freebsd-nq/sys/boot/sparc64/loader/main.c
Kip Macy 2d74924b65 add an interface for passing the entire kernel size up front to the
loader so that it can memory can be allocated aligned at the beginning of
the desired large page
2006-12-18 07:35:14 +00:00

661 lines
15 KiB
C

/*-
* Initial implementation:
* Copyright (c) 2001 Robert Drehmel
* All rights reserved.
*
* As long as the above copyright statement and this notice remain
* unchanged, you can do what ever you want with this file.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* FreeBSD/sparc64 kernel loader - machine dependent part
*
* - implements copyin and readin functions that map kernel
* pages on demand. The machine independent code does not
* know the size of the kernel early enough to pre-enter
* TTEs and install just one 4MB mapping seemed to limiting
* to me.
*/
#include <stand.h>
#include <sys/exec.h>
#include <sys/param.h>
#include <sys/queue.h>
#include <sys/linker.h>
#include <sys/types.h>
#include <vm/vm.h>
#include <machine/asi.h>
#include <machine/atomic.h>
#include <machine/cpufunc.h>
#include <machine/elf.h>
#include <machine/lsu.h>
#include <machine/metadata.h>
#include <machine/tte.h>
#include <machine/upa.h>
#include "bootstrap.h"
#include "libofw.h"
#include "dev_net.h"
enum {
HEAPVA = 0x800000,
HEAPSZ = 0x1000000,
LOADSZ = 0x1000000 /* for kernel and modules */
};
struct memory_slice {
vm_offset_t pstart;
vm_offset_t size;
};
struct mmu_ops {
void (*tlb_init)(void);
int (*mmu_mapin)(vm_offset_t va, vm_size_t len);
} *mmu_ops;
typedef void kernel_entry_t(vm_offset_t mdp, u_long o1, u_long o2, u_long o3,
void *openfirmware);
extern void itlb_enter(u_long vpn, u_long data);
extern void dtlb_enter(u_long vpn, u_long data);
extern vm_offset_t itlb_va_to_pa(vm_offset_t);
extern vm_offset_t dtlb_va_to_pa(vm_offset_t);
extern vm_offset_t md_load(char *, vm_offset_t *);
static int __elfN(exec)(struct preloaded_file *);
static int sparc64_autoload(void);
static int mmu_mapin_sun4u(vm_offset_t, vm_size_t);
static int mmu_mapin_sun4v(vm_offset_t, vm_size_t);
static void tlb_init_sun4u(void);
static void tlb_init_sun4v(void);
struct mmu_ops mmu_ops_sun4u = { tlb_init_sun4u, mmu_mapin_sun4u };
struct mmu_ops mmu_ops_sun4v = { tlb_init_sun4v, mmu_mapin_sun4v };
extern char bootprog_name[], bootprog_rev[], bootprog_date[], bootprog_maker[];
/* sun4u */
struct tlb_entry *dtlb_store;
struct tlb_entry *itlb_store;
int dtlb_slot;
int itlb_slot;
int dtlb_slot_max;
int itlb_slot_max;
/* sun4v */
struct tlb_entry *tlb_store;
int is_sun4v = 0;
/*
* no direct TLB access on sun4v
* we somewhat arbitrarily declare enough
* slots to cover a 4GB AS with 4MB pages
*/
#define SUN4V_TLB_SLOT_MAX (1 << 10)
extern char bootprog_name[], bootprog_rev[], bootprog_date[], bootprog_maker[];
struct tlb_entry *dtlb_store;
struct tlb_entry *itlb_store;
int dtlb_slot;
int itlb_slot;
int dtlb_slot_max;
int itlb_slot_max;
vm_offset_t curkva = 0;
vm_offset_t heapva;
phandle_t pmemh; /* OFW memory handle */
struct memory_slice memslices[18];
/*
* Machine dependent structures that the machine independent
* loader part uses.
*/
struct devsw *devsw[] = {
#ifdef LOADER_DISK_SUPPORT
&ofwdisk,
#endif
#ifdef LOADER_NET_SUPPORT
&netdev,
#endif
0
};
struct arch_switch archsw;
struct file_format sparc64_elf = {
__elfN(loadfile),
__elfN(exec)
};
struct file_format *file_formats[] = {
&sparc64_elf,
0
};
struct fs_ops *file_system[] = {
#ifdef LOADER_UFS_SUPPORT
&ufs_fsops,
#endif
#ifdef LOADER_CD9660_SUPPORT
&cd9660_fsops,
#endif
#ifdef LOADER_ZIP_SUPPORT
&zipfs_fsops,
#endif
#ifdef LOADER_GZIP_SUPPORT
&gzipfs_fsops,
#endif
#ifdef LOADER_BZIP2_SUPPORT
&bzipfs_fsops,
#endif
#ifdef LOADER_NFS_SUPPORT
&nfs_fsops,
#endif
#ifdef LOADER_TFTP_SUPPORT
&tftp_fsops,
#endif
0
};
struct netif_driver *netif_drivers[] = {
#ifdef LOADER_NET_SUPPORT
&ofwnet,
#endif
0
};
extern struct console ofwconsole;
struct console *consoles[] = {
&ofwconsole,
0
};
#ifdef LOADER_DEBUG
static int
watch_phys_set_mask(vm_offset_t pa, u_long mask)
{
u_long lsucr;
stxa(AA_DMMU_PWPR, ASI_DMMU, pa & (((2UL << 38) - 1) << 3));
lsucr = ldxa(0, ASI_LSU_CTL_REG);
lsucr = ((lsucr | LSU_PW) & ~LSU_PM_MASK) |
(mask << LSU_PM_SHIFT);
stxa(0, ASI_LSU_CTL_REG, lsucr);
return (0);
}
static int
watch_phys_set(vm_offset_t pa, int sz)
{
u_long off;
off = (u_long)pa & 7;
/* Test for misaligned watch points. */
if (off + sz > 8)
return (-1);
return (watch_phys_set_mask(pa, ((1 << sz) - 1) << off));
}
static int
watch_virt_set_mask(vm_offset_t va, u_long mask)
{
u_long lsucr;
stxa(AA_DMMU_VWPR, ASI_DMMU, va & (((2UL << 41) - 1) << 3));
lsucr = ldxa(0, ASI_LSU_CTL_REG);
lsucr = ((lsucr | LSU_VW) & ~LSU_VM_MASK) |
(mask << LSU_VM_SHIFT);
stxa(0, ASI_LSU_CTL_REG, lsucr);
return (0);
}
static int
watch_virt_set(vm_offset_t va, int sz)
{
u_long off;
off = (u_long)va & 7;
/* Test for misaligned watch points. */
if (off + sz > 8)
return (-1);
return (watch_virt_set_mask(va, ((1 << sz) - 1) << off));
}
#endif
/*
* archsw functions
*/
static int
sparc64_autoload(void)
{
printf("nothing to autoload yet.\n");
return 0;
}
static ssize_t
sparc64_readin(const int fd, vm_offset_t va, const size_t len)
{
mmu_ops->mmu_mapin(va, len);
return read(fd, (void *)va, len);
}
static ssize_t
sparc64_copyin(const void *src, vm_offset_t dest, size_t len)
{
mmu_ops->mmu_mapin(dest, len);
memcpy((void *)dest, src, len);
return len;
}
static void
sparc64_maphint(vm_offset_t va, size_t len)
{
vm_paddr_t pa;
vm_offset_t mva;
size_t size;
int i, ret, free_excess = 0;
if (!is_sun4v)
return;
if (tlb_store[va >> 22].te_pa != -1)
return;
/* round up to nearest 4MB page */
size = (len + PAGE_MASK_4M) & ~PAGE_MASK_4M;
#if 0
pa = (vm_offset_t)OF_alloc_phys(PAGE_SIZE_256M, PAGE_SIZE_256M);
if (pa != -1)
free_excess = 1;
else
#endif
pa = (vm_offset_t)OF_alloc_phys(size, PAGE_SIZE_256M);
if (pa == -1)
pa = (vm_offset_t)OF_alloc_phys(size, PAGE_SIZE_4M);
if (pa == -1)
panic("out of memory");
for (i = 0; i < size; i += PAGE_SIZE_4M) {
mva = (vm_offset_t)OF_claim_virt(va + i, PAGE_SIZE_4M, 0);
if (mva != (va + i)) {
panic("can't claim virtual page "
"(wanted %#lx, got %#lx)",
va, mva);
}
tlb_store[mva >> 22].te_pa = pa + i;
if ((ret = OF_map_phys(-1, PAGE_SIZE_4M, mva, pa + i)) != 0)
printf("OF_map_phys failed: %d\n", ret);
}
if (free_excess)
OF_release_phys((vm_offset_t)pa, PAGE_SIZE_256M);
}
/*
* other MD functions
*/
static int
__elfN(exec)(struct preloaded_file *fp)
{
struct file_metadata *fmp;
vm_offset_t mdp;
Elf_Addr entry;
Elf_Ehdr *e;
int error;
if ((fmp = file_findmetadata(fp, MODINFOMD_ELFHDR)) == 0) {
return EFTYPE;
}
e = (Elf_Ehdr *)&fmp->md_data;
if ((error = md_load(fp->f_args, &mdp)) != 0)
return error;
printf("jumping to kernel entry at %#lx.\n", e->e_entry);
#if 0
pmap_print_tlb('i');
pmap_print_tlb('d');
#endif
entry = e->e_entry;
OF_release((void *)heapva, HEAPSZ);
((kernel_entry_t *)entry)(mdp, 0, 0, 0, openfirmware);
panic("exec returned");
}
static int
mmu_mapin_sun4u(vm_offset_t va, vm_size_t len)
{
vm_offset_t pa, mva;
u_long data;
if (va + len > curkva)
curkva = va + len;
pa = (vm_offset_t)-1;
len += va & PAGE_MASK_4M;
va &= ~PAGE_MASK_4M;
while (len) {
if (dtlb_va_to_pa(va) == (vm_offset_t)-1 ||
itlb_va_to_pa(va) == (vm_offset_t)-1) {
/* Allocate a physical page, claim the virtual area */
if (pa == (vm_offset_t)-1) {
pa = (vm_offset_t)OF_alloc_phys(PAGE_SIZE_4M,
PAGE_SIZE_4M);
if (pa == (vm_offset_t)-1)
panic("out of memory");
mva = (vm_offset_t)OF_claim_virt(va,
PAGE_SIZE_4M, 0);
if (mva != va) {
panic("can't claim virtual page "
"(wanted %#lx, got %#lx)",
va, mva);
}
/* The mappings may have changed, be paranoid. */
continue;
}
/*
* Actually, we can only allocate two pages less at
* most (depending on the kernel TSB size).
*/
if (dtlb_slot >= dtlb_slot_max)
panic("mmu_mapin: out of dtlb_slots");
if (itlb_slot >= itlb_slot_max)
panic("mmu_mapin: out of itlb_slots");
data = TD_V | TD_4M | TD_PA(pa) | TD_L | TD_CP |
TD_CV | TD_P | TD_W;
dtlb_store[dtlb_slot].te_pa = pa;
dtlb_store[dtlb_slot].te_va = va;
itlb_store[itlb_slot].te_pa = pa;
itlb_store[itlb_slot].te_va = va;
dtlb_slot++;
itlb_slot++;
dtlb_enter(va, data);
itlb_enter(va, data);
pa = (vm_offset_t)-1;
}
len -= len > PAGE_SIZE_4M ? PAGE_SIZE_4M : len;
va += PAGE_SIZE_4M;
}
if (pa != (vm_offset_t)-1)
OF_release_phys(pa, PAGE_SIZE_4M);
return 0;
}
static int
mmu_mapin_sun4v(vm_offset_t va, vm_size_t len)
{
vm_offset_t pa, mva;
u_long data;
int ret;
if (va + len > curkva)
curkva = va + len;
pa = (vm_offset_t)-1;
len += va & PAGE_MASK_4M;
va &= ~PAGE_MASK_4M;
while (len) {
if ((va >> 22) > SUN4V_TLB_SLOT_MAX)
panic("trying to map more than 4GB");
if (tlb_store[va >> 22].te_pa == -1) {
/* Allocate a physical page, claim the virtual area */
if (pa == (vm_offset_t)-1) {
pa = (vm_offset_t)OF_alloc_phys(PAGE_SIZE_4M,
PAGE_SIZE_4M);
if (pa == (vm_offset_t)-1)
panic("out of memory");
mva = (vm_offset_t)OF_claim_virt(va,
PAGE_SIZE_4M, 0);
if (mva != va) {
panic("can't claim virtual page "
"(wanted %#lx, got %#lx)",
va, mva);
}
}
tlb_store[va >> 22].te_pa = pa;
if ((ret = OF_map_phys(-1, PAGE_SIZE_4M, va, pa)) != 0)
printf("OF_map_phys failed: %d\n", ret);
pa = (vm_offset_t)-1;
}
len -= len > PAGE_SIZE_4M ? PAGE_SIZE_4M : len;
va += PAGE_SIZE_4M;
}
if (pa != (vm_offset_t)-1)
OF_release_phys(pa, PAGE_SIZE_4M);
return 0;
}
static vm_offset_t
init_heap(void)
{
if ((pmemh = OF_finddevice("/memory")) == (phandle_t)-1)
OF_exit();
if (OF_getprop(pmemh, "available", memslices, sizeof(memslices)) <= 0)
OF_exit();
/* There is no need for continuous physical heap memory. */
heapva = (vm_offset_t)OF_claim((void *)HEAPVA, HEAPSZ, 32);
return heapva;
}
static void
tlb_init_sun4u(void)
{
phandle_t child;
phandle_t root;
char buf[128];
u_int bootcpu;
u_int cpu;
bootcpu = UPA_CR_GET_MID(ldxa(0, ASI_UPA_CONFIG_REG));
if ((root = OF_peer(0)) == -1)
panic("main: OF_peer");
for (child = OF_child(root); child != 0; child = OF_peer(child)) {
if (child == -1)
panic("main: OF_child");
if (OF_getprop(child, "device_type", buf, sizeof(buf)) > 0 &&
strcmp(buf, "cpu") == 0) {
if (OF_getprop(child, "upa-portid", &cpu,
sizeof(cpu)) == -1 && OF_getprop(child, "portid",
&cpu, sizeof(cpu)) == -1)
panic("main: OF_getprop");
if (cpu == bootcpu)
break;
}
}
if (cpu != bootcpu)
panic("init_tlb: no node for bootcpu?!?!");
if (OF_getprop(child, "#dtlb-entries", &dtlb_slot_max,
sizeof(dtlb_slot_max)) == -1 ||
OF_getprop(child, "#itlb-entries", &itlb_slot_max,
sizeof(itlb_slot_max)) == -1)
panic("init_tlb: OF_getprop");
dtlb_store = malloc(dtlb_slot_max * sizeof(*dtlb_store));
itlb_store = malloc(itlb_slot_max * sizeof(*itlb_store));
if (dtlb_store == NULL || itlb_store == NULL)
panic("init_tlb: malloc");
}
static void
tlb_init_sun4v(void)
{
tlb_store = malloc(SUN4V_TLB_SLOT_MAX * sizeof(*tlb_store));
memset(tlb_store, 0xFF, SUN4V_TLB_SLOT_MAX * sizeof(*tlb_store));
}
int
main(int (*openfirm)(void *))
{
char bootpath[64];
char compatible[32];
struct devsw **dp;
phandle_t rooth;
phandle_t chosenh;
/*
* Tell the Open Firmware functions where they find the ofw gate.
*/
OF_init(openfirm);
archsw.arch_getdev = ofw_getdev;
archsw.arch_copyin = sparc64_copyin;
archsw.arch_copyout = ofw_copyout;
archsw.arch_readin = sparc64_readin;
archsw.arch_autoload = sparc64_autoload;
archsw.arch_maphint = sparc64_maphint;
init_heap();
setheap((void *)heapva, (void *)(heapva + HEAPSZ));
/*
* Probe for a console.
*/
cons_probe();
rooth = OF_peer(0);
OF_getprop(rooth, "compatible", compatible, sizeof(compatible));
if (!strcmp(compatible, "sun4v")) {
printf("\nBooting with sun4v support.\n");
mmu_ops = &mmu_ops_sun4v;
is_sun4v = 1;
} else {
printf("\nBooting with sun4u support.\n");
mmu_ops = &mmu_ops_sun4u;
}
mmu_ops->tlb_init();
/*
* Initialize devices.
*/
for (dp = devsw; *dp != 0; dp++) {
if ((*dp)->dv_init != 0)
(*dp)->dv_init();
}
/*
* Set up the current device.
*/
chosenh = OF_finddevice("/chosen");
OF_getprop(chosenh, "bootpath", bootpath, sizeof(bootpath));
/*
* Sun compatible bootable CD-ROMs have a disk label placed
* before the cd9660 data, with the actual filesystem being
* in the first partition, while the other partitions contain
* pseudo disk labels with embedded boot blocks for different
* architectures, which may be followed by UFS filesystems.
* The firmware will set the boot path to the partition it
* boots from ('f' in the sun4u case), but we want the kernel
* to be loaded from the cd9660 fs ('a'), so the boot path
* needs to be altered.
*/
if (bootpath[strlen(bootpath) - 2] == ':' &&
bootpath[strlen(bootpath) - 1] == 'f') {
bootpath[strlen(bootpath) - 1] = 'a';
printf("Boot path set to %s\n", bootpath);
}
env_setenv("currdev", EV_VOLATILE, bootpath,
ofw_setcurrdev, env_nounset);
env_setenv("loaddev", EV_VOLATILE, bootpath,
env_noset, env_nounset);
printf("\n");
printf("%s, Revision %s\n", bootprog_name, bootprog_rev);
printf("(%s, %s)\n", bootprog_maker, bootprog_date);
printf("bootpath=\"%s\"\n", bootpath);
/* Give control to the machine independent loader code. */
interact();
return 1;
}
COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot);
static int
command_reboot(int argc, char *argv[])
{
int i;
for (i = 0; devsw[i] != NULL; ++i)
if (devsw[i]->dv_cleanup != NULL)
(devsw[i]->dv_cleanup)();
printf("Rebooting...\n");
OF_exit();
}
/* provide this for panic, as it's not in the startup code */
void
exit(int code)
{
OF_exit();
}
#ifdef LOADER_DEBUG
typedef u_int64_t tte_t;
const char *page_sizes[] = {
" 8k", " 64k", "512k", " 4m"
};
static void
pmap_print_tte(tte_t tag, tte_t tte)
{
printf("%s %s ",
page_sizes[(tte & TD_SIZE_MASK) >> TD_SIZE_SHIFT],
tag & TD_G ? "G" : " ");
printf(tte & TD_W ? "W " : " ");
printf(tte & TD_P ? "\e[33mP\e[0m " : " ");
printf(tte & TD_E ? "E " : " ");
printf(tte & TD_CV ? "CV " : " ");
printf(tte & TD_CP ? "CP " : " ");
printf(tte & TD_L ? "\e[32mL\e[0m " : " ");
printf(tte & TD_IE ? "IE " : " ");
printf(tte & TD_NFO ? "NFO " : " ");
printf("tag=0x%lx pa=0x%lx va=0x%lx ctx=%ld\n", tag, TD_PA(tte),
TT_VA(tag), TT_CTX(tag));
}
void
pmap_print_tlb(char which)
{
int i;
tte_t tte, tag;
for (i = 0; i < 64*8; i += 8) {
if (which == 'i') {
__asm__ __volatile__("ldxa [%1] %2, %0\n" :
"=r" (tag) : "r" (i),
"i" (ASI_ITLB_TAG_READ_REG));
__asm__ __volatile__("ldxa [%1] %2, %0\n" :
"=r" (tte) : "r" (i),
"i" (ASI_ITLB_DATA_ACCESS_REG));
}
else {
__asm__ __volatile__("ldxa [%1] %2, %0\n" :
"=r" (tag) : "r" (i),
"i" (ASI_DTLB_TAG_READ_REG));
__asm__ __volatile__("ldxa [%1] %2, %0\n" :
"=r" (tte) : "r" (i),
"i" (ASI_DTLB_DATA_ACCESS_REG));
}
if (!(tte & TD_V))
continue;
printf("%cTLB-%2u: ", which, i>>3);
pmap_print_tte(tag, tte);
}
}
#endif