
}
if (info->raid.disk[disk].flags & (PR_F_REDIR | PR_F_DOWN))
raid->disks[disk].flags &= ~AR_DF_ONLINE;
}
if (!disksum) {
free(raidp[array], M_AR);
raidp[array] = NULL;
goto promise_out;
}
}
if (info->raid.generation >= raid->generation) {
if (raid->disks[info->raid.disk_number].flags && adp->device) {
raid->disks[info->raid.disk_number].device = adp->device;
raid->disks[info->raid.disk_number].flags |= AR_DF_PRESENT;
raid->disks[info->raid.disk_number].disk_sectors =
info->raid.disk_sectors;
if ((raid->disks[info->raid.disk_number].flags &
(AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE)) ==
(AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE)) {
AD_SOFTC(raid->disks[info->raid.disk_number])->flags |=
AD_F_RAID_SUBDISK;
retval = 1;
}
}
}
break;
}
promise_out:
free(info, M_AR);
return retval;
}
static int
ar_promise_write_conf(struct ar_softc *rdp)
{
struct promise_raid_conf *config;
struct timeval timestamp;
u_int32_t *ckptr;
int count, disk, drive;
int local = rdp->flags & AR_F_FREEBSD_RAID;
rdp->generation++;
microtime(&timestamp);
for (disk = 0; disk < rdp->total_disks; disk++) {
if (!(config = (struct promise_raid_conf *)
malloc(sizeof(struct promise_raid_conf), M_AR, M_NOWAIT))) {
printf("ar%d: %s write conf failed\n",
rdp->lun, local ? "FreeBSD" : "Promise");
return -1;
}
for (count = 0; count < sizeof(struct promise_raid_conf); count++)
*(((u_int8_t *)config) + count) = 255 - (count % 256);
config->dummy_0 = 0x00020000;
config->magic_0 = PR_MAGIC0(rdp->disks[disk]) | timestamp.tv_sec;
config->magic_1 = timestamp.tv_sec >> 16;
config->magic_2 = timestamp.tv_sec;
config->raid.integrity = PR_I_VALID;
config->raid.disk_number = disk;
if (rdp->disks[disk].flags & AR_DF_PRESENT && rdp->disks[disk].device) {
config->raid.channel = rdp->disks[disk].device->channel->unit;
config->raid.device = (rdp->disks[disk].device->unit != 0);
if (rdp->disks[disk].device->softc)
config->raid.disk_sectors = PR_LBA(AD_SOFTC(rdp->disks[disk]));
/*config->raid.disk_offset*/
}
config->raid.magic_0 = config->magic_0;
config->raid.rebuild_lba = rdp->lock_start;
config->raid.generation = rdp->generation;
if (rdp->flags & AR_F_READY) {
config->raid.flags = (PR_F_VALID | PR_F_ASSIGNED | PR_F_ONLINE);
config->raid.status =
(PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY);
if (rdp->flags & AR_F_DEGRADED)
config->raid.status |= PR_S_DEGRADED;
else
config->raid.status |= PR_S_FUNCTIONAL;
}
else {
config->raid.flags = PR_F_DOWN;
config->raid.status = 0;
}
switch (rdp->flags & (AR_F_RAID0 | AR_F_RAID1 | AR_F_SPAN)) {
case AR_F_RAID0:
config->raid.type = PR_T_RAID0;
break;
case AR_F_RAID1:
config->raid.type = PR_T_RAID1;
break;
case AR_F_RAID0 | AR_F_RAID1:
config->raid.type = PR_T_RAID1;
break;
case AR_F_SPAN:
config->raid.type = PR_T_SPAN;
break;
}
config->raid.total_disks = rdp->total_disks;
config->raid.stripe_shift = ffs(rdp->interleave) - 1;
config->raid.array_width = rdp->width;
config->raid.array_number = rdp->lun;
config->raid.total_sectors = rdp->total_sectors;
config->raid.cylinders = rdp->cylinders - 1;
config->raid.heads = rdp->heads - 1;
config->raid.sectors = rdp->sectors;
config->raid.magic_1 = (u_int64_t)config->magic_2<<16 | config->magic_1;
bzero(&config->raid.disk, 8 * 12);
for (drive = 0; drive < rdp->total_disks; drive++) {
config->raid.disk[drive].flags = 0;
if (rdp->disks[drive].flags & AR_DF_PRESENT)
config->raid.disk[drive].flags |= PR_F_VALID;
if (rdp->disks[drive].flags & AR_DF_ASSIGNED)
config->raid.disk[drive].flags |= PR_F_ASSIGNED;
if (rdp->disks[drive].flags & AR_DF_ONLINE)
config->raid.disk[drive].flags |= PR_F_ONLINE;
else
if (rdp->disks[drive].flags & AR_DF_PRESENT)
config->raid.disk[drive].flags = (PR_F_REDIR | PR_F_DOWN);
if (rdp->disks[drive].flags & AR_DF_SPARE)
config->raid.disk[drive].flags |= PR_F_SPARE;
config->raid.disk[drive].dummy_0 = 0x0;
if (rdp->disks[drive].device) {
config->raid.disk[drive].channel =
rdp->disks[drive].device->channel->unit;
config->raid.disk[drive].device =
(rdp->disks[drive].device->unit != 0);
}
config->raid.disk[drive].magic_0 =
PR_MAGIC0(rdp->disks[drive]) | timestamp.tv_sec;
}
if (rdp->disks[disk].device && rdp->disks[disk].device->softc &&
!(rdp->disks[disk].device->flags & ATA_D_DETACHING)) {
if ((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
(AR_DF_PRESENT | AR_DF_ONLINE)) {
if (local)
bcopy(ATA_MAGIC, config->promise_id, sizeof(ATA_MAGIC));
else
bcopy(PR_MAGIC, config->promise_id, sizeof(PR_MAGIC));
}
else
bzero(config->promise_id, sizeof(config->promise_id));
config->checksum = 0;
for (ckptr = (int32_t *)config, count = 0; count < 511; count++)
config->checksum += *ckptr++;
if (ar_rw(AD_SOFTC(rdp->disks[disk]),
PR_LBA(AD_SOFTC(rdp->disks[disk])),
sizeof(struct promise_raid_conf),
(caddr_t)config, AR_WRITE)) {
printf("ar%d: %s write conf failed\n",
rdp->lun, local ? "FreeBSD" : "Promise");
return -1;
}
}
}
return 0;
}
static void
ar_rw_done(struct bio *bp)
{
free(bp->bio_data, M_AR);
free(bp, M_AR);
}
static int
ar_rw(struct ad_softc *adp, u_int32_t lba, int count, caddr_t data, int flags)
{
struct bio *bp;
int retry = 0, error = 0;
if (!(bp = (struct bio *)malloc(sizeof(struct bio), M_AR, M_NOWAIT|M_ZERO)))
return 1;
bp->bio_disk = &adp->disk;
bp->bio_data = data;
bp->bio_pblkno = lba;
bp->bio_bcount = count;
if (flags & AR_READ)
bp->bio_cmd = BIO_READ;
if (flags & AR_WRITE)
bp->bio_cmd = BIO_WRITE;
if (flags & AR_WAIT)
bp->bio_done = (void *)wakeup;
else
bp->bio_done = ar_rw_done;
AR_STRATEGY(bp);
if (flags & AR_WAIT) {
while ((retry++ < (15*hz/10)) && (error = !(bp->bio_flags & BIO_DONE)))
error = tsleep(bp, PRIBIO, "arrw", 10);
if (!error && bp->bio_flags & BIO_ERROR)
error = bp->bio_error;
free(bp, M_AR);
}
return error;
}
static struct ata_device *
ar_locate_disk(int diskno)
{
struct ata_channel *ch;
int ctlr;
for (ctlr = 0; ctlr < devclass_get_maxunit(ata_devclass); ctlr++) {
if (!(ch = devclass_get_softc(ata_devclass, ctlr)))
continue;
if (ch->devices & ATA_ATA_MASTER)
if (ch->device[MASTER].softc &&
((struct ad_softc *)(ch->device[MASTER].softc))->lun == diskno)
return &ch->device[MASTER];
if (ch->devices & ATA_ATA_SLAVE)
if (ch->device[SLAVE].softc &&
((struct ad_softc *)(ch->device[SLAVE].softc))->lun == diskno)
return &ch->device[SLAVE];
}
return NULL;
}
static void
ar_print_conf(struct ar_softc *config)
{
int i;
printf("lun %d\n", config->lun);
printf("magic_0 0x%08x\n", config->magic_0);
printf("magic_1 0x%08x\n", config->magic_1);
printf("flags 0x%02x %b\n", config->flags, config->flags,
"\20\16HIGHPOINT\15PROMISE\13REBUILDING\12DEGRADED\11READY\3SPAN\2RAID1\1RAID0\n");
printf("total_disks %d\n", config->total_disks);
printf("generation %d\n", config->generation);
printf("width %d\n", config->width);
printf("heads %d\n", config->heads);
printf("sectors %d\n", config->sectors);
printf("cylinders %d\n", config->cylinders);
printf("total_sectors %lld\n", (long long)config->total_sectors);
printf("interleave %d\n", config->interleave);
printf("reserved %d\n", config->reserved);
printf("offset %d\n", config->offset);
for (i = 0; i < config->total_disks; i++) {
printf("disk %d: flags = 0x%02x %b\n", i, config->disks[i].flags, config->disks[i].flags, "\20\4ONLINE\3SPARE\2ASSIGNED\1PRESENT\n");
if (config->disks[i].device)
printf(" %s\n", config->disks[i].device->name);
printf(" sectors %lld\n", (long long)config->disks[i].disk_sectors);
}
}