freebsd-nq/sys/net80211/ieee80211_freebsd.c
Pedro F. Giffuni fe267a5590 sys: general adoption of SPDX licensing ID tags.
Mainly focus on files that use BSD 2-Clause license, however the tool I
was using misidentified many licenses so this was mostly a manual - error
prone - task.

The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.

No functional change intended.
2017-11-27 15:23:17 +00:00

1016 lines
26 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2003-2009 Sam Leffler, Errno Consulting
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* IEEE 802.11 support (FreeBSD-specific code)
*/
#include "opt_wlan.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/eventhandler.h>
#include <sys/kernel.h>
#include <sys/linker.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/proc.h>
#include <sys/sysctl.h>
#include <sys/socket.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_dl.h>
#include <net/if_clone.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/ethernet.h>
#include <net/route.h>
#include <net/vnet.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_input.h>
SYSCTL_NODE(_net, OID_AUTO, wlan, CTLFLAG_RD, 0, "IEEE 80211 parameters");
#ifdef IEEE80211_DEBUG
static int ieee80211_debug = 0;
SYSCTL_INT(_net_wlan, OID_AUTO, debug, CTLFLAG_RW, &ieee80211_debug,
0, "debugging printfs");
#endif
static MALLOC_DEFINE(M_80211_COM, "80211com", "802.11 com state");
static const char wlanname[] = "wlan";
static struct if_clone *wlan_cloner;
static int
wlan_clone_create(struct if_clone *ifc, int unit, caddr_t params)
{
struct ieee80211_clone_params cp;
struct ieee80211vap *vap;
struct ieee80211com *ic;
int error;
error = copyin(params, &cp, sizeof(cp));
if (error)
return error;
ic = ieee80211_find_com(cp.icp_parent);
if (ic == NULL)
return ENXIO;
if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) {
ic_printf(ic, "%s: invalid opmode %d\n", __func__,
cp.icp_opmode);
return EINVAL;
}
if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) {
ic_printf(ic, "%s mode not supported\n",
ieee80211_opmode_name[cp.icp_opmode]);
return EOPNOTSUPP;
}
if ((cp.icp_flags & IEEE80211_CLONE_TDMA) &&
#ifdef IEEE80211_SUPPORT_TDMA
(ic->ic_caps & IEEE80211_C_TDMA) == 0
#else
(1)
#endif
) {
ic_printf(ic, "TDMA not supported\n");
return EOPNOTSUPP;
}
vap = ic->ic_vap_create(ic, wlanname, unit,
cp.icp_opmode, cp.icp_flags, cp.icp_bssid,
cp.icp_flags & IEEE80211_CLONE_MACADDR ?
cp.icp_macaddr : ic->ic_macaddr);
return (vap == NULL ? EIO : 0);
}
static void
wlan_clone_destroy(struct ifnet *ifp)
{
struct ieee80211vap *vap = ifp->if_softc;
struct ieee80211com *ic = vap->iv_ic;
ic->ic_vap_delete(vap);
}
void
ieee80211_vap_destroy(struct ieee80211vap *vap)
{
CURVNET_SET(vap->iv_ifp->if_vnet);
if_clone_destroyif(wlan_cloner, vap->iv_ifp);
CURVNET_RESTORE();
}
int
ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS)
{
int msecs = ticks_to_msecs(*(int *)arg1);
int error, t;
error = sysctl_handle_int(oidp, &msecs, 0, req);
if (error || !req->newptr)
return error;
t = msecs_to_ticks(msecs);
*(int *)arg1 = (t < 1) ? 1 : t;
return 0;
}
static int
ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS)
{
int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT;
int error;
error = sysctl_handle_int(oidp, &inact, 0, req);
if (error || !req->newptr)
return error;
*(int *)arg1 = inact / IEEE80211_INACT_WAIT;
return 0;
}
static int
ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS)
{
struct ieee80211com *ic = arg1;
return SYSCTL_OUT_STR(req, ic->ic_name);
}
static int
ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS)
{
struct ieee80211com *ic = arg1;
int t = 0, error;
error = sysctl_handle_int(oidp, &t, 0, req);
if (error || !req->newptr)
return error;
IEEE80211_LOCK(ic);
ieee80211_dfs_notify_radar(ic, ic->ic_curchan);
IEEE80211_UNLOCK(ic);
return 0;
}
/*
* For now, just restart everything.
*
* Later on, it'd be nice to have a separate VAP restart to
* full-device restart.
*/
static int
ieee80211_sysctl_vap_restart(SYSCTL_HANDLER_ARGS)
{
struct ieee80211vap *vap = arg1;
int t = 0, error;
error = sysctl_handle_int(oidp, &t, 0, req);
if (error || !req->newptr)
return error;
ieee80211_restart_all(vap->iv_ic);
return 0;
}
void
ieee80211_sysctl_attach(struct ieee80211com *ic)
{
}
void
ieee80211_sysctl_detach(struct ieee80211com *ic)
{
}
void
ieee80211_sysctl_vattach(struct ieee80211vap *vap)
{
struct ifnet *ifp = vap->iv_ifp;
struct sysctl_ctx_list *ctx;
struct sysctl_oid *oid;
char num[14]; /* sufficient for 32 bits */
ctx = (struct sysctl_ctx_list *) IEEE80211_MALLOC(sizeof(struct sysctl_ctx_list),
M_DEVBUF, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO);
if (ctx == NULL) {
if_printf(ifp, "%s: cannot allocate sysctl context!\n",
__func__);
return;
}
sysctl_ctx_init(ctx);
snprintf(num, sizeof(num), "%u", ifp->if_dunit);
oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan),
OID_AUTO, num, CTLFLAG_RD, NULL, "");
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"%parent", CTLTYPE_STRING | CTLFLAG_RD, vap->iv_ic, 0,
ieee80211_sysctl_parent, "A", "parent device");
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"driver_caps", CTLFLAG_RW, &vap->iv_caps, 0,
"driver capabilities");
#ifdef IEEE80211_DEBUG
vap->iv_debug = ieee80211_debug;
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"debug", CTLFLAG_RW, &vap->iv_debug, 0,
"control debugging printfs");
#endif
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0,
"consecutive beacon misses before scanning");
/* XXX inherit from tunables */
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"inact_run", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_run, 0,
ieee80211_sysctl_inact, "I",
"station inactivity timeout (sec)");
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"inact_probe", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_probe, 0,
ieee80211_sysctl_inact, "I",
"station inactivity probe timeout (sec)");
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"inact_auth", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_auth, 0,
ieee80211_sysctl_inact, "I",
"station authentication timeout (sec)");
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"inact_init", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_init, 0,
ieee80211_sysctl_inact, "I",
"station initial state timeout (sec)");
if (vap->iv_htcaps & IEEE80211_HTC_HT) {
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"ampdu_mintraffic_bk", CTLFLAG_RW,
&vap->iv_ampdu_mintraffic[WME_AC_BK], 0,
"BK traffic tx aggr threshold (pps)");
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"ampdu_mintraffic_be", CTLFLAG_RW,
&vap->iv_ampdu_mintraffic[WME_AC_BE], 0,
"BE traffic tx aggr threshold (pps)");
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"ampdu_mintraffic_vo", CTLFLAG_RW,
&vap->iv_ampdu_mintraffic[WME_AC_VO], 0,
"VO traffic tx aggr threshold (pps)");
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"ampdu_mintraffic_vi", CTLFLAG_RW,
&vap->iv_ampdu_mintraffic[WME_AC_VI], 0,
"VI traffic tx aggr threshold (pps)");
}
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"force_restart", CTLTYPE_INT | CTLFLAG_RW, vap, 0,
ieee80211_sysctl_vap_restart, "I",
"force a VAP restart");
if (vap->iv_caps & IEEE80211_C_DFS) {
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
"radar", CTLTYPE_INT | CTLFLAG_RW, vap->iv_ic, 0,
ieee80211_sysctl_radar, "I", "simulate radar event");
}
vap->iv_sysctl = ctx;
vap->iv_oid = oid;
}
void
ieee80211_sysctl_vdetach(struct ieee80211vap *vap)
{
if (vap->iv_sysctl != NULL) {
sysctl_ctx_free(vap->iv_sysctl);
IEEE80211_FREE(vap->iv_sysctl, M_DEVBUF);
vap->iv_sysctl = NULL;
}
}
int
ieee80211_node_dectestref(struct ieee80211_node *ni)
{
/* XXX need equivalent of atomic_dec_and_test */
atomic_subtract_int(&ni->ni_refcnt, 1);
return atomic_cmpset_int(&ni->ni_refcnt, 0, 1);
}
void
ieee80211_drain_ifq(struct ifqueue *ifq)
{
struct ieee80211_node *ni;
struct mbuf *m;
for (;;) {
IF_DEQUEUE(ifq, m);
if (m == NULL)
break;
ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
KASSERT(ni != NULL, ("frame w/o node"));
ieee80211_free_node(ni);
m->m_pkthdr.rcvif = NULL;
m_freem(m);
}
}
void
ieee80211_flush_ifq(struct ifqueue *ifq, struct ieee80211vap *vap)
{
struct ieee80211_node *ni;
struct mbuf *m, **mprev;
IF_LOCK(ifq);
mprev = &ifq->ifq_head;
while ((m = *mprev) != NULL) {
ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
if (ni != NULL && ni->ni_vap == vap) {
*mprev = m->m_nextpkt; /* remove from list */
ifq->ifq_len--;
m_freem(m);
ieee80211_free_node(ni); /* reclaim ref */
} else
mprev = &m->m_nextpkt;
}
/* recalculate tail ptr */
m = ifq->ifq_head;
for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt)
;
ifq->ifq_tail = m;
IF_UNLOCK(ifq);
}
/*
* As above, for mbufs allocated with m_gethdr/MGETHDR
* or initialized by M_COPY_PKTHDR.
*/
#define MC_ALIGN(m, len) \
do { \
(m)->m_data += rounddown2(MCLBYTES - (len), sizeof(long)); \
} while (/* CONSTCOND */ 0)
/*
* Allocate and setup a management frame of the specified
* size. We return the mbuf and a pointer to the start
* of the contiguous data area that's been reserved based
* on the packet length. The data area is forced to 32-bit
* alignment and the buffer length to a multiple of 4 bytes.
* This is done mainly so beacon frames (that require this)
* can use this interface too.
*/
struct mbuf *
ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen)
{
struct mbuf *m;
u_int len;
/*
* NB: we know the mbuf routines will align the data area
* so we don't need to do anything special.
*/
len = roundup2(headroom + pktlen, 4);
KASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len));
if (len < MINCLSIZE) {
m = m_gethdr(M_NOWAIT, MT_DATA);
/*
* Align the data in case additional headers are added.
* This should only happen when a WEP header is added
* which only happens for shared key authentication mgt
* frames which all fit in MHLEN.
*/
if (m != NULL)
M_ALIGN(m, len);
} else {
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m != NULL)
MC_ALIGN(m, len);
}
if (m != NULL) {
m->m_data += headroom;
*frm = m->m_data;
}
return m;
}
#ifndef __NO_STRICT_ALIGNMENT
/*
* Re-align the payload in the mbuf. This is mainly used (right now)
* to handle IP header alignment requirements on certain architectures.
*/
struct mbuf *
ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align)
{
int pktlen, space;
struct mbuf *n;
pktlen = m->m_pkthdr.len;
space = pktlen + align;
if (space < MINCLSIZE)
n = m_gethdr(M_NOWAIT, MT_DATA);
else {
n = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
space <= MCLBYTES ? MCLBYTES :
#if MJUMPAGESIZE != MCLBYTES
space <= MJUMPAGESIZE ? MJUMPAGESIZE :
#endif
space <= MJUM9BYTES ? MJUM9BYTES : MJUM16BYTES);
}
if (__predict_true(n != NULL)) {
m_move_pkthdr(n, m);
n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align);
m_copydata(m, 0, pktlen, mtod(n, caddr_t));
n->m_len = pktlen;
} else {
IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
mtod(m, const struct ieee80211_frame *), NULL,
"%s", "no mbuf to realign");
vap->iv_stats.is_rx_badalign++;
}
m_freem(m);
return n;
}
#endif /* !__NO_STRICT_ALIGNMENT */
int
ieee80211_add_callback(struct mbuf *m,
void (*func)(struct ieee80211_node *, void *, int), void *arg)
{
struct m_tag *mtag;
struct ieee80211_cb *cb;
mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_CALLBACK,
sizeof(struct ieee80211_cb), M_NOWAIT);
if (mtag == NULL)
return 0;
cb = (struct ieee80211_cb *)(mtag+1);
cb->func = func;
cb->arg = arg;
m_tag_prepend(m, mtag);
m->m_flags |= M_TXCB;
return 1;
}
int
ieee80211_add_xmit_params(struct mbuf *m,
const struct ieee80211_bpf_params *params)
{
struct m_tag *mtag;
struct ieee80211_tx_params *tx;
mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS,
sizeof(struct ieee80211_tx_params), M_NOWAIT);
if (mtag == NULL)
return (0);
tx = (struct ieee80211_tx_params *)(mtag+1);
memcpy(&tx->params, params, sizeof(struct ieee80211_bpf_params));
m_tag_prepend(m, mtag);
return (1);
}
int
ieee80211_get_xmit_params(struct mbuf *m,
struct ieee80211_bpf_params *params)
{
struct m_tag *mtag;
struct ieee80211_tx_params *tx;
mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS,
NULL);
if (mtag == NULL)
return (-1);
tx = (struct ieee80211_tx_params *)(mtag + 1);
memcpy(params, &tx->params, sizeof(struct ieee80211_bpf_params));
return (0);
}
void
ieee80211_process_callback(struct ieee80211_node *ni,
struct mbuf *m, int status)
{
struct m_tag *mtag;
mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, NULL);
if (mtag != NULL) {
struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1);
cb->func(ni, cb->arg, status);
}
}
/*
* Add RX parameters to the given mbuf.
*
* Returns 1 if OK, 0 on error.
*/
int
ieee80211_add_rx_params(struct mbuf *m, const struct ieee80211_rx_stats *rxs)
{
struct m_tag *mtag;
struct ieee80211_rx_params *rx;
mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
sizeof(struct ieee80211_rx_stats), M_NOWAIT);
if (mtag == NULL)
return (0);
rx = (struct ieee80211_rx_params *)(mtag + 1);
memcpy(&rx->params, rxs, sizeof(*rxs));
m_tag_prepend(m, mtag);
return (1);
}
int
ieee80211_get_rx_params(struct mbuf *m, struct ieee80211_rx_stats *rxs)
{
struct m_tag *mtag;
struct ieee80211_rx_params *rx;
mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
NULL);
if (mtag == NULL)
return (-1);
rx = (struct ieee80211_rx_params *)(mtag + 1);
memcpy(rxs, &rx->params, sizeof(*rxs));
return (0);
}
const struct ieee80211_rx_stats *
ieee80211_get_rx_params_ptr(struct mbuf *m)
{
struct m_tag *mtag;
struct ieee80211_rx_params *rx;
mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
NULL);
if (mtag == NULL)
return (NULL);
rx = (struct ieee80211_rx_params *)(mtag + 1);
return (&rx->params);
}
/*
* Add TOA parameters to the given mbuf.
*/
int
ieee80211_add_toa_params(struct mbuf *m, const struct ieee80211_toa_params *p)
{
struct m_tag *mtag;
struct ieee80211_toa_params *rp;
mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS,
sizeof(struct ieee80211_toa_params), M_NOWAIT);
if (mtag == NULL)
return (0);
rp = (struct ieee80211_toa_params *)(mtag + 1);
memcpy(rp, p, sizeof(*rp));
m_tag_prepend(m, mtag);
return (1);
}
int
ieee80211_get_toa_params(struct mbuf *m, struct ieee80211_toa_params *p)
{
struct m_tag *mtag;
struct ieee80211_toa_params *rp;
mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS,
NULL);
if (mtag == NULL)
return (0);
rp = (struct ieee80211_toa_params *)(mtag + 1);
if (p != NULL)
memcpy(p, rp, sizeof(*p));
return (1);
}
/*
* Transmit a frame to the parent interface.
*/
int
ieee80211_parent_xmitpkt(struct ieee80211com *ic, struct mbuf *m)
{
int error;
/*
* Assert the IC TX lock is held - this enforces the
* processing -> queuing order is maintained
*/
IEEE80211_TX_LOCK_ASSERT(ic);
error = ic->ic_transmit(ic, m);
if (error) {
struct ieee80211_node *ni;
ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
/* XXX number of fragments */
if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
ieee80211_free_node(ni);
ieee80211_free_mbuf(m);
}
return (error);
}
/*
* Transmit a frame to the VAP interface.
*/
int
ieee80211_vap_xmitpkt(struct ieee80211vap *vap, struct mbuf *m)
{
struct ifnet *ifp = vap->iv_ifp;
/*
* When transmitting via the VAP, we shouldn't hold
* any IC TX lock as the VAP TX path will acquire it.
*/
IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic);
return (ifp->if_transmit(ifp, m));
}
#include <sys/libkern.h>
void
get_random_bytes(void *p, size_t n)
{
uint8_t *dp = p;
while (n > 0) {
uint32_t v = arc4random();
size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n;
bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n);
dp += sizeof(uint32_t), n -= nb;
}
}
/*
* Helper function for events that pass just a single mac address.
*/
static void
notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN])
{
struct ieee80211_join_event iev;
CURVNET_SET(ifp->if_vnet);
memset(&iev, 0, sizeof(iev));
IEEE80211_ADDR_COPY(iev.iev_addr, mac);
rt_ieee80211msg(ifp, op, &iev, sizeof(iev));
CURVNET_RESTORE();
}
void
ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ifnet *ifp = vap->iv_ifp;
CURVNET_SET_QUIET(ifp->if_vnet);
IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join",
(ni == vap->iv_bss) ? "bss " : "");
if (ni == vap->iv_bss) {
notify_macaddr(ifp, newassoc ?
RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid);
if_link_state_change(ifp, LINK_STATE_UP);
} else {
notify_macaddr(ifp, newassoc ?
RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr);
}
CURVNET_RESTORE();
}
void
ieee80211_notify_node_leave(struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ifnet *ifp = vap->iv_ifp;
CURVNET_SET_QUIET(ifp->if_vnet);
IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave",
(ni == vap->iv_bss) ? "bss " : "");
if (ni == vap->iv_bss) {
rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0);
if_link_state_change(ifp, LINK_STATE_DOWN);
} else {
/* fire off wireless event station leaving */
notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr);
}
CURVNET_RESTORE();
}
void
ieee80211_notify_scan_done(struct ieee80211vap *vap)
{
struct ifnet *ifp = vap->iv_ifp;
IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done");
/* dispatch wireless event indicating scan completed */
CURVNET_SET(ifp->if_vnet);
rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0);
CURVNET_RESTORE();
}
void
ieee80211_notify_replay_failure(struct ieee80211vap *vap,
const struct ieee80211_frame *wh, const struct ieee80211_key *k,
u_int64_t rsc, int tid)
{
struct ifnet *ifp = vap->iv_ifp;
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
"%s replay detected tid %d <rsc %ju, csc %ju, keyix %u rxkeyix %u>",
k->wk_cipher->ic_name, tid, (intmax_t) rsc,
(intmax_t) k->wk_keyrsc[tid],
k->wk_keyix, k->wk_rxkeyix);
if (ifp != NULL) { /* NB: for cipher test modules */
struct ieee80211_replay_event iev;
IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
iev.iev_cipher = k->wk_cipher->ic_cipher;
if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE)
iev.iev_keyix = k->wk_rxkeyix;
else
iev.iev_keyix = k->wk_keyix;
iev.iev_keyrsc = k->wk_keyrsc[tid];
iev.iev_rsc = rsc;
CURVNET_SET(ifp->if_vnet);
rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev));
CURVNET_RESTORE();
}
}
void
ieee80211_notify_michael_failure(struct ieee80211vap *vap,
const struct ieee80211_frame *wh, u_int keyix)
{
struct ifnet *ifp = vap->iv_ifp;
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
"michael MIC verification failed <keyix %u>", keyix);
vap->iv_stats.is_rx_tkipmic++;
if (ifp != NULL) { /* NB: for cipher test modules */
struct ieee80211_michael_event iev;
IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
iev.iev_cipher = IEEE80211_CIPHER_TKIP;
iev.iev_keyix = keyix;
CURVNET_SET(ifp->if_vnet);
rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev));
CURVNET_RESTORE();
}
}
void
ieee80211_notify_wds_discover(struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ifnet *ifp = vap->iv_ifp;
notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr);
}
void
ieee80211_notify_csa(struct ieee80211com *ic,
const struct ieee80211_channel *c, int mode, int count)
{
struct ieee80211_csa_event iev;
struct ieee80211vap *vap;
struct ifnet *ifp;
memset(&iev, 0, sizeof(iev));
iev.iev_flags = c->ic_flags;
iev.iev_freq = c->ic_freq;
iev.iev_ieee = c->ic_ieee;
iev.iev_mode = mode;
iev.iev_count = count;
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
ifp = vap->iv_ifp;
CURVNET_SET(ifp->if_vnet);
rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev));
CURVNET_RESTORE();
}
}
void
ieee80211_notify_radar(struct ieee80211com *ic,
const struct ieee80211_channel *c)
{
struct ieee80211_radar_event iev;
struct ieee80211vap *vap;
struct ifnet *ifp;
memset(&iev, 0, sizeof(iev));
iev.iev_flags = c->ic_flags;
iev.iev_freq = c->ic_freq;
iev.iev_ieee = c->ic_ieee;
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
ifp = vap->iv_ifp;
CURVNET_SET(ifp->if_vnet);
rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev));
CURVNET_RESTORE();
}
}
void
ieee80211_notify_cac(struct ieee80211com *ic,
const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type)
{
struct ieee80211_cac_event iev;
struct ieee80211vap *vap;
struct ifnet *ifp;
memset(&iev, 0, sizeof(iev));
iev.iev_flags = c->ic_flags;
iev.iev_freq = c->ic_freq;
iev.iev_ieee = c->ic_ieee;
iev.iev_type = type;
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
ifp = vap->iv_ifp;
CURVNET_SET(ifp->if_vnet);
rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev));
CURVNET_RESTORE();
}
}
void
ieee80211_notify_node_deauth(struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ifnet *ifp = vap->iv_ifp;
IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth");
notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr);
}
void
ieee80211_notify_node_auth(struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ifnet *ifp = vap->iv_ifp;
IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth");
notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr);
}
void
ieee80211_notify_country(struct ieee80211vap *vap,
const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2])
{
struct ifnet *ifp = vap->iv_ifp;
struct ieee80211_country_event iev;
memset(&iev, 0, sizeof(iev));
IEEE80211_ADDR_COPY(iev.iev_addr, bssid);
iev.iev_cc[0] = cc[0];
iev.iev_cc[1] = cc[1];
CURVNET_SET(ifp->if_vnet);
rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev));
CURVNET_RESTORE();
}
void
ieee80211_notify_radio(struct ieee80211com *ic, int state)
{
struct ieee80211_radio_event iev;
struct ieee80211vap *vap;
struct ifnet *ifp;
memset(&iev, 0, sizeof(iev));
iev.iev_state = state;
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
ifp = vap->iv_ifp;
CURVNET_SET(ifp->if_vnet);
rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev));
CURVNET_RESTORE();
}
}
void
ieee80211_load_module(const char *modname)
{
#ifdef notyet
(void)kern_kldload(curthread, modname, NULL);
#else
printf("%s: load the %s module by hand for now.\n", __func__, modname);
#endif
}
static eventhandler_tag wlan_bpfevent;
static eventhandler_tag wlan_ifllevent;
static void
bpf_track(void *arg, struct ifnet *ifp, int dlt, int attach)
{
/* NB: identify vap's by if_init */
if (dlt == DLT_IEEE802_11_RADIO &&
ifp->if_init == ieee80211_init) {
struct ieee80211vap *vap = ifp->if_softc;
/*
* Track bpf radiotap listener state. We mark the vap
* to indicate if any listener is present and the com
* to indicate if any listener exists on any associated
* vap. This flag is used by drivers to prepare radiotap
* state only when needed.
*/
if (attach) {
ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF);
if (vap->iv_opmode == IEEE80211_M_MONITOR)
atomic_add_int(&vap->iv_ic->ic_montaps, 1);
} else if (!bpf_peers_present(vap->iv_rawbpf)) {
ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF);
if (vap->iv_opmode == IEEE80211_M_MONITOR)
atomic_subtract_int(&vap->iv_ic->ic_montaps, 1);
}
}
}
/*
* Change MAC address on the vap (if was not started).
*/
static void
wlan_iflladdr(void *arg __unused, struct ifnet *ifp)
{
/* NB: identify vap's by if_init */
if (ifp->if_init == ieee80211_init &&
(ifp->if_flags & IFF_UP) == 0) {
struct ieee80211vap *vap = ifp->if_softc;
IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
}
}
/*
* Module glue.
*
* NB: the module name is "wlan" for compatibility with NetBSD.
*/
static int
wlan_modevent(module_t mod, int type, void *unused)
{
switch (type) {
case MOD_LOAD:
if (bootverbose)
printf("wlan: <802.11 Link Layer>\n");
wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track,
bpf_track, 0, EVENTHANDLER_PRI_ANY);
wlan_ifllevent = EVENTHANDLER_REGISTER(iflladdr_event,
wlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
wlan_cloner = if_clone_simple(wlanname, wlan_clone_create,
wlan_clone_destroy, 0);
return 0;
case MOD_UNLOAD:
if_clone_detach(wlan_cloner);
EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent);
EVENTHANDLER_DEREGISTER(iflladdr_event, wlan_ifllevent);
return 0;
}
return EINVAL;
}
static moduledata_t wlan_mod = {
wlanname,
wlan_modevent,
0
};
DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
MODULE_VERSION(wlan, 1);
MODULE_DEPEND(wlan, ether, 1, 1, 1);
#ifdef IEEE80211_ALQ
MODULE_DEPEND(wlan, alq, 1, 1, 1);
#endif /* IEEE80211_ALQ */