b2e2337ba1
condition ( bufspace > hibufspace ), an inappropriate scan of the empty queue was performed looking for buffer space to free up. Submitted by: Matthew Dillon <dillon@apollo.backplane.com>
2761 lines
68 KiB
C
2761 lines
68 KiB
C
/*
|
|
* Copyright (c) 1994,1997 John S. Dyson
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice immediately at the beginning of the file, without modification,
|
|
* this list of conditions, and the following disclaimer.
|
|
* 2. Absolutely no warranty of function or purpose is made by the author
|
|
* John S. Dyson.
|
|
*
|
|
* $Id: vfs_bio.c,v 1.204 1999/04/05 19:38:30 julian Exp $
|
|
*/
|
|
|
|
/*
|
|
* this file contains a new buffer I/O scheme implementing a coherent
|
|
* VM object and buffer cache scheme. Pains have been taken to make
|
|
* sure that the performance degradation associated with schemes such
|
|
* as this is not realized.
|
|
*
|
|
* Author: John S. Dyson
|
|
* Significant help during the development and debugging phases
|
|
* had been provided by David Greenman, also of the FreeBSD core team.
|
|
*
|
|
* see man buf(9) for more info.
|
|
*/
|
|
|
|
#define VMIO
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sysproto.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/vmmeter.h>
|
|
#include <sys/lock.h>
|
|
#include <miscfs/specfs/specdev.h>
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_prot.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_pageout.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/vm_map.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/resourcevar.h>
|
|
|
|
static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
|
|
|
|
struct bio_ops bioops; /* I/O operation notification */
|
|
|
|
#if 0 /* replaced bu sched_sync */
|
|
static void vfs_update __P((void));
|
|
static struct proc *updateproc;
|
|
static struct kproc_desc up_kp = {
|
|
"update",
|
|
vfs_update,
|
|
&updateproc
|
|
};
|
|
SYSINIT_KT(update, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
|
|
#endif
|
|
|
|
struct buf *buf; /* buffer header pool */
|
|
struct swqueue bswlist;
|
|
|
|
static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
|
|
vm_offset_t to);
|
|
static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
|
|
vm_offset_t to);
|
|
static void vfs_buf_set_valid(struct buf *bp, vm_ooffset_t foff,
|
|
vm_offset_t off, vm_offset_t size,
|
|
vm_page_t m);
|
|
static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
|
|
int pageno, vm_page_t m);
|
|
static void vfs_clean_pages(struct buf * bp);
|
|
static void vfs_setdirty(struct buf *bp);
|
|
static void vfs_vmio_release(struct buf *bp);
|
|
static void flushdirtybuffers(int slpflag, int slptimeo);
|
|
static int flushbufqueues(void);
|
|
|
|
/*
|
|
* Internal update daemon, process 3
|
|
* The variable vfs_update_wakeup allows for internal syncs.
|
|
*/
|
|
int vfs_update_wakeup;
|
|
|
|
/*
|
|
* bogus page -- for I/O to/from partially complete buffers
|
|
* this is a temporary solution to the problem, but it is not
|
|
* really that bad. it would be better to split the buffer
|
|
* for input in the case of buffers partially already in memory,
|
|
* but the code is intricate enough already.
|
|
*/
|
|
vm_page_t bogus_page;
|
|
int runningbufspace;
|
|
static vm_offset_t bogus_offset;
|
|
|
|
static int bufspace, maxbufspace, vmiospace, maxvmiobufspace,
|
|
bufmallocspace, maxbufmallocspace, hibufspace;
|
|
static int needsbuffer;
|
|
static int numdirtybuffers, lodirtybuffers, hidirtybuffers;
|
|
static int numfreebuffers, lofreebuffers, hifreebuffers;
|
|
static int kvafreespace;
|
|
|
|
SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD,
|
|
&numdirtybuffers, 0, "");
|
|
SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW,
|
|
&lodirtybuffers, 0, "");
|
|
SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW,
|
|
&hidirtybuffers, 0, "");
|
|
SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD,
|
|
&numfreebuffers, 0, "");
|
|
SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW,
|
|
&lofreebuffers, 0, "");
|
|
SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW,
|
|
&hifreebuffers, 0, "");
|
|
SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD,
|
|
&runningbufspace, 0, "");
|
|
SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RW,
|
|
&maxbufspace, 0, "");
|
|
SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD,
|
|
&hibufspace, 0, "");
|
|
SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD,
|
|
&bufspace, 0, "");
|
|
SYSCTL_INT(_vfs, OID_AUTO, maxvmiobufspace, CTLFLAG_RW,
|
|
&maxvmiobufspace, 0, "");
|
|
SYSCTL_INT(_vfs, OID_AUTO, vmiospace, CTLFLAG_RD,
|
|
&vmiospace, 0, "");
|
|
SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW,
|
|
&maxbufmallocspace, 0, "");
|
|
SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD,
|
|
&bufmallocspace, 0, "");
|
|
SYSCTL_INT(_vfs, OID_AUTO, kvafreespace, CTLFLAG_RD,
|
|
&kvafreespace, 0, "");
|
|
|
|
static LIST_HEAD(bufhashhdr, buf) bufhashtbl[BUFHSZ], invalhash;
|
|
struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } };
|
|
|
|
extern int vm_swap_size;
|
|
|
|
#define BUF_MAXUSE 24
|
|
|
|
#define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */
|
|
#define VFS_BIO_NEED_RESERVED02 0x02 /* unused */
|
|
#define VFS_BIO_NEED_FREE 0x04 /* wait for free bufs, hi hysteresis */
|
|
#define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */
|
|
#define VFS_BIO_NEED_KVASPACE 0x10 /* wait for buffer_map space, emerg */
|
|
|
|
/*
|
|
* kvaspacewakeup:
|
|
*
|
|
* Called when kva space is potential available for recovery or when
|
|
* kva space is recovered in the buffer_map. This function wakes up
|
|
* anyone waiting for buffer_map kva space. Even though the buffer_map
|
|
* is larger then maxbufspace, this situation will typically occur
|
|
* when the buffer_map gets fragmented.
|
|
*/
|
|
|
|
static __inline void
|
|
kvaspacewakeup(void)
|
|
{
|
|
/*
|
|
* If someone is waiting for KVA space, wake them up. Even
|
|
* though we haven't freed the kva space yet, the waiting
|
|
* process will be able to now.
|
|
*/
|
|
if (needsbuffer & VFS_BIO_NEED_KVASPACE) {
|
|
needsbuffer &= ~VFS_BIO_NEED_KVASPACE;
|
|
wakeup(&needsbuffer);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* bufspacewakeup:
|
|
*
|
|
* Called when buffer space is potentially available for recovery or when
|
|
* buffer space is recovered. getnewbuf() will block on this flag when
|
|
* it is unable to free sufficient buffer space. Buffer space becomes
|
|
* recoverable when bp's get placed back in the queues.
|
|
*/
|
|
|
|
static __inline void
|
|
bufspacewakeup(void)
|
|
{
|
|
/*
|
|
* If someone is waiting for BUF space, wake them up. Even
|
|
* though we haven't freed the kva space yet, the waiting
|
|
* process will be able to now.
|
|
*/
|
|
if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
|
|
needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
|
|
wakeup(&needsbuffer);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* bufcountwakeup:
|
|
*
|
|
* Called when a buffer has been added to one of the free queues to
|
|
* account for the buffer and to wakeup anyone waiting for free buffers.
|
|
* This typically occurs when large amounts of metadata are being handled
|
|
* by the buffer cache ( else buffer space runs out first, usually ).
|
|
*/
|
|
|
|
static __inline void
|
|
bufcountwakeup(void)
|
|
{
|
|
++numfreebuffers;
|
|
if (needsbuffer) {
|
|
needsbuffer &= ~VFS_BIO_NEED_ANY;
|
|
if (numfreebuffers >= hifreebuffers)
|
|
needsbuffer &= ~VFS_BIO_NEED_FREE;
|
|
wakeup(&needsbuffer);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize buffer headers and related structures.
|
|
*/
|
|
void
|
|
bufinit()
|
|
{
|
|
struct buf *bp;
|
|
int i;
|
|
|
|
TAILQ_INIT(&bswlist);
|
|
LIST_INIT(&invalhash);
|
|
|
|
/* first, make a null hash table */
|
|
for (i = 0; i < BUFHSZ; i++)
|
|
LIST_INIT(&bufhashtbl[i]);
|
|
|
|
/* next, make a null set of free lists */
|
|
for (i = 0; i < BUFFER_QUEUES; i++)
|
|
TAILQ_INIT(&bufqueues[i]);
|
|
|
|
/* finally, initialize each buffer header and stick on empty q */
|
|
for (i = 0; i < nbuf; i++) {
|
|
bp = &buf[i];
|
|
bzero(bp, sizeof *bp);
|
|
bp->b_flags = B_INVAL; /* we're just an empty header */
|
|
bp->b_dev = NODEV;
|
|
bp->b_rcred = NOCRED;
|
|
bp->b_wcred = NOCRED;
|
|
bp->b_qindex = QUEUE_EMPTY;
|
|
bp->b_xflags = 0;
|
|
LIST_INIT(&bp->b_dep);
|
|
TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
|
|
LIST_INSERT_HEAD(&invalhash, bp, b_hash);
|
|
}
|
|
|
|
/*
|
|
* maxbufspace is currently calculated to support all filesystem
|
|
* blocks to be 8K. If you happen to use a 16K filesystem, the size
|
|
* of the buffer cache is still the same as it would be for 8K
|
|
* filesystems. This keeps the size of the buffer cache "in check"
|
|
* for big block filesystems.
|
|
*
|
|
* maxbufspace is calculated as around 50% of the KVA available in
|
|
* the buffer_map ( DFLTSIZE vs BKVASIZE ), I presume to reduce the
|
|
* effect of fragmentation.
|
|
*/
|
|
maxbufspace = (nbuf + 8) * DFLTBSIZE;
|
|
if ((hibufspace = maxbufspace - MAXBSIZE * 5) <= MAXBSIZE)
|
|
hibufspace = 3 * maxbufspace / 4;
|
|
/*
|
|
* reserve 1/3 of the buffers for metadata (VDIR) which might not be VMIO'ed
|
|
*/
|
|
maxvmiobufspace = 2 * hibufspace / 3;
|
|
/*
|
|
* Limit the amount of malloc memory since it is wired permanently into
|
|
* the kernel space. Even though this is accounted for in the buffer
|
|
* allocation, we don't want the malloced region to grow uncontrolled.
|
|
* The malloc scheme improves memory utilization significantly on average
|
|
* (small) directories.
|
|
*/
|
|
maxbufmallocspace = hibufspace / 20;
|
|
|
|
/*
|
|
* Reduce the chance of a deadlock occuring by limiting the number
|
|
* of delayed-write dirty buffers we allow to stack up.
|
|
*/
|
|
lodirtybuffers = nbuf / 16 + 10;
|
|
hidirtybuffers = nbuf / 8 + 20;
|
|
numdirtybuffers = 0;
|
|
|
|
/*
|
|
* Try to keep the number of free buffers in the specified range,
|
|
* and give the syncer access to an emergency reserve.
|
|
*/
|
|
lofreebuffers = nbuf / 18 + 5;
|
|
hifreebuffers = 2 * lofreebuffers;
|
|
numfreebuffers = nbuf;
|
|
|
|
kvafreespace = 0;
|
|
|
|
bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
|
|
bogus_page = vm_page_alloc(kernel_object,
|
|
((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
|
|
VM_ALLOC_NORMAL);
|
|
|
|
}
|
|
|
|
/*
|
|
* Free the kva allocation for a buffer
|
|
* Must be called only at splbio or higher,
|
|
* as this is the only locking for buffer_map.
|
|
*/
|
|
static void
|
|
bfreekva(struct buf * bp)
|
|
{
|
|
if (bp->b_kvasize) {
|
|
vm_map_delete(buffer_map,
|
|
(vm_offset_t) bp->b_kvabase,
|
|
(vm_offset_t) bp->b_kvabase + bp->b_kvasize
|
|
);
|
|
bp->b_kvasize = 0;
|
|
kvaspacewakeup();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* bremfree:
|
|
*
|
|
* Remove the buffer from the appropriate free list.
|
|
*/
|
|
void
|
|
bremfree(struct buf * bp)
|
|
{
|
|
int s = splbio();
|
|
int old_qindex = bp->b_qindex;
|
|
|
|
if (bp->b_qindex != QUEUE_NONE) {
|
|
if (bp->b_qindex == QUEUE_EMPTY) {
|
|
kvafreespace -= bp->b_kvasize;
|
|
}
|
|
TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
|
|
bp->b_qindex = QUEUE_NONE;
|
|
runningbufspace += bp->b_bufsize;
|
|
} else {
|
|
#if !defined(MAX_PERF)
|
|
panic("bremfree: removing a buffer when not on a queue");
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Fixup numfreebuffers count. If the buffer is invalid or not
|
|
* delayed-write, and it was on the EMPTY, LRU, or AGE queues,
|
|
* the buffer was free and we must decrement numfreebuffers.
|
|
*/
|
|
if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
|
|
switch(old_qindex) {
|
|
case QUEUE_EMPTY:
|
|
case QUEUE_LRU:
|
|
case QUEUE_AGE:
|
|
--numfreebuffers;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
|
|
/*
|
|
* Get a buffer with the specified data. Look in the cache first.
|
|
*/
|
|
int
|
|
bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
|
|
struct buf ** bpp)
|
|
{
|
|
struct buf *bp;
|
|
|
|
bp = getblk(vp, blkno, size, 0, 0);
|
|
*bpp = bp;
|
|
|
|
/* if not found in cache, do some I/O */
|
|
if ((bp->b_flags & B_CACHE) == 0) {
|
|
if (curproc != NULL)
|
|
curproc->p_stats->p_ru.ru_inblock++;
|
|
KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp));
|
|
bp->b_flags |= B_READ;
|
|
bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
|
|
if (bp->b_rcred == NOCRED) {
|
|
if (cred != NOCRED)
|
|
crhold(cred);
|
|
bp->b_rcred = cred;
|
|
}
|
|
vfs_busy_pages(bp, 0);
|
|
VOP_STRATEGY(vp, bp);
|
|
return (biowait(bp));
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Operates like bread, but also starts asynchronous I/O on
|
|
* read-ahead blocks.
|
|
*/
|
|
int
|
|
breadn(struct vnode * vp, daddr_t blkno, int size,
|
|
daddr_t * rablkno, int *rabsize,
|
|
int cnt, struct ucred * cred, struct buf ** bpp)
|
|
{
|
|
struct buf *bp, *rabp;
|
|
int i;
|
|
int rv = 0, readwait = 0;
|
|
|
|
*bpp = bp = getblk(vp, blkno, size, 0, 0);
|
|
|
|
/* if not found in cache, do some I/O */
|
|
if ((bp->b_flags & B_CACHE) == 0) {
|
|
if (curproc != NULL)
|
|
curproc->p_stats->p_ru.ru_inblock++;
|
|
bp->b_flags |= B_READ;
|
|
bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
|
|
if (bp->b_rcred == NOCRED) {
|
|
if (cred != NOCRED)
|
|
crhold(cred);
|
|
bp->b_rcred = cred;
|
|
}
|
|
vfs_busy_pages(bp, 0);
|
|
VOP_STRATEGY(vp, bp);
|
|
++readwait;
|
|
}
|
|
|
|
for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
|
|
if (inmem(vp, *rablkno))
|
|
continue;
|
|
rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
|
|
|
|
if ((rabp->b_flags & B_CACHE) == 0) {
|
|
if (curproc != NULL)
|
|
curproc->p_stats->p_ru.ru_inblock++;
|
|
rabp->b_flags |= B_READ | B_ASYNC;
|
|
rabp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
|
|
if (rabp->b_rcred == NOCRED) {
|
|
if (cred != NOCRED)
|
|
crhold(cred);
|
|
rabp->b_rcred = cred;
|
|
}
|
|
vfs_busy_pages(rabp, 0);
|
|
VOP_STRATEGY(vp, rabp);
|
|
} else {
|
|
brelse(rabp);
|
|
}
|
|
}
|
|
|
|
if (readwait) {
|
|
rv = biowait(bp);
|
|
}
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* Write, release buffer on completion. (Done by iodone
|
|
* if async.)
|
|
*/
|
|
int
|
|
bwrite(struct buf * bp)
|
|
{
|
|
int oldflags, s;
|
|
struct vnode *vp;
|
|
struct mount *mp;
|
|
|
|
if (bp->b_flags & B_INVAL) {
|
|
brelse(bp);
|
|
return (0);
|
|
}
|
|
|
|
oldflags = bp->b_flags;
|
|
|
|
#if !defined(MAX_PERF)
|
|
if ((bp->b_flags & B_BUSY) == 0)
|
|
panic("bwrite: buffer is not busy???");
|
|
#endif
|
|
s = splbio();
|
|
bundirty(bp);
|
|
|
|
bp->b_flags &= ~(B_READ | B_DONE | B_ERROR);
|
|
bp->b_flags |= B_WRITEINPROG;
|
|
|
|
bp->b_vp->v_numoutput++;
|
|
vfs_busy_pages(bp, 1);
|
|
if (curproc != NULL)
|
|
curproc->p_stats->p_ru.ru_oublock++;
|
|
splx(s);
|
|
VOP_STRATEGY(bp->b_vp, bp);
|
|
|
|
/*
|
|
* Collect statistics on synchronous and asynchronous writes.
|
|
* Writes to block devices are charged to their associated
|
|
* filesystem (if any).
|
|
*/
|
|
if ((vp = bp->b_vp) != NULL) {
|
|
if (vp->v_type == VBLK)
|
|
mp = vp->v_specmountpoint;
|
|
else
|
|
mp = vp->v_mount;
|
|
if (mp != NULL)
|
|
if ((oldflags & B_ASYNC) == 0)
|
|
mp->mnt_stat.f_syncwrites++;
|
|
else
|
|
mp->mnt_stat.f_asyncwrites++;
|
|
}
|
|
|
|
if ((oldflags & B_ASYNC) == 0) {
|
|
int rtval = biowait(bp);
|
|
brelse(bp);
|
|
return (rtval);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Delayed write. (Buffer is marked dirty).
|
|
*/
|
|
void
|
|
bdwrite(struct buf * bp)
|
|
{
|
|
struct vnode *vp;
|
|
|
|
#if !defined(MAX_PERF)
|
|
if ((bp->b_flags & B_BUSY) == 0) {
|
|
panic("bdwrite: buffer is not busy");
|
|
}
|
|
#endif
|
|
|
|
if (bp->b_flags & B_INVAL) {
|
|
brelse(bp);
|
|
return;
|
|
}
|
|
bdirty(bp);
|
|
|
|
/*
|
|
* This bmap keeps the system from needing to do the bmap later,
|
|
* perhaps when the system is attempting to do a sync. Since it
|
|
* is likely that the indirect block -- or whatever other datastructure
|
|
* that the filesystem needs is still in memory now, it is a good
|
|
* thing to do this. Note also, that if the pageout daemon is
|
|
* requesting a sync -- there might not be enough memory to do
|
|
* the bmap then... So, this is important to do.
|
|
*/
|
|
if (bp->b_lblkno == bp->b_blkno) {
|
|
VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
|
|
}
|
|
|
|
/*
|
|
* Set the *dirty* buffer range based upon the VM system dirty pages.
|
|
*/
|
|
vfs_setdirty(bp);
|
|
|
|
/*
|
|
* We need to do this here to satisfy the vnode_pager and the
|
|
* pageout daemon, so that it thinks that the pages have been
|
|
* "cleaned". Note that since the pages are in a delayed write
|
|
* buffer -- the VFS layer "will" see that the pages get written
|
|
* out on the next sync, or perhaps the cluster will be completed.
|
|
*/
|
|
vfs_clean_pages(bp);
|
|
bqrelse(bp);
|
|
|
|
/*
|
|
* XXX The soft dependency code is not prepared to
|
|
* have I/O done when a bdwrite is requested. For
|
|
* now we just let the write be delayed if it is
|
|
* requested by the soft dependency code.
|
|
*/
|
|
if ((vp = bp->b_vp) &&
|
|
((vp->v_type == VBLK && vp->v_specmountpoint &&
|
|
(vp->v_specmountpoint->mnt_flag & MNT_SOFTDEP)) ||
|
|
(vp->v_mount && (vp->v_mount->mnt_flag & MNT_SOFTDEP))))
|
|
return;
|
|
|
|
if (numdirtybuffers >= hidirtybuffers)
|
|
flushdirtybuffers(0, 0);
|
|
}
|
|
|
|
/*
|
|
* bdirty:
|
|
*
|
|
* Turn buffer into delayed write request. We must clear B_READ and
|
|
* B_RELBUF, and we must set B_DELWRI. We reassign the buffer to
|
|
* itself to properly update it in the dirty/clean lists. We mark it
|
|
* B_DONE to ensure that any asynchronization of the buffer properly
|
|
* clears B_DONE ( else a panic will occur later ). Note that B_INVALID
|
|
* buffers are not considered dirty even if B_DELWRI is set.
|
|
*
|
|
* Since the buffer is not on a queue, we do not update the numfreebuffers
|
|
* count.
|
|
*
|
|
* Must be called at splbio().
|
|
* The buffer must be on QUEUE_NONE.
|
|
*/
|
|
void
|
|
bdirty(bp)
|
|
struct buf *bp;
|
|
{
|
|
KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
|
|
bp->b_flags &= ~(B_READ|B_RELBUF);
|
|
|
|
if ((bp->b_flags & B_DELWRI) == 0) {
|
|
bp->b_flags |= B_DONE | B_DELWRI;
|
|
reassignbuf(bp, bp->b_vp);
|
|
++numdirtybuffers;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* bundirty:
|
|
*
|
|
* Clear B_DELWRI for buffer.
|
|
*
|
|
* Since the buffer is not on a queue, we do not update the numfreebuffers
|
|
* count.
|
|
*
|
|
* Must be called at splbio().
|
|
* The buffer must be on QUEUE_NONE.
|
|
*/
|
|
|
|
void
|
|
bundirty(bp)
|
|
struct buf *bp;
|
|
{
|
|
KASSERT(bp->b_qindex == QUEUE_NONE, ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
|
|
|
|
if (bp->b_flags & B_DELWRI) {
|
|
bp->b_flags &= ~B_DELWRI;
|
|
reassignbuf(bp, bp->b_vp);
|
|
--numdirtybuffers;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* bawrite:
|
|
*
|
|
* Asynchronous write. Start output on a buffer, but do not wait for
|
|
* it to complete. The buffer is released when the output completes.
|
|
*/
|
|
void
|
|
bawrite(struct buf * bp)
|
|
{
|
|
bp->b_flags |= B_ASYNC;
|
|
(void) VOP_BWRITE(bp);
|
|
}
|
|
|
|
/*
|
|
* bowrite:
|
|
*
|
|
* Ordered write. Start output on a buffer, and flag it so that the
|
|
* device will write it in the order it was queued. The buffer is
|
|
* released when the output completes.
|
|
*/
|
|
int
|
|
bowrite(struct buf * bp)
|
|
{
|
|
bp->b_flags |= B_ORDERED | B_ASYNC;
|
|
return (VOP_BWRITE(bp));
|
|
}
|
|
|
|
/*
|
|
* brelse:
|
|
*
|
|
* Release a busy buffer and, if requested, free its resources. The
|
|
* buffer will be stashed in the appropriate bufqueue[] allowing it
|
|
* to be accessed later as a cache entity or reused for other purposes.
|
|
*/
|
|
void
|
|
brelse(struct buf * bp)
|
|
{
|
|
int s;
|
|
|
|
KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
|
|
|
|
#if 0
|
|
if (bp->b_flags & B_CLUSTER) {
|
|
relpbuf(bp, NULL);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
s = splbio();
|
|
|
|
if (bp->b_flags & B_LOCKED)
|
|
bp->b_flags &= ~B_ERROR;
|
|
|
|
if ((bp->b_flags & (B_READ | B_ERROR)) == B_ERROR) {
|
|
bp->b_flags &= ~B_ERROR;
|
|
bdirty(bp);
|
|
} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_FREEBUF)) ||
|
|
(bp->b_bufsize <= 0)) {
|
|
bp->b_flags |= B_INVAL;
|
|
if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
|
|
(*bioops.io_deallocate)(bp);
|
|
if (bp->b_flags & B_DELWRI)
|
|
--numdirtybuffers;
|
|
bp->b_flags &= ~(B_DELWRI | B_CACHE | B_FREEBUF);
|
|
if ((bp->b_flags & B_VMIO) == 0) {
|
|
if (bp->b_bufsize)
|
|
allocbuf(bp, 0);
|
|
if (bp->b_vp)
|
|
brelvp(bp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We must clear B_RELBUF if B_DELWRI is set. If vfs_vmio_release()
|
|
* is called with B_DELWRI set, the underlying pages may wind up
|
|
* getting freed causing a previous write (bdwrite()) to get 'lost'
|
|
* because pages associated with a B_DELWRI bp are marked clean.
|
|
*
|
|
* We still allow the B_INVAL case to call vfs_vmio_release(), even
|
|
* if B_DELWRI is set.
|
|
*/
|
|
|
|
if (bp->b_flags & B_DELWRI)
|
|
bp->b_flags &= ~B_RELBUF;
|
|
|
|
/*
|
|
* VMIO buffer rundown. It is not very necessary to keep a VMIO buffer
|
|
* constituted, so the B_INVAL flag is used to *invalidate* the buffer,
|
|
* but the VM object is kept around. The B_NOCACHE flag is used to
|
|
* invalidate the pages in the VM object.
|
|
*
|
|
* The b_{validoff,validend,dirtyoff,dirtyend} values are relative
|
|
* to b_offset and currently have byte granularity, whereas the
|
|
* valid flags in the vm_pages have only DEV_BSIZE resolution.
|
|
* The byte resolution fields are used to avoid unnecessary re-reads
|
|
* of the buffer but the code really needs to be genericized so
|
|
* other filesystem modules can take advantage of these fields.
|
|
*
|
|
* XXX this seems to cause performance problems.
|
|
*/
|
|
if ((bp->b_flags & B_VMIO)
|
|
&& !(bp->b_vp->v_tag == VT_NFS &&
|
|
bp->b_vp->v_type != VBLK &&
|
|
(bp->b_flags & B_DELWRI) != 0)
|
|
#ifdef notdef
|
|
&& (bp->b_vp->v_tag != VT_NFS
|
|
|| bp->b_vp->v_type == VBLK
|
|
|| (bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR))
|
|
|| bp->b_validend == 0
|
|
|| (bp->b_validoff == 0
|
|
&& bp->b_validend == bp->b_bufsize))
|
|
#endif
|
|
) {
|
|
|
|
int i, j, resid;
|
|
vm_page_t m;
|
|
off_t foff;
|
|
vm_pindex_t poff;
|
|
vm_object_t obj;
|
|
struct vnode *vp;
|
|
|
|
vp = bp->b_vp;
|
|
|
|
/*
|
|
* Get the base offset and length of the buffer. Note that
|
|
* for block sizes that are less then PAGE_SIZE, the b_data
|
|
* base of the buffer does not represent exactly b_offset and
|
|
* neither b_offset nor b_size are necessarily page aligned.
|
|
* Instead, the starting position of b_offset is:
|
|
*
|
|
* b_data + (b_offset & PAGE_MASK)
|
|
*
|
|
* block sizes less then DEV_BSIZE (usually 512) are not
|
|
* supported due to the page granularity bits (m->valid,
|
|
* m->dirty, etc...).
|
|
*
|
|
* See man buf(9) for more information
|
|
*/
|
|
|
|
resid = bp->b_bufsize;
|
|
foff = bp->b_offset;
|
|
|
|
for (i = 0; i < bp->b_npages; i++) {
|
|
m = bp->b_pages[i];
|
|
vm_page_flag_clear(m, PG_ZERO);
|
|
if (m == bogus_page) {
|
|
|
|
obj = (vm_object_t) vp->v_object;
|
|
poff = OFF_TO_IDX(bp->b_offset);
|
|
|
|
for (j = i; j < bp->b_npages; j++) {
|
|
m = bp->b_pages[j];
|
|
if (m == bogus_page) {
|
|
m = vm_page_lookup(obj, poff + j);
|
|
#if !defined(MAX_PERF)
|
|
if (!m) {
|
|
panic("brelse: page missing\n");
|
|
}
|
|
#endif
|
|
bp->b_pages[j] = m;
|
|
}
|
|
}
|
|
|
|
if ((bp->b_flags & B_INVAL) == 0) {
|
|
pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
|
|
}
|
|
}
|
|
if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
|
|
int poffset = foff & PAGE_MASK;
|
|
int presid = resid > (PAGE_SIZE - poffset) ?
|
|
(PAGE_SIZE - poffset) : resid;
|
|
|
|
KASSERT(presid >= 0, ("brelse: extra page"));
|
|
vm_page_set_invalid(m, poffset, presid);
|
|
}
|
|
resid -= PAGE_SIZE - (foff & PAGE_MASK);
|
|
foff = (foff + PAGE_SIZE) & ~PAGE_MASK;
|
|
}
|
|
|
|
if (bp->b_flags & (B_INVAL | B_RELBUF))
|
|
vfs_vmio_release(bp);
|
|
|
|
} else if (bp->b_flags & B_VMIO) {
|
|
|
|
if (bp->b_flags & (B_INVAL | B_RELBUF))
|
|
vfs_vmio_release(bp);
|
|
|
|
}
|
|
|
|
#if !defined(MAX_PERF)
|
|
if (bp->b_qindex != QUEUE_NONE)
|
|
panic("brelse: free buffer onto another queue???");
|
|
#endif
|
|
/* enqueue */
|
|
|
|
/* buffers with no memory */
|
|
if (bp->b_bufsize == 0) {
|
|
bp->b_flags |= B_INVAL;
|
|
bp->b_qindex = QUEUE_EMPTY;
|
|
TAILQ_INSERT_HEAD(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
|
|
LIST_REMOVE(bp, b_hash);
|
|
LIST_INSERT_HEAD(&invalhash, bp, b_hash);
|
|
bp->b_dev = NODEV;
|
|
kvafreespace += bp->b_kvasize;
|
|
if (bp->b_kvasize)
|
|
kvaspacewakeup();
|
|
/* buffers with junk contents */
|
|
} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
|
|
bp->b_flags |= B_INVAL;
|
|
bp->b_qindex = QUEUE_AGE;
|
|
TAILQ_INSERT_HEAD(&bufqueues[QUEUE_AGE], bp, b_freelist);
|
|
LIST_REMOVE(bp, b_hash);
|
|
LIST_INSERT_HEAD(&invalhash, bp, b_hash);
|
|
bp->b_dev = NODEV;
|
|
|
|
/* buffers that are locked */
|
|
} else if (bp->b_flags & B_LOCKED) {
|
|
bp->b_qindex = QUEUE_LOCKED;
|
|
TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
|
|
|
|
/* buffers with stale but valid contents */
|
|
} else if (bp->b_flags & B_AGE) {
|
|
bp->b_qindex = QUEUE_AGE;
|
|
TAILQ_INSERT_TAIL(&bufqueues[QUEUE_AGE], bp, b_freelist);
|
|
|
|
/* buffers with valid and quite potentially reuseable contents */
|
|
} else {
|
|
bp->b_qindex = QUEUE_LRU;
|
|
TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
|
|
}
|
|
|
|
/*
|
|
* If B_INVAL, clear B_DELWRI.
|
|
*/
|
|
if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) {
|
|
bp->b_flags &= ~B_DELWRI;
|
|
--numdirtybuffers;
|
|
}
|
|
|
|
runningbufspace -= bp->b_bufsize;
|
|
|
|
/*
|
|
* Fixup numfreebuffers count. The bp is on an appropriate queue
|
|
* unless locked. We then bump numfreebuffers if it is not B_DELWRI.
|
|
* We've already handled the B_INVAL case ( B_DELWRI will be clear
|
|
* if B_INVAL is set ).
|
|
*/
|
|
|
|
if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
|
|
bufcountwakeup();
|
|
|
|
/*
|
|
* Something we can maybe free.
|
|
*/
|
|
|
|
if (bp->b_bufsize)
|
|
bufspacewakeup();
|
|
|
|
if (bp->b_flags & B_WANTED) {
|
|
bp->b_flags &= ~(B_WANTED | B_AGE);
|
|
wakeup(bp);
|
|
}
|
|
|
|
/* unlock */
|
|
bp->b_flags &= ~(B_ORDERED | B_WANTED | B_BUSY |
|
|
B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* Release a buffer back to the appropriate queue but do not try to free
|
|
* it.
|
|
*/
|
|
void
|
|
bqrelse(struct buf * bp)
|
|
{
|
|
int s;
|
|
|
|
s = splbio();
|
|
|
|
KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
|
|
|
|
#if !defined(MAX_PERF)
|
|
if (bp->b_qindex != QUEUE_NONE)
|
|
panic("bqrelse: free buffer onto another queue???");
|
|
#endif
|
|
if (bp->b_flags & B_LOCKED) {
|
|
bp->b_flags &= ~B_ERROR;
|
|
bp->b_qindex = QUEUE_LOCKED;
|
|
TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
|
|
/* buffers with stale but valid contents */
|
|
} else {
|
|
bp->b_qindex = QUEUE_LRU;
|
|
TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
|
|
}
|
|
|
|
runningbufspace -= bp->b_bufsize;
|
|
|
|
if ((bp->b_flags & B_LOCKED) == 0 &&
|
|
((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
|
|
) {
|
|
bufcountwakeup();
|
|
}
|
|
|
|
/*
|
|
* Something we can maybe wakeup
|
|
*/
|
|
if (bp->b_bufsize)
|
|
bufspacewakeup();
|
|
|
|
/* anyone need this block? */
|
|
if (bp->b_flags & B_WANTED) {
|
|
bp->b_flags &= ~(B_WANTED | B_AGE);
|
|
wakeup(bp);
|
|
}
|
|
|
|
/* unlock */
|
|
bp->b_flags &= ~(B_ORDERED | B_WANTED | B_BUSY |
|
|
B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
|
|
splx(s);
|
|
}
|
|
|
|
static void
|
|
vfs_vmio_release(bp)
|
|
struct buf *bp;
|
|
{
|
|
int i, s;
|
|
vm_page_t m;
|
|
|
|
s = splvm();
|
|
for (i = 0; i < bp->b_npages; i++) {
|
|
m = bp->b_pages[i];
|
|
bp->b_pages[i] = NULL;
|
|
/*
|
|
* In order to keep page LRU ordering consistent, put
|
|
* everything on the inactive queue.
|
|
*/
|
|
vm_page_unwire(m, 0);
|
|
/*
|
|
* We don't mess with busy pages, it is
|
|
* the responsibility of the process that
|
|
* busied the pages to deal with them.
|
|
*/
|
|
if ((m->flags & PG_BUSY) || (m->busy != 0))
|
|
continue;
|
|
|
|
if (m->wire_count == 0) {
|
|
vm_page_flag_clear(m, PG_ZERO);
|
|
/*
|
|
* Might as well free the page if we can and it has
|
|
* no valid data.
|
|
*/
|
|
if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) {
|
|
vm_page_busy(m);
|
|
vm_page_protect(m, VM_PROT_NONE);
|
|
vm_page_free(m);
|
|
}
|
|
}
|
|
}
|
|
bufspace -= bp->b_bufsize;
|
|
vmiospace -= bp->b_bufsize;
|
|
runningbufspace -= bp->b_bufsize;
|
|
splx(s);
|
|
pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
|
|
if (bp->b_bufsize)
|
|
bufspacewakeup();
|
|
bp->b_npages = 0;
|
|
bp->b_bufsize = 0;
|
|
bp->b_flags &= ~B_VMIO;
|
|
if (bp->b_vp)
|
|
brelvp(bp);
|
|
}
|
|
|
|
/*
|
|
* Check to see if a block is currently memory resident.
|
|
*/
|
|
struct buf *
|
|
gbincore(struct vnode * vp, daddr_t blkno)
|
|
{
|
|
struct buf *bp;
|
|
struct bufhashhdr *bh;
|
|
|
|
bh = BUFHASH(vp, blkno);
|
|
bp = bh->lh_first;
|
|
|
|
/* Search hash chain */
|
|
while (bp != NULL) {
|
|
/* hit */
|
|
if (bp->b_vp == vp && bp->b_lblkno == blkno &&
|
|
(bp->b_flags & B_INVAL) == 0) {
|
|
break;
|
|
}
|
|
bp = bp->b_hash.le_next;
|
|
}
|
|
return (bp);
|
|
}
|
|
|
|
/*
|
|
* this routine implements clustered async writes for
|
|
* clearing out B_DELWRI buffers... This is much better
|
|
* than the old way of writing only one buffer at a time.
|
|
*/
|
|
int
|
|
vfs_bio_awrite(struct buf * bp)
|
|
{
|
|
int i;
|
|
daddr_t lblkno = bp->b_lblkno;
|
|
struct vnode *vp = bp->b_vp;
|
|
int s;
|
|
int ncl;
|
|
struct buf *bpa;
|
|
int nwritten;
|
|
int size;
|
|
int maxcl;
|
|
|
|
s = splbio();
|
|
/*
|
|
* right now we support clustered writing only to regular files, and
|
|
* then only if our I/O system is not saturated.
|
|
*/
|
|
if ((vp->v_type == VREG) &&
|
|
(vp->v_mount != 0) && /* Only on nodes that have the size info */
|
|
(bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
|
|
|
|
size = vp->v_mount->mnt_stat.f_iosize;
|
|
maxcl = MAXPHYS / size;
|
|
|
|
for (i = 1; i < maxcl; i++) {
|
|
if ((bpa = gbincore(vp, lblkno + i)) &&
|
|
((bpa->b_flags & (B_BUSY | B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
|
|
(B_DELWRI | B_CLUSTEROK)) &&
|
|
(bpa->b_bufsize == size)) {
|
|
if ((bpa->b_blkno == bpa->b_lblkno) ||
|
|
(bpa->b_blkno != bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
|
|
break;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
ncl = i;
|
|
/*
|
|
* this is a possible cluster write
|
|
*/
|
|
if (ncl != 1) {
|
|
nwritten = cluster_wbuild(vp, size, lblkno, ncl);
|
|
splx(s);
|
|
return nwritten;
|
|
}
|
|
}
|
|
|
|
bremfree(bp);
|
|
bp->b_flags |= B_BUSY | B_ASYNC;
|
|
|
|
splx(s);
|
|
/*
|
|
* default (old) behavior, writing out only one block
|
|
*/
|
|
nwritten = bp->b_bufsize;
|
|
(void) VOP_BWRITE(bp);
|
|
|
|
return nwritten;
|
|
}
|
|
|
|
/*
|
|
* getnewbuf:
|
|
*
|
|
* Find and initialize a new buffer header, freeing up existing buffers
|
|
* in the bufqueues as necessary.
|
|
*
|
|
* We block if:
|
|
* We have insufficient buffer headers
|
|
* We have insufficient buffer space
|
|
* buffer_map is too fragmented ( space reservation fails )
|
|
*
|
|
* We do *not* attempt to flush dirty buffers more then one level deep.
|
|
* I.e., if P_FLSINPROG is set we do not flush dirty buffers at all.
|
|
*
|
|
* If P_FLSINPROG is set, we are allowed to dip into our emergency
|
|
* reserve.
|
|
*/
|
|
static struct buf *
|
|
getnewbuf(struct vnode *vp, daddr_t blkno,
|
|
int slpflag, int slptimeo, int size, int maxsize)
|
|
{
|
|
struct buf *bp;
|
|
struct buf *nbp;
|
|
int outofspace;
|
|
int nqindex;
|
|
int defrag = 0;
|
|
int countawrites = 0;
|
|
|
|
restart:
|
|
/*
|
|
* Calculate whether we are out of buffer space. This state is
|
|
* recalculated on every restart. If we are out of space, we
|
|
* have to turn off defragmentation. The outofspace code will
|
|
* defragment too, but the looping conditionals will be messed up
|
|
* if both outofspace and defrag are on.
|
|
*/
|
|
|
|
outofspace = 0;
|
|
if (bufspace >= hibufspace) {
|
|
if ((curproc->p_flag & P_FLSINPROG) == 0 ||
|
|
bufspace >= maxbufspace
|
|
) {
|
|
outofspace = 1;
|
|
defrag = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* defrag state is semi-persistant. 1 means we are flagged for
|
|
* defragging. -1 means we actually defragged something.
|
|
*/
|
|
/* nop */
|
|
|
|
/*
|
|
* Setup for scan. If we do not have enough free buffers,
|
|
* we setup a degenerate case that falls through the while.
|
|
*
|
|
* If we are in the middle of a flush, we can dip into the
|
|
* emergency reserve.
|
|
*
|
|
* If we are out of space, we skip trying to scan QUEUE_EMPTY
|
|
* because those buffers are, well, empty.
|
|
*/
|
|
|
|
if ((curproc->p_flag & P_FLSINPROG) == 0 &&
|
|
numfreebuffers < lofreebuffers
|
|
) {
|
|
nqindex = QUEUE_LRU;
|
|
nbp = NULL;
|
|
} else {
|
|
nqindex = QUEUE_EMPTY;
|
|
if (outofspace ||
|
|
(nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY])) == NULL
|
|
) {
|
|
nqindex = QUEUE_AGE;
|
|
nbp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]);
|
|
if (nbp == NULL) {
|
|
nqindex = QUEUE_LRU;
|
|
nbp = TAILQ_FIRST(&bufqueues[QUEUE_LRU]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Run scan, possibly freeing data and/or kva mappings on the fly
|
|
* depending.
|
|
*/
|
|
|
|
while ((bp = nbp) != NULL) {
|
|
int qindex = nqindex;
|
|
/*
|
|
* Calculate next bp ( we can only use it if we do not block
|
|
* or do other fancy things ).
|
|
*/
|
|
if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
|
|
switch(qindex) {
|
|
case QUEUE_EMPTY:
|
|
nqindex = QUEUE_AGE;
|
|
if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_AGE])))
|
|
break;
|
|
/* fall through */
|
|
case QUEUE_AGE:
|
|
nqindex = QUEUE_LRU;
|
|
if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_LRU])))
|
|
break;
|
|
/* fall through */
|
|
case QUEUE_LRU:
|
|
/*
|
|
* nbp is NULL.
|
|
*/
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Sanity Checks
|
|
*/
|
|
KASSERT(!(bp->b_flags & B_BUSY), ("getnewbuf: busy buffer %p on free list", bp));
|
|
KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
|
|
|
|
/*
|
|
* Here we try to move NON VMIO buffers to the end of the
|
|
* LRU queue in order to make VMIO buffers more readily
|
|
* freeable. We also try to move buffers with a positive
|
|
* usecount to the end.
|
|
*
|
|
* Note that by moving the bp to the end, we setup a following
|
|
* loop. Since we continue to decrement b_usecount this
|
|
* is ok and, in fact, desireable.
|
|
*
|
|
* If we are at the end of the list, we move ourself to the
|
|
* same place and need to fixup nbp and nqindex to handle
|
|
* the following case.
|
|
*/
|
|
|
|
if ((qindex == QUEUE_LRU) && bp->b_usecount > 0) {
|
|
if ((bp->b_flags & B_VMIO) == 0 ||
|
|
(vmiospace < maxvmiobufspace)
|
|
) {
|
|
--bp->b_usecount;
|
|
TAILQ_REMOVE(&bufqueues[QUEUE_LRU], bp, b_freelist);
|
|
TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
|
|
if (nbp == NULL) {
|
|
nqindex = qindex;
|
|
nbp = bp;
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we come across a delayed write and numdirtybuffers should
|
|
* be flushed, try to write it out. Only if P_FLSINPROG is
|
|
* not set. We can't afford to recursively stack more then
|
|
* one deep due to the possibility of having deep VFS call
|
|
* stacks.
|
|
*
|
|
* Limit the number of dirty buffers we are willing to try
|
|
* to recover since it really isn't our job here.
|
|
*/
|
|
if ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) {
|
|
if ((curproc->p_flag & P_FLSINPROG) ||
|
|
numdirtybuffers < hidirtybuffers ||
|
|
countawrites > 16
|
|
) {
|
|
continue;
|
|
}
|
|
curproc->p_flag |= P_FLSINPROG;
|
|
vfs_bio_awrite(bp);
|
|
curproc->p_flag &= ~P_FLSINPROG;
|
|
++countawrites;
|
|
goto restart;
|
|
}
|
|
|
|
if (defrag > 0 && bp->b_kvasize == 0)
|
|
continue;
|
|
if (outofspace > 0 && bp->b_bufsize == 0)
|
|
continue;
|
|
|
|
/*
|
|
* Start freeing the bp. This is somewhat involved. nbp
|
|
* remains valid only for QUEUE_EMPTY bp's.
|
|
*/
|
|
|
|
bremfree(bp);
|
|
bp->b_flags |= B_BUSY;
|
|
|
|
if (qindex == QUEUE_LRU || qindex == QUEUE_AGE) {
|
|
if (bp->b_flags & B_VMIO) {
|
|
bp->b_flags &= ~B_ASYNC;
|
|
vfs_vmio_release(bp);
|
|
}
|
|
if (bp->b_vp)
|
|
brelvp(bp);
|
|
}
|
|
|
|
if (bp->b_flags & B_WANTED) {
|
|
bp->b_flags &= ~B_WANTED;
|
|
wakeup(bp);
|
|
}
|
|
|
|
/*
|
|
* NOTE: nbp is now entirely invalid. We can only restart
|
|
* the scan from this point on.
|
|
*
|
|
* Get the rest of the buffer freed up. b_kva* is still
|
|
* valid after this operation.
|
|
*/
|
|
|
|
if (bp->b_rcred != NOCRED) {
|
|
crfree(bp->b_rcred);
|
|
bp->b_rcred = NOCRED;
|
|
}
|
|
if (bp->b_wcred != NOCRED) {
|
|
crfree(bp->b_wcred);
|
|
bp->b_wcred = NOCRED;
|
|
}
|
|
if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
|
|
(*bioops.io_deallocate)(bp);
|
|
|
|
LIST_REMOVE(bp, b_hash);
|
|
LIST_INSERT_HEAD(&invalhash, bp, b_hash);
|
|
|
|
if (bp->b_bufsize)
|
|
allocbuf(bp, 0);
|
|
|
|
bp->b_flags = B_BUSY;
|
|
bp->b_dev = NODEV;
|
|
bp->b_vp = NULL;
|
|
bp->b_blkno = bp->b_lblkno = 0;
|
|
bp->b_offset = NOOFFSET;
|
|
bp->b_iodone = 0;
|
|
bp->b_error = 0;
|
|
bp->b_resid = 0;
|
|
bp->b_bcount = 0;
|
|
bp->b_npages = 0;
|
|
bp->b_dirtyoff = bp->b_dirtyend = 0;
|
|
bp->b_validoff = bp->b_validend = 0;
|
|
bp->b_usecount = 5;
|
|
|
|
LIST_INIT(&bp->b_dep);
|
|
|
|
/*
|
|
* Ok, now that we have a free buffer, if we are defragging
|
|
* we have to recover the kvaspace.
|
|
*/
|
|
|
|
if (defrag > 0) {
|
|
defrag = -1;
|
|
bp->b_flags |= B_INVAL;
|
|
bfreekva(bp);
|
|
brelse(bp);
|
|
goto restart;
|
|
}
|
|
|
|
if (outofspace > 0) {
|
|
outofspace = -1;
|
|
bp->b_flags |= B_INVAL;
|
|
bfreekva(bp);
|
|
brelse(bp);
|
|
goto restart;
|
|
}
|
|
|
|
/*
|
|
* We are done
|
|
*/
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If we exhausted our list, sleep as appropriate.
|
|
*/
|
|
|
|
if (bp == NULL) {
|
|
int flags;
|
|
|
|
dosleep:
|
|
if (defrag > 0)
|
|
flags = VFS_BIO_NEED_KVASPACE;
|
|
else if (outofspace > 0)
|
|
flags = VFS_BIO_NEED_BUFSPACE;
|
|
else
|
|
flags = VFS_BIO_NEED_ANY;
|
|
|
|
if (rushjob < syncdelay / 2)
|
|
++rushjob;
|
|
needsbuffer |= flags;
|
|
while (needsbuffer & flags) {
|
|
tsleep(
|
|
&needsbuffer,
|
|
(PRIBIO + 4) | slpflag,
|
|
"newbuf",
|
|
slptimeo
|
|
);
|
|
}
|
|
} else {
|
|
/*
|
|
* We finally have a valid bp. We aren't quite out of the
|
|
* woods, we still have to reserve kva space.
|
|
*/
|
|
vm_offset_t addr = 0;
|
|
|
|
maxsize = (maxsize + PAGE_MASK) & ~PAGE_MASK;
|
|
|
|
if (maxsize != bp->b_kvasize) {
|
|
bfreekva(bp);
|
|
|
|
if (vm_map_findspace(buffer_map,
|
|
vm_map_min(buffer_map), maxsize, &addr)
|
|
) {
|
|
/*
|
|
* Uh oh. Buffer map is to fragmented. Try
|
|
* to defragment.
|
|
*/
|
|
if (defrag <= 0) {
|
|
defrag = 1;
|
|
bp->b_flags |= B_INVAL;
|
|
brelse(bp);
|
|
goto restart;
|
|
}
|
|
/*
|
|
* Uh oh. We couldn't seem to defragment
|
|
*/
|
|
bp = NULL;
|
|
goto dosleep;
|
|
}
|
|
}
|
|
if (addr) {
|
|
vm_map_insert(buffer_map, NULL, 0,
|
|
addr, addr + maxsize,
|
|
VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
|
|
|
|
bp->b_kvabase = (caddr_t) addr;
|
|
bp->b_kvasize = maxsize;
|
|
}
|
|
bp->b_data = bp->b_kvabase;
|
|
}
|
|
|
|
return (bp);
|
|
}
|
|
|
|
/*
|
|
* waitfreebuffers:
|
|
*
|
|
* Wait for sufficient free buffers. This routine is not called if
|
|
* curproc is the update process so we do not have to do anything
|
|
* fancy.
|
|
*/
|
|
|
|
static void
|
|
waitfreebuffers(int slpflag, int slptimeo)
|
|
{
|
|
while (numfreebuffers < hifreebuffers) {
|
|
flushdirtybuffers(slpflag, slptimeo);
|
|
if (numfreebuffers < hifreebuffers)
|
|
break;
|
|
needsbuffer |= VFS_BIO_NEED_FREE;
|
|
if (tsleep(&needsbuffer, (PRIBIO + 4)|slpflag, "biofre", slptimeo))
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* flushdirtybuffers:
|
|
*
|
|
* This routine is called when we get too many dirty buffers.
|
|
*
|
|
* We have to protect ourselves from recursion, but we also do not want
|
|
* other process's flushdirtybuffers() to interfere with the syncer if
|
|
* it decides to flushdirtybuffers().
|
|
*
|
|
* In order to maximize operations, we allow any process to flush
|
|
* dirty buffers and use P_FLSINPROG to prevent recursion.
|
|
*/
|
|
|
|
static void
|
|
flushdirtybuffers(int slpflag, int slptimeo)
|
|
{
|
|
int s;
|
|
|
|
s = splbio();
|
|
|
|
if (curproc->p_flag & P_FLSINPROG) {
|
|
splx(s);
|
|
return;
|
|
}
|
|
curproc->p_flag |= P_FLSINPROG;
|
|
|
|
while (numdirtybuffers > lodirtybuffers) {
|
|
if (flushbufqueues() == 0)
|
|
break;
|
|
}
|
|
|
|
curproc->p_flag &= ~P_FLSINPROG;
|
|
|
|
splx(s);
|
|
}
|
|
|
|
static int
|
|
flushbufqueues(void)
|
|
{
|
|
struct buf *bp;
|
|
int qindex;
|
|
int r = 0;
|
|
|
|
qindex = QUEUE_AGE;
|
|
bp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]);
|
|
|
|
for (;;) {
|
|
if (bp == NULL) {
|
|
if (qindex == QUEUE_LRU)
|
|
break;
|
|
qindex = QUEUE_LRU;
|
|
if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_LRU])) == NULL)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* XXX NFS does weird things with B_INVAL bps if we bwrite
|
|
* them ( vfs_bio_awrite/bawrite/bdwrite/etc ) Why?
|
|
*
|
|
*/
|
|
if ((bp->b_flags & B_DELWRI) != 0) {
|
|
if (bp->b_flags & B_INVAL) {
|
|
bremfree(bp);
|
|
bp->b_flags |= B_BUSY;
|
|
brelse(bp);
|
|
} else {
|
|
vfs_bio_awrite(bp);
|
|
}
|
|
++r;
|
|
break;
|
|
}
|
|
bp = TAILQ_NEXT(bp, b_freelist);
|
|
}
|
|
return(r);
|
|
}
|
|
|
|
/*
|
|
* Check to see if a block is currently memory resident.
|
|
*/
|
|
struct buf *
|
|
incore(struct vnode * vp, daddr_t blkno)
|
|
{
|
|
struct buf *bp;
|
|
|
|
int s = splbio();
|
|
bp = gbincore(vp, blkno);
|
|
splx(s);
|
|
return (bp);
|
|
}
|
|
|
|
/*
|
|
* Returns true if no I/O is needed to access the
|
|
* associated VM object. This is like incore except
|
|
* it also hunts around in the VM system for the data.
|
|
*/
|
|
|
|
int
|
|
inmem(struct vnode * vp, daddr_t blkno)
|
|
{
|
|
vm_object_t obj;
|
|
vm_offset_t toff, tinc, size;
|
|
vm_page_t m;
|
|
vm_ooffset_t off;
|
|
|
|
if (incore(vp, blkno))
|
|
return 1;
|
|
if (vp->v_mount == NULL)
|
|
return 0;
|
|
if ((vp->v_object == NULL) || (vp->v_flag & VOBJBUF) == 0)
|
|
return 0;
|
|
|
|
obj = vp->v_object;
|
|
size = PAGE_SIZE;
|
|
if (size > vp->v_mount->mnt_stat.f_iosize)
|
|
size = vp->v_mount->mnt_stat.f_iosize;
|
|
off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
|
|
|
|
for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
|
|
m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
|
|
if (!m)
|
|
return 0;
|
|
tinc = size;
|
|
if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
|
|
tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
|
|
if (vm_page_is_valid(m,
|
|
(vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* now we set the dirty range for the buffer --
|
|
* for NFS -- if the file is mapped and pages have
|
|
* been written to, let it know. We want the
|
|
* entire range of the buffer to be marked dirty if
|
|
* any of the pages have been written to for consistancy
|
|
* with the b_validoff, b_validend set in the nfs write
|
|
* code, and used by the nfs read code.
|
|
*/
|
|
static void
|
|
vfs_setdirty(struct buf *bp)
|
|
{
|
|
int i;
|
|
vm_object_t object;
|
|
vm_offset_t boffset;
|
|
|
|
/*
|
|
* We qualify the scan for modified pages on whether the
|
|
* object has been flushed yet. The OBJ_WRITEABLE flag
|
|
* is not cleared simply by protecting pages off.
|
|
*/
|
|
|
|
if ((bp->b_flags & B_VMIO) == 0)
|
|
return;
|
|
|
|
object = bp->b_pages[0]->object;
|
|
|
|
if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
|
|
printf("Warning: object %p writeable but not mightbedirty\n", object);
|
|
if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
|
|
printf("Warning: object %p mightbedirty but not writeable\n", object);
|
|
|
|
if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
|
|
/*
|
|
* test the pages to see if they have been modified directly
|
|
* by users through the VM system.
|
|
*/
|
|
for (i = 0; i < bp->b_npages; i++) {
|
|
vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
|
|
vm_page_test_dirty(bp->b_pages[i]);
|
|
}
|
|
|
|
/*
|
|
* scan forwards for the first page modified
|
|
*/
|
|
for (i = 0; i < bp->b_npages; i++) {
|
|
if (bp->b_pages[i]->dirty) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
|
|
if (boffset < bp->b_dirtyoff) {
|
|
bp->b_dirtyoff = max(boffset, 0);
|
|
}
|
|
|
|
/*
|
|
* scan backwards for the last page modified
|
|
*/
|
|
for (i = bp->b_npages - 1; i >= 0; --i) {
|
|
if (bp->b_pages[i]->dirty) {
|
|
break;
|
|
}
|
|
}
|
|
boffset = (i + 1);
|
|
#if 0
|
|
offset = boffset + bp->b_pages[0]->pindex;
|
|
if (offset >= object->size)
|
|
boffset = object->size - bp->b_pages[0]->pindex;
|
|
#endif
|
|
boffset = (boffset << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
|
|
if (bp->b_dirtyend < boffset)
|
|
bp->b_dirtyend = min(boffset, bp->b_bufsize);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Get a block given a specified block and offset into a file/device.
|
|
*/
|
|
struct buf *
|
|
getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
|
|
{
|
|
struct buf *bp;
|
|
int i, s;
|
|
struct bufhashhdr *bh;
|
|
|
|
#if !defined(MAX_PERF)
|
|
if (size > MAXBSIZE)
|
|
panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
|
|
#endif
|
|
|
|
s = splbio();
|
|
loop:
|
|
/*
|
|
* Block if we are low on buffers. The syncer is allowed more
|
|
* buffers in order to avoid a deadlock.
|
|
*/
|
|
if (curproc == updateproc && numfreebuffers == 0) {
|
|
needsbuffer |= VFS_BIO_NEED_ANY;
|
|
tsleep(&needsbuffer, (PRIBIO + 4) | slpflag, "newbuf",
|
|
slptimeo);
|
|
} else if (curproc != updateproc && numfreebuffers < lofreebuffers) {
|
|
waitfreebuffers(slpflag, slptimeo);
|
|
}
|
|
|
|
if ((bp = gbincore(vp, blkno))) {
|
|
if (bp->b_flags & B_BUSY) {
|
|
bp->b_flags |= B_WANTED;
|
|
if (bp->b_usecount < BUF_MAXUSE)
|
|
++bp->b_usecount;
|
|
|
|
if (!tsleep(bp,
|
|
(PRIBIO + 4) | slpflag, "getblk", slptimeo)) {
|
|
goto loop;
|
|
}
|
|
|
|
splx(s);
|
|
return (struct buf *) NULL;
|
|
}
|
|
bp->b_flags |= B_BUSY | B_CACHE;
|
|
bremfree(bp);
|
|
|
|
/*
|
|
* check for size inconsistancies for non-VMIO case.
|
|
*/
|
|
|
|
if (bp->b_bcount != size) {
|
|
if ((bp->b_flags & B_VMIO) == 0 ||
|
|
(size > bp->b_kvasize)
|
|
) {
|
|
if (bp->b_flags & B_DELWRI) {
|
|
bp->b_flags |= B_NOCACHE;
|
|
VOP_BWRITE(bp);
|
|
} else {
|
|
if ((bp->b_flags & B_VMIO) &&
|
|
(LIST_FIRST(&bp->b_dep) == NULL)) {
|
|
bp->b_flags |= B_RELBUF;
|
|
brelse(bp);
|
|
} else {
|
|
bp->b_flags |= B_NOCACHE;
|
|
VOP_BWRITE(bp);
|
|
}
|
|
}
|
|
goto loop;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the size is inconsistant in the VMIO case, we can resize
|
|
* the buffer. This might lead to B_CACHE getting cleared.
|
|
*/
|
|
|
|
if (bp->b_bcount != size)
|
|
allocbuf(bp, size);
|
|
|
|
KASSERT(bp->b_offset != NOOFFSET,
|
|
("getblk: no buffer offset"));
|
|
|
|
/*
|
|
* Check that the constituted buffer really deserves for the
|
|
* B_CACHE bit to be set. B_VMIO type buffers might not
|
|
* contain fully valid pages. Normal (old-style) buffers
|
|
* should be fully valid. This might also lead to B_CACHE
|
|
* getting clear.
|
|
*
|
|
* If B_CACHE is already clear, don't bother checking to see
|
|
* if we have to clear it again.
|
|
*
|
|
* XXX this code should not be necessary unless the B_CACHE
|
|
* handling is broken elsewhere in the kernel. We need to
|
|
* check the cases and then turn the clearing part of this
|
|
* code into a panic.
|
|
*/
|
|
if (
|
|
(bp->b_flags & (B_VMIO|B_CACHE)) == (B_VMIO|B_CACHE) &&
|
|
(bp->b_vp->v_tag != VT_NFS || bp->b_validend <= 0)
|
|
) {
|
|
int checksize = bp->b_bufsize;
|
|
int poffset = bp->b_offset & PAGE_MASK;
|
|
int resid;
|
|
for (i = 0; i < bp->b_npages; i++) {
|
|
resid = (checksize > (PAGE_SIZE - poffset)) ?
|
|
(PAGE_SIZE - poffset) : checksize;
|
|
if (!vm_page_is_valid(bp->b_pages[i], poffset, resid)) {
|
|
bp->b_flags &= ~(B_CACHE | B_DONE);
|
|
break;
|
|
}
|
|
checksize -= resid;
|
|
poffset = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If B_DELWRI is set and B_CACHE got cleared ( or was
|
|
* already clear ), we have to commit the write and
|
|
* retry. The NFS code absolutely depends on this,
|
|
* and so might the FFS code. In anycase, it formalizes
|
|
* the B_CACHE rules. See sys/buf.h.
|
|
*/
|
|
|
|
if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
|
|
VOP_BWRITE(bp);
|
|
goto loop;
|
|
}
|
|
|
|
if (bp->b_usecount < BUF_MAXUSE)
|
|
++bp->b_usecount;
|
|
splx(s);
|
|
return (bp);
|
|
} else {
|
|
int bsize, maxsize, vmio;
|
|
off_t offset;
|
|
|
|
if (vp->v_type == VBLK)
|
|
bsize = DEV_BSIZE;
|
|
else if (vp->v_mountedhere)
|
|
bsize = vp->v_mountedhere->mnt_stat.f_iosize;
|
|
else if (vp->v_mount)
|
|
bsize = vp->v_mount->mnt_stat.f_iosize;
|
|
else
|
|
bsize = size;
|
|
|
|
offset = (off_t)blkno * bsize;
|
|
vmio = (vp->v_object != 0) && (vp->v_flag & VOBJBUF);
|
|
maxsize = vmio ? size + (offset & PAGE_MASK) : size;
|
|
maxsize = imax(maxsize, bsize);
|
|
|
|
if ((bp = getnewbuf(vp, blkno,
|
|
slpflag, slptimeo, size, maxsize)) == 0) {
|
|
if (slpflag || slptimeo) {
|
|
splx(s);
|
|
return NULL;
|
|
}
|
|
goto loop;
|
|
}
|
|
|
|
/*
|
|
* This code is used to make sure that a buffer is not
|
|
* created while the getnewbuf routine is blocked.
|
|
* This can be a problem whether the vnode is locked or not.
|
|
*/
|
|
if (gbincore(vp, blkno)) {
|
|
bp->b_flags |= B_INVAL;
|
|
brelse(bp);
|
|
goto loop;
|
|
}
|
|
|
|
/*
|
|
* Insert the buffer into the hash, so that it can
|
|
* be found by incore.
|
|
*/
|
|
bp->b_blkno = bp->b_lblkno = blkno;
|
|
bp->b_offset = offset;
|
|
|
|
bgetvp(vp, bp);
|
|
LIST_REMOVE(bp, b_hash);
|
|
bh = BUFHASH(vp, blkno);
|
|
LIST_INSERT_HEAD(bh, bp, b_hash);
|
|
|
|
if (vmio) {
|
|
bp->b_flags |= (B_VMIO | B_CACHE);
|
|
#if defined(VFS_BIO_DEBUG)
|
|
if (vp->v_type != VREG && vp->v_type != VBLK)
|
|
printf("getblk: vmioing file type %d???\n", vp->v_type);
|
|
#endif
|
|
} else {
|
|
bp->b_flags &= ~B_VMIO;
|
|
}
|
|
|
|
allocbuf(bp, size);
|
|
|
|
splx(s);
|
|
return (bp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Get an empty, disassociated buffer of given size.
|
|
*/
|
|
struct buf *
|
|
geteblk(int size)
|
|
{
|
|
struct buf *bp;
|
|
int s;
|
|
|
|
s = splbio();
|
|
while ((bp = getnewbuf(0, (daddr_t) 0, 0, 0, size, MAXBSIZE)) == 0);
|
|
splx(s);
|
|
allocbuf(bp, size);
|
|
bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
|
|
return (bp);
|
|
}
|
|
|
|
|
|
/*
|
|
* This code constitutes the buffer memory from either anonymous system
|
|
* memory (in the case of non-VMIO operations) or from an associated
|
|
* VM object (in the case of VMIO operations). This code is able to
|
|
* resize a buffer up or down.
|
|
*
|
|
* Note that this code is tricky, and has many complications to resolve
|
|
* deadlock or inconsistant data situations. Tread lightly!!!
|
|
* There are B_CACHE and B_DELWRI interactions that must be dealt with by
|
|
* the caller. Calling this code willy nilly can result in the loss of data.
|
|
*/
|
|
|
|
int
|
|
allocbuf(struct buf *bp, int size)
|
|
{
|
|
int newbsize, mbsize;
|
|
int i;
|
|
|
|
#if !defined(MAX_PERF)
|
|
if (!(bp->b_flags & B_BUSY))
|
|
panic("allocbuf: buffer not busy");
|
|
|
|
if (bp->b_kvasize < size)
|
|
panic("allocbuf: buffer too small");
|
|
#endif
|
|
|
|
if ((bp->b_flags & B_VMIO) == 0) {
|
|
caddr_t origbuf;
|
|
int origbufsize;
|
|
/*
|
|
* Just get anonymous memory from the kernel
|
|
*/
|
|
mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
|
|
#if !defined(NO_B_MALLOC)
|
|
if (bp->b_flags & B_MALLOC)
|
|
newbsize = mbsize;
|
|
else
|
|
#endif
|
|
newbsize = round_page(size);
|
|
|
|
if (newbsize < bp->b_bufsize) {
|
|
#if !defined(NO_B_MALLOC)
|
|
/*
|
|
* malloced buffers are not shrunk
|
|
*/
|
|
if (bp->b_flags & B_MALLOC) {
|
|
if (newbsize) {
|
|
bp->b_bcount = size;
|
|
} else {
|
|
free(bp->b_data, M_BIOBUF);
|
|
bufspace -= bp->b_bufsize;
|
|
bufmallocspace -= bp->b_bufsize;
|
|
runningbufspace -= bp->b_bufsize;
|
|
if (bp->b_bufsize)
|
|
bufspacewakeup();
|
|
bp->b_data = bp->b_kvabase;
|
|
bp->b_bufsize = 0;
|
|
bp->b_bcount = 0;
|
|
bp->b_flags &= ~B_MALLOC;
|
|
}
|
|
return 1;
|
|
}
|
|
#endif
|
|
vm_hold_free_pages(
|
|
bp,
|
|
(vm_offset_t) bp->b_data + newbsize,
|
|
(vm_offset_t) bp->b_data + bp->b_bufsize);
|
|
} else if (newbsize > bp->b_bufsize) {
|
|
#if !defined(NO_B_MALLOC)
|
|
/*
|
|
* We only use malloced memory on the first allocation.
|
|
* and revert to page-allocated memory when the buffer grows.
|
|
*/
|
|
if ( (bufmallocspace < maxbufmallocspace) &&
|
|
(bp->b_bufsize == 0) &&
|
|
(mbsize <= PAGE_SIZE/2)) {
|
|
|
|
bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
|
|
bp->b_bufsize = mbsize;
|
|
bp->b_bcount = size;
|
|
bp->b_flags |= B_MALLOC;
|
|
bufspace += mbsize;
|
|
bufmallocspace += mbsize;
|
|
runningbufspace += bp->b_bufsize;
|
|
return 1;
|
|
}
|
|
#endif
|
|
origbuf = NULL;
|
|
origbufsize = 0;
|
|
#if !defined(NO_B_MALLOC)
|
|
/*
|
|
* If the buffer is growing on its other-than-first allocation,
|
|
* then we revert to the page-allocation scheme.
|
|
*/
|
|
if (bp->b_flags & B_MALLOC) {
|
|
origbuf = bp->b_data;
|
|
origbufsize = bp->b_bufsize;
|
|
bp->b_data = bp->b_kvabase;
|
|
bufspace -= bp->b_bufsize;
|
|
bufmallocspace -= bp->b_bufsize;
|
|
runningbufspace -= bp->b_bufsize;
|
|
if (bp->b_bufsize)
|
|
bufspacewakeup();
|
|
bp->b_bufsize = 0;
|
|
bp->b_flags &= ~B_MALLOC;
|
|
newbsize = round_page(newbsize);
|
|
}
|
|
#endif
|
|
vm_hold_load_pages(
|
|
bp,
|
|
(vm_offset_t) bp->b_data + bp->b_bufsize,
|
|
(vm_offset_t) bp->b_data + newbsize);
|
|
#if !defined(NO_B_MALLOC)
|
|
if (origbuf) {
|
|
bcopy(origbuf, bp->b_data, origbufsize);
|
|
free(origbuf, M_BIOBUF);
|
|
}
|
|
#endif
|
|
}
|
|
} else {
|
|
vm_page_t m;
|
|
int desiredpages;
|
|
|
|
newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
|
|
desiredpages = (size == 0) ? 0 :
|
|
num_pages((bp->b_offset & PAGE_MASK) + newbsize);
|
|
|
|
#if !defined(NO_B_MALLOC)
|
|
if (bp->b_flags & B_MALLOC)
|
|
panic("allocbuf: VMIO buffer can't be malloced");
|
|
#endif
|
|
|
|
if (newbsize < bp->b_bufsize) {
|
|
if (desiredpages < bp->b_npages) {
|
|
for (i = desiredpages; i < bp->b_npages; i++) {
|
|
/*
|
|
* the page is not freed here -- it
|
|
* is the responsibility of vnode_pager_setsize
|
|
*/
|
|
m = bp->b_pages[i];
|
|
KASSERT(m != bogus_page,
|
|
("allocbuf: bogus page found"));
|
|
while (vm_page_sleep_busy(m, TRUE, "biodep"))
|
|
;
|
|
|
|
bp->b_pages[i] = NULL;
|
|
vm_page_unwire(m, 0);
|
|
}
|
|
pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
|
|
(desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
|
|
bp->b_npages = desiredpages;
|
|
}
|
|
} else if (newbsize > bp->b_bufsize) {
|
|
vm_object_t obj;
|
|
vm_offset_t tinc, toff;
|
|
vm_ooffset_t off;
|
|
vm_pindex_t objoff;
|
|
int pageindex, curbpnpages;
|
|
struct vnode *vp;
|
|
int bsize;
|
|
int orig_validoff = bp->b_validoff;
|
|
int orig_validend = bp->b_validend;
|
|
|
|
vp = bp->b_vp;
|
|
|
|
if (vp->v_type == VBLK)
|
|
bsize = DEV_BSIZE;
|
|
else
|
|
bsize = vp->v_mount->mnt_stat.f_iosize;
|
|
|
|
if (bp->b_npages < desiredpages) {
|
|
obj = vp->v_object;
|
|
tinc = PAGE_SIZE;
|
|
|
|
off = bp->b_offset;
|
|
KASSERT(bp->b_offset != NOOFFSET,
|
|
("allocbuf: no buffer offset"));
|
|
curbpnpages = bp->b_npages;
|
|
doretry:
|
|
bp->b_validoff = orig_validoff;
|
|
bp->b_validend = orig_validend;
|
|
bp->b_flags |= B_CACHE;
|
|
for (toff = 0; toff < newbsize; toff += tinc) {
|
|
objoff = OFF_TO_IDX(off + toff);
|
|
pageindex = objoff - OFF_TO_IDX(off);
|
|
tinc = PAGE_SIZE - ((off + toff) & PAGE_MASK);
|
|
if (pageindex < curbpnpages) {
|
|
|
|
m = bp->b_pages[pageindex];
|
|
#ifdef VFS_BIO_DIAG
|
|
if (m->pindex != objoff)
|
|
panic("allocbuf: page changed offset?!!!?");
|
|
#endif
|
|
if (tinc > (newbsize - toff))
|
|
tinc = newbsize - toff;
|
|
if (bp->b_flags & B_CACHE)
|
|
vfs_buf_set_valid(bp, off, toff, tinc, m);
|
|
continue;
|
|
}
|
|
m = vm_page_lookup(obj, objoff);
|
|
if (!m) {
|
|
m = vm_page_alloc(obj, objoff, VM_ALLOC_NORMAL);
|
|
if (!m) {
|
|
VM_WAIT;
|
|
vm_pageout_deficit += (desiredpages - curbpnpages);
|
|
goto doretry;
|
|
}
|
|
|
|
vm_page_wire(m);
|
|
vm_page_wakeup(m);
|
|
bp->b_flags &= ~B_CACHE;
|
|
|
|
} else if (vm_page_sleep_busy(m, FALSE, "pgtblk")) {
|
|
/*
|
|
* If we had to sleep, retry.
|
|
*
|
|
* Also note that we only test
|
|
* PG_BUSY here, not m->busy.
|
|
*
|
|
* We cannot sleep on m->busy
|
|
* here because a vm_fault ->
|
|
* getpages -> cluster-read ->
|
|
* ...-> allocbuf sequence
|
|
* will convert PG_BUSY to
|
|
* m->busy so we have to let
|
|
* m->busy through if we do
|
|
* not want to deadlock.
|
|
*/
|
|
goto doretry;
|
|
} else {
|
|
if ((curproc != pageproc) &&
|
|
((m->queue - m->pc) == PQ_CACHE) &&
|
|
((cnt.v_free_count + cnt.v_cache_count) <
|
|
(cnt.v_free_min + cnt.v_cache_min))) {
|
|
pagedaemon_wakeup();
|
|
}
|
|
if (tinc > (newbsize - toff))
|
|
tinc = newbsize - toff;
|
|
if (bp->b_flags & B_CACHE)
|
|
vfs_buf_set_valid(bp, off, toff, tinc, m);
|
|
vm_page_flag_clear(m, PG_ZERO);
|
|
vm_page_wire(m);
|
|
}
|
|
bp->b_pages[pageindex] = m;
|
|
curbpnpages = pageindex + 1;
|
|
}
|
|
if (vp->v_tag == VT_NFS &&
|
|
vp->v_type != VBLK) {
|
|
if (bp->b_dirtyend > 0) {
|
|
bp->b_validoff = min(bp->b_validoff, bp->b_dirtyoff);
|
|
bp->b_validend = max(bp->b_validend, bp->b_dirtyend);
|
|
}
|
|
if (bp->b_validend == 0)
|
|
bp->b_flags &= ~B_CACHE;
|
|
}
|
|
bp->b_data = (caddr_t) trunc_page((vm_offset_t)bp->b_data);
|
|
bp->b_npages = curbpnpages;
|
|
pmap_qenter((vm_offset_t) bp->b_data,
|
|
bp->b_pages, bp->b_npages);
|
|
((vm_offset_t) bp->b_data) |= off & PAGE_MASK;
|
|
}
|
|
}
|
|
}
|
|
if (bp->b_flags & B_VMIO)
|
|
vmiospace += (newbsize - bp->b_bufsize);
|
|
bufspace += (newbsize - bp->b_bufsize);
|
|
runningbufspace += (newbsize - bp->b_bufsize);
|
|
if (newbsize < bp->b_bufsize)
|
|
bufspacewakeup();
|
|
bp->b_bufsize = newbsize;
|
|
bp->b_bcount = size;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Wait for buffer I/O completion, returning error status.
|
|
*/
|
|
int
|
|
biowait(register struct buf * bp)
|
|
{
|
|
int s;
|
|
|
|
s = splbio();
|
|
while ((bp->b_flags & B_DONE) == 0)
|
|
#if defined(NO_SCHEDULE_MODS)
|
|
tsleep(bp, PRIBIO, "biowait", 0);
|
|
#else
|
|
if (bp->b_flags & B_READ)
|
|
tsleep(bp, PRIBIO, "biord", 0);
|
|
else
|
|
tsleep(bp, PRIBIO, "biowr", 0);
|
|
#endif
|
|
splx(s);
|
|
if (bp->b_flags & B_EINTR) {
|
|
bp->b_flags &= ~B_EINTR;
|
|
return (EINTR);
|
|
}
|
|
if (bp->b_flags & B_ERROR) {
|
|
return (bp->b_error ? bp->b_error : EIO);
|
|
} else {
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Finish I/O on a buffer, calling an optional function.
|
|
* This is usually called from interrupt level, so process blocking
|
|
* is not *a good idea*.
|
|
*/
|
|
void
|
|
biodone(register struct buf * bp)
|
|
{
|
|
int s;
|
|
|
|
s = splbio();
|
|
|
|
KASSERT((bp->b_flags & B_BUSY), ("biodone: bp %p not busy", bp));
|
|
KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
|
|
|
|
bp->b_flags |= B_DONE;
|
|
|
|
if (bp->b_flags & B_FREEBUF) {
|
|
brelse(bp);
|
|
splx(s);
|
|
return;
|
|
}
|
|
|
|
if ((bp->b_flags & B_READ) == 0) {
|
|
vwakeup(bp);
|
|
}
|
|
|
|
/* call optional completion function if requested */
|
|
if (bp->b_flags & B_CALL) {
|
|
bp->b_flags &= ~B_CALL;
|
|
(*bp->b_iodone) (bp);
|
|
splx(s);
|
|
return;
|
|
}
|
|
if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
|
|
(*bioops.io_complete)(bp);
|
|
|
|
if (bp->b_flags & B_VMIO) {
|
|
int i, resid;
|
|
vm_ooffset_t foff;
|
|
vm_page_t m;
|
|
vm_object_t obj;
|
|
int iosize;
|
|
struct vnode *vp = bp->b_vp;
|
|
|
|
obj = vp->v_object;
|
|
|
|
#if defined(VFS_BIO_DEBUG)
|
|
if (vp->v_usecount == 0) {
|
|
panic("biodone: zero vnode ref count");
|
|
}
|
|
|
|
if (vp->v_object == NULL) {
|
|
panic("biodone: missing VM object");
|
|
}
|
|
|
|
if ((vp->v_flag & VOBJBUF) == 0) {
|
|
panic("biodone: vnode is not setup for merged cache");
|
|
}
|
|
#endif
|
|
|
|
foff = bp->b_offset;
|
|
KASSERT(bp->b_offset != NOOFFSET,
|
|
("biodone: no buffer offset"));
|
|
|
|
#if !defined(MAX_PERF)
|
|
if (!obj) {
|
|
panic("biodone: no object");
|
|
}
|
|
#endif
|
|
#if defined(VFS_BIO_DEBUG)
|
|
if (obj->paging_in_progress < bp->b_npages) {
|
|
printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
|
|
obj->paging_in_progress, bp->b_npages);
|
|
}
|
|
#endif
|
|
iosize = bp->b_bufsize;
|
|
for (i = 0; i < bp->b_npages; i++) {
|
|
int bogusflag = 0;
|
|
m = bp->b_pages[i];
|
|
if (m == bogus_page) {
|
|
bogusflag = 1;
|
|
m = vm_page_lookup(obj, OFF_TO_IDX(foff));
|
|
if (!m) {
|
|
#if defined(VFS_BIO_DEBUG)
|
|
printf("biodone: page disappeared\n");
|
|
#endif
|
|
vm_object_pip_subtract(obj, 1);
|
|
continue;
|
|
}
|
|
bp->b_pages[i] = m;
|
|
pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
|
|
}
|
|
#if defined(VFS_BIO_DEBUG)
|
|
if (OFF_TO_IDX(foff) != m->pindex) {
|
|
printf(
|
|
"biodone: foff(%lu)/m->pindex(%d) mismatch\n",
|
|
(unsigned long)foff, m->pindex);
|
|
}
|
|
#endif
|
|
resid = IDX_TO_OFF(m->pindex + 1) - foff;
|
|
if (resid > iosize)
|
|
resid = iosize;
|
|
|
|
/*
|
|
* In the write case, the valid and clean bits are
|
|
* already changed correctly, so we only need to do this
|
|
* here in the read case.
|
|
*/
|
|
if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
|
|
vfs_page_set_valid(bp, foff, i, m);
|
|
}
|
|
vm_page_flag_clear(m, PG_ZERO);
|
|
|
|
/*
|
|
* when debugging new filesystems or buffer I/O methods, this
|
|
* is the most common error that pops up. if you see this, you
|
|
* have not set the page busy flag correctly!!!
|
|
*/
|
|
if (m->busy == 0) {
|
|
#if !defined(MAX_PERF)
|
|
printf("biodone: page busy < 0, "
|
|
"pindex: %d, foff: 0x(%x,%x), "
|
|
"resid: %d, index: %d\n",
|
|
(int) m->pindex, (int)(foff >> 32),
|
|
(int) foff & 0xffffffff, resid, i);
|
|
#endif
|
|
if (vp->v_type != VBLK)
|
|
#if !defined(MAX_PERF)
|
|
printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
|
|
bp->b_vp->v_mount->mnt_stat.f_iosize,
|
|
(int) bp->b_lblkno,
|
|
bp->b_flags, bp->b_npages);
|
|
else
|
|
printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
|
|
(int) bp->b_lblkno,
|
|
bp->b_flags, bp->b_npages);
|
|
printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
|
|
m->valid, m->dirty, m->wire_count);
|
|
#endif
|
|
panic("biodone: page busy < 0\n");
|
|
}
|
|
vm_page_io_finish(m);
|
|
vm_object_pip_subtract(obj, 1);
|
|
foff += resid;
|
|
iosize -= resid;
|
|
}
|
|
if (obj)
|
|
vm_object_pip_wakeupn(obj, 0);
|
|
}
|
|
/*
|
|
* For asynchronous completions, release the buffer now. The brelse
|
|
* checks for B_WANTED and will do the wakeup there if necessary - so
|
|
* no need to do a wakeup here in the async case.
|
|
*/
|
|
|
|
if (bp->b_flags & B_ASYNC) {
|
|
if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
|
|
brelse(bp);
|
|
else
|
|
bqrelse(bp);
|
|
} else {
|
|
bp->b_flags &= ~B_WANTED;
|
|
wakeup(bp);
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
#if 0 /* not with kirks code */
|
|
static int vfs_update_interval = 30;
|
|
|
|
static void
|
|
vfs_update()
|
|
{
|
|
while (1) {
|
|
tsleep(&vfs_update_wakeup, PUSER, "update",
|
|
hz * vfs_update_interval);
|
|
vfs_update_wakeup = 0;
|
|
sync(curproc, NULL);
|
|
}
|
|
}
|
|
|
|
static int
|
|
sysctl_kern_updateinterval SYSCTL_HANDLER_ARGS
|
|
{
|
|
int error = sysctl_handle_int(oidp,
|
|
oidp->oid_arg1, oidp->oid_arg2, req);
|
|
if (!error)
|
|
wakeup(&vfs_update_wakeup);
|
|
return error;
|
|
}
|
|
|
|
SYSCTL_PROC(_kern, KERN_UPDATEINTERVAL, update, CTLTYPE_INT|CTLFLAG_RW,
|
|
&vfs_update_interval, 0, sysctl_kern_updateinterval, "I", "");
|
|
|
|
#endif
|
|
|
|
|
|
/*
|
|
* This routine is called in lieu of iodone in the case of
|
|
* incomplete I/O. This keeps the busy status for pages
|
|
* consistant.
|
|
*/
|
|
void
|
|
vfs_unbusy_pages(struct buf * bp)
|
|
{
|
|
int i;
|
|
|
|
if (bp->b_flags & B_VMIO) {
|
|
struct vnode *vp = bp->b_vp;
|
|
vm_object_t obj = vp->v_object;
|
|
|
|
for (i = 0; i < bp->b_npages; i++) {
|
|
vm_page_t m = bp->b_pages[i];
|
|
|
|
if (m == bogus_page) {
|
|
m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
|
|
#if !defined(MAX_PERF)
|
|
if (!m) {
|
|
panic("vfs_unbusy_pages: page missing\n");
|
|
}
|
|
#endif
|
|
bp->b_pages[i] = m;
|
|
pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
|
|
}
|
|
vm_object_pip_subtract(obj, 1);
|
|
vm_page_flag_clear(m, PG_ZERO);
|
|
vm_page_io_finish(m);
|
|
}
|
|
vm_object_pip_wakeupn(obj, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set NFS' b_validoff and b_validend fields from the valid bits
|
|
* of a page. If the consumer is not NFS, and the page is not
|
|
* valid for the entire range, clear the B_CACHE flag to force
|
|
* the consumer to re-read the page.
|
|
*
|
|
* B_CACHE interaction is especially tricky.
|
|
*/
|
|
static void
|
|
vfs_buf_set_valid(struct buf *bp,
|
|
vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
|
|
vm_page_t m)
|
|
{
|
|
if (bp->b_vp->v_tag == VT_NFS && bp->b_vp->v_type != VBLK) {
|
|
vm_offset_t svalid, evalid;
|
|
int validbits = m->valid >> (((foff+off)&PAGE_MASK)/DEV_BSIZE);
|
|
|
|
/*
|
|
* This only bothers with the first valid range in the
|
|
* page.
|
|
*/
|
|
svalid = off;
|
|
while (validbits && !(validbits & 1)) {
|
|
svalid += DEV_BSIZE;
|
|
validbits >>= 1;
|
|
}
|
|
evalid = svalid;
|
|
while (validbits & 1) {
|
|
evalid += DEV_BSIZE;
|
|
validbits >>= 1;
|
|
}
|
|
evalid = min(evalid, off + size);
|
|
/*
|
|
* We can only set b_validoff/end if this range is contiguous
|
|
* with the range built up already. If we cannot set
|
|
* b_validoff/end, we must clear B_CACHE to force an update
|
|
* to clean the bp up.
|
|
*/
|
|
if (svalid == bp->b_validend) {
|
|
bp->b_validoff = min(bp->b_validoff, svalid);
|
|
bp->b_validend = max(bp->b_validend, evalid);
|
|
} else {
|
|
bp->b_flags &= ~B_CACHE;
|
|
}
|
|
} else if (!vm_page_is_valid(m,
|
|
(vm_offset_t) ((foff + off) & PAGE_MASK),
|
|
size)) {
|
|
bp->b_flags &= ~B_CACHE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set the valid bits in a page, taking care of the b_validoff,
|
|
* b_validend fields which NFS uses to optimise small reads. Off is
|
|
* the offset within the file and pageno is the page index within the buf.
|
|
*
|
|
* XXX we have to set the valid & clean bits for all page fragments
|
|
* touched by b_validoff/validend, even if the page fragment goes somewhat
|
|
* beyond b_validoff/validend due to alignment.
|
|
*/
|
|
static void
|
|
vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
|
|
{
|
|
struct vnode *vp = bp->b_vp;
|
|
vm_ooffset_t soff, eoff;
|
|
|
|
/*
|
|
* Start and end offsets in buffer. eoff - soff may not cross a
|
|
* page boundry or cross the end of the buffer.
|
|
*/
|
|
soff = off;
|
|
eoff = (off + PAGE_SIZE) & ~PAGE_MASK;
|
|
if (eoff > bp->b_offset + bp->b_bufsize)
|
|
eoff = bp->b_offset + bp->b_bufsize;
|
|
|
|
if (vp->v_tag == VT_NFS && vp->v_type != VBLK) {
|
|
vm_ooffset_t sv, ev;
|
|
vm_page_set_invalid(m,
|
|
(vm_offset_t) (soff & PAGE_MASK),
|
|
(vm_offset_t) (eoff - soff));
|
|
/*
|
|
* bp->b_validoff and bp->b_validend restrict the valid range
|
|
* that we can set. Note that these offsets are not DEV_BSIZE
|
|
* aligned. vm_page_set_validclean() must know what
|
|
* sub-DEV_BSIZE ranges to clear.
|
|
*/
|
|
#if 0
|
|
sv = (bp->b_offset + bp->b_validoff + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
|
|
ev = (bp->b_offset + bp->b_validend + (DEV_BSIZE - 1)) &
|
|
~(DEV_BSIZE - 1);
|
|
#endif
|
|
sv = bp->b_offset + bp->b_validoff;
|
|
ev = bp->b_offset + bp->b_validend;
|
|
soff = qmax(sv, soff);
|
|
eoff = qmin(ev, eoff);
|
|
}
|
|
|
|
if (eoff > soff)
|
|
vm_page_set_validclean(m,
|
|
(vm_offset_t) (soff & PAGE_MASK),
|
|
(vm_offset_t) (eoff - soff));
|
|
}
|
|
|
|
/*
|
|
* This routine is called before a device strategy routine.
|
|
* It is used to tell the VM system that paging I/O is in
|
|
* progress, and treat the pages associated with the buffer
|
|
* almost as being PG_BUSY. Also the object paging_in_progress
|
|
* flag is handled to make sure that the object doesn't become
|
|
* inconsistant.
|
|
*/
|
|
void
|
|
vfs_busy_pages(struct buf * bp, int clear_modify)
|
|
{
|
|
int i, bogus;
|
|
|
|
if (bp->b_flags & B_VMIO) {
|
|
struct vnode *vp = bp->b_vp;
|
|
vm_object_t obj = vp->v_object;
|
|
vm_ooffset_t foff;
|
|
|
|
foff = bp->b_offset;
|
|
KASSERT(bp->b_offset != NOOFFSET,
|
|
("vfs_busy_pages: no buffer offset"));
|
|
vfs_setdirty(bp);
|
|
|
|
retry:
|
|
for (i = 0; i < bp->b_npages; i++) {
|
|
vm_page_t m = bp->b_pages[i];
|
|
if (vm_page_sleep_busy(m, FALSE, "vbpage"))
|
|
goto retry;
|
|
}
|
|
|
|
bogus = 0;
|
|
for (i = 0; i < bp->b_npages; i++) {
|
|
vm_page_t m = bp->b_pages[i];
|
|
|
|
vm_page_flag_clear(m, PG_ZERO);
|
|
if ((bp->b_flags & B_CLUSTER) == 0) {
|
|
vm_object_pip_add(obj, 1);
|
|
vm_page_io_start(m);
|
|
}
|
|
|
|
vm_page_protect(m, VM_PROT_NONE);
|
|
if (clear_modify)
|
|
vfs_page_set_valid(bp, foff, i, m);
|
|
else if (m->valid == VM_PAGE_BITS_ALL &&
|
|
(bp->b_flags & B_CACHE) == 0) {
|
|
bp->b_pages[i] = bogus_page;
|
|
bogus++;
|
|
}
|
|
foff = (foff + PAGE_SIZE) & ~PAGE_MASK;
|
|
}
|
|
if (bogus)
|
|
pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Tell the VM system that the pages associated with this buffer
|
|
* are clean. This is used for delayed writes where the data is
|
|
* going to go to disk eventually without additional VM intevention.
|
|
*/
|
|
void
|
|
vfs_clean_pages(struct buf * bp)
|
|
{
|
|
int i;
|
|
|
|
if (bp->b_flags & B_VMIO) {
|
|
vm_ooffset_t foff;
|
|
foff = bp->b_offset;
|
|
KASSERT(bp->b_offset != NOOFFSET,
|
|
("vfs_clean_pages: no buffer offset"));
|
|
for (i = 0; i < bp->b_npages; i++) {
|
|
vm_page_t m = bp->b_pages[i];
|
|
vfs_page_set_valid(bp, foff, i, m);
|
|
foff = (foff + PAGE_SIZE) & ~PAGE_MASK;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
vfs_bio_clrbuf(struct buf *bp) {
|
|
int i, mask = 0;
|
|
caddr_t sa, ea;
|
|
if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
|
|
if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
|
|
(bp->b_offset & PAGE_MASK) == 0) {
|
|
mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
|
|
if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
|
|
((bp->b_pages[0]->valid & mask) != mask)) {
|
|
bzero(bp->b_data, bp->b_bufsize);
|
|
}
|
|
bp->b_pages[0]->valid |= mask;
|
|
bp->b_resid = 0;
|
|
return;
|
|
}
|
|
ea = sa = bp->b_data;
|
|
for(i=0;i<bp->b_npages;i++,sa=ea) {
|
|
int j = ((u_long)sa & PAGE_MASK) / DEV_BSIZE;
|
|
ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
|
|
ea = (caddr_t)ulmin((u_long)ea,
|
|
(u_long)bp->b_data + bp->b_bufsize);
|
|
mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
|
|
if ((bp->b_pages[i]->valid & mask) == mask)
|
|
continue;
|
|
if ((bp->b_pages[i]->valid & mask) == 0) {
|
|
if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
|
|
bzero(sa, ea - sa);
|
|
}
|
|
} else {
|
|
for (; sa < ea; sa += DEV_BSIZE, j++) {
|
|
if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
|
|
(bp->b_pages[i]->valid & (1<<j)) == 0)
|
|
bzero(sa, DEV_BSIZE);
|
|
}
|
|
}
|
|
bp->b_pages[i]->valid |= mask;
|
|
vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
|
|
}
|
|
bp->b_resid = 0;
|
|
} else {
|
|
clrbuf(bp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* vm_hold_load_pages and vm_hold_unload pages get pages into
|
|
* a buffers address space. The pages are anonymous and are
|
|
* not associated with a file object.
|
|
*/
|
|
void
|
|
vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
|
|
{
|
|
vm_offset_t pg;
|
|
vm_page_t p;
|
|
int index;
|
|
|
|
to = round_page(to);
|
|
from = round_page(from);
|
|
index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
|
|
|
|
for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
|
|
|
|
tryagain:
|
|
|
|
p = vm_page_alloc(kernel_object,
|
|
((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
|
|
VM_ALLOC_NORMAL);
|
|
if (!p) {
|
|
vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
|
|
VM_WAIT;
|
|
goto tryagain;
|
|
}
|
|
vm_page_wire(p);
|
|
p->valid = VM_PAGE_BITS_ALL;
|
|
vm_page_flag_clear(p, PG_ZERO);
|
|
pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
|
|
bp->b_pages[index] = p;
|
|
vm_page_wakeup(p);
|
|
}
|
|
bp->b_npages = index;
|
|
}
|
|
|
|
void
|
|
vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
|
|
{
|
|
vm_offset_t pg;
|
|
vm_page_t p;
|
|
int index, newnpages;
|
|
|
|
from = round_page(from);
|
|
to = round_page(to);
|
|
newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
|
|
|
|
for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
|
|
p = bp->b_pages[index];
|
|
if (p && (index < bp->b_npages)) {
|
|
#if !defined(MAX_PERF)
|
|
if (p->busy) {
|
|
printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
|
|
bp->b_blkno, bp->b_lblkno);
|
|
}
|
|
#endif
|
|
bp->b_pages[index] = NULL;
|
|
pmap_kremove(pg);
|
|
vm_page_busy(p);
|
|
vm_page_unwire(p, 0);
|
|
vm_page_free(p);
|
|
}
|
|
}
|
|
bp->b_npages = newnpages;
|
|
}
|
|
|
|
|
|
#include "opt_ddb.h"
|
|
#ifdef DDB
|
|
#include <ddb/ddb.h>
|
|
|
|
DB_SHOW_COMMAND(buffer, db_show_buffer)
|
|
{
|
|
/* get args */
|
|
struct buf *bp = (struct buf *)addr;
|
|
|
|
if (!have_addr) {
|
|
db_printf("usage: show buffer <addr>\n");
|
|
return;
|
|
}
|
|
|
|
db_printf("b_proc = %p,\nb_flags = 0x%b\n", (void *)bp->b_proc,
|
|
(u_int)bp->b_flags, PRINT_BUF_FLAGS);
|
|
db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
|
|
"b_resid = %ld\nb_dev = 0x%x, b_data = %p, "
|
|
"b_blkno = %d, b_pblkno = %d\n",
|
|
bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
|
|
bp->b_dev, bp->b_data, bp->b_blkno, bp->b_pblkno);
|
|
if (bp->b_npages) {
|
|
int i;
|
|
db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
|
|
for (i = 0; i < bp->b_npages; i++) {
|
|
vm_page_t m;
|
|
m = bp->b_pages[i];
|
|
db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
|
|
(u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
|
|
if ((i + 1) < bp->b_npages)
|
|
db_printf(",");
|
|
}
|
|
db_printf("\n");
|
|
}
|
|
}
|
|
#endif /* DDB */
|