freebsd-nq/sys/dev/age/if_age.c
Marius Strobl 8e5d93dbb4 Convert the PHY drivers to honor the mii_flags passed down and convert
the NIC drivers as well as the PHY drivers to take advantage of the
mii_attach() introduced in r213878 to get rid of certain hacks. For
the most part these were:
- Artificially limiting miibus_{read,write}reg methods to certain PHY
  addresses; we now let mii_attach() only probe the PHY at the desired
  address(es) instead.
- PHY drivers setting MIIF_* flags based on the NIC driver they hang
  off from, partly even based on grabbing and using the softc of the
  parent; we now pass these flags down from the NIC to the PHY drivers
  via mii_attach(). This got us rid of all such hacks except those of
  brgphy() in combination with bce(4) and bge(4), which is way beyond
  what can be expressed with simple flags.

While at it, I took the opportunity to change the NIC drivers to pass
up the error returned by mii_attach() (previously by mii_phy_probe())
and unify the error message used in this case where and as appropriate
as mii_attach() actually can fail for a number of reasons, not just
because of no PHY(s) being present at the expected address(es).

Reviewed by:	jhb, yongari
2010-10-15 14:52:11 +00:00

3295 lines
92 KiB
C

/*-
* Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/rman.h>
#include <sys/module.h>
#include <sys/queue.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <machine/bus.h>
#include <machine/in_cksum.h>
#include <dev/age/if_agereg.h>
#include <dev/age/if_agevar.h>
/* "device miibus" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
#define AGE_CSUM_FEATURES (CSUM_TCP | CSUM_UDP)
MODULE_DEPEND(age, pci, 1, 1, 1);
MODULE_DEPEND(age, ether, 1, 1, 1);
MODULE_DEPEND(age, miibus, 1, 1, 1);
/* Tunables. */
static int msi_disable = 0;
static int msix_disable = 0;
TUNABLE_INT("hw.age.msi_disable", &msi_disable);
TUNABLE_INT("hw.age.msix_disable", &msix_disable);
/*
* Devices supported by this driver.
*/
static struct age_dev {
uint16_t age_vendorid;
uint16_t age_deviceid;
const char *age_name;
} age_devs[] = {
{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
"Attansic Technology Corp, L1 Gigabit Ethernet" },
};
static int age_miibus_readreg(device_t, int, int);
static int age_miibus_writereg(device_t, int, int, int);
static void age_miibus_statchg(device_t);
static void age_mediastatus(struct ifnet *, struct ifmediareq *);
static int age_mediachange(struct ifnet *);
static int age_probe(device_t);
static void age_get_macaddr(struct age_softc *);
static void age_phy_reset(struct age_softc *);
static int age_attach(device_t);
static int age_detach(device_t);
static void age_sysctl_node(struct age_softc *);
static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
static int age_check_boundary(struct age_softc *);
static int age_dma_alloc(struct age_softc *);
static void age_dma_free(struct age_softc *);
static int age_shutdown(device_t);
static void age_setwol(struct age_softc *);
static int age_suspend(device_t);
static int age_resume(device_t);
static int age_encap(struct age_softc *, struct mbuf **);
static void age_tx_task(void *, int);
static void age_start(struct ifnet *);
static void age_watchdog(struct age_softc *);
static int age_ioctl(struct ifnet *, u_long, caddr_t);
static void age_mac_config(struct age_softc *);
static void age_link_task(void *, int);
static void age_stats_update(struct age_softc *);
static int age_intr(void *);
static void age_int_task(void *, int);
static void age_txintr(struct age_softc *, int);
static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
static int age_rxintr(struct age_softc *, int, int);
static void age_tick(void *);
static void age_reset(struct age_softc *);
static void age_init(void *);
static void age_init_locked(struct age_softc *);
static void age_stop(struct age_softc *);
static void age_stop_txmac(struct age_softc *);
static void age_stop_rxmac(struct age_softc *);
static void age_init_tx_ring(struct age_softc *);
static int age_init_rx_ring(struct age_softc *);
static void age_init_rr_ring(struct age_softc *);
static void age_init_cmb_block(struct age_softc *);
static void age_init_smb_block(struct age_softc *);
static int age_newbuf(struct age_softc *, struct age_rxdesc *);
static void age_rxvlan(struct age_softc *);
static void age_rxfilter(struct age_softc *);
static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
static device_method_t age_methods[] = {
/* Device interface. */
DEVMETHOD(device_probe, age_probe),
DEVMETHOD(device_attach, age_attach),
DEVMETHOD(device_detach, age_detach),
DEVMETHOD(device_shutdown, age_shutdown),
DEVMETHOD(device_suspend, age_suspend),
DEVMETHOD(device_resume, age_resume),
/* MII interface. */
DEVMETHOD(miibus_readreg, age_miibus_readreg),
DEVMETHOD(miibus_writereg, age_miibus_writereg),
DEVMETHOD(miibus_statchg, age_miibus_statchg),
{ NULL, NULL }
};
static driver_t age_driver = {
"age",
age_methods,
sizeof(struct age_softc)
};
static devclass_t age_devclass;
DRIVER_MODULE(age, pci, age_driver, age_devclass, 0, 0);
DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0);
static struct resource_spec age_res_spec_mem[] = {
{ SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE },
{ -1, 0, 0 }
};
static struct resource_spec age_irq_spec_legacy[] = {
{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
{ -1, 0, 0 }
};
static struct resource_spec age_irq_spec_msi[] = {
{ SYS_RES_IRQ, 1, RF_ACTIVE },
{ -1, 0, 0 }
};
static struct resource_spec age_irq_spec_msix[] = {
{ SYS_RES_IRQ, 1, RF_ACTIVE },
{ -1, 0, 0 }
};
/*
* Read a PHY register on the MII of the L1.
*/
static int
age_miibus_readreg(device_t dev, int phy, int reg)
{
struct age_softc *sc;
uint32_t v;
int i;
sc = device_get_softc(dev);
CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
DELAY(1);
v = CSR_READ_4(sc, AGE_MDIO);
if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
break;
}
if (i == 0) {
device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
return (0);
}
return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
}
/*
* Write a PHY register on the MII of the L1.
*/
static int
age_miibus_writereg(device_t dev, int phy, int reg, int val)
{
struct age_softc *sc;
uint32_t v;
int i;
sc = device_get_softc(dev);
CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
(val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
DELAY(1);
v = CSR_READ_4(sc, AGE_MDIO);
if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
break;
}
if (i == 0)
device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
return (0);
}
/*
* Callback from MII layer when media changes.
*/
static void
age_miibus_statchg(device_t dev)
{
struct age_softc *sc;
sc = device_get_softc(dev);
taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
}
/*
* Get the current interface media status.
*/
static void
age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct age_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
AGE_LOCK(sc);
mii = device_get_softc(sc->age_miibus);
mii_pollstat(mii);
AGE_UNLOCK(sc);
ifmr->ifm_status = mii->mii_media_status;
ifmr->ifm_active = mii->mii_media_active;
}
/*
* Set hardware to newly-selected media.
*/
static int
age_mediachange(struct ifnet *ifp)
{
struct age_softc *sc;
struct mii_data *mii;
struct mii_softc *miisc;
int error;
sc = ifp->if_softc;
AGE_LOCK(sc);
mii = device_get_softc(sc->age_miibus);
if (mii->mii_instance != 0) {
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
mii_phy_reset(miisc);
}
error = mii_mediachg(mii);
AGE_UNLOCK(sc);
return (error);
}
static int
age_probe(device_t dev)
{
struct age_dev *sp;
int i;
uint16_t vendor, devid;
vendor = pci_get_vendor(dev);
devid = pci_get_device(dev);
sp = age_devs;
for (i = 0; i < sizeof(age_devs) / sizeof(age_devs[0]);
i++, sp++) {
if (vendor == sp->age_vendorid &&
devid == sp->age_deviceid) {
device_set_desc(dev, sp->age_name);
return (BUS_PROBE_DEFAULT);
}
}
return (ENXIO);
}
static void
age_get_macaddr(struct age_softc *sc)
{
uint32_t ea[2], reg;
int i, vpdc;
reg = CSR_READ_4(sc, AGE_SPI_CTRL);
if ((reg & SPI_VPD_ENB) != 0) {
/* Get VPD stored in TWSI EEPROM. */
reg &= ~SPI_VPD_ENB;
CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
}
if (pci_find_extcap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
/*
* PCI VPD capability found, let TWSI reload EEPROM.
* This will set ethernet address of controller.
*/
CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
TWSI_CTRL_SW_LD_START);
for (i = 100; i > 0; i--) {
DELAY(1000);
reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
if ((reg & TWSI_CTRL_SW_LD_START) == 0)
break;
}
if (i == 0)
device_printf(sc->age_dev,
"reloading EEPROM timeout!\n");
} else {
if (bootverbose)
device_printf(sc->age_dev,
"PCI VPD capability not found!\n");
}
ea[0] = CSR_READ_4(sc, AGE_PAR0);
ea[1] = CSR_READ_4(sc, AGE_PAR1);
sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
}
static void
age_phy_reset(struct age_softc *sc)
{
uint16_t reg, pn;
int i, linkup;
/* Reset PHY. */
CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
DELAY(2000);
CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
DELAY(2000);
#define ATPHY_DBG_ADDR 0x1D
#define ATPHY_DBG_DATA 0x1E
#define ATPHY_CDTC 0x16
#define PHY_CDTC_ENB 0x0001
#define PHY_CDTC_POFF 8
#define ATPHY_CDTS 0x1C
#define PHY_CDTS_STAT_OK 0x0000
#define PHY_CDTS_STAT_SHORT 0x0100
#define PHY_CDTS_STAT_OPEN 0x0200
#define PHY_CDTS_STAT_INVAL 0x0300
#define PHY_CDTS_STAT_MASK 0x0300
/* Check power saving mode. Magic from Linux. */
age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
for (linkup = 0, pn = 0; pn < 4; pn++) {
age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
(pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
for (i = 200; i > 0; i--) {
DELAY(1000);
reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
ATPHY_CDTC);
if ((reg & PHY_CDTC_ENB) == 0)
break;
}
DELAY(1000);
reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
ATPHY_CDTS);
if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
linkup++;
break;
}
}
age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
if (linkup == 0) {
age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
ATPHY_DBG_ADDR, 0);
age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
ATPHY_DBG_DATA, 0x124E);
age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
ATPHY_DBG_ADDR, 1);
reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
ATPHY_DBG_DATA);
age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
ATPHY_DBG_DATA, reg | 0x03);
/* XXX */
DELAY(1500 * 1000);
age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
ATPHY_DBG_ADDR, 0);
age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
ATPHY_DBG_DATA, 0x024E);
}
#undef ATPHY_DBG_ADDR
#undef ATPHY_DBG_DATA
#undef ATPHY_CDTC
#undef PHY_CDTC_ENB
#undef PHY_CDTC_POFF
#undef ATPHY_CDTS
#undef PHY_CDTS_STAT_OK
#undef PHY_CDTS_STAT_SHORT
#undef PHY_CDTS_STAT_OPEN
#undef PHY_CDTS_STAT_INVAL
#undef PHY_CDTS_STAT_MASK
}
static int
age_attach(device_t dev)
{
struct age_softc *sc;
struct ifnet *ifp;
uint16_t burst;
int error, i, msic, msixc, pmc;
error = 0;
sc = device_get_softc(dev);
sc->age_dev = dev;
mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
/* Map the device. */
pci_enable_busmaster(dev);
sc->age_res_spec = age_res_spec_mem;
sc->age_irq_spec = age_irq_spec_legacy;
error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
if (error != 0) {
device_printf(dev, "cannot allocate memory resources.\n");
goto fail;
}
/* Set PHY address. */
sc->age_phyaddr = AGE_PHY_ADDR;
/* Reset PHY. */
age_phy_reset(sc);
/* Reset the ethernet controller. */
age_reset(sc);
/* Get PCI and chip id/revision. */
sc->age_rev = pci_get_revid(dev);
sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
MASTER_CHIP_REV_SHIFT;
if (bootverbose) {
device_printf(dev, "PCI device revision : 0x%04x\n",
sc->age_rev);
device_printf(dev, "Chip id/revision : 0x%04x\n",
sc->age_chip_rev);
}
/*
* XXX
* Unintialized hardware returns an invalid chip id/revision
* as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
* unplugged cable results in putting hardware into automatic
* power down mode which in turn returns invalld chip revision.
*/
if (sc->age_chip_rev == 0xFFFF) {
device_printf(dev,"invalid chip revision : 0x%04x -- "
"not initialized?\n", sc->age_chip_rev);
error = ENXIO;
goto fail;
}
device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
/* Allocate IRQ resources. */
msixc = pci_msix_count(dev);
msic = pci_msi_count(dev);
if (bootverbose) {
device_printf(dev, "MSIX count : %d\n", msixc);
device_printf(dev, "MSI count : %d\n", msic);
}
/* Prefer MSIX over MSI. */
if (msix_disable == 0 || msi_disable == 0) {
if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
pci_alloc_msix(dev, &msixc) == 0) {
if (msic == AGE_MSIX_MESSAGES) {
device_printf(dev, "Using %d MSIX messages.\n",
msixc);
sc->age_flags |= AGE_FLAG_MSIX;
sc->age_irq_spec = age_irq_spec_msix;
} else
pci_release_msi(dev);
}
if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
msic == AGE_MSI_MESSAGES &&
pci_alloc_msi(dev, &msic) == 0) {
if (msic == AGE_MSI_MESSAGES) {
device_printf(dev, "Using %d MSI messages.\n",
msic);
sc->age_flags |= AGE_FLAG_MSI;
sc->age_irq_spec = age_irq_spec_msi;
} else
pci_release_msi(dev);
}
}
error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
if (error != 0) {
device_printf(dev, "cannot allocate IRQ resources.\n");
goto fail;
}
/* Get DMA parameters from PCIe device control register. */
if (pci_find_extcap(dev, PCIY_EXPRESS, &i) == 0) {
sc->age_flags |= AGE_FLAG_PCIE;
burst = pci_read_config(dev, i + 0x08, 2);
/* Max read request size. */
sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
DMA_CFG_RD_BURST_SHIFT;
/* Max payload size. */
sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
DMA_CFG_WR_BURST_SHIFT;
if (bootverbose) {
device_printf(dev, "Read request size : %d bytes.\n",
128 << ((burst >> 12) & 0x07));
device_printf(dev, "TLP payload size : %d bytes.\n",
128 << ((burst >> 5) & 0x07));
}
} else {
sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
}
/* Create device sysctl node. */
age_sysctl_node(sc);
if ((error = age_dma_alloc(sc) != 0))
goto fail;
/* Load station address. */
age_get_macaddr(sc);
ifp = sc->age_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "cannot allocate ifnet structure.\n");
error = ENXIO;
goto fail;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = age_ioctl;
ifp->if_start = age_start;
ifp->if_init = age_init;
ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1;
IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
IFQ_SET_READY(&ifp->if_snd);
ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO;
if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) {
sc->age_flags |= AGE_FLAG_PMCAP;
ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
}
ifp->if_capenable = ifp->if_capabilities;
/* Set up MII bus. */
error = mii_attach(dev, &sc->age_miibus, ifp, age_mediachange,
age_mediastatus, BMSR_DEFCAPMASK, sc->age_phyaddr, MII_OFFSET_ANY,
0);
if (error != 0) {
device_printf(dev, "attaching PHYs failed\n");
goto fail;
}
ether_ifattach(ifp, sc->age_eaddr);
/* VLAN capability setup. */
ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
ifp->if_capenable = ifp->if_capabilities;
/* Tell the upper layer(s) we support long frames. */
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
/* Create local taskq. */
TASK_INIT(&sc->age_tx_task, 1, age_tx_task, ifp);
sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
taskqueue_thread_enqueue, &sc->age_tq);
if (sc->age_tq == NULL) {
device_printf(dev, "could not create taskqueue.\n");
ether_ifdetach(ifp);
error = ENXIO;
goto fail;
}
taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
device_get_nameunit(sc->age_dev));
if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
msic = AGE_MSIX_MESSAGES;
else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
msic = AGE_MSI_MESSAGES;
else
msic = 1;
for (i = 0; i < msic; i++) {
error = bus_setup_intr(dev, sc->age_irq[i],
INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
&sc->age_intrhand[i]);
if (error != 0)
break;
}
if (error != 0) {
device_printf(dev, "could not set up interrupt handler.\n");
taskqueue_free(sc->age_tq);
sc->age_tq = NULL;
ether_ifdetach(ifp);
goto fail;
}
fail:
if (error != 0)
age_detach(dev);
return (error);
}
static int
age_detach(device_t dev)
{
struct age_softc *sc;
struct ifnet *ifp;
int i, msic;
sc = device_get_softc(dev);
ifp = sc->age_ifp;
if (device_is_attached(dev)) {
AGE_LOCK(sc);
sc->age_flags |= AGE_FLAG_DETACH;
age_stop(sc);
AGE_UNLOCK(sc);
callout_drain(&sc->age_tick_ch);
taskqueue_drain(sc->age_tq, &sc->age_int_task);
taskqueue_drain(sc->age_tq, &sc->age_tx_task);
taskqueue_drain(taskqueue_swi, &sc->age_link_task);
ether_ifdetach(ifp);
}
if (sc->age_tq != NULL) {
taskqueue_drain(sc->age_tq, &sc->age_int_task);
taskqueue_free(sc->age_tq);
sc->age_tq = NULL;
}
if (sc->age_miibus != NULL) {
device_delete_child(dev, sc->age_miibus);
sc->age_miibus = NULL;
}
bus_generic_detach(dev);
age_dma_free(sc);
if (ifp != NULL) {
if_free(ifp);
sc->age_ifp = NULL;
}
if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
msic = AGE_MSIX_MESSAGES;
else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
msic = AGE_MSI_MESSAGES;
else
msic = 1;
for (i = 0; i < msic; i++) {
if (sc->age_intrhand[i] != NULL) {
bus_teardown_intr(dev, sc->age_irq[i],
sc->age_intrhand[i]);
sc->age_intrhand[i] = NULL;
}
}
bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
pci_release_msi(dev);
bus_release_resources(dev, sc->age_res_spec, sc->age_res);
mtx_destroy(&sc->age_mtx);
return (0);
}
static void
age_sysctl_node(struct age_softc *sc)
{
int error;
SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
"stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats,
"I", "Statistics");
SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
"int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0,
sysctl_hw_age_int_mod, "I", "age interrupt moderation");
/* Pull in device tunables. */
sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
error = resource_int_value(device_get_name(sc->age_dev),
device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
if (error == 0) {
if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
sc->age_int_mod > AGE_IM_TIMER_MAX) {
device_printf(sc->age_dev,
"int_mod value out of range; using default: %d\n",
AGE_IM_TIMER_DEFAULT);
sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
}
}
SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
"process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->age_process_limit,
0, sysctl_hw_age_proc_limit, "I",
"max number of Rx events to process");
/* Pull in device tunables. */
sc->age_process_limit = AGE_PROC_DEFAULT;
error = resource_int_value(device_get_name(sc->age_dev),
device_get_unit(sc->age_dev), "process_limit",
&sc->age_process_limit);
if (error == 0) {
if (sc->age_process_limit < AGE_PROC_MIN ||
sc->age_process_limit > AGE_PROC_MAX) {
device_printf(sc->age_dev,
"process_limit value out of range; "
"using default: %d\n", AGE_PROC_DEFAULT);
sc->age_process_limit = AGE_PROC_DEFAULT;
}
}
}
struct age_dmamap_arg {
bus_addr_t age_busaddr;
};
static void
age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
struct age_dmamap_arg *ctx;
if (error != 0)
return;
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
ctx = (struct age_dmamap_arg *)arg;
ctx->age_busaddr = segs[0].ds_addr;
}
/*
* Attansic L1 controller have single register to specify high
* address part of DMA blocks. So all descriptor structures and
* DMA memory blocks should have the same high address of given
* 4GB address space(i.e. crossing 4GB boundary is not allowed).
*/
static int
age_check_boundary(struct age_softc *sc)
{
bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
bus_addr_t cmb_block_end, smb_block_end;
/* Tx/Rx descriptor queue should reside within 4GB boundary. */
tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
if ((AGE_ADDR_HI(tx_ring_end) !=
AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
(AGE_ADDR_HI(rx_ring_end) !=
AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
(AGE_ADDR_HI(rr_ring_end) !=
AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
(AGE_ADDR_HI(cmb_block_end) !=
AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
(AGE_ADDR_HI(smb_block_end) !=
AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
return (EFBIG);
if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
(AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
(AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
(AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
return (EFBIG);
return (0);
}
static int
age_dma_alloc(struct age_softc *sc)
{
struct age_txdesc *txd;
struct age_rxdesc *rxd;
bus_addr_t lowaddr;
struct age_dmamap_arg ctx;
int error, i;
lowaddr = BUS_SPACE_MAXADDR;
again:
/* Create parent ring/DMA block tag. */
error = bus_dma_tag_create(
bus_get_dma_tag(sc->age_dev), /* parent */
1, 0, /* alignment, boundary */
lowaddr, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
0, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->age_cdata.age_parent_tag);
if (error != 0) {
device_printf(sc->age_dev,
"could not create parent DMA tag.\n");
goto fail;
}
/* Create tag for Tx ring. */
error = bus_dma_tag_create(
sc->age_cdata.age_parent_tag, /* parent */
AGE_TX_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
AGE_TX_RING_SZ, /* maxsize */
1, /* nsegments */
AGE_TX_RING_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->age_cdata.age_tx_ring_tag);
if (error != 0) {
device_printf(sc->age_dev,
"could not create Tx ring DMA tag.\n");
goto fail;
}
/* Create tag for Rx ring. */
error = bus_dma_tag_create(
sc->age_cdata.age_parent_tag, /* parent */
AGE_RX_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
AGE_RX_RING_SZ, /* maxsize */
1, /* nsegments */
AGE_RX_RING_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->age_cdata.age_rx_ring_tag);
if (error != 0) {
device_printf(sc->age_dev,
"could not create Rx ring DMA tag.\n");
goto fail;
}
/* Create tag for Rx return ring. */
error = bus_dma_tag_create(
sc->age_cdata.age_parent_tag, /* parent */
AGE_RR_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
AGE_RR_RING_SZ, /* maxsize */
1, /* nsegments */
AGE_RR_RING_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->age_cdata.age_rr_ring_tag);
if (error != 0) {
device_printf(sc->age_dev,
"could not create Rx return ring DMA tag.\n");
goto fail;
}
/* Create tag for coalesing message block. */
error = bus_dma_tag_create(
sc->age_cdata.age_parent_tag, /* parent */
AGE_CMB_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
AGE_CMB_BLOCK_SZ, /* maxsize */
1, /* nsegments */
AGE_CMB_BLOCK_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->age_cdata.age_cmb_block_tag);
if (error != 0) {
device_printf(sc->age_dev,
"could not create CMB DMA tag.\n");
goto fail;
}
/* Create tag for statistics message block. */
error = bus_dma_tag_create(
sc->age_cdata.age_parent_tag, /* parent */
AGE_SMB_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
AGE_SMB_BLOCK_SZ, /* maxsize */
1, /* nsegments */
AGE_SMB_BLOCK_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->age_cdata.age_smb_block_tag);
if (error != 0) {
device_printf(sc->age_dev,
"could not create SMB DMA tag.\n");
goto fail;
}
/* Allocate DMA'able memory and load the DMA map. */
error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
(void **)&sc->age_rdata.age_tx_ring,
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->age_cdata.age_tx_ring_map);
if (error != 0) {
device_printf(sc->age_dev,
"could not allocate DMA'able memory for Tx ring.\n");
goto fail;
}
ctx.age_busaddr = 0;
error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.age_busaddr == 0) {
device_printf(sc->age_dev,
"could not load DMA'able memory for Tx ring.\n");
goto fail;
}
sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
/* Rx ring */
error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
(void **)&sc->age_rdata.age_rx_ring,
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->age_cdata.age_rx_ring_map);
if (error != 0) {
device_printf(sc->age_dev,
"could not allocate DMA'able memory for Rx ring.\n");
goto fail;
}
ctx.age_busaddr = 0;
error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.age_busaddr == 0) {
device_printf(sc->age_dev,
"could not load DMA'able memory for Rx ring.\n");
goto fail;
}
sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
/* Rx return ring */
error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
(void **)&sc->age_rdata.age_rr_ring,
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->age_cdata.age_rr_ring_map);
if (error != 0) {
device_printf(sc->age_dev,
"could not allocate DMA'able memory for Rx return ring.\n");
goto fail;
}
ctx.age_busaddr = 0;
error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
AGE_RR_RING_SZ, age_dmamap_cb,
&ctx, 0);
if (error != 0 || ctx.age_busaddr == 0) {
device_printf(sc->age_dev,
"could not load DMA'able memory for Rx return ring.\n");
goto fail;
}
sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
/* CMB block */
error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
(void **)&sc->age_rdata.age_cmb_block,
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->age_cdata.age_cmb_block_map);
if (error != 0) {
device_printf(sc->age_dev,
"could not allocate DMA'able memory for CMB block.\n");
goto fail;
}
ctx.age_busaddr = 0;
error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.age_busaddr == 0) {
device_printf(sc->age_dev,
"could not load DMA'able memory for CMB block.\n");
goto fail;
}
sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
/* SMB block */
error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
(void **)&sc->age_rdata.age_smb_block,
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->age_cdata.age_smb_block_map);
if (error != 0) {
device_printf(sc->age_dev,
"could not allocate DMA'able memory for SMB block.\n");
goto fail;
}
ctx.age_busaddr = 0;
error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.age_busaddr == 0) {
device_printf(sc->age_dev,
"could not load DMA'able memory for SMB block.\n");
goto fail;
}
sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
/*
* All ring buffer and DMA blocks should have the same
* high address part of 64bit DMA address space.
*/
if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
(error = age_check_boundary(sc)) != 0) {
device_printf(sc->age_dev, "4GB boundary crossed, "
"switching to 32bit DMA addressing mode.\n");
age_dma_free(sc);
/* Limit DMA address space to 32bit and try again. */
lowaddr = BUS_SPACE_MAXADDR_32BIT;
goto again;
}
/*
* Create Tx/Rx buffer parent tag.
* L1 supports full 64bit DMA addressing in Tx/Rx buffers
* so it needs separate parent DMA tag.
*/
error = bus_dma_tag_create(
bus_get_dma_tag(sc->age_dev), /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
0, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->age_cdata.age_buffer_tag);
if (error != 0) {
device_printf(sc->age_dev,
"could not create parent buffer DMA tag.\n");
goto fail;
}
/* Create tag for Tx buffers. */
error = bus_dma_tag_create(
sc->age_cdata.age_buffer_tag, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
AGE_TSO_MAXSIZE, /* maxsize */
AGE_MAXTXSEGS, /* nsegments */
AGE_TSO_MAXSEGSIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->age_cdata.age_tx_tag);
if (error != 0) {
device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
goto fail;
}
/* Create tag for Rx buffers. */
error = bus_dma_tag_create(
sc->age_cdata.age_buffer_tag, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES, /* maxsize */
1, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->age_cdata.age_rx_tag);
if (error != 0) {
device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
goto fail;
}
/* Create DMA maps for Tx buffers. */
for (i = 0; i < AGE_TX_RING_CNT; i++) {
txd = &sc->age_cdata.age_txdesc[i];
txd->tx_m = NULL;
txd->tx_dmamap = NULL;
error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
&txd->tx_dmamap);
if (error != 0) {
device_printf(sc->age_dev,
"could not create Tx dmamap.\n");
goto fail;
}
}
/* Create DMA maps for Rx buffers. */
if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
&sc->age_cdata.age_rx_sparemap)) != 0) {
device_printf(sc->age_dev,
"could not create spare Rx dmamap.\n");
goto fail;
}
for (i = 0; i < AGE_RX_RING_CNT; i++) {
rxd = &sc->age_cdata.age_rxdesc[i];
rxd->rx_m = NULL;
rxd->rx_dmamap = NULL;
error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
&rxd->rx_dmamap);
if (error != 0) {
device_printf(sc->age_dev,
"could not create Rx dmamap.\n");
goto fail;
}
}
fail:
return (error);
}
static void
age_dma_free(struct age_softc *sc)
{
struct age_txdesc *txd;
struct age_rxdesc *rxd;
int i;
/* Tx buffers */
if (sc->age_cdata.age_tx_tag != NULL) {
for (i = 0; i < AGE_TX_RING_CNT; i++) {
txd = &sc->age_cdata.age_txdesc[i];
if (txd->tx_dmamap != NULL) {
bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
txd->tx_dmamap);
txd->tx_dmamap = NULL;
}
}
bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
sc->age_cdata.age_tx_tag = NULL;
}
/* Rx buffers */
if (sc->age_cdata.age_rx_tag != NULL) {
for (i = 0; i < AGE_RX_RING_CNT; i++) {
rxd = &sc->age_cdata.age_rxdesc[i];
if (rxd->rx_dmamap != NULL) {
bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
rxd->rx_dmamap);
rxd->rx_dmamap = NULL;
}
}
if (sc->age_cdata.age_rx_sparemap != NULL) {
bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
sc->age_cdata.age_rx_sparemap);
sc->age_cdata.age_rx_sparemap = NULL;
}
bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
sc->age_cdata.age_rx_tag = NULL;
}
/* Tx ring. */
if (sc->age_cdata.age_tx_ring_tag != NULL) {
if (sc->age_cdata.age_tx_ring_map != NULL)
bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
sc->age_cdata.age_tx_ring_map);
if (sc->age_cdata.age_tx_ring_map != NULL &&
sc->age_rdata.age_tx_ring != NULL)
bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
sc->age_rdata.age_tx_ring,
sc->age_cdata.age_tx_ring_map);
sc->age_rdata.age_tx_ring = NULL;
sc->age_cdata.age_tx_ring_map = NULL;
bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
sc->age_cdata.age_tx_ring_tag = NULL;
}
/* Rx ring. */
if (sc->age_cdata.age_rx_ring_tag != NULL) {
if (sc->age_cdata.age_rx_ring_map != NULL)
bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
sc->age_cdata.age_rx_ring_map);
if (sc->age_cdata.age_rx_ring_map != NULL &&
sc->age_rdata.age_rx_ring != NULL)
bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
sc->age_rdata.age_rx_ring,
sc->age_cdata.age_rx_ring_map);
sc->age_rdata.age_rx_ring = NULL;
sc->age_cdata.age_rx_ring_map = NULL;
bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
sc->age_cdata.age_rx_ring_tag = NULL;
}
/* Rx return ring. */
if (sc->age_cdata.age_rr_ring_tag != NULL) {
if (sc->age_cdata.age_rr_ring_map != NULL)
bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
sc->age_cdata.age_rr_ring_map);
if (sc->age_cdata.age_rr_ring_map != NULL &&
sc->age_rdata.age_rr_ring != NULL)
bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
sc->age_rdata.age_rr_ring,
sc->age_cdata.age_rr_ring_map);
sc->age_rdata.age_rr_ring = NULL;
sc->age_cdata.age_rr_ring_map = NULL;
bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
sc->age_cdata.age_rr_ring_tag = NULL;
}
/* CMB block */
if (sc->age_cdata.age_cmb_block_tag != NULL) {
if (sc->age_cdata.age_cmb_block_map != NULL)
bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
sc->age_cdata.age_cmb_block_map);
if (sc->age_cdata.age_cmb_block_map != NULL &&
sc->age_rdata.age_cmb_block != NULL)
bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
sc->age_rdata.age_cmb_block,
sc->age_cdata.age_cmb_block_map);
sc->age_rdata.age_cmb_block = NULL;
sc->age_cdata.age_cmb_block_map = NULL;
bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
sc->age_cdata.age_cmb_block_tag = NULL;
}
/* SMB block */
if (sc->age_cdata.age_smb_block_tag != NULL) {
if (sc->age_cdata.age_smb_block_map != NULL)
bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
sc->age_cdata.age_smb_block_map);
if (sc->age_cdata.age_smb_block_map != NULL &&
sc->age_rdata.age_smb_block != NULL)
bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
sc->age_rdata.age_smb_block,
sc->age_cdata.age_smb_block_map);
sc->age_rdata.age_smb_block = NULL;
sc->age_cdata.age_smb_block_map = NULL;
bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
sc->age_cdata.age_smb_block_tag = NULL;
}
if (sc->age_cdata.age_buffer_tag != NULL) {
bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
sc->age_cdata.age_buffer_tag = NULL;
}
if (sc->age_cdata.age_parent_tag != NULL) {
bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
sc->age_cdata.age_parent_tag = NULL;
}
}
/*
* Make sure the interface is stopped at reboot time.
*/
static int
age_shutdown(device_t dev)
{
return (age_suspend(dev));
}
static void
age_setwol(struct age_softc *sc)
{
struct ifnet *ifp;
struct mii_data *mii;
uint32_t reg, pmcs;
uint16_t pmstat;
int aneg, i, pmc;
AGE_LOCK_ASSERT(sc);
if (pci_find_extcap(sc->age_dev, PCIY_PMG, &pmc) != 0) {
CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
/*
* No PME capability, PHY power down.
* XXX
* Due to an unknown reason powering down PHY resulted
* in unexpected results such as inaccessbility of
* hardware of freshly rebooted system. Disable
* powering down PHY until I got more information for
* Attansic/Atheros PHY hardwares.
*/
#ifdef notyet
age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
MII_BMCR, BMCR_PDOWN);
#endif
return;
}
ifp = sc->age_ifp;
if ((ifp->if_capenable & IFCAP_WOL) != 0) {
/*
* Note, this driver resets the link speed to 10/100Mbps with
* auto-negotiation but we don't know whether that operation
* would succeed or not as it have no control after powering
* off. If the renegotiation fail WOL may not work. Running
* at 1Gbps will draw more power than 375mA at 3.3V which is
* specified in PCI specification and that would result in
* complete shutdowning power to ethernet controller.
*
* TODO
* Save current negotiated media speed/duplex/flow-control
* to softc and restore the same link again after resuming.
* PHY handling such as power down/resetting to 100Mbps
* may be better handled in suspend method in phy driver.
*/
mii = device_get_softc(sc->age_miibus);
mii_pollstat(mii);
aneg = 0;
if ((mii->mii_media_status & IFM_AVALID) != 0) {
switch IFM_SUBTYPE(mii->mii_media_active) {
case IFM_10_T:
case IFM_100_TX:
goto got_link;
case IFM_1000_T:
aneg++;
default:
break;
}
}
age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
MII_100T2CR, 0);
age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
ANAR_10 | ANAR_CSMA);
age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
DELAY(1000);
if (aneg != 0) {
/* Poll link state until age(4) get a 10/100 link. */
for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
mii_pollstat(mii);
if ((mii->mii_media_status & IFM_AVALID) != 0) {
switch (IFM_SUBTYPE(
mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
age_mac_config(sc);
goto got_link;
default:
break;
}
}
AGE_UNLOCK(sc);
pause("agelnk", hz);
AGE_LOCK(sc);
}
if (i == MII_ANEGTICKS_GIGE)
device_printf(sc->age_dev,
"establishing link failed, "
"WOL may not work!");
}
/*
* No link, force MAC to have 100Mbps, full-duplex link.
* This is the last resort and may/may not work.
*/
mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
age_mac_config(sc);
}
got_link:
pmcs = 0;
if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
reg = CSR_READ_4(sc, AGE_MAC_CFG);
reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
if ((ifp->if_capenable & IFCAP_WOL) != 0) {
reg |= MAC_CFG_RX_ENB;
CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
}
/* Request PME. */
pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
if ((ifp->if_capenable & IFCAP_WOL) != 0)
pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
#ifdef notyet
/* See above for powering down PHY issues. */
if ((ifp->if_capenable & IFCAP_WOL) == 0) {
/* No WOL, PHY power down. */
age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
MII_BMCR, BMCR_PDOWN);
}
#endif
}
static int
age_suspend(device_t dev)
{
struct age_softc *sc;
sc = device_get_softc(dev);
AGE_LOCK(sc);
age_stop(sc);
age_setwol(sc);
AGE_UNLOCK(sc);
return (0);
}
static int
age_resume(device_t dev)
{
struct age_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
AGE_LOCK(sc);
age_phy_reset(sc);
ifp = sc->age_ifp;
if ((ifp->if_flags & IFF_UP) != 0)
age_init_locked(sc);
AGE_UNLOCK(sc);
return (0);
}
static int
age_encap(struct age_softc *sc, struct mbuf **m_head)
{
struct age_txdesc *txd, *txd_last;
struct tx_desc *desc;
struct mbuf *m;
struct ip *ip;
struct tcphdr *tcp;
bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
bus_dmamap_t map;
uint32_t cflags, ip_off, poff, vtag;
int error, i, nsegs, prod, si;
AGE_LOCK_ASSERT(sc);
M_ASSERTPKTHDR((*m_head));
m = *m_head;
ip = NULL;
tcp = NULL;
cflags = vtag = 0;
ip_off = poff = 0;
if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
/*
* L1 requires offset of TCP/UDP payload in its Tx
* descriptor to perform hardware Tx checksum offload.
* Additionally, TSO requires IP/TCP header size and
* modification of IP/TCP header in order to make TSO
* engine work. This kind of operation takes many CPU
* cycles on FreeBSD so fast host CPU is needed to get
* smooth TSO performance.
*/
struct ether_header *eh;
if (M_WRITABLE(m) == 0) {
/* Get a writable copy. */
m = m_dup(*m_head, M_DONTWAIT);
/* Release original mbufs. */
m_freem(*m_head);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
}
ip_off = sizeof(struct ether_header);
m = m_pullup(m, ip_off);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
eh = mtod(m, struct ether_header *);
/*
* Check if hardware VLAN insertion is off.
* Additional check for LLC/SNAP frame?
*/
if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
ip_off = sizeof(struct ether_vlan_header);
m = m_pullup(m, ip_off);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
}
m = m_pullup(m, ip_off + sizeof(struct ip));
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
ip = (struct ip *)(mtod(m, char *) + ip_off);
poff = ip_off + (ip->ip_hl << 2);
if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
m = m_pullup(m, poff + sizeof(struct tcphdr));
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
ip = (struct ip *)(mtod(m, char *) + ip_off);
tcp = (struct tcphdr *)(mtod(m, char *) + poff);
/*
* L1 requires IP/TCP header size and offset as
* well as TCP pseudo checksum which complicates
* TSO configuration. I guess this comes from the
* adherence to Microsoft NDIS Large Send
* specification which requires insertion of
* pseudo checksum by upper stack. The pseudo
* checksum that NDIS refers to doesn't include
* TCP payload length so age(4) should recompute
* the pseudo checksum here. Hopefully this wouldn't
* be much burden on modern CPUs.
* Reset IP checksum and recompute TCP pseudo
* checksum as NDIS specification said.
*/
ip->ip_sum = 0;
if (poff + (tcp->th_off << 2) == m->m_pkthdr.len)
tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
ip->ip_dst.s_addr,
htons((tcp->th_off << 2) + IPPROTO_TCP));
else
tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
ip->ip_dst.s_addr, htons(IPPROTO_TCP));
}
*m_head = m;
}
si = prod = sc->age_cdata.age_tx_prod;
txd = &sc->age_cdata.age_txdesc[prod];
txd_last = txd;
map = txd->tx_dmamap;
error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
*m_head, txsegs, &nsegs, 0);
if (error == EFBIG) {
m = m_collapse(*m_head, M_DONTWAIT, AGE_MAXTXSEGS);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOMEM);
}
*m_head = m;
error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
*m_head, txsegs, &nsegs, 0);
if (error != 0) {
m_freem(*m_head);
*m_head = NULL;
return (error);
}
} else if (error != 0)
return (error);
if (nsegs == 0) {
m_freem(*m_head);
*m_head = NULL;
return (EIO);
}
/* Check descriptor overrun. */
if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
return (ENOBUFS);
}
m = *m_head;
if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
/* Configure TSO. */
if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) {
/* Not TSO but IP/TCP checksum offload. */
cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
/* Clear TSO in order not to set AGE_TD_TSO_HDR. */
m->m_pkthdr.csum_flags &= ~CSUM_TSO;
} else {
/* Request TSO and set MSS. */
cflags |= AGE_TD_TSO_IPV4;
cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
AGE_TD_TSO_MSS_SHIFT);
}
/* Set IP/TCP header size. */
cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
} else if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
/* Configure Tx IP/TCP/UDP checksum offload. */
cflags |= AGE_TD_CSUM;
if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
cflags |= AGE_TD_TCPCSUM;
if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
cflags |= AGE_TD_UDPCSUM;
/* Set checksum start offset. */
cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
/* Set checksum insertion position of TCP/UDP. */
cflags |= ((poff + m->m_pkthdr.csum_data) <<
AGE_TD_CSUM_XSUMOFFSET_SHIFT);
}
/* Configure VLAN hardware tag insertion. */
if ((m->m_flags & M_VLANTAG) != 0) {
vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
cflags |= AGE_TD_INSERT_VLAN_TAG;
}
desc = NULL;
for (i = 0; i < nsegs; i++) {
desc = &sc->age_rdata.age_tx_ring[prod];
desc->addr = htole64(txsegs[i].ds_addr);
desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
desc->flags = htole32(cflags);
sc->age_cdata.age_tx_cnt++;
AGE_DESC_INC(prod, AGE_TX_RING_CNT);
}
/* Update producer index. */
sc->age_cdata.age_tx_prod = prod;
/* Set EOP on the last descriptor. */
prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
desc = &sc->age_rdata.age_tx_ring[prod];
desc->flags |= htole32(AGE_TD_EOP);
/* Lastly set TSO header and modify IP/TCP header for TSO operation. */
if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
desc = &sc->age_rdata.age_tx_ring[si];
desc->flags |= htole32(AGE_TD_TSO_HDR);
}
/* Swap dmamap of the first and the last. */
txd = &sc->age_cdata.age_txdesc[prod];
map = txd_last->tx_dmamap;
txd_last->tx_dmamap = txd->tx_dmamap;
txd->tx_dmamap = map;
txd->tx_m = m;
/* Sync descriptors. */
bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
sc->age_cdata.age_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
static void
age_tx_task(void *arg, int pending)
{
struct ifnet *ifp;
ifp = (struct ifnet *)arg;
age_start(ifp);
}
static void
age_start(struct ifnet *ifp)
{
struct age_softc *sc;
struct mbuf *m_head;
int enq;
sc = ifp->if_softc;
AGE_LOCK(sc);
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0) {
AGE_UNLOCK(sc);
return;
}
for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
*/
if (age_encap(sc, &m_head)) {
if (m_head == NULL)
break;
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
enq++;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
ETHER_BPF_MTAP(ifp, m_head);
}
if (enq > 0) {
/* Update mbox. */
AGE_COMMIT_MBOX(sc);
/* Set a timeout in case the chip goes out to lunch. */
sc->age_watchdog_timer = AGE_TX_TIMEOUT;
}
AGE_UNLOCK(sc);
}
static void
age_watchdog(struct age_softc *sc)
{
struct ifnet *ifp;
AGE_LOCK_ASSERT(sc);
if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
return;
ifp = sc->age_ifp;
if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
ifp->if_oerrors++;
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
age_init_locked(sc);
return;
}
if (sc->age_cdata.age_tx_cnt == 0) {
if_printf(sc->age_ifp,
"watchdog timeout (missed Tx interrupts) -- recovering\n");
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
taskqueue_enqueue(sc->age_tq, &sc->age_tx_task);
return;
}
if_printf(sc->age_ifp, "watchdog timeout\n");
ifp->if_oerrors++;
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
age_init_locked(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
taskqueue_enqueue(sc->age_tq, &sc->age_tx_task);
}
static int
age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct age_softc *sc;
struct ifreq *ifr;
struct mii_data *mii;
uint32_t reg;
int error, mask;
sc = ifp->if_softc;
ifr = (struct ifreq *)data;
error = 0;
switch (cmd) {
case SIOCSIFMTU:
if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
error = EINVAL;
else if (ifp->if_mtu != ifr->ifr_mtu) {
AGE_LOCK(sc);
ifp->if_mtu = ifr->ifr_mtu;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
age_init_locked(sc);
}
AGE_UNLOCK(sc);
}
break;
case SIOCSIFFLAGS:
AGE_LOCK(sc);
if ((ifp->if_flags & IFF_UP) != 0) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
if (((ifp->if_flags ^ sc->age_if_flags)
& (IFF_PROMISC | IFF_ALLMULTI)) != 0)
age_rxfilter(sc);
} else {
if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
age_init_locked(sc);
}
} else {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
age_stop(sc);
}
sc->age_if_flags = ifp->if_flags;
AGE_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
AGE_LOCK(sc);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
age_rxfilter(sc);
AGE_UNLOCK(sc);
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
mii = device_get_softc(sc->age_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
break;
case SIOCSIFCAP:
AGE_LOCK(sc);
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
if ((mask & IFCAP_TXCSUM) != 0 &&
(ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
ifp->if_capenable ^= IFCAP_TXCSUM;
if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
ifp->if_hwassist |= AGE_CSUM_FEATURES;
else
ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
}
if ((mask & IFCAP_RXCSUM) != 0 &&
(ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
ifp->if_capenable ^= IFCAP_RXCSUM;
reg = CSR_READ_4(sc, AGE_MAC_CFG);
reg &= ~MAC_CFG_RXCSUM_ENB;
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
reg |= MAC_CFG_RXCSUM_ENB;
CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
}
if ((mask & IFCAP_TSO4) != 0 &&
(ifp->if_capabilities & IFCAP_TSO4) != 0) {
ifp->if_capenable ^= IFCAP_TSO4;
if ((ifp->if_capenable & IFCAP_TSO4) != 0)
ifp->if_hwassist |= CSUM_TSO;
else
ifp->if_hwassist &= ~CSUM_TSO;
}
if ((mask & IFCAP_WOL_MCAST) != 0 &&
(ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
ifp->if_capenable ^= IFCAP_WOL_MCAST;
if ((mask & IFCAP_WOL_MAGIC) != 0 &&
(ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
ifp->if_capenable ^= IFCAP_WOL_MAGIC;
if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
(ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
(ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
(ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
age_rxvlan(sc);
}
AGE_UNLOCK(sc);
VLAN_CAPABILITIES(ifp);
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
return (error);
}
static void
age_mac_config(struct age_softc *sc)
{
struct mii_data *mii;
uint32_t reg;
AGE_LOCK_ASSERT(sc);
mii = device_get_softc(sc->age_miibus);
reg = CSR_READ_4(sc, AGE_MAC_CFG);
reg &= ~MAC_CFG_FULL_DUPLEX;
reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
reg &= ~MAC_CFG_SPEED_MASK;
/* Reprogram MAC with resolved speed/duplex. */
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
reg |= MAC_CFG_SPEED_10_100;
break;
case IFM_1000_T:
reg |= MAC_CFG_SPEED_1000;
break;
}
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
reg |= MAC_CFG_FULL_DUPLEX;
#ifdef notyet
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
reg |= MAC_CFG_TX_FC;
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
reg |= MAC_CFG_RX_FC;
#endif
}
CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
}
static void
age_link_task(void *arg, int pending)
{
struct age_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
uint32_t reg;
sc = (struct age_softc *)arg;
AGE_LOCK(sc);
mii = device_get_softc(sc->age_miibus);
ifp = sc->age_ifp;
if (mii == NULL || ifp == NULL ||
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
AGE_UNLOCK(sc);
return;
}
sc->age_flags &= ~AGE_FLAG_LINK;
if ((mii->mii_media_status & IFM_AVALID) != 0) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
case IFM_1000_T:
sc->age_flags |= AGE_FLAG_LINK;
break;
default:
break;
}
}
/* Stop Rx/Tx MACs. */
age_stop_rxmac(sc);
age_stop_txmac(sc);
/* Program MACs with resolved speed/duplex/flow-control. */
if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
age_mac_config(sc);
reg = CSR_READ_4(sc, AGE_MAC_CFG);
/* Restart DMA engine and Tx/Rx MAC. */
CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
}
AGE_UNLOCK(sc);
}
static void
age_stats_update(struct age_softc *sc)
{
struct age_stats *stat;
struct smb *smb;
struct ifnet *ifp;
AGE_LOCK_ASSERT(sc);
stat = &sc->age_stat;
bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
sc->age_cdata.age_smb_block_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
smb = sc->age_rdata.age_smb_block;
if (smb->updated == 0)
return;
ifp = sc->age_ifp;
/* Rx stats. */
stat->rx_frames += smb->rx_frames;
stat->rx_bcast_frames += smb->rx_bcast_frames;
stat->rx_mcast_frames += smb->rx_mcast_frames;
stat->rx_pause_frames += smb->rx_pause_frames;
stat->rx_control_frames += smb->rx_control_frames;
stat->rx_crcerrs += smb->rx_crcerrs;
stat->rx_lenerrs += smb->rx_lenerrs;
stat->rx_bytes += smb->rx_bytes;
stat->rx_runts += smb->rx_runts;
stat->rx_fragments += smb->rx_fragments;
stat->rx_pkts_64 += smb->rx_pkts_64;
stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
stat->rx_pkts_truncated += smb->rx_pkts_truncated;
stat->rx_fifo_oflows += smb->rx_fifo_oflows;
stat->rx_desc_oflows += smb->rx_desc_oflows;
stat->rx_alignerrs += smb->rx_alignerrs;
stat->rx_bcast_bytes += smb->rx_bcast_bytes;
stat->rx_mcast_bytes += smb->rx_mcast_bytes;
stat->rx_pkts_filtered += smb->rx_pkts_filtered;
/* Tx stats. */
stat->tx_frames += smb->tx_frames;
stat->tx_bcast_frames += smb->tx_bcast_frames;
stat->tx_mcast_frames += smb->tx_mcast_frames;
stat->tx_pause_frames += smb->tx_pause_frames;
stat->tx_excess_defer += smb->tx_excess_defer;
stat->tx_control_frames += smb->tx_control_frames;
stat->tx_deferred += smb->tx_deferred;
stat->tx_bytes += smb->tx_bytes;
stat->tx_pkts_64 += smb->tx_pkts_64;
stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
stat->tx_single_colls += smb->tx_single_colls;
stat->tx_multi_colls += smb->tx_multi_colls;
stat->tx_late_colls += smb->tx_late_colls;
stat->tx_excess_colls += smb->tx_excess_colls;
stat->tx_underrun += smb->tx_underrun;
stat->tx_desc_underrun += smb->tx_desc_underrun;
stat->tx_lenerrs += smb->tx_lenerrs;
stat->tx_pkts_truncated += smb->tx_pkts_truncated;
stat->tx_bcast_bytes += smb->tx_bcast_bytes;
stat->tx_mcast_bytes += smb->tx_mcast_bytes;
/* Update counters in ifnet. */
ifp->if_opackets += smb->tx_frames;
ifp->if_collisions += smb->tx_single_colls +
smb->tx_multi_colls + smb->tx_late_colls +
smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
ifp->if_oerrors += smb->tx_excess_colls +
smb->tx_late_colls + smb->tx_underrun +
smb->tx_pkts_truncated;
ifp->if_ipackets += smb->rx_frames;
ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
smb->rx_runts + smb->rx_pkts_truncated +
smb->rx_fifo_oflows + smb->rx_desc_oflows +
smb->rx_alignerrs;
/* Update done, clear. */
smb->updated = 0;
bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
sc->age_cdata.age_smb_block_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static int
age_intr(void *arg)
{
struct age_softc *sc;
uint32_t status;
sc = (struct age_softc *)arg;
status = CSR_READ_4(sc, AGE_INTR_STATUS);
if (status == 0 || (status & AGE_INTRS) == 0)
return (FILTER_STRAY);
/* Disable interrupts. */
CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
return (FILTER_HANDLED);
}
static void
age_int_task(void *arg, int pending)
{
struct age_softc *sc;
struct ifnet *ifp;
struct cmb *cmb;
uint32_t status;
sc = (struct age_softc *)arg;
AGE_LOCK(sc);
bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
sc->age_cdata.age_cmb_block_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
cmb = sc->age_rdata.age_cmb_block;
status = le32toh(cmb->intr_status);
if (sc->age_morework != 0)
status |= INTR_CMB_RX;
if ((status & AGE_INTRS) == 0)
goto done;
sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
TPD_CONS_SHIFT;
sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
RRD_PROD_SHIFT;
/* Let hardware know CMB was served. */
cmb->intr_status = 0;
bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
sc->age_cdata.age_cmb_block_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
#if 0
printf("INTR: 0x%08x\n", status);
status &= ~INTR_DIS_DMA;
CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
#endif
ifp = sc->age_ifp;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
if ((status & INTR_CMB_RX) != 0)
sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
sc->age_process_limit);
if ((status & INTR_CMB_TX) != 0)
age_txintr(sc, sc->age_tpd_cons);
if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
if ((status & INTR_DMA_RD_TO_RST) != 0)
device_printf(sc->age_dev,
"DMA read error! -- resetting\n");
if ((status & INTR_DMA_WR_TO_RST) != 0)
device_printf(sc->age_dev,
"DMA write error! -- resetting\n");
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
age_init_locked(sc);
}
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
taskqueue_enqueue(sc->age_tq, &sc->age_tx_task);
if ((status & INTR_SMB) != 0)
age_stats_update(sc);
}
/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
sc->age_cdata.age_cmb_block_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
status = le32toh(cmb->intr_status);
if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
AGE_UNLOCK(sc);
return;
}
done:
/* Re-enable interrupts. */
CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
AGE_UNLOCK(sc);
}
static void
age_txintr(struct age_softc *sc, int tpd_cons)
{
struct ifnet *ifp;
struct age_txdesc *txd;
int cons, prog;
AGE_LOCK_ASSERT(sc);
ifp = sc->age_ifp;
bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
sc->age_cdata.age_tx_ring_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
/*
* Go through our Tx list and free mbufs for those
* frames which have been transmitted.
*/
cons = sc->age_cdata.age_tx_cons;
for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
if (sc->age_cdata.age_tx_cnt <= 0)
break;
prog++;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
sc->age_cdata.age_tx_cnt--;
txd = &sc->age_cdata.age_txdesc[cons];
/*
* Clear Tx descriptors, it's not required but would
* help debugging in case of Tx issues.
*/
txd->tx_desc->addr = 0;
txd->tx_desc->len = 0;
txd->tx_desc->flags = 0;
if (txd->tx_m == NULL)
continue;
/* Reclaim transmitted mbufs. */
bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
}
if (prog > 0) {
sc->age_cdata.age_tx_cons = cons;
/*
* Unarm watchdog timer only when there are no pending
* Tx descriptors in queue.
*/
if (sc->age_cdata.age_tx_cnt == 0)
sc->age_watchdog_timer = 0;
bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
sc->age_cdata.age_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
}
/* Receive a frame. */
static void
age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
{
struct age_rxdesc *rxd;
struct rx_desc *desc;
struct ifnet *ifp;
struct mbuf *mp, *m;
uint32_t status, index, vtag;
int count, nsegs, pktlen;
int rx_cons;
AGE_LOCK_ASSERT(sc);
ifp = sc->age_ifp;
status = le32toh(rxrd->flags);
index = le32toh(rxrd->index);
rx_cons = AGE_RX_CONS(index);
nsegs = AGE_RX_NSEGS(index);
sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
if ((status & AGE_RRD_ERROR) != 0 &&
(status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
/*
* We want to pass the following frames to upper
* layer regardless of error status of Rx return
* ring.
*
* o IP/TCP/UDP checksum is bad.
* o frame length and protocol specific length
* does not match.
*/
sc->age_cdata.age_rx_cons += nsegs;
sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
return;
}
pktlen = 0;
for (count = 0; count < nsegs; count++,
AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
rxd = &sc->age_cdata.age_rxdesc[rx_cons];
mp = rxd->rx_m;
desc = rxd->rx_desc;
/* Add a new receive buffer to the ring. */
if (age_newbuf(sc, rxd) != 0) {
ifp->if_iqdrops++;
/* Reuse Rx buffers. */
if (sc->age_cdata.age_rxhead != NULL) {
m_freem(sc->age_cdata.age_rxhead);
AGE_RXCHAIN_RESET(sc);
}
break;
}
/* The length of the first mbuf is computed last. */
if (count != 0) {
mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
pktlen += mp->m_len;
}
/* Chain received mbufs. */
if (sc->age_cdata.age_rxhead == NULL) {
sc->age_cdata.age_rxhead = mp;
sc->age_cdata.age_rxtail = mp;
} else {
mp->m_flags &= ~M_PKTHDR;
sc->age_cdata.age_rxprev_tail =
sc->age_cdata.age_rxtail;
sc->age_cdata.age_rxtail->m_next = mp;
sc->age_cdata.age_rxtail = mp;
}
if (count == nsegs - 1) {
/*
* It seems that L1 controller has no way
* to tell hardware to strip CRC bytes.
*/
sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
if (nsegs > 1) {
/* Remove the CRC bytes in chained mbufs. */
pktlen -= ETHER_CRC_LEN;
if (mp->m_len <= ETHER_CRC_LEN) {
sc->age_cdata.age_rxtail =
sc->age_cdata.age_rxprev_tail;
sc->age_cdata.age_rxtail->m_len -=
(ETHER_CRC_LEN - mp->m_len);
sc->age_cdata.age_rxtail->m_next = NULL;
m_freem(mp);
} else {
mp->m_len -= ETHER_CRC_LEN;
}
}
m = sc->age_cdata.age_rxhead;
m->m_flags |= M_PKTHDR;
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = sc->age_cdata.age_rxlen;
/* Set the first mbuf length. */
m->m_len = sc->age_cdata.age_rxlen - pktlen;
/*
* Set checksum information.
* It seems that L1 controller can compute partial
* checksum. The partial checksum value can be used
* to accelerate checksum computation for fragmented
* TCP/UDP packets. Upper network stack already
* takes advantage of the partial checksum value in
* IP reassembly stage. But I'm not sure the
* correctness of the partial hardware checksum
* assistance due to lack of data sheet. If it is
* proven to work on L1 I'll enable it.
*/
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
(status & AGE_RRD_IPV4) != 0) {
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
if ((status & AGE_RRD_IPCSUM_NOK) == 0)
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
(status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
m->m_pkthdr.csum_flags |=
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xffff;
}
/*
* Don't mark bad checksum for TCP/UDP frames
* as fragmented frames may always have set
* bad checksummed bit of descriptor status.
*/
}
/* Check for VLAN tagged frames. */
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
(status & AGE_RRD_VLAN) != 0) {
vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
m->m_flags |= M_VLANTAG;
}
/* Pass it on. */
AGE_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
AGE_LOCK(sc);
/* Reset mbuf chains. */
AGE_RXCHAIN_RESET(sc);
}
}
if (count != nsegs) {
sc->age_cdata.age_rx_cons += nsegs;
sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
} else
sc->age_cdata.age_rx_cons = rx_cons;
}
static int
age_rxintr(struct age_softc *sc, int rr_prod, int count)
{
struct rx_rdesc *rxrd;
int rr_cons, nsegs, pktlen, prog;
AGE_LOCK_ASSERT(sc);
rr_cons = sc->age_cdata.age_rr_cons;
if (rr_cons == rr_prod)
return (0);
bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
sc->age_cdata.age_rr_ring_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
for (prog = 0; rr_cons != rr_prod; prog++) {
if (count <= 0)
break;
rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
if (nsegs == 0)
break;
/*
* Check number of segments against received bytes.
* Non-matching value would indicate that hardware
* is still trying to update Rx return descriptors.
* I'm not sure whether this check is really needed.
*/
pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
(MCLBYTES - ETHER_ALIGN)))
break;
prog++;
/* Received a frame. */
age_rxeof(sc, rxrd);
/* Clear return ring. */
rxrd->index = 0;
AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
}
if (prog > 0) {
/* Update the consumer index. */
sc->age_cdata.age_rr_cons = rr_cons;
/* Sync descriptors. */
bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
sc->age_cdata.age_rr_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/* Notify hardware availability of new Rx buffers. */
AGE_COMMIT_MBOX(sc);
}
return (count > 0 ? 0 : EAGAIN);
}
static void
age_tick(void *arg)
{
struct age_softc *sc;
struct mii_data *mii;
sc = (struct age_softc *)arg;
AGE_LOCK_ASSERT(sc);
mii = device_get_softc(sc->age_miibus);
mii_tick(mii);
age_watchdog(sc);
callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
}
static void
age_reset(struct age_softc *sc)
{
uint32_t reg;
int i;
CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
CSR_READ_4(sc, AGE_MASTER_CFG);
DELAY(1000);
for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
break;
DELAY(10);
}
if (i == 0)
device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
/* Initialize PCIe module. From Linux. */
CSR_WRITE_4(sc, 0x12FC, 0x6500);
CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
}
static void
age_init(void *xsc)
{
struct age_softc *sc;
sc = (struct age_softc *)xsc;
AGE_LOCK(sc);
age_init_locked(sc);
AGE_UNLOCK(sc);
}
static void
age_init_locked(struct age_softc *sc)
{
struct ifnet *ifp;
struct mii_data *mii;
uint8_t eaddr[ETHER_ADDR_LEN];
bus_addr_t paddr;
uint32_t reg, fsize;
uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
int error;
AGE_LOCK_ASSERT(sc);
ifp = sc->age_ifp;
mii = device_get_softc(sc->age_miibus);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
return;
/*
* Cancel any pending I/O.
*/
age_stop(sc);
/*
* Reset the chip to a known state.
*/
age_reset(sc);
/* Initialize descriptors. */
error = age_init_rx_ring(sc);
if (error != 0) {
device_printf(sc->age_dev, "no memory for Rx buffers.\n");
age_stop(sc);
return;
}
age_init_rr_ring(sc);
age_init_tx_ring(sc);
age_init_cmb_block(sc);
age_init_smb_block(sc);
/* Reprogram the station address. */
bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
CSR_WRITE_4(sc, AGE_PAR0,
eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
/* Set descriptor base addresses. */
paddr = sc->age_rdata.age_tx_ring_paddr;
CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
paddr = sc->age_rdata.age_rx_ring_paddr;
CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
paddr = sc->age_rdata.age_rr_ring_paddr;
CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
paddr = sc->age_rdata.age_tx_ring_paddr;
CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
paddr = sc->age_rdata.age_cmb_block_paddr;
CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
paddr = sc->age_rdata.age_smb_block_paddr;
CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
/* Set Rx/Rx return descriptor counter. */
CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
DESC_RRD_CNT_MASK) |
((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
/* Set Tx descriptor counter. */
CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
(AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
/* Tell hardware that we're ready to load descriptors. */
CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
/*
* Initialize mailbox register.
* Updated producer/consumer index information is exchanged
* through this mailbox register. However Tx producer and
* Rx return consumer/Rx producer are all shared such that
* it's hard to separate code path between Tx and Rx without
* locking. If L1 hardware have a separate mail box register
* for Tx and Rx consumer/producer management we could have
* indepent Tx/Rx handler which in turn Rx handler could have
* been run without any locking.
*/
AGE_COMMIT_MBOX(sc);
/* Configure IPG/IFG parameters. */
CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
/* Set parameters for half-duplex media. */
CSR_WRITE_4(sc, AGE_HDPX_CFG,
((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
HDPX_CFG_LCOL_MASK) |
((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
HDPX_CFG_ABEBT_MASK) |
((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
HDPX_CFG_JAMIPG_MASK));
/* Configure interrupt moderation timer. */
CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
reg = CSR_READ_4(sc, AGE_MASTER_CFG);
reg &= ~MASTER_MTIMER_ENB;
if (AGE_USECS(sc->age_int_mod) == 0)
reg &= ~MASTER_ITIMER_ENB;
else
reg |= MASTER_ITIMER_ENB;
CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
if (bootverbose)
device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
sc->age_int_mod);
CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
if (ifp->if_mtu < ETHERMTU)
sc->age_max_frame_size = ETHERMTU;
else
sc->age_max_frame_size = ifp->if_mtu;
sc->age_max_frame_size += ETHER_HDR_LEN +
sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
/* Configure jumbo frame. */
fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
(((fsize / sizeof(uint64_t)) <<
RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
RXQ_JUMBO_CFG_RRD_TIMER_MASK));
/* Configure flow-control parameters. From Linux. */
if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
/*
* Magic workaround for old-L1.
* Don't know which hw revision requires this magic.
*/
CSR_WRITE_4(sc, 0x12FC, 0x6500);
/*
* Another magic workaround for flow-control mode
* change. From Linux.
*/
CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
}
/*
* TODO
* Should understand pause parameter relationships between FIFO
* size and number of Rx descriptors and Rx return descriptors.
*
* Magic parameters came from Linux.
*/
switch (sc->age_chip_rev) {
case 0x8001:
case 0x9001:
case 0x9002:
case 0x9003:
rxf_hi = AGE_RX_RING_CNT / 16;
rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
rrd_lo = AGE_RR_RING_CNT / 16;
break;
default:
reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
rxf_lo = reg / 16;
if (rxf_lo < 192)
rxf_lo = 192;
rxf_hi = (reg * 7) / 8;
if (rxf_hi < rxf_lo)
rxf_hi = rxf_lo + 16;
reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
rrd_lo = reg / 8;
rrd_hi = (reg * 7) / 8;
if (rrd_lo < 2)
rrd_lo = 2;
if (rrd_hi < rrd_lo)
rrd_hi = rrd_lo + 3;
break;
}
CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
RXQ_FIFO_PAUSE_THRESH_HI_MASK));
CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
RXQ_RRD_PAUSE_THRESH_LO_MASK) |
((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
RXQ_RRD_PAUSE_THRESH_HI_MASK));
/* Configure RxQ. */
CSR_WRITE_4(sc, AGE_RXQ_CFG,
((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
RXQ_CFG_RD_BURST_MASK) |
((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
/* Configure TxQ. */
CSR_WRITE_4(sc, AGE_TXQ_CFG,
((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
TXQ_CFG_TPD_BURST_MASK) |
((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
TXQ_CFG_TX_FIFO_BURST_MASK) |
((TXQ_CFG_TPD_FETCH_DEFAULT <<
TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
TXQ_CFG_ENB);
CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
(((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
TX_JUMBO_TPD_TH_MASK) |
((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
TX_JUMBO_TPD_IPG_MASK));
/* Configure DMA parameters. */
CSR_WRITE_4(sc, AGE_DMA_CFG,
DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
/* Configure CMB DMA write threshold. */
CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
CMB_WR_THRESH_RRD_MASK) |
((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
CMB_WR_THRESH_TPD_MASK));
/* Set CMB/SMB timer and enable them. */
CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
/* Request SMB updates for every seconds. */
CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
/*
* Disable all WOL bits as WOL can interfere normal Rx
* operation.
*/
CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
/*
* Configure Tx/Rx MACs.
* - Auto-padding for short frames.
* - Enable CRC generation.
* Start with full-duplex/1000Mbps media. Actual reconfiguration
* of MAC is followed after link establishment.
*/
CSR_WRITE_4(sc, AGE_MAC_CFG,
MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
MAC_CFG_PREAMBLE_MASK));
/* Set up the receive filter. */
age_rxfilter(sc);
age_rxvlan(sc);
reg = CSR_READ_4(sc, AGE_MAC_CFG);
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
reg |= MAC_CFG_RXCSUM_ENB;
/* Ack all pending interrupts and clear it. */
CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
/* Finally enable Tx/Rx MAC. */
CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
sc->age_flags &= ~AGE_FLAG_LINK;
/* Switch to the current media. */
mii_mediachg(mii);
callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
}
static void
age_stop(struct age_softc *sc)
{
struct ifnet *ifp;
struct age_txdesc *txd;
struct age_rxdesc *rxd;
uint32_t reg;
int i;
AGE_LOCK_ASSERT(sc);
/*
* Mark the interface down and cancel the watchdog timer.
*/
ifp = sc->age_ifp;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
sc->age_flags &= ~AGE_FLAG_LINK;
callout_stop(&sc->age_tick_ch);
sc->age_watchdog_timer = 0;
/*
* Disable interrupts.
*/
CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
/* Stop CMB/SMB updates. */
CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
/* Stop Rx/Tx MAC. */
age_stop_rxmac(sc);
age_stop_txmac(sc);
/* Stop DMA. */
CSR_WRITE_4(sc, AGE_DMA_CFG,
CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
/* Stop TxQ/RxQ. */
CSR_WRITE_4(sc, AGE_TXQ_CFG,
CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
CSR_WRITE_4(sc, AGE_RXQ_CFG,
CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
break;
DELAY(10);
}
if (i == 0)
device_printf(sc->age_dev,
"stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
/* Reclaim Rx buffers that have been processed. */
if (sc->age_cdata.age_rxhead != NULL)
m_freem(sc->age_cdata.age_rxhead);
AGE_RXCHAIN_RESET(sc);
/*
* Free RX and TX mbufs still in the queues.
*/
for (i = 0; i < AGE_RX_RING_CNT; i++) {
rxd = &sc->age_cdata.age_rxdesc[i];
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc->age_cdata.age_rx_tag,
rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->age_cdata.age_rx_tag,
rxd->rx_dmamap);
m_freem(rxd->rx_m);
rxd->rx_m = NULL;
}
}
for (i = 0; i < AGE_TX_RING_CNT; i++) {
txd = &sc->age_cdata.age_txdesc[i];
if (txd->tx_m != NULL) {
bus_dmamap_sync(sc->age_cdata.age_tx_tag,
txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->age_cdata.age_tx_tag,
txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
}
}
}
static void
age_stop_txmac(struct age_softc *sc)
{
uint32_t reg;
int i;
AGE_LOCK_ASSERT(sc);
reg = CSR_READ_4(sc, AGE_MAC_CFG);
if ((reg & MAC_CFG_TX_ENB) != 0) {
reg &= ~MAC_CFG_TX_ENB;
CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
}
/* Stop Tx DMA engine. */
reg = CSR_READ_4(sc, AGE_DMA_CFG);
if ((reg & DMA_CFG_RD_ENB) != 0) {
reg &= ~DMA_CFG_RD_ENB;
CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
}
for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
(IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
break;
DELAY(10);
}
if (i == 0)
device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
}
static void
age_stop_rxmac(struct age_softc *sc)
{
uint32_t reg;
int i;
AGE_LOCK_ASSERT(sc);
reg = CSR_READ_4(sc, AGE_MAC_CFG);
if ((reg & MAC_CFG_RX_ENB) != 0) {
reg &= ~MAC_CFG_RX_ENB;
CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
}
/* Stop Rx DMA engine. */
reg = CSR_READ_4(sc, AGE_DMA_CFG);
if ((reg & DMA_CFG_WR_ENB) != 0) {
reg &= ~DMA_CFG_WR_ENB;
CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
}
for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
(IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
break;
DELAY(10);
}
if (i == 0)
device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
}
static void
age_init_tx_ring(struct age_softc *sc)
{
struct age_ring_data *rd;
struct age_txdesc *txd;
int i;
AGE_LOCK_ASSERT(sc);
sc->age_cdata.age_tx_prod = 0;
sc->age_cdata.age_tx_cons = 0;
sc->age_cdata.age_tx_cnt = 0;
rd = &sc->age_rdata;
bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
for (i = 0; i < AGE_TX_RING_CNT; i++) {
txd = &sc->age_cdata.age_txdesc[i];
txd->tx_desc = &rd->age_tx_ring[i];
txd->tx_m = NULL;
}
bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
sc->age_cdata.age_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static int
age_init_rx_ring(struct age_softc *sc)
{
struct age_ring_data *rd;
struct age_rxdesc *rxd;
int i;
AGE_LOCK_ASSERT(sc);
sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
sc->age_morework = 0;
rd = &sc->age_rdata;
bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
for (i = 0; i < AGE_RX_RING_CNT; i++) {
rxd = &sc->age_cdata.age_rxdesc[i];
rxd->rx_m = NULL;
rxd->rx_desc = &rd->age_rx_ring[i];
if (age_newbuf(sc, rxd) != 0)
return (ENOBUFS);
}
bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
sc->age_cdata.age_rx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
static void
age_init_rr_ring(struct age_softc *sc)
{
struct age_ring_data *rd;
AGE_LOCK_ASSERT(sc);
sc->age_cdata.age_rr_cons = 0;
AGE_RXCHAIN_RESET(sc);
rd = &sc->age_rdata;
bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
sc->age_cdata.age_rr_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static void
age_init_cmb_block(struct age_softc *sc)
{
struct age_ring_data *rd;
AGE_LOCK_ASSERT(sc);
rd = &sc->age_rdata;
bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
sc->age_cdata.age_cmb_block_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static void
age_init_smb_block(struct age_softc *sc)
{
struct age_ring_data *rd;
AGE_LOCK_ASSERT(sc);
rd = &sc->age_rdata;
bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
sc->age_cdata.age_smb_block_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static int
age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
{
struct rx_desc *desc;
struct mbuf *m;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
int nsegs;
AGE_LOCK_ASSERT(sc);
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = MCLBYTES;
m_adj(m, ETHER_ALIGN);
if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
m_freem(m);
return (ENOBUFS);
}
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
}
map = rxd->rx_dmamap;
rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
sc->age_cdata.age_rx_sparemap = map;
bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_PREREAD);
rxd->rx_m = m;
desc = rxd->rx_desc;
desc->addr = htole64(segs[0].ds_addr);
desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
AGE_RD_LEN_SHIFT);
return (0);
}
static void
age_rxvlan(struct age_softc *sc)
{
struct ifnet *ifp;
uint32_t reg;
AGE_LOCK_ASSERT(sc);
ifp = sc->age_ifp;
reg = CSR_READ_4(sc, AGE_MAC_CFG);
reg &= ~MAC_CFG_VLAN_TAG_STRIP;
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
reg |= MAC_CFG_VLAN_TAG_STRIP;
CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
}
static void
age_rxfilter(struct age_softc *sc)
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
uint32_t crc;
uint32_t mchash[2];
uint32_t rxcfg;
AGE_LOCK_ASSERT(sc);
ifp = sc->age_ifp;
rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
if ((ifp->if_flags & IFF_BROADCAST) != 0)
rxcfg |= MAC_CFG_BCAST;
if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
if ((ifp->if_flags & IFF_PROMISC) != 0)
rxcfg |= MAC_CFG_PROMISC;
if ((ifp->if_flags & IFF_ALLMULTI) != 0)
rxcfg |= MAC_CFG_ALLMULTI;
CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
return;
}
/* Program new filter. */
bzero(mchash, sizeof(mchash));
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &sc->age_ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN);
mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
}
if_maddr_runlock(ifp);
CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
}
static int
sysctl_age_stats(SYSCTL_HANDLER_ARGS)
{
struct age_softc *sc;
struct age_stats *stats;
int error, result;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
if (result != 1)
return (error);
sc = (struct age_softc *)arg1;
stats = &sc->age_stat;
printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
printf("Transmit good frames : %ju\n",
(uintmax_t)stats->tx_frames);
printf("Transmit good broadcast frames : %ju\n",
(uintmax_t)stats->tx_bcast_frames);
printf("Transmit good multicast frames : %ju\n",
(uintmax_t)stats->tx_mcast_frames);
printf("Transmit pause control frames : %u\n",
stats->tx_pause_frames);
printf("Transmit control frames : %u\n",
stats->tx_control_frames);
printf("Transmit frames with excessive deferrals : %u\n",
stats->tx_excess_defer);
printf("Transmit deferrals : %u\n",
stats->tx_deferred);
printf("Transmit good octets : %ju\n",
(uintmax_t)stats->tx_bytes);
printf("Transmit good broadcast octets : %ju\n",
(uintmax_t)stats->tx_bcast_bytes);
printf("Transmit good multicast octets : %ju\n",
(uintmax_t)stats->tx_mcast_bytes);
printf("Transmit frames 64 bytes : %ju\n",
(uintmax_t)stats->tx_pkts_64);
printf("Transmit frames 65 to 127 bytes : %ju\n",
(uintmax_t)stats->tx_pkts_65_127);
printf("Transmit frames 128 to 255 bytes : %ju\n",
(uintmax_t)stats->tx_pkts_128_255);
printf("Transmit frames 256 to 511 bytes : %ju\n",
(uintmax_t)stats->tx_pkts_256_511);
printf("Transmit frames 512 to 1024 bytes : %ju\n",
(uintmax_t)stats->tx_pkts_512_1023);
printf("Transmit frames 1024 to 1518 bytes : %ju\n",
(uintmax_t)stats->tx_pkts_1024_1518);
printf("Transmit frames 1519 to MTU bytes : %ju\n",
(uintmax_t)stats->tx_pkts_1519_max);
printf("Transmit single collisions : %u\n",
stats->tx_single_colls);
printf("Transmit multiple collisions : %u\n",
stats->tx_multi_colls);
printf("Transmit late collisions : %u\n",
stats->tx_late_colls);
printf("Transmit abort due to excessive collisions : %u\n",
stats->tx_excess_colls);
printf("Transmit underruns due to FIFO underruns : %u\n",
stats->tx_underrun);
printf("Transmit descriptor write-back errors : %u\n",
stats->tx_desc_underrun);
printf("Transmit frames with length mismatched frame size : %u\n",
stats->tx_lenerrs);
printf("Transmit frames with truncated due to MTU size : %u\n",
stats->tx_lenerrs);
printf("Receive good frames : %ju\n",
(uintmax_t)stats->rx_frames);
printf("Receive good broadcast frames : %ju\n",
(uintmax_t)stats->rx_bcast_frames);
printf("Receive good multicast frames : %ju\n",
(uintmax_t)stats->rx_mcast_frames);
printf("Receive pause control frames : %u\n",
stats->rx_pause_frames);
printf("Receive control frames : %u\n",
stats->rx_control_frames);
printf("Receive CRC errors : %u\n",
stats->rx_crcerrs);
printf("Receive frames with length errors : %u\n",
stats->rx_lenerrs);
printf("Receive good octets : %ju\n",
(uintmax_t)stats->rx_bytes);
printf("Receive good broadcast octets : %ju\n",
(uintmax_t)stats->rx_bcast_bytes);
printf("Receive good multicast octets : %ju\n",
(uintmax_t)stats->rx_mcast_bytes);
printf("Receive frames too short : %u\n",
stats->rx_runts);
printf("Receive fragmented frames : %ju\n",
(uintmax_t)stats->rx_fragments);
printf("Receive frames 64 bytes : %ju\n",
(uintmax_t)stats->rx_pkts_64);
printf("Receive frames 65 to 127 bytes : %ju\n",
(uintmax_t)stats->rx_pkts_65_127);
printf("Receive frames 128 to 255 bytes : %ju\n",
(uintmax_t)stats->rx_pkts_128_255);
printf("Receive frames 256 to 511 bytes : %ju\n",
(uintmax_t)stats->rx_pkts_256_511);
printf("Receive frames 512 to 1024 bytes : %ju\n",
(uintmax_t)stats->rx_pkts_512_1023);
printf("Receive frames 1024 to 1518 bytes : %ju\n",
(uintmax_t)stats->rx_pkts_1024_1518);
printf("Receive frames 1519 to MTU bytes : %ju\n",
(uintmax_t)stats->rx_pkts_1519_max);
printf("Receive frames too long : %ju\n",
(uint64_t)stats->rx_pkts_truncated);
printf("Receive frames with FIFO overflow : %u\n",
stats->rx_fifo_oflows);
printf("Receive frames with return descriptor overflow : %u\n",
stats->rx_desc_oflows);
printf("Receive frames with alignment errors : %u\n",
stats->rx_alignerrs);
printf("Receive frames dropped due to address filtering : %ju\n",
(uint64_t)stats->rx_pkts_filtered);
return (error);
}
static int
sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
{
int error, value;
if (arg1 == NULL)
return (EINVAL);
value = *(int *)arg1;
error = sysctl_handle_int(oidp, &value, 0, req);
if (error || req->newptr == NULL)
return (error);
if (value < low || value > high)
return (EINVAL);
*(int *)arg1 = value;
return (0);
}
static int
sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
{
return (sysctl_int_range(oidp, arg1, arg2, req,
AGE_PROC_MIN, AGE_PROC_MAX));
}
static int
sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
{
return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
AGE_IM_TIMER_MAX));
}