Steve Kargl 6d04e1422e cosl(): fix polynomial approximation coefficients for ld128 version
As mention previously, the minmax polynomial approximation
in the kernel for cosl() seem to have a bad set of coefficients.

In testing, cosl() in the interval [0.785, pi/4] for 1 million
values and pi/4 written to 37 decimal digits.  The old version
on an aarch64 system gave

% tlibm/tlibm_lmath -l -x 0.78 -X
7.85398163397448309615660845819875721e-1L cos
Interval tested for cosl: [0.78,0.785398]
count: 1000000
  xm =  7.80213913234863919029058821396125599e-01L
  libm =  7.10763080972549562455058499280609083e-01L
  mpfr =  7.10763080972549562455058499280608983e-01L
  ULP = 1.04431

The max ULP exceeds 1, which is not good.  So, I rinsed off a 10
year code and recomputed coefficients.  The new minmax polynomial
now yields

% tlibm/tlibm_lmath -l -x 0.78 -X
7.85398163397448309615660845819875721e-1L cos
Interval tested for cosl: [0.78,0.785398]
count: 1000000
  xm =  7.82916198746768272588844890973704219e-01L
  libm =  7.08859615479571058183956453286628396e-01L
  mpfr =  7.08859615479571058183956453286628469e-01L
  ULP = 0.75407

which is very good.

PR:	218514
MFC after:	1 week
2021-11-02 10:54:10 +02:00

60 lines
1.9 KiB
C

/* From: @(#)k_cos.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
* Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* ld128 version of k_cos.c. See ../src/k_cos.c for most comments.
*/
#include "math_private.h"
/*
* Domain [-0.7854, 0.7854], range ~[-1.17e-39, 1.19e-39]:
* |cos(x) - c(x))| < 2**-129.3
*
* 113-bit precision requires more care than 64-bit precision, since
* simple methods give a minimax polynomial with coefficient for x^2
* that is 1 ulp below 0.5, but we want it to be precisely 0.5. See
* ../ld80/k_cosl.c for more details.
*/
static const double
one = 1.0;
static const long double
C1 = 4.16666666666666666666666666666666667e-02L,
C2 = -1.38888888888888888888888888888888834e-03L,
C3 = 2.48015873015873015873015873015446795e-05L,
C4 = -2.75573192239858906525573190949988493e-07L,
C5 = 2.08767569878680989792098886701451072e-09L,
C6 = -1.14707455977297247136657111139971865e-11L,
C7 = 4.77947733238738518870113294139830239e-14L,
C8 = -1.56192069685858079920640872925306403e-16L,
C9 = 4.11031762320473354032038893429515732e-19L,
C10= -8.89679121027589608738005163931958096e-22L,
C11= 1.61171797801314301767074036661901531e-24L,
C12= -2.46748624357670948912574279501044295e-27L;
long double
__kernel_cosl(long double x, long double y)
{
long double hz,z,r,w;
z = x*x;
r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*(C6+z*(C7+
z*(C8+z*(C9+z*(C10+z*(C11+z*C12)))))))))));
hz = 0.5*z;
w = one-hz;
return w + (((one-w)-hz) + (z*r-x*y));
}