freebsd-nq/lib/CodeGen/RegAllocBasic.cpp

592 lines
21 KiB
C++

//===-- RegAllocBasic.cpp - basic register allocator ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the RABasic function pass, which provides a minimal
// implementation of the basic register allocator.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "regalloc"
#include "RegAllocBase.h"
#include "LiveDebugVariables.h"
#include "LiveIntervalUnion.h"
#include "LiveRangeEdit.h"
#include "RenderMachineFunction.h"
#include "Spiller.h"
#include "VirtRegMap.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Function.h"
#include "llvm/PassAnalysisSupport.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegisterInfo.h"
#ifndef NDEBUG
#include "llvm/ADT/SparseBitVector.h"
#endif
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/Timer.h"
#include <cstdlib>
#include <queue>
using namespace llvm;
STATISTIC(NumAssigned , "Number of registers assigned");
STATISTIC(NumUnassigned , "Number of registers unassigned");
STATISTIC(NumNewQueued , "Number of new live ranges queued");
static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator",
createBasicRegisterAllocator);
// Temporary verification option until we can put verification inside
// MachineVerifier.
static cl::opt<bool, true>
VerifyRegAlloc("verify-regalloc", cl::location(RegAllocBase::VerifyEnabled),
cl::desc("Verify during register allocation"));
const char *RegAllocBase::TimerGroupName = "Register Allocation";
bool RegAllocBase::VerifyEnabled = false;
namespace {
struct CompSpillWeight {
bool operator()(LiveInterval *A, LiveInterval *B) const {
return A->weight < B->weight;
}
};
}
namespace {
/// RABasic provides a minimal implementation of the basic register allocation
/// algorithm. It prioritizes live virtual registers by spill weight and spills
/// whenever a register is unavailable. This is not practical in production but
/// provides a useful baseline both for measuring other allocators and comparing
/// the speed of the basic algorithm against other styles of allocators.
class RABasic : public MachineFunctionPass, public RegAllocBase
{
// context
MachineFunction *MF;
// analyses
LiveStacks *LS;
RenderMachineFunction *RMF;
// state
std::auto_ptr<Spiller> SpillerInstance;
std::priority_queue<LiveInterval*, std::vector<LiveInterval*>,
CompSpillWeight> Queue;
public:
RABasic();
/// Return the pass name.
virtual const char* getPassName() const {
return "Basic Register Allocator";
}
/// RABasic analysis usage.
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
virtual void releaseMemory();
virtual Spiller &spiller() { return *SpillerInstance; }
virtual float getPriority(LiveInterval *LI) { return LI->weight; }
virtual void enqueue(LiveInterval *LI) {
Queue.push(LI);
}
virtual LiveInterval *dequeue() {
if (Queue.empty())
return 0;
LiveInterval *LI = Queue.top();
Queue.pop();
return LI;
}
virtual unsigned selectOrSplit(LiveInterval &VirtReg,
SmallVectorImpl<LiveInterval*> &SplitVRegs);
/// Perform register allocation.
virtual bool runOnMachineFunction(MachineFunction &mf);
static char ID;
};
char RABasic::ID = 0;
} // end anonymous namespace
RABasic::RABasic(): MachineFunctionPass(ID) {
initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
initializeLiveStacksPass(*PassRegistry::getPassRegistry());
initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
initializeRenderMachineFunctionPass(*PassRegistry::getPassRegistry());
}
void RABasic::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<AliasAnalysis>();
AU.addPreserved<AliasAnalysis>();
AU.addRequired<LiveIntervals>();
AU.addPreserved<SlotIndexes>();
AU.addRequired<LiveDebugVariables>();
AU.addPreserved<LiveDebugVariables>();
if (StrongPHIElim)
AU.addRequiredID(StrongPHIEliminationID);
AU.addRequiredTransitiveID(RegisterCoalescerPassID);
AU.addRequired<CalculateSpillWeights>();
AU.addRequired<LiveStacks>();
AU.addPreserved<LiveStacks>();
AU.addRequiredID(MachineDominatorsID);
AU.addPreservedID(MachineDominatorsID);
AU.addRequired<MachineLoopInfo>();
AU.addPreserved<MachineLoopInfo>();
AU.addRequired<VirtRegMap>();
AU.addPreserved<VirtRegMap>();
DEBUG(AU.addRequired<RenderMachineFunction>());
MachineFunctionPass::getAnalysisUsage(AU);
}
void RABasic::releaseMemory() {
SpillerInstance.reset(0);
RegAllocBase::releaseMemory();
}
#ifndef NDEBUG
// Verify each LiveIntervalUnion.
void RegAllocBase::verify() {
LiveVirtRegBitSet VisitedVRegs;
OwningArrayPtr<LiveVirtRegBitSet>
unionVRegs(new LiveVirtRegBitSet[PhysReg2LiveUnion.numRegs()]);
// Verify disjoint unions.
for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) {
DEBUG(PhysReg2LiveUnion[PhysReg].print(dbgs(), TRI));
LiveVirtRegBitSet &VRegs = unionVRegs[PhysReg];
PhysReg2LiveUnion[PhysReg].verify(VRegs);
// Union + intersection test could be done efficiently in one pass, but
// don't add a method to SparseBitVector unless we really need it.
assert(!VisitedVRegs.intersects(VRegs) && "vreg in multiple unions");
VisitedVRegs |= VRegs;
}
// Verify vreg coverage.
for (LiveIntervals::iterator liItr = LIS->begin(), liEnd = LIS->end();
liItr != liEnd; ++liItr) {
unsigned reg = liItr->first;
if (TargetRegisterInfo::isPhysicalRegister(reg)) continue;
if (!VRM->hasPhys(reg)) continue; // spilled?
unsigned PhysReg = VRM->getPhys(reg);
if (!unionVRegs[PhysReg].test(reg)) {
dbgs() << "LiveVirtReg " << reg << " not in union " <<
TRI->getName(PhysReg) << "\n";
llvm_unreachable("unallocated live vreg");
}
}
// FIXME: I'm not sure how to verify spilled intervals.
}
#endif //!NDEBUG
//===----------------------------------------------------------------------===//
// RegAllocBase Implementation
//===----------------------------------------------------------------------===//
// Instantiate a LiveIntervalUnion for each physical register.
void RegAllocBase::LiveUnionArray::init(LiveIntervalUnion::Allocator &allocator,
unsigned NRegs) {
NumRegs = NRegs;
Array =
static_cast<LiveIntervalUnion*>(malloc(sizeof(LiveIntervalUnion)*NRegs));
for (unsigned r = 0; r != NRegs; ++r)
new(Array + r) LiveIntervalUnion(r, allocator);
}
void RegAllocBase::init(VirtRegMap &vrm, LiveIntervals &lis) {
NamedRegionTimer T("Initialize", TimerGroupName, TimePassesIsEnabled);
TRI = &vrm.getTargetRegInfo();
MRI = &vrm.getRegInfo();
VRM = &vrm;
LIS = &lis;
RegClassInfo.runOnMachineFunction(vrm.getMachineFunction());
const unsigned NumRegs = TRI->getNumRegs();
if (NumRegs != PhysReg2LiveUnion.numRegs()) {
PhysReg2LiveUnion.init(UnionAllocator, NumRegs);
// Cache an interferece query for each physical reg
Queries.reset(new LiveIntervalUnion::Query[PhysReg2LiveUnion.numRegs()]);
}
}
void RegAllocBase::LiveUnionArray::clear() {
if (!Array)
return;
for (unsigned r = 0; r != NumRegs; ++r)
Array[r].~LiveIntervalUnion();
free(Array);
NumRegs = 0;
Array = 0;
}
void RegAllocBase::releaseMemory() {
for (unsigned r = 0, e = PhysReg2LiveUnion.numRegs(); r != e; ++r)
PhysReg2LiveUnion[r].clear();
}
// Visit all the live registers. If they are already assigned to a physical
// register, unify them with the corresponding LiveIntervalUnion, otherwise push
// them on the priority queue for later assignment.
void RegAllocBase::seedLiveRegs() {
NamedRegionTimer T("Seed Live Regs", TimerGroupName, TimePassesIsEnabled);
for (LiveIntervals::iterator I = LIS->begin(), E = LIS->end(); I != E; ++I) {
unsigned RegNum = I->first;
LiveInterval &VirtReg = *I->second;
if (TargetRegisterInfo::isPhysicalRegister(RegNum))
PhysReg2LiveUnion[RegNum].unify(VirtReg);
else
enqueue(&VirtReg);
}
}
void RegAllocBase::assign(LiveInterval &VirtReg, unsigned PhysReg) {
DEBUG(dbgs() << "assigning " << PrintReg(VirtReg.reg, TRI)
<< " to " << PrintReg(PhysReg, TRI) << '\n');
assert(!VRM->hasPhys(VirtReg.reg) && "Duplicate VirtReg assignment");
VRM->assignVirt2Phys(VirtReg.reg, PhysReg);
MRI->setPhysRegUsed(PhysReg);
PhysReg2LiveUnion[PhysReg].unify(VirtReg);
++NumAssigned;
}
void RegAllocBase::unassign(LiveInterval &VirtReg, unsigned PhysReg) {
DEBUG(dbgs() << "unassigning " << PrintReg(VirtReg.reg, TRI)
<< " from " << PrintReg(PhysReg, TRI) << '\n');
assert(VRM->getPhys(VirtReg.reg) == PhysReg && "Inconsistent unassign");
PhysReg2LiveUnion[PhysReg].extract(VirtReg);
VRM->clearVirt(VirtReg.reg);
++NumUnassigned;
}
// Top-level driver to manage the queue of unassigned VirtRegs and call the
// selectOrSplit implementation.
void RegAllocBase::allocatePhysRegs() {
seedLiveRegs();
// Continue assigning vregs one at a time to available physical registers.
while (LiveInterval *VirtReg = dequeue()) {
assert(!VRM->hasPhys(VirtReg->reg) && "Register already assigned");
// Unused registers can appear when the spiller coalesces snippets.
if (MRI->reg_nodbg_empty(VirtReg->reg)) {
DEBUG(dbgs() << "Dropping unused " << *VirtReg << '\n');
LIS->removeInterval(VirtReg->reg);
continue;
}
// Invalidate all interference queries, live ranges could have changed.
invalidateVirtRegs();
// selectOrSplit requests the allocator to return an available physical
// register if possible and populate a list of new live intervals that
// result from splitting.
DEBUG(dbgs() << "\nselectOrSplit "
<< MRI->getRegClass(VirtReg->reg)->getName()
<< ':' << *VirtReg << '\n');
typedef SmallVector<LiveInterval*, 4> VirtRegVec;
VirtRegVec SplitVRegs;
unsigned AvailablePhysReg = selectOrSplit(*VirtReg, SplitVRegs);
if (AvailablePhysReg == ~0u) {
// selectOrSplit failed to find a register!
const char *Msg = "ran out of registers during register allocation";
// Probably caused by an inline asm.
MachineInstr *MI;
for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(VirtReg->reg);
(MI = I.skipInstruction());)
if (MI->isInlineAsm())
break;
if (MI)
MI->emitError(Msg);
else
report_fatal_error(Msg);
// Keep going after reporting the error.
VRM->assignVirt2Phys(VirtReg->reg,
RegClassInfo.getOrder(MRI->getRegClass(VirtReg->reg)).front());
continue;
}
if (AvailablePhysReg)
assign(*VirtReg, AvailablePhysReg);
for (VirtRegVec::iterator I = SplitVRegs.begin(), E = SplitVRegs.end();
I != E; ++I) {
LiveInterval *SplitVirtReg = *I;
assert(!VRM->hasPhys(SplitVirtReg->reg) && "Register already assigned");
if (MRI->reg_nodbg_empty(SplitVirtReg->reg)) {
DEBUG(dbgs() << "not queueing unused " << *SplitVirtReg << '\n');
LIS->removeInterval(SplitVirtReg->reg);
continue;
}
DEBUG(dbgs() << "queuing new interval: " << *SplitVirtReg << "\n");
assert(TargetRegisterInfo::isVirtualRegister(SplitVirtReg->reg) &&
"expect split value in virtual register");
enqueue(SplitVirtReg);
++NumNewQueued;
}
}
}
// Check if this live virtual register interferes with a physical register. If
// not, then check for interference on each register that aliases with the
// physical register. Return the interfering register.
unsigned RegAllocBase::checkPhysRegInterference(LiveInterval &VirtReg,
unsigned PhysReg) {
for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI)
if (query(VirtReg, *AliasI).checkInterference())
return *AliasI;
return 0;
}
// Helper for spillInteferences() that spills all interfering vregs currently
// assigned to this physical register.
void RegAllocBase::spillReg(LiveInterval& VirtReg, unsigned PhysReg,
SmallVectorImpl<LiveInterval*> &SplitVRegs) {
LiveIntervalUnion::Query &Q = query(VirtReg, PhysReg);
assert(Q.seenAllInterferences() && "need collectInterferences()");
const SmallVectorImpl<LiveInterval*> &PendingSpills = Q.interferingVRegs();
for (SmallVectorImpl<LiveInterval*>::const_iterator I = PendingSpills.begin(),
E = PendingSpills.end(); I != E; ++I) {
LiveInterval &SpilledVReg = **I;
DEBUG(dbgs() << "extracting from " <<
TRI->getName(PhysReg) << " " << SpilledVReg << '\n');
// Deallocate the interfering vreg by removing it from the union.
// A LiveInterval instance may not be in a union during modification!
unassign(SpilledVReg, PhysReg);
// Spill the extracted interval.
LiveRangeEdit LRE(SpilledVReg, SplitVRegs, 0, &PendingSpills);
spiller().spill(LRE);
}
// After extracting segments, the query's results are invalid. But keep the
// contents valid until we're done accessing pendingSpills.
Q.clear();
}
// Spill or split all live virtual registers currently unified under PhysReg
// that interfere with VirtReg. The newly spilled or split live intervals are
// returned by appending them to SplitVRegs.
bool
RegAllocBase::spillInterferences(LiveInterval &VirtReg, unsigned PhysReg,
SmallVectorImpl<LiveInterval*> &SplitVRegs) {
// Record each interference and determine if all are spillable before mutating
// either the union or live intervals.
unsigned NumInterferences = 0;
// Collect interferences assigned to any alias of the physical register.
for (const unsigned *asI = TRI->getOverlaps(PhysReg); *asI; ++asI) {
LiveIntervalUnion::Query &QAlias = query(VirtReg, *asI);
NumInterferences += QAlias.collectInterferingVRegs();
if (QAlias.seenUnspillableVReg()) {
return false;
}
}
DEBUG(dbgs() << "spilling " << TRI->getName(PhysReg) <<
" interferences with " << VirtReg << "\n");
assert(NumInterferences > 0 && "expect interference");
// Spill each interfering vreg allocated to PhysReg or an alias.
for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI)
spillReg(VirtReg, *AliasI, SplitVRegs);
return true;
}
// Add newly allocated physical registers to the MBB live in sets.
void RegAllocBase::addMBBLiveIns(MachineFunction *MF) {
NamedRegionTimer T("MBB Live Ins", TimerGroupName, TimePassesIsEnabled);
SlotIndexes *Indexes = LIS->getSlotIndexes();
if (MF->size() <= 1)
return;
LiveIntervalUnion::SegmentIter SI;
for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) {
LiveIntervalUnion &LiveUnion = PhysReg2LiveUnion[PhysReg];
if (LiveUnion.empty())
continue;
DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " live-in:");
MachineFunction::iterator MBB = llvm::next(MF->begin());
MachineFunction::iterator MFE = MF->end();
SlotIndex Start, Stop;
tie(Start, Stop) = Indexes->getMBBRange(MBB);
SI.setMap(LiveUnion.getMap());
SI.find(Start);
while (SI.valid()) {
if (SI.start() <= Start) {
if (!MBB->isLiveIn(PhysReg))
MBB->addLiveIn(PhysReg);
DEBUG(dbgs() << "\tBB#" << MBB->getNumber() << ':'
<< PrintReg(SI.value()->reg, TRI));
} else if (SI.start() > Stop)
MBB = Indexes->getMBBFromIndex(SI.start().getPrevIndex());
if (++MBB == MFE)
break;
tie(Start, Stop) = Indexes->getMBBRange(MBB);
SI.advanceTo(Start);
}
DEBUG(dbgs() << '\n');
}
}
//===----------------------------------------------------------------------===//
// RABasic Implementation
//===----------------------------------------------------------------------===//
// Driver for the register assignment and splitting heuristics.
// Manages iteration over the LiveIntervalUnions.
//
// This is a minimal implementation of register assignment and splitting that
// spills whenever we run out of registers.
//
// selectOrSplit can only be called once per live virtual register. We then do a
// single interference test for each register the correct class until we find an
// available register. So, the number of interference tests in the worst case is
// |vregs| * |machineregs|. And since the number of interference tests is
// minimal, there is no value in caching them outside the scope of
// selectOrSplit().
unsigned RABasic::selectOrSplit(LiveInterval &VirtReg,
SmallVectorImpl<LiveInterval*> &SplitVRegs) {
// Populate a list of physical register spill candidates.
SmallVector<unsigned, 8> PhysRegSpillCands;
// Check for an available register in this class.
ArrayRef<unsigned> Order =
RegClassInfo.getOrder(MRI->getRegClass(VirtReg.reg));
for (ArrayRef<unsigned>::iterator I = Order.begin(), E = Order.end(); I != E;
++I) {
unsigned PhysReg = *I;
// Check interference and as a side effect, intialize queries for this
// VirtReg and its aliases.
unsigned interfReg = checkPhysRegInterference(VirtReg, PhysReg);
if (interfReg == 0) {
// Found an available register.
return PhysReg;
}
Queries[interfReg].collectInterferingVRegs(1);
LiveInterval *interferingVirtReg =
Queries[interfReg].interferingVRegs().front();
// The current VirtReg must either be spillable, or one of its interferences
// must have less spill weight.
if (interferingVirtReg->weight < VirtReg.weight ) {
PhysRegSpillCands.push_back(PhysReg);
}
}
// Try to spill another interfering reg with less spill weight.
for (SmallVectorImpl<unsigned>::iterator PhysRegI = PhysRegSpillCands.begin(),
PhysRegE = PhysRegSpillCands.end(); PhysRegI != PhysRegE; ++PhysRegI) {
if (!spillInterferences(VirtReg, *PhysRegI, SplitVRegs)) continue;
assert(checkPhysRegInterference(VirtReg, *PhysRegI) == 0 &&
"Interference after spill.");
// Tell the caller to allocate to this newly freed physical register.
return *PhysRegI;
}
// No other spill candidates were found, so spill the current VirtReg.
DEBUG(dbgs() << "spilling: " << VirtReg << '\n');
if (!VirtReg.isSpillable())
return ~0u;
LiveRangeEdit LRE(VirtReg, SplitVRegs);
spiller().spill(LRE);
// The live virtual register requesting allocation was spilled, so tell
// the caller not to allocate anything during this round.
return 0;
}
bool RABasic::runOnMachineFunction(MachineFunction &mf) {
DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n"
<< "********** Function: "
<< ((Value*)mf.getFunction())->getName() << '\n');
MF = &mf;
DEBUG(RMF = &getAnalysis<RenderMachineFunction>());
RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
allocatePhysRegs();
addMBBLiveIns(MF);
// Diagnostic output before rewriting
DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *VRM << "\n");
// optional HTML output
DEBUG(RMF->renderMachineFunction("After basic register allocation.", VRM));
// FIXME: Verification currently must run before VirtRegRewriter. We should
// make the rewriter a separate pass and override verifyAnalysis instead. When
// that happens, verification naturally falls under VerifyMachineCode.
#ifndef NDEBUG
if (VerifyEnabled) {
// Verify accuracy of LiveIntervals. The standard machine code verifier
// ensures that each LiveIntervals covers all uses of the virtual reg.
// FIXME: MachineVerifier is badly broken when using the standard
// spiller. Always use -spiller=inline with -verify-regalloc. Even with the
// inline spiller, some tests fail to verify because the coalescer does not
// always generate verifiable code.
MF->verify(this, "In RABasic::verify");
// Verify that LiveIntervals are partitioned into unions and disjoint within
// the unions.
verify();
}
#endif // !NDEBUG
// Run rewriter
VRM->rewrite(LIS->getSlotIndexes());
// Write out new DBG_VALUE instructions.
getAnalysis<LiveDebugVariables>().emitDebugValues(VRM);
// The pass output is in VirtRegMap. Release all the transient data.
releaseMemory();
return true;
}
FunctionPass* llvm::createBasicRegisterAllocator()
{
return new RABasic();
}