Alexander Motin f15d6a5457 Improve logging of 128KB writes
Before my ZIL space optimization few years ago 128KB writes were logged
as two 64KB+ records in two 128KB log blocks.  After that change it
became ~127KB+/1KB+ in two 128KB log blocks to free space in the second
block for another record.  Unfortunately in case of 128KB only writes,
when space in the second block remained unused, that change increased
write latency by unbalancing checksum computation and write times
between parallel threads.  It also didn't help with SLOG space
efficiency in that case.

This change introduces new 68KB log block size, used for both writes
below 67KB and 128KB-sharp writes.  Writes of 68-127KB are still using
one 128KB block to not increase processing overhead.  Writes above
131KB are still using full 128KB blocks, since possible saving there
is small.  Mixed loads will likely also fall back to previous 128KB,
since code uses maximum of the last 16 requested block sizes.

Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by:  Alexander Motin <mav@FreeBSD.org>
Closes #9409
2019-11-11 09:27:59 -08:00

3689 lines
111 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2011, 2018 by Delphix. All rights reserved.
* Copyright (c) 2014 Integros [integros.com]
* Copyright (c) 2018 Datto Inc.
*/
/* Portions Copyright 2010 Robert Milkowski */
#include <sys/zfs_context.h>
#include <sys/spa.h>
#include <sys/spa_impl.h>
#include <sys/dmu.h>
#include <sys/zap.h>
#include <sys/arc.h>
#include <sys/stat.h>
#include <sys/zil.h>
#include <sys/zil_impl.h>
#include <sys/dsl_dataset.h>
#include <sys/vdev_impl.h>
#include <sys/dmu_tx.h>
#include <sys/dsl_pool.h>
#include <sys/metaslab.h>
#include <sys/trace_zfs.h>
#include <sys/abd.h>
/*
* The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
* calls that change the file system. Each itx has enough information to
* be able to replay them after a system crash, power loss, or
* equivalent failure mode. These are stored in memory until either:
*
* 1. they are committed to the pool by the DMU transaction group
* (txg), at which point they can be discarded; or
* 2. they are committed to the on-disk ZIL for the dataset being
* modified (e.g. due to an fsync, O_DSYNC, or other synchronous
* requirement).
*
* In the event of a crash or power loss, the itxs contained by each
* dataset's on-disk ZIL will be replayed when that dataset is first
* instantiated (e.g. if the dataset is a normal filesystem, when it is
* first mounted).
*
* As hinted at above, there is one ZIL per dataset (both the in-memory
* representation, and the on-disk representation). The on-disk format
* consists of 3 parts:
*
* - a single, per-dataset, ZIL header; which points to a chain of
* - zero or more ZIL blocks; each of which contains
* - zero or more ZIL records
*
* A ZIL record holds the information necessary to replay a single
* system call transaction. A ZIL block can hold many ZIL records, and
* the blocks are chained together, similarly to a singly linked list.
*
* Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
* block in the chain, and the ZIL header points to the first block in
* the chain.
*
* Note, there is not a fixed place in the pool to hold these ZIL
* blocks; they are dynamically allocated and freed as needed from the
* blocks available on the pool, though they can be preferentially
* allocated from a dedicated "log" vdev.
*/
/*
* This controls the amount of time that a ZIL block (lwb) will remain
* "open" when it isn't "full", and it has a thread waiting for it to be
* committed to stable storage. Please refer to the zil_commit_waiter()
* function (and the comments within it) for more details.
*/
int zfs_commit_timeout_pct = 5;
/*
* See zil.h for more information about these fields.
*/
zil_stats_t zil_stats = {
{ "zil_commit_count", KSTAT_DATA_UINT64 },
{ "zil_commit_writer_count", KSTAT_DATA_UINT64 },
{ "zil_itx_count", KSTAT_DATA_UINT64 },
{ "zil_itx_indirect_count", KSTAT_DATA_UINT64 },
{ "zil_itx_indirect_bytes", KSTAT_DATA_UINT64 },
{ "zil_itx_copied_count", KSTAT_DATA_UINT64 },
{ "zil_itx_copied_bytes", KSTAT_DATA_UINT64 },
{ "zil_itx_needcopy_count", KSTAT_DATA_UINT64 },
{ "zil_itx_needcopy_bytes", KSTAT_DATA_UINT64 },
{ "zil_itx_metaslab_normal_count", KSTAT_DATA_UINT64 },
{ "zil_itx_metaslab_normal_bytes", KSTAT_DATA_UINT64 },
{ "zil_itx_metaslab_slog_count", KSTAT_DATA_UINT64 },
{ "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64 },
};
static kstat_t *zil_ksp;
/*
* Disable intent logging replay. This global ZIL switch affects all pools.
*/
int zil_replay_disable = 0;
/*
* Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to
* the disk(s) by the ZIL after an LWB write has completed. Setting this
* will cause ZIL corruption on power loss if a volatile out-of-order
* write cache is enabled.
*/
int zil_nocacheflush = 0;
/*
* Limit SLOG write size per commit executed with synchronous priority.
* Any writes above that will be executed with lower (asynchronous) priority
* to limit potential SLOG device abuse by single active ZIL writer.
*/
unsigned long zil_slog_bulk = 768 * 1024;
static kmem_cache_t *zil_lwb_cache;
static kmem_cache_t *zil_zcw_cache;
#define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
static int
zil_bp_compare(const void *x1, const void *x2)
{
const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
if (likely(cmp))
return (cmp);
return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
}
static void
zil_bp_tree_init(zilog_t *zilog)
{
avl_create(&zilog->zl_bp_tree, zil_bp_compare,
sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
}
static void
zil_bp_tree_fini(zilog_t *zilog)
{
avl_tree_t *t = &zilog->zl_bp_tree;
zil_bp_node_t *zn;
void *cookie = NULL;
while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
kmem_free(zn, sizeof (zil_bp_node_t));
avl_destroy(t);
}
int
zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
{
avl_tree_t *t = &zilog->zl_bp_tree;
const dva_t *dva;
zil_bp_node_t *zn;
avl_index_t where;
if (BP_IS_EMBEDDED(bp))
return (0);
dva = BP_IDENTITY(bp);
if (avl_find(t, dva, &where) != NULL)
return (SET_ERROR(EEXIST));
zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
zn->zn_dva = *dva;
avl_insert(t, zn, where);
return (0);
}
static zil_header_t *
zil_header_in_syncing_context(zilog_t *zilog)
{
return ((zil_header_t *)zilog->zl_header);
}
static void
zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
{
zio_cksum_t *zc = &bp->blk_cksum;
zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
}
/*
* Read a log block and make sure it's valid.
*/
static int
zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp,
blkptr_t *nbp, void *dst, char **end)
{
enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
arc_flags_t aflags = ARC_FLAG_WAIT;
arc_buf_t *abuf = NULL;
zbookmark_phys_t zb;
int error;
if (zilog->zl_header->zh_claim_txg == 0)
zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
zio_flags |= ZIO_FLAG_SPECULATIVE;
if (!decrypt)
zio_flags |= ZIO_FLAG_RAW;
SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func,
&abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
if (error == 0) {
zio_cksum_t cksum = bp->blk_cksum;
/*
* Validate the checksummed log block.
*
* Sequence numbers should be... sequential. The checksum
* verifier for the next block should be bp's checksum plus 1.
*
* Also check the log chain linkage and size used.
*/
cksum.zc_word[ZIL_ZC_SEQ]++;
if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
zil_chain_t *zilc = abuf->b_data;
char *lr = (char *)(zilc + 1);
uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
error = SET_ERROR(ECKSUM);
} else {
ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
bcopy(lr, dst, len);
*end = (char *)dst + len;
*nbp = zilc->zc_next_blk;
}
} else {
char *lr = abuf->b_data;
uint64_t size = BP_GET_LSIZE(bp);
zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
(zilc->zc_nused > (size - sizeof (*zilc)))) {
error = SET_ERROR(ECKSUM);
} else {
ASSERT3U(zilc->zc_nused, <=,
SPA_OLD_MAXBLOCKSIZE);
bcopy(lr, dst, zilc->zc_nused);
*end = (char *)dst + zilc->zc_nused;
*nbp = zilc->zc_next_blk;
}
}
arc_buf_destroy(abuf, &abuf);
}
return (error);
}
/*
* Read a TX_WRITE log data block.
*/
static int
zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
{
enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
const blkptr_t *bp = &lr->lr_blkptr;
arc_flags_t aflags = ARC_FLAG_WAIT;
arc_buf_t *abuf = NULL;
zbookmark_phys_t zb;
int error;
if (BP_IS_HOLE(bp)) {
if (wbuf != NULL)
bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
return (0);
}
if (zilog->zl_header->zh_claim_txg == 0)
zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
/*
* If we are not using the resulting data, we are just checking that
* it hasn't been corrupted so we don't need to waste CPU time
* decompressing and decrypting it.
*/
if (wbuf == NULL)
zio_flags |= ZIO_FLAG_RAW;
SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
if (error == 0) {
if (wbuf != NULL)
bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
arc_buf_destroy(abuf, &abuf);
}
return (error);
}
/*
* Parse the intent log, and call parse_func for each valid record within.
*/
int
zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg,
boolean_t decrypt)
{
const zil_header_t *zh = zilog->zl_header;
boolean_t claimed = !!zh->zh_claim_txg;
uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
uint64_t max_blk_seq = 0;
uint64_t max_lr_seq = 0;
uint64_t blk_count = 0;
uint64_t lr_count = 0;
blkptr_t blk, next_blk;
char *lrbuf, *lrp;
int error = 0;
bzero(&next_blk, sizeof (blkptr_t));
/*
* Old logs didn't record the maximum zh_claim_lr_seq.
*/
if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
claim_lr_seq = UINT64_MAX;
/*
* Starting at the block pointed to by zh_log we read the log chain.
* For each block in the chain we strongly check that block to
* ensure its validity. We stop when an invalid block is found.
* For each block pointer in the chain we call parse_blk_func().
* For each record in each valid block we call parse_lr_func().
* If the log has been claimed, stop if we encounter a sequence
* number greater than the highest claimed sequence number.
*/
lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
zil_bp_tree_init(zilog);
for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
int reclen;
char *end = NULL;
if (blk_seq > claim_blk_seq)
break;
error = parse_blk_func(zilog, &blk, arg, txg);
if (error != 0)
break;
ASSERT3U(max_blk_seq, <, blk_seq);
max_blk_seq = blk_seq;
blk_count++;
if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
break;
error = zil_read_log_block(zilog, decrypt, &blk, &next_blk,
lrbuf, &end);
if (error != 0)
break;
for (lrp = lrbuf; lrp < end; lrp += reclen) {
lr_t *lr = (lr_t *)lrp;
reclen = lr->lrc_reclen;
ASSERT3U(reclen, >=, sizeof (lr_t));
if (lr->lrc_seq > claim_lr_seq)
goto done;
error = parse_lr_func(zilog, lr, arg, txg);
if (error != 0)
goto done;
ASSERT3U(max_lr_seq, <, lr->lrc_seq);
max_lr_seq = lr->lrc_seq;
lr_count++;
}
}
done:
zilog->zl_parse_error = error;
zilog->zl_parse_blk_seq = max_blk_seq;
zilog->zl_parse_lr_seq = max_lr_seq;
zilog->zl_parse_blk_count = blk_count;
zilog->zl_parse_lr_count = lr_count;
ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
(max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq) ||
(decrypt && error == EIO));
zil_bp_tree_fini(zilog);
zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
return (error);
}
/* ARGSUSED */
static int
zil_clear_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
{
ASSERT(!BP_IS_HOLE(bp));
/*
* As we call this function from the context of a rewind to a
* checkpoint, each ZIL block whose txg is later than the txg
* that we rewind to is invalid. Thus, we return -1 so
* zil_parse() doesn't attempt to read it.
*/
if (bp->blk_birth >= first_txg)
return (-1);
if (zil_bp_tree_add(zilog, bp) != 0)
return (0);
zio_free(zilog->zl_spa, first_txg, bp);
return (0);
}
/* ARGSUSED */
static int
zil_noop_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
{
return (0);
}
static int
zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
{
/*
* Claim log block if not already committed and not already claimed.
* If tx == NULL, just verify that the block is claimable.
*/
if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
zil_bp_tree_add(zilog, bp) != 0)
return (0);
return (zio_wait(zio_claim(NULL, zilog->zl_spa,
tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
}
static int
zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
{
lr_write_t *lr = (lr_write_t *)lrc;
int error;
if (lrc->lrc_txtype != TX_WRITE)
return (0);
/*
* If the block is not readable, don't claim it. This can happen
* in normal operation when a log block is written to disk before
* some of the dmu_sync() blocks it points to. In this case, the
* transaction cannot have been committed to anyone (we would have
* waited for all writes to be stable first), so it is semantically
* correct to declare this the end of the log.
*/
if (lr->lr_blkptr.blk_birth >= first_txg) {
error = zil_read_log_data(zilog, lr, NULL);
if (error != 0)
return (error);
}
return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
}
/* ARGSUSED */
static int
zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
{
zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
return (0);
}
static int
zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
{
lr_write_t *lr = (lr_write_t *)lrc;
blkptr_t *bp = &lr->lr_blkptr;
/*
* If we previously claimed it, we need to free it.
*/
if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
!BP_IS_HOLE(bp))
zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
return (0);
}
static int
zil_lwb_vdev_compare(const void *x1, const void *x2)
{
const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
return (TREE_CMP(v1, v2));
}
static lwb_t *
zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg,
boolean_t fastwrite)
{
lwb_t *lwb;
lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
lwb->lwb_zilog = zilog;
lwb->lwb_blk = *bp;
lwb->lwb_fastwrite = fastwrite;
lwb->lwb_slog = slog;
lwb->lwb_state = LWB_STATE_CLOSED;
lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
lwb->lwb_max_txg = txg;
lwb->lwb_write_zio = NULL;
lwb->lwb_root_zio = NULL;
lwb->lwb_tx = NULL;
lwb->lwb_issued_timestamp = 0;
if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
lwb->lwb_nused = sizeof (zil_chain_t);
lwb->lwb_sz = BP_GET_LSIZE(bp);
} else {
lwb->lwb_nused = 0;
lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
}
mutex_enter(&zilog->zl_lock);
list_insert_tail(&zilog->zl_lwb_list, lwb);
mutex_exit(&zilog->zl_lock);
ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
VERIFY(list_is_empty(&lwb->lwb_waiters));
VERIFY(list_is_empty(&lwb->lwb_itxs));
return (lwb);
}
static void
zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
{
ASSERT(MUTEX_HELD(&zilog->zl_lock));
ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
VERIFY(list_is_empty(&lwb->lwb_waiters));
VERIFY(list_is_empty(&lwb->lwb_itxs));
ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
ASSERT3P(lwb->lwb_write_zio, ==, NULL);
ASSERT3P(lwb->lwb_root_zio, ==, NULL);
ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
lwb->lwb_state == LWB_STATE_FLUSH_DONE);
/*
* Clear the zilog's field to indicate this lwb is no longer
* valid, and prevent use-after-free errors.
*/
if (zilog->zl_last_lwb_opened == lwb)
zilog->zl_last_lwb_opened = NULL;
kmem_cache_free(zil_lwb_cache, lwb);
}
/*
* Called when we create in-memory log transactions so that we know
* to cleanup the itxs at the end of spa_sync().
*/
void
zilog_dirty(zilog_t *zilog, uint64_t txg)
{
dsl_pool_t *dp = zilog->zl_dmu_pool;
dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
ASSERT(spa_writeable(zilog->zl_spa));
if (ds->ds_is_snapshot)
panic("dirtying snapshot!");
if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
/* up the hold count until we can be written out */
dmu_buf_add_ref(ds->ds_dbuf, zilog);
zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
}
}
/*
* Determine if the zil is dirty in the specified txg. Callers wanting to
* ensure that the dirty state does not change must hold the itxg_lock for
* the specified txg. Holding the lock will ensure that the zil cannot be
* dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
* state.
*/
boolean_t
zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
{
dsl_pool_t *dp = zilog->zl_dmu_pool;
if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
return (B_TRUE);
return (B_FALSE);
}
/*
* Determine if the zil is dirty. The zil is considered dirty if it has
* any pending itx records that have not been cleaned by zil_clean().
*/
boolean_t
zilog_is_dirty(zilog_t *zilog)
{
dsl_pool_t *dp = zilog->zl_dmu_pool;
for (int t = 0; t < TXG_SIZE; t++) {
if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
return (B_TRUE);
}
return (B_FALSE);
}
/*
* Create an on-disk intent log.
*/
static lwb_t *
zil_create(zilog_t *zilog)
{
const zil_header_t *zh = zilog->zl_header;
lwb_t *lwb = NULL;
uint64_t txg = 0;
dmu_tx_t *tx = NULL;
blkptr_t blk;
int error = 0;
boolean_t fastwrite = FALSE;
boolean_t slog = FALSE;
/*
* Wait for any previous destroy to complete.
*/
txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
ASSERT(zh->zh_claim_txg == 0);
ASSERT(zh->zh_replay_seq == 0);
blk = zh->zh_log;
/*
* Allocate an initial log block if:
* - there isn't one already
* - the existing block is the wrong endianness
*/
if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
tx = dmu_tx_create(zilog->zl_os);
VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
txg = dmu_tx_get_txg(tx);
if (!BP_IS_HOLE(&blk)) {
zio_free(zilog->zl_spa, txg, &blk);
BP_ZERO(&blk);
}
error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk,
ZIL_MIN_BLKSZ, &slog);
fastwrite = TRUE;
if (error == 0)
zil_init_log_chain(zilog, &blk);
}
/*
* Allocate a log write block (lwb) for the first log block.
*/
if (error == 0)
lwb = zil_alloc_lwb(zilog, &blk, slog, txg, fastwrite);
/*
* If we just allocated the first log block, commit our transaction
* and wait for zil_sync() to stuff the block pointer into zh_log.
* (zh is part of the MOS, so we cannot modify it in open context.)
*/
if (tx != NULL) {
dmu_tx_commit(tx);
txg_wait_synced(zilog->zl_dmu_pool, txg);
}
ASSERT(error != 0 || bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
IMPLY(error == 0, lwb != NULL);
return (lwb);
}
/*
* In one tx, free all log blocks and clear the log header. If keep_first
* is set, then we're replaying a log with no content. We want to keep the
* first block, however, so that the first synchronous transaction doesn't
* require a txg_wait_synced() in zil_create(). We don't need to
* txg_wait_synced() here either when keep_first is set, because both
* zil_create() and zil_destroy() will wait for any in-progress destroys
* to complete.
*/
void
zil_destroy(zilog_t *zilog, boolean_t keep_first)
{
const zil_header_t *zh = zilog->zl_header;
lwb_t *lwb;
dmu_tx_t *tx;
uint64_t txg;
/*
* Wait for any previous destroy to complete.
*/
txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
zilog->zl_old_header = *zh; /* debugging aid */
if (BP_IS_HOLE(&zh->zh_log))
return;
tx = dmu_tx_create(zilog->zl_os);
VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
txg = dmu_tx_get_txg(tx);
mutex_enter(&zilog->zl_lock);
ASSERT3U(zilog->zl_destroy_txg, <, txg);
zilog->zl_destroy_txg = txg;
zilog->zl_keep_first = keep_first;
if (!list_is_empty(&zilog->zl_lwb_list)) {
ASSERT(zh->zh_claim_txg == 0);
VERIFY(!keep_first);
while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
if (lwb->lwb_fastwrite)
metaslab_fastwrite_unmark(zilog->zl_spa,
&lwb->lwb_blk);
list_remove(&zilog->zl_lwb_list, lwb);
if (lwb->lwb_buf != NULL)
zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
zil_free_lwb(zilog, lwb);
}
} else if (!keep_first) {
zil_destroy_sync(zilog, tx);
}
mutex_exit(&zilog->zl_lock);
dmu_tx_commit(tx);
}
void
zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
{
ASSERT(list_is_empty(&zilog->zl_lwb_list));
(void) zil_parse(zilog, zil_free_log_block,
zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE);
}
int
zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
{
dmu_tx_t *tx = txarg;
zilog_t *zilog;
uint64_t first_txg;
zil_header_t *zh;
objset_t *os;
int error;
error = dmu_objset_own_obj(dp, ds->ds_object,
DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os);
if (error != 0) {
/*
* EBUSY indicates that the objset is inconsistent, in which
* case it can not have a ZIL.
*/
if (error != EBUSY) {
cmn_err(CE_WARN, "can't open objset for %llu, error %u",
(unsigned long long)ds->ds_object, error);
}
return (0);
}
zilog = dmu_objset_zil(os);
zh = zil_header_in_syncing_context(zilog);
ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
first_txg = spa_min_claim_txg(zilog->zl_spa);
/*
* If the spa_log_state is not set to be cleared, check whether
* the current uberblock is a checkpoint one and if the current
* header has been claimed before moving on.
*
* If the current uberblock is a checkpointed uberblock then
* one of the following scenarios took place:
*
* 1] We are currently rewinding to the checkpoint of the pool.
* 2] We crashed in the middle of a checkpoint rewind but we
* did manage to write the checkpointed uberblock to the
* vdev labels, so when we tried to import the pool again
* the checkpointed uberblock was selected from the import
* procedure.
*
* In both cases we want to zero out all the ZIL blocks, except
* the ones that have been claimed at the time of the checkpoint
* (their zh_claim_txg != 0). The reason is that these blocks
* may be corrupted since we may have reused their locations on
* disk after we took the checkpoint.
*
* We could try to set spa_log_state to SPA_LOG_CLEAR earlier
* when we first figure out whether the current uberblock is
* checkpointed or not. Unfortunately, that would discard all
* the logs, including the ones that are claimed, and we would
* leak space.
*/
if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
(zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
zh->zh_claim_txg == 0)) {
if (!BP_IS_HOLE(&zh->zh_log)) {
(void) zil_parse(zilog, zil_clear_log_block,
zil_noop_log_record, tx, first_txg, B_FALSE);
}
BP_ZERO(&zh->zh_log);
if (os->os_encrypted)
os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
dsl_dataset_dirty(dmu_objset_ds(os), tx);
dmu_objset_disown(os, B_FALSE, FTAG);
return (0);
}
/*
* If we are not rewinding and opening the pool normally, then
* the min_claim_txg should be equal to the first txg of the pool.
*/
ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
/*
* Claim all log blocks if we haven't already done so, and remember
* the highest claimed sequence number. This ensures that if we can
* read only part of the log now (e.g. due to a missing device),
* but we can read the entire log later, we will not try to replay
* or destroy beyond the last block we successfully claimed.
*/
ASSERT3U(zh->zh_claim_txg, <=, first_txg);
if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
(void) zil_parse(zilog, zil_claim_log_block,
zil_claim_log_record, tx, first_txg, B_FALSE);
zh->zh_claim_txg = first_txg;
zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
zh->zh_flags |= ZIL_REPLAY_NEEDED;
zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
if (os->os_encrypted)
os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
dsl_dataset_dirty(dmu_objset_ds(os), tx);
}
ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
dmu_objset_disown(os, B_FALSE, FTAG);
return (0);
}
/*
* Check the log by walking the log chain.
* Checksum errors are ok as they indicate the end of the chain.
* Any other error (no device or read failure) returns an error.
*/
/* ARGSUSED */
int
zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
{
zilog_t *zilog;
objset_t *os;
blkptr_t *bp;
int error;
ASSERT(tx == NULL);
error = dmu_objset_from_ds(ds, &os);
if (error != 0) {
cmn_err(CE_WARN, "can't open objset %llu, error %d",
(unsigned long long)ds->ds_object, error);
return (0);
}
zilog = dmu_objset_zil(os);
bp = (blkptr_t *)&zilog->zl_header->zh_log;
if (!BP_IS_HOLE(bp)) {
vdev_t *vd;
boolean_t valid = B_TRUE;
/*
* Check the first block and determine if it's on a log device
* which may have been removed or faulted prior to loading this
* pool. If so, there's no point in checking the rest of the
* log as its content should have already been synced to the
* pool.
*/
spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
if (vd->vdev_islog && vdev_is_dead(vd))
valid = vdev_log_state_valid(vd);
spa_config_exit(os->os_spa, SCL_STATE, FTAG);
if (!valid)
return (0);
/*
* Check whether the current uberblock is checkpointed (e.g.
* we are rewinding) and whether the current header has been
* claimed or not. If it hasn't then skip verifying it. We
* do this because its ZIL blocks may be part of the pool's
* state before the rewind, which is no longer valid.
*/
zil_header_t *zh = zil_header_in_syncing_context(zilog);
if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
zh->zh_claim_txg == 0)
return (0);
}
/*
* Because tx == NULL, zil_claim_log_block() will not actually claim
* any blocks, but just determine whether it is possible to do so.
* In addition to checking the log chain, zil_claim_log_block()
* will invoke zio_claim() with a done func of spa_claim_notify(),
* which will update spa_max_claim_txg. See spa_load() for details.
*/
error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
zilog->zl_header->zh_claim_txg ? -1ULL :
spa_min_claim_txg(os->os_spa), B_FALSE);
return ((error == ECKSUM || error == ENOENT) ? 0 : error);
}
/*
* When an itx is "skipped", this function is used to properly mark the
* waiter as "done, and signal any thread(s) waiting on it. An itx can
* be skipped (and not committed to an lwb) for a variety of reasons,
* one of them being that the itx was committed via spa_sync(), prior to
* it being committed to an lwb; this can happen if a thread calling
* zil_commit() is racing with spa_sync().
*/
static void
zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
{
mutex_enter(&zcw->zcw_lock);
ASSERT3B(zcw->zcw_done, ==, B_FALSE);
zcw->zcw_done = B_TRUE;
cv_broadcast(&zcw->zcw_cv);
mutex_exit(&zcw->zcw_lock);
}
/*
* This function is used when the given waiter is to be linked into an
* lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
* At this point, the waiter will no longer be referenced by the itx,
* and instead, will be referenced by the lwb.
*/
static void
zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
{
/*
* The lwb_waiters field of the lwb is protected by the zilog's
* zl_lock, thus it must be held when calling this function.
*/
ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
mutex_enter(&zcw->zcw_lock);
ASSERT(!list_link_active(&zcw->zcw_node));
ASSERT3P(zcw->zcw_lwb, ==, NULL);
ASSERT3P(lwb, !=, NULL);
ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
lwb->lwb_state == LWB_STATE_ISSUED ||
lwb->lwb_state == LWB_STATE_WRITE_DONE);
list_insert_tail(&lwb->lwb_waiters, zcw);
zcw->zcw_lwb = lwb;
mutex_exit(&zcw->zcw_lock);
}
/*
* This function is used when zio_alloc_zil() fails to allocate a ZIL
* block, and the given waiter must be linked to the "nolwb waiters"
* list inside of zil_process_commit_list().
*/
static void
zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
{
mutex_enter(&zcw->zcw_lock);
ASSERT(!list_link_active(&zcw->zcw_node));
ASSERT3P(zcw->zcw_lwb, ==, NULL);
list_insert_tail(nolwb, zcw);
mutex_exit(&zcw->zcw_lock);
}
void
zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
{
avl_tree_t *t = &lwb->lwb_vdev_tree;
avl_index_t where;
zil_vdev_node_t *zv, zvsearch;
int ndvas = BP_GET_NDVAS(bp);
int i;
if (zil_nocacheflush)
return;
mutex_enter(&lwb->lwb_vdev_lock);
for (i = 0; i < ndvas; i++) {
zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
if (avl_find(t, &zvsearch, &where) == NULL) {
zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
zv->zv_vdev = zvsearch.zv_vdev;
avl_insert(t, zv, where);
}
}
mutex_exit(&lwb->lwb_vdev_lock);
}
static void
zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
{
avl_tree_t *src = &lwb->lwb_vdev_tree;
avl_tree_t *dst = &nlwb->lwb_vdev_tree;
void *cookie = NULL;
zil_vdev_node_t *zv;
ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
/*
* While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
* not need the protection of lwb_vdev_lock (it will only be modified
* while holding zilog->zl_lock) as its writes and those of its
* children have all completed. The younger 'nlwb' may be waiting on
* future writes to additional vdevs.
*/
mutex_enter(&nlwb->lwb_vdev_lock);
/*
* Tear down the 'lwb' vdev tree, ensuring that entries which do not
* exist in 'nlwb' are moved to it, freeing any would-be duplicates.
*/
while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
avl_index_t where;
if (avl_find(dst, zv, &where) == NULL) {
avl_insert(dst, zv, where);
} else {
kmem_free(zv, sizeof (*zv));
}
}
mutex_exit(&nlwb->lwb_vdev_lock);
}
void
zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
{
lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
}
/*
* This function is a called after all vdevs associated with a given lwb
* write have completed their DKIOCFLUSHWRITECACHE command; or as soon
* as the lwb write completes, if "zil_nocacheflush" is set. Further,
* all "previous" lwb's will have completed before this function is
* called; i.e. this function is called for all previous lwbs before
* it's called for "this" lwb (enforced via zio the dependencies
* configured in zil_lwb_set_zio_dependency()).
*
* The intention is for this function to be called as soon as the
* contents of an lwb are considered "stable" on disk, and will survive
* any sudden loss of power. At this point, any threads waiting for the
* lwb to reach this state are signalled, and the "waiter" structures
* are marked "done".
*/
static void
zil_lwb_flush_vdevs_done(zio_t *zio)
{
lwb_t *lwb = zio->io_private;
zilog_t *zilog = lwb->lwb_zilog;
dmu_tx_t *tx = lwb->lwb_tx;
zil_commit_waiter_t *zcw;
itx_t *itx;
spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
mutex_enter(&zilog->zl_lock);
/*
* Ensure the lwb buffer pointer is cleared before releasing the
* txg. If we have had an allocation failure and the txg is
* waiting to sync then we want zil_sync() to remove the lwb so
* that it's not picked up as the next new one in
* zil_process_commit_list(). zil_sync() will only remove the
* lwb if lwb_buf is null.
*/
lwb->lwb_buf = NULL;
lwb->lwb_tx = NULL;
ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp;
lwb->lwb_root_zio = NULL;
ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
lwb->lwb_state = LWB_STATE_FLUSH_DONE;
if (zilog->zl_last_lwb_opened == lwb) {
/*
* Remember the highest committed log sequence number
* for ztest. We only update this value when all the log
* writes succeeded, because ztest wants to ASSERT that
* it got the whole log chain.
*/
zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
}
while ((itx = list_head(&lwb->lwb_itxs)) != NULL) {
list_remove(&lwb->lwb_itxs, itx);
zil_itx_destroy(itx);
}
while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
mutex_enter(&zcw->zcw_lock);
ASSERT(list_link_active(&zcw->zcw_node));
list_remove(&lwb->lwb_waiters, zcw);
ASSERT3P(zcw->zcw_lwb, ==, lwb);
zcw->zcw_lwb = NULL;
zcw->zcw_zio_error = zio->io_error;
ASSERT3B(zcw->zcw_done, ==, B_FALSE);
zcw->zcw_done = B_TRUE;
cv_broadcast(&zcw->zcw_cv);
mutex_exit(&zcw->zcw_lock);
}
mutex_exit(&zilog->zl_lock);
/*
* Now that we've written this log block, we have a stable pointer
* to the next block in the chain, so it's OK to let the txg in
* which we allocated the next block sync.
*/
dmu_tx_commit(tx);
}
/*
* This is called when an lwb's write zio completes. The callback's
* purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs
* in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved
* in writing out this specific lwb's data, and in the case that cache
* flushes have been deferred, vdevs involved in writing the data for
* previous lwbs. The writes corresponding to all the vdevs in the
* lwb_vdev_tree will have completed by the time this is called, due to
* the zio dependencies configured in zil_lwb_set_zio_dependency(),
* which takes deferred flushes into account. The lwb will be "done"
* once zil_lwb_flush_vdevs_done() is called, which occurs in the zio
* completion callback for the lwb's root zio.
*/
static void
zil_lwb_write_done(zio_t *zio)
{
lwb_t *lwb = zio->io_private;
spa_t *spa = zio->io_spa;
zilog_t *zilog = lwb->lwb_zilog;
avl_tree_t *t = &lwb->lwb_vdev_tree;
void *cookie = NULL;
zil_vdev_node_t *zv;
lwb_t *nlwb;
ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
ASSERT(!BP_IS_GANG(zio->io_bp));
ASSERT(!BP_IS_HOLE(zio->io_bp));
ASSERT(BP_GET_FILL(zio->io_bp) == 0);
abd_put(zio->io_abd);
mutex_enter(&zilog->zl_lock);
ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
lwb->lwb_state = LWB_STATE_WRITE_DONE;
lwb->lwb_write_zio = NULL;
lwb->lwb_fastwrite = FALSE;
nlwb = list_next(&zilog->zl_lwb_list, lwb);
mutex_exit(&zilog->zl_lock);
if (avl_numnodes(t) == 0)
return;
/*
* If there was an IO error, we're not going to call zio_flush()
* on these vdevs, so we simply empty the tree and free the
* nodes. We avoid calling zio_flush() since there isn't any
* good reason for doing so, after the lwb block failed to be
* written out.
*/
if (zio->io_error != 0) {
while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
kmem_free(zv, sizeof (*zv));
return;
}
/*
* If this lwb does not have any threads waiting for it to
* complete, we want to defer issuing the DKIOCFLUSHWRITECACHE
* command to the vdevs written to by "this" lwb, and instead
* rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE
* command for those vdevs. Thus, we merge the vdev tree of
* "this" lwb with the vdev tree of the "next" lwb in the list,
* and assume the "next" lwb will handle flushing the vdevs (or
* deferring the flush(s) again).
*
* This is a useful performance optimization, especially for
* workloads with lots of async write activity and few sync
* write and/or fsync activity, as it has the potential to
* coalesce multiple flush commands to a vdev into one.
*/
if (list_head(&lwb->lwb_waiters) == NULL && nlwb != NULL) {
zil_lwb_flush_defer(lwb, nlwb);
ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
return;
}
while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
if (vd != NULL)
zio_flush(lwb->lwb_root_zio, vd);
kmem_free(zv, sizeof (*zv));
}
}
static void
zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
{
lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
ASSERT(MUTEX_HELD(&zilog->zl_lock));
/*
* The zilog's "zl_last_lwb_opened" field is used to build the
* lwb/zio dependency chain, which is used to preserve the
* ordering of lwb completions that is required by the semantics
* of the ZIL. Each new lwb zio becomes a parent of the
* "previous" lwb zio, such that the new lwb's zio cannot
* complete until the "previous" lwb's zio completes.
*
* This is required by the semantics of zil_commit(); the commit
* waiters attached to the lwbs will be woken in the lwb zio's
* completion callback, so this zio dependency graph ensures the
* waiters are woken in the correct order (the same order the
* lwbs were created).
*/
if (last_lwb_opened != NULL &&
last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) {
ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
last_lwb_opened->lwb_state == LWB_STATE_ISSUED ||
last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE);
ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
zio_add_child(lwb->lwb_root_zio,
last_lwb_opened->lwb_root_zio);
/*
* If the previous lwb's write hasn't already completed,
* we also want to order the completion of the lwb write
* zios (above, we only order the completion of the lwb
* root zios). This is required because of how we can
* defer the DKIOCFLUSHWRITECACHE commands for each lwb.
*
* When the DKIOCFLUSHWRITECACHE commands are deferred,
* the previous lwb will rely on this lwb to flush the
* vdevs written to by that previous lwb. Thus, we need
* to ensure this lwb doesn't issue the flush until
* after the previous lwb's write completes. We ensure
* this ordering by setting the zio parent/child
* relationship here.
*
* Without this relationship on the lwb's write zio,
* it's possible for this lwb's write to complete prior
* to the previous lwb's write completing; and thus, the
* vdevs for the previous lwb would be flushed prior to
* that lwb's data being written to those vdevs (the
* vdevs are flushed in the lwb write zio's completion
* handler, zil_lwb_write_done()).
*/
if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) {
ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL);
zio_add_child(lwb->lwb_write_zio,
last_lwb_opened->lwb_write_zio);
}
}
}
/*
* This function's purpose is to "open" an lwb such that it is ready to
* accept new itxs being committed to it. To do this, the lwb's zio
* structures are created, and linked to the lwb. This function is
* idempotent; if the passed in lwb has already been opened, this
* function is essentially a no-op.
*/
static void
zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
{
zbookmark_phys_t zb;
zio_priority_t prio;
ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
ASSERT3P(lwb, !=, NULL);
EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
/* Lock so zil_sync() doesn't fastwrite_unmark after zio is created */
mutex_enter(&zilog->zl_lock);
if (lwb->lwb_root_zio == NULL) {
abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
BP_GET_LSIZE(&lwb->lwb_blk));
if (!lwb->lwb_fastwrite) {
metaslab_fastwrite_mark(zilog->zl_spa, &lwb->lwb_blk);
lwb->lwb_fastwrite = 1;
}
if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
prio = ZIO_PRIORITY_SYNC_WRITE;
else
prio = ZIO_PRIORITY_ASYNC_WRITE;
lwb->lwb_root_zio = zio_root(zilog->zl_spa,
zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
ASSERT3P(lwb->lwb_root_zio, !=, NULL);
lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE |
ZIO_FLAG_FASTWRITE, &zb);
ASSERT3P(lwb->lwb_write_zio, !=, NULL);
lwb->lwb_state = LWB_STATE_OPENED;
zil_lwb_set_zio_dependency(zilog, lwb);
zilog->zl_last_lwb_opened = lwb;
}
mutex_exit(&zilog->zl_lock);
ASSERT3P(lwb->lwb_root_zio, !=, NULL);
ASSERT3P(lwb->lwb_write_zio, !=, NULL);
ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
}
/*
* Define a limited set of intent log block sizes.
*
* These must be a multiple of 4KB. Note only the amount used (again
* aligned to 4KB) actually gets written. However, we can't always just
* allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
*/
struct {
uint64_t limit;
uint64_t blksz;
} zil_block_buckets[] = {
{ 4096, 4096 }, /* non TX_WRITE */
{ 8192 + 4096, 8192 + 4096 }, /* database */
{ 32768 + 4096, 32768 + 4096 }, /* NFS writes */
{ 65536 + 4096, 65536 + 4096 }, /* 64KB writes */
{ 131072, 131072 }, /* < 128KB writes */
{ 131072 +4096, 65536 + 4096 }, /* 128KB writes */
{ UINT64_MAX, SPA_OLD_MAXBLOCKSIZE}, /* > 128KB writes */
};
/*
* Maximum block size used by the ZIL. This is picked up when the ZIL is
* initialized. Otherwise this should not be used directly; see
* zl_max_block_size instead.
*/
int zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE;
/*
* Start a log block write and advance to the next log block.
* Calls are serialized.
*/
static lwb_t *
zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
{
lwb_t *nlwb = NULL;
zil_chain_t *zilc;
spa_t *spa = zilog->zl_spa;
blkptr_t *bp;
dmu_tx_t *tx;
uint64_t txg;
uint64_t zil_blksz, wsz;
int i, error;
boolean_t slog;
ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
ASSERT3P(lwb->lwb_root_zio, !=, NULL);
ASSERT3P(lwb->lwb_write_zio, !=, NULL);
ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
zilc = (zil_chain_t *)lwb->lwb_buf;
bp = &zilc->zc_next_blk;
} else {
zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
bp = &zilc->zc_next_blk;
}
ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
/*
* Allocate the next block and save its address in this block
* before writing it in order to establish the log chain.
* Note that if the allocation of nlwb synced before we wrote
* the block that points at it (lwb), we'd leak it if we crashed.
* Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
* We dirty the dataset to ensure that zil_sync() will be called
* to clean up in the event of allocation failure or I/O failure.
*/
tx = dmu_tx_create(zilog->zl_os);
/*
* Since we are not going to create any new dirty data, and we
* can even help with clearing the existing dirty data, we
* should not be subject to the dirty data based delays. We
* use TXG_NOTHROTTLE to bypass the delay mechanism.
*/
VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
txg = dmu_tx_get_txg(tx);
lwb->lwb_tx = tx;
/*
* Log blocks are pre-allocated. Here we select the size of the next
* block, based on size used in the last block.
* - first find the smallest bucket that will fit the block from a
* limited set of block sizes. This is because it's faster to write
* blocks allocated from the same metaslab as they are adjacent or
* close.
* - next find the maximum from the new suggested size and an array of
* previous sizes. This lessens a picket fence effect of wrongly
* guessing the size if we have a stream of say 2k, 64k, 2k, 64k
* requests.
*
* Note we only write what is used, but we can't just allocate
* the maximum block size because we can exhaust the available
* pool log space.
*/
zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
for (i = 0; zil_blksz > zil_block_buckets[i].limit; i++)
continue;
zil_blksz = MIN(zil_block_buckets[i].blksz, zilog->zl_max_block_size);
zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
for (i = 0; i < ZIL_PREV_BLKS; i++)
zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
BP_ZERO(bp);
error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, zil_blksz, &slog);
if (slog) {
ZIL_STAT_BUMP(zil_itx_metaslab_slog_count);
ZIL_STAT_INCR(zil_itx_metaslab_slog_bytes, lwb->lwb_nused);
} else {
ZIL_STAT_BUMP(zil_itx_metaslab_normal_count);
ZIL_STAT_INCR(zil_itx_metaslab_normal_bytes, lwb->lwb_nused);
}
if (error == 0) {
ASSERT3U(bp->blk_birth, ==, txg);
bp->blk_cksum = lwb->lwb_blk.blk_cksum;
bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
/*
* Allocate a new log write block (lwb).
*/
nlwb = zil_alloc_lwb(zilog, bp, slog, txg, TRUE);
}
if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
/* For Slim ZIL only write what is used. */
wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
ASSERT3U(wsz, <=, lwb->lwb_sz);
zio_shrink(lwb->lwb_write_zio, wsz);
} else {
wsz = lwb->lwb_sz;
}
zilc->zc_pad = 0;
zilc->zc_nused = lwb->lwb_nused;
zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
/*
* clear unused data for security
*/
bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
zil_lwb_add_block(lwb, &lwb->lwb_blk);
lwb->lwb_issued_timestamp = gethrtime();
lwb->lwb_state = LWB_STATE_ISSUED;
zio_nowait(lwb->lwb_root_zio);
zio_nowait(lwb->lwb_write_zio);
/*
* If there was an allocation failure then nlwb will be null which
* forces a txg_wait_synced().
*/
return (nlwb);
}
/*
* Maximum amount of write data that can be put into single log block.
*/
uint64_t
zil_max_log_data(zilog_t *zilog)
{
return (zilog->zl_max_block_size -
sizeof (zil_chain_t) - sizeof (lr_write_t));
}
/*
* Maximum amount of log space we agree to waste to reduce number of
* WR_NEED_COPY chunks to reduce zl_get_data() overhead (~12%).
*/
static inline uint64_t
zil_max_waste_space(zilog_t *zilog)
{
return (zil_max_log_data(zilog) / 8);
}
/*
* Maximum amount of write data for WR_COPIED. For correctness, consumers
* must fall back to WR_NEED_COPY if we can't fit the entire record into one
* maximum sized log block, because each WR_COPIED record must fit in a
* single log block. For space efficiency, we want to fit two records into a
* max-sized log block.
*/
uint64_t
zil_max_copied_data(zilog_t *zilog)
{
return ((zilog->zl_max_block_size - sizeof (zil_chain_t)) / 2 -
sizeof (lr_write_t));
}
static lwb_t *
zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
{
lr_t *lrcb, *lrc;
lr_write_t *lrwb, *lrw;
char *lr_buf;
uint64_t dlen, dnow, lwb_sp, reclen, txg, max_log_data;
ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
ASSERT3P(lwb, !=, NULL);
ASSERT3P(lwb->lwb_buf, !=, NULL);
zil_lwb_write_open(zilog, lwb);
lrc = &itx->itx_lr;
lrw = (lr_write_t *)lrc;
/*
* A commit itx doesn't represent any on-disk state; instead
* it's simply used as a place holder on the commit list, and
* provides a mechanism for attaching a "commit waiter" onto the
* correct lwb (such that the waiter can be signalled upon
* completion of that lwb). Thus, we don't process this itx's
* log record if it's a commit itx (these itx's don't have log
* records), and instead link the itx's waiter onto the lwb's
* list of waiters.
*
* For more details, see the comment above zil_commit().
*/
if (lrc->lrc_txtype == TX_COMMIT) {
mutex_enter(&zilog->zl_lock);
zil_commit_waiter_link_lwb(itx->itx_private, lwb);
itx->itx_private = NULL;
mutex_exit(&zilog->zl_lock);
return (lwb);
}
if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
dlen = P2ROUNDUP_TYPED(
lrw->lr_length, sizeof (uint64_t), uint64_t);
} else {
dlen = 0;
}
reclen = lrc->lrc_reclen;
zilog->zl_cur_used += (reclen + dlen);
txg = lrc->lrc_txg;
ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
cont:
/*
* If this record won't fit in the current log block, start a new one.
* For WR_NEED_COPY optimize layout for minimal number of chunks.
*/
lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
max_log_data = zil_max_log_data(zilog);
if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
lwb_sp < zil_max_waste_space(zilog) &&
(dlen % max_log_data == 0 ||
lwb_sp < reclen + dlen % max_log_data))) {
lwb = zil_lwb_write_issue(zilog, lwb);
if (lwb == NULL)
return (NULL);
zil_lwb_write_open(zilog, lwb);
ASSERT(LWB_EMPTY(lwb));
lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
/*
* There must be enough space in the new, empty log block to
* hold reclen. For WR_COPIED, we need to fit the whole
* record in one block, and reclen is the header size + the
* data size. For WR_NEED_COPY, we can create multiple
* records, splitting the data into multiple blocks, so we
* only need to fit one word of data per block; in this case
* reclen is just the header size (no data).
*/
ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
}
dnow = MIN(dlen, lwb_sp - reclen);
lr_buf = lwb->lwb_buf + lwb->lwb_nused;
bcopy(lrc, lr_buf, reclen);
lrcb = (lr_t *)lr_buf; /* Like lrc, but inside lwb. */
lrwb = (lr_write_t *)lrcb; /* Like lrw, but inside lwb. */
ZIL_STAT_BUMP(zil_itx_count);
/*
* If it's a write, fetch the data or get its blkptr as appropriate.
*/
if (lrc->lrc_txtype == TX_WRITE) {
if (txg > spa_freeze_txg(zilog->zl_spa))
txg_wait_synced(zilog->zl_dmu_pool, txg);
if (itx->itx_wr_state == WR_COPIED) {
ZIL_STAT_BUMP(zil_itx_copied_count);
ZIL_STAT_INCR(zil_itx_copied_bytes, lrw->lr_length);
} else {
char *dbuf;
int error;
if (itx->itx_wr_state == WR_NEED_COPY) {
dbuf = lr_buf + reclen;
lrcb->lrc_reclen += dnow;
if (lrwb->lr_length > dnow)
lrwb->lr_length = dnow;
lrw->lr_offset += dnow;
lrw->lr_length -= dnow;
ZIL_STAT_BUMP(zil_itx_needcopy_count);
ZIL_STAT_INCR(zil_itx_needcopy_bytes, dnow);
} else {
ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT);
dbuf = NULL;
ZIL_STAT_BUMP(zil_itx_indirect_count);
ZIL_STAT_INCR(zil_itx_indirect_bytes,
lrw->lr_length);
}
/*
* We pass in the "lwb_write_zio" rather than
* "lwb_root_zio" so that the "lwb_write_zio"
* becomes the parent of any zio's created by
* the "zl_get_data" callback. The vdevs are
* flushed after the "lwb_write_zio" completes,
* so we want to make sure that completion
* callback waits for these additional zio's,
* such that the vdevs used by those zio's will
* be included in the lwb's vdev tree, and those
* vdevs will be properly flushed. If we passed
* in "lwb_root_zio" here, then these additional
* vdevs may not be flushed; e.g. if these zio's
* completed after "lwb_write_zio" completed.
*/
error = zilog->zl_get_data(itx->itx_private,
lrwb, dbuf, lwb, lwb->lwb_write_zio);
if (error == EIO) {
txg_wait_synced(zilog->zl_dmu_pool, txg);
return (lwb);
}
if (error != 0) {
ASSERT(error == ENOENT || error == EEXIST ||
error == EALREADY);
return (lwb);
}
}
}
/*
* We're actually making an entry, so update lrc_seq to be the
* log record sequence number. Note that this is generally not
* equal to the itx sequence number because not all transactions
* are synchronous, and sometimes spa_sync() gets there first.
*/
lrcb->lrc_seq = ++zilog->zl_lr_seq;
lwb->lwb_nused += reclen + dnow;
zil_lwb_add_txg(lwb, txg);
ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
dlen -= dnow;
if (dlen > 0) {
zilog->zl_cur_used += reclen;
goto cont;
}
return (lwb);
}
itx_t *
zil_itx_create(uint64_t txtype, size_t lrsize)
{
size_t itxsize;
itx_t *itx;
lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
itxsize = offsetof(itx_t, itx_lr) + lrsize;
itx = zio_data_buf_alloc(itxsize);
itx->itx_lr.lrc_txtype = txtype;
itx->itx_lr.lrc_reclen = lrsize;
itx->itx_lr.lrc_seq = 0; /* defensive */
itx->itx_sync = B_TRUE; /* default is synchronous */
itx->itx_callback = NULL;
itx->itx_callback_data = NULL;
itx->itx_size = itxsize;
return (itx);
}
void
zil_itx_destroy(itx_t *itx)
{
IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL);
IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
if (itx->itx_callback != NULL)
itx->itx_callback(itx->itx_callback_data);
zio_data_buf_free(itx, itx->itx_size);
}
/*
* Free up the sync and async itxs. The itxs_t has already been detached
* so no locks are needed.
*/
static void
zil_itxg_clean(itxs_t *itxs)
{
itx_t *itx;
list_t *list;
avl_tree_t *t;
void *cookie;
itx_async_node_t *ian;
list = &itxs->i_sync_list;
while ((itx = list_head(list)) != NULL) {
/*
* In the general case, commit itxs will not be found
* here, as they'll be committed to an lwb via
* zil_lwb_commit(), and free'd in that function. Having
* said that, it is still possible for commit itxs to be
* found here, due to the following race:
*
* - a thread calls zil_commit() which assigns the
* commit itx to a per-txg i_sync_list
* - zil_itxg_clean() is called (e.g. via spa_sync())
* while the waiter is still on the i_sync_list
*
* There's nothing to prevent syncing the txg while the
* waiter is on the i_sync_list. This normally doesn't
* happen because spa_sync() is slower than zil_commit(),
* but if zil_commit() calls txg_wait_synced() (e.g.
* because zil_create() or zil_commit_writer_stall() is
* called) we will hit this case.
*/
if (itx->itx_lr.lrc_txtype == TX_COMMIT)
zil_commit_waiter_skip(itx->itx_private);
list_remove(list, itx);
zil_itx_destroy(itx);
}
cookie = NULL;
t = &itxs->i_async_tree;
while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
list = &ian->ia_list;
while ((itx = list_head(list)) != NULL) {
list_remove(list, itx);
/* commit itxs should never be on the async lists. */
ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
zil_itx_destroy(itx);
}
list_destroy(list);
kmem_free(ian, sizeof (itx_async_node_t));
}
avl_destroy(t);
kmem_free(itxs, sizeof (itxs_t));
}
static int
zil_aitx_compare(const void *x1, const void *x2)
{
const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
return (TREE_CMP(o1, o2));
}
/*
* Remove all async itx with the given oid.
*/
void
zil_remove_async(zilog_t *zilog, uint64_t oid)
{
uint64_t otxg, txg;
itx_async_node_t *ian;
avl_tree_t *t;
avl_index_t where;
list_t clean_list;
itx_t *itx;
ASSERT(oid != 0);
list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
otxg = ZILTEST_TXG;
else
otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
mutex_enter(&itxg->itxg_lock);
if (itxg->itxg_txg != txg) {
mutex_exit(&itxg->itxg_lock);
continue;
}
/*
* Locate the object node and append its list.
*/
t = &itxg->itxg_itxs->i_async_tree;
ian = avl_find(t, &oid, &where);
if (ian != NULL)
list_move_tail(&clean_list, &ian->ia_list);
mutex_exit(&itxg->itxg_lock);
}
while ((itx = list_head(&clean_list)) != NULL) {
list_remove(&clean_list, itx);
/* commit itxs should never be on the async lists. */
ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
zil_itx_destroy(itx);
}
list_destroy(&clean_list);
}
void
zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
{
uint64_t txg;
itxg_t *itxg;
itxs_t *itxs, *clean = NULL;
/*
* Ensure the data of a renamed file is committed before the rename.
*/
if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
zil_async_to_sync(zilog, itx->itx_oid);
if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
txg = ZILTEST_TXG;
else
txg = dmu_tx_get_txg(tx);
itxg = &zilog->zl_itxg[txg & TXG_MASK];
mutex_enter(&itxg->itxg_lock);
itxs = itxg->itxg_itxs;
if (itxg->itxg_txg != txg) {
if (itxs != NULL) {
/*
* The zil_clean callback hasn't got around to cleaning
* this itxg. Save the itxs for release below.
* This should be rare.
*/
zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
"txg %llu", itxg->itxg_txg);
clean = itxg->itxg_itxs;
}
itxg->itxg_txg = txg;
itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
KM_SLEEP);
list_create(&itxs->i_sync_list, sizeof (itx_t),
offsetof(itx_t, itx_node));
avl_create(&itxs->i_async_tree, zil_aitx_compare,
sizeof (itx_async_node_t),
offsetof(itx_async_node_t, ia_node));
}
if (itx->itx_sync) {
list_insert_tail(&itxs->i_sync_list, itx);
} else {
avl_tree_t *t = &itxs->i_async_tree;
uint64_t foid =
LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
itx_async_node_t *ian;
avl_index_t where;
ian = avl_find(t, &foid, &where);
if (ian == NULL) {
ian = kmem_alloc(sizeof (itx_async_node_t),
KM_SLEEP);
list_create(&ian->ia_list, sizeof (itx_t),
offsetof(itx_t, itx_node));
ian->ia_foid = foid;
avl_insert(t, ian, where);
}
list_insert_tail(&ian->ia_list, itx);
}
itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
/*
* We don't want to dirty the ZIL using ZILTEST_TXG, because
* zil_clean() will never be called using ZILTEST_TXG. Thus, we
* need to be careful to always dirty the ZIL using the "real"
* TXG (not itxg_txg) even when the SPA is frozen.
*/
zilog_dirty(zilog, dmu_tx_get_txg(tx));
mutex_exit(&itxg->itxg_lock);
/* Release the old itxs now we've dropped the lock */
if (clean != NULL)
zil_itxg_clean(clean);
}
/*
* If there are any in-memory intent log transactions which have now been
* synced then start up a taskq to free them. We should only do this after we
* have written out the uberblocks (i.e. txg has been committed) so that
* don't inadvertently clean out in-memory log records that would be required
* by zil_commit().
*/
void
zil_clean(zilog_t *zilog, uint64_t synced_txg)
{
itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
itxs_t *clean_me;
ASSERT3U(synced_txg, <, ZILTEST_TXG);
mutex_enter(&itxg->itxg_lock);
if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
mutex_exit(&itxg->itxg_lock);
return;
}
ASSERT3U(itxg->itxg_txg, <=, synced_txg);
ASSERT3U(itxg->itxg_txg, !=, 0);
clean_me = itxg->itxg_itxs;
itxg->itxg_itxs = NULL;
itxg->itxg_txg = 0;
mutex_exit(&itxg->itxg_lock);
/*
* Preferably start a task queue to free up the old itxs but
* if taskq_dispatch can't allocate resources to do that then
* free it in-line. This should be rare. Note, using TQ_SLEEP
* created a bad performance problem.
*/
ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
(void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP);
if (id == TASKQID_INVALID)
zil_itxg_clean(clean_me);
}
/*
* This function will traverse the queue of itxs that need to be
* committed, and move them onto the ZIL's zl_itx_commit_list.
*/
static void
zil_get_commit_list(zilog_t *zilog)
{
uint64_t otxg, txg;
list_t *commit_list = &zilog->zl_itx_commit_list;
ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
otxg = ZILTEST_TXG;
else
otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
/*
* This is inherently racy, since there is nothing to prevent
* the last synced txg from changing. That's okay since we'll
* only commit things in the future.
*/
for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
mutex_enter(&itxg->itxg_lock);
if (itxg->itxg_txg != txg) {
mutex_exit(&itxg->itxg_lock);
continue;
}
/*
* If we're adding itx records to the zl_itx_commit_list,
* then the zil better be dirty in this "txg". We can assert
* that here since we're holding the itxg_lock which will
* prevent spa_sync from cleaning it. Once we add the itxs
* to the zl_itx_commit_list we must commit it to disk even
* if it's unnecessary (i.e. the txg was synced).
*/
ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
mutex_exit(&itxg->itxg_lock);
}
}
/*
* Move the async itxs for a specified object to commit into sync lists.
*/
void
zil_async_to_sync(zilog_t *zilog, uint64_t foid)
{
uint64_t otxg, txg;
itx_async_node_t *ian;
avl_tree_t *t;
avl_index_t where;
if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
otxg = ZILTEST_TXG;
else
otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
/*
* This is inherently racy, since there is nothing to prevent
* the last synced txg from changing.
*/
for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
mutex_enter(&itxg->itxg_lock);
if (itxg->itxg_txg != txg) {
mutex_exit(&itxg->itxg_lock);
continue;
}
/*
* If a foid is specified then find that node and append its
* list. Otherwise walk the tree appending all the lists
* to the sync list. We add to the end rather than the
* beginning to ensure the create has happened.
*/
t = &itxg->itxg_itxs->i_async_tree;
if (foid != 0) {
ian = avl_find(t, &foid, &where);
if (ian != NULL) {
list_move_tail(&itxg->itxg_itxs->i_sync_list,
&ian->ia_list);
}
} else {
void *cookie = NULL;
while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
list_move_tail(&itxg->itxg_itxs->i_sync_list,
&ian->ia_list);
list_destroy(&ian->ia_list);
kmem_free(ian, sizeof (itx_async_node_t));
}
}
mutex_exit(&itxg->itxg_lock);
}
}
/*
* This function will prune commit itxs that are at the head of the
* commit list (it won't prune past the first non-commit itx), and
* either: a) attach them to the last lwb that's still pending
* completion, or b) skip them altogether.
*
* This is used as a performance optimization to prevent commit itxs
* from generating new lwbs when it's unnecessary to do so.
*/
static void
zil_prune_commit_list(zilog_t *zilog)
{
itx_t *itx;
ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
lr_t *lrc = &itx->itx_lr;
if (lrc->lrc_txtype != TX_COMMIT)
break;
mutex_enter(&zilog->zl_lock);
lwb_t *last_lwb = zilog->zl_last_lwb_opened;
if (last_lwb == NULL ||
last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
/*
* All of the itxs this waiter was waiting on
* must have already completed (or there were
* never any itx's for it to wait on), so it's
* safe to skip this waiter and mark it done.
*/
zil_commit_waiter_skip(itx->itx_private);
} else {
zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
itx->itx_private = NULL;
}
mutex_exit(&zilog->zl_lock);
list_remove(&zilog->zl_itx_commit_list, itx);
zil_itx_destroy(itx);
}
IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
}
static void
zil_commit_writer_stall(zilog_t *zilog)
{
/*
* When zio_alloc_zil() fails to allocate the next lwb block on
* disk, we must call txg_wait_synced() to ensure all of the
* lwbs in the zilog's zl_lwb_list are synced and then freed (in
* zil_sync()), such that any subsequent ZIL writer (i.e. a call
* to zil_process_commit_list()) will have to call zil_create(),
* and start a new ZIL chain.
*
* Since zil_alloc_zil() failed, the lwb that was previously
* issued does not have a pointer to the "next" lwb on disk.
* Thus, if another ZIL writer thread was to allocate the "next"
* on-disk lwb, that block could be leaked in the event of a
* crash (because the previous lwb on-disk would not point to
* it).
*
* We must hold the zilog's zl_issuer_lock while we do this, to
* ensure no new threads enter zil_process_commit_list() until
* all lwb's in the zl_lwb_list have been synced and freed
* (which is achieved via the txg_wait_synced() call).
*/
ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
txg_wait_synced(zilog->zl_dmu_pool, 0);
ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
}
/*
* This function will traverse the commit list, creating new lwbs as
* needed, and committing the itxs from the commit list to these newly
* created lwbs. Additionally, as a new lwb is created, the previous
* lwb will be issued to the zio layer to be written to disk.
*/
static void
zil_process_commit_list(zilog_t *zilog)
{
spa_t *spa = zilog->zl_spa;
list_t nolwb_itxs;
list_t nolwb_waiters;
lwb_t *lwb;
itx_t *itx;
ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
/*
* Return if there's nothing to commit before we dirty the fs by
* calling zil_create().
*/
if (list_head(&zilog->zl_itx_commit_list) == NULL)
return;
list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
offsetof(zil_commit_waiter_t, zcw_node));
lwb = list_tail(&zilog->zl_lwb_list);
if (lwb == NULL) {
lwb = zil_create(zilog);
} else {
ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
}
while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
lr_t *lrc = &itx->itx_lr;
uint64_t txg = lrc->lrc_txg;
ASSERT3U(txg, !=, 0);
if (lrc->lrc_txtype == TX_COMMIT) {
DTRACE_PROBE2(zil__process__commit__itx,
zilog_t *, zilog, itx_t *, itx);
} else {
DTRACE_PROBE2(zil__process__normal__itx,
zilog_t *, zilog, itx_t *, itx);
}
list_remove(&zilog->zl_itx_commit_list, itx);
boolean_t synced = txg <= spa_last_synced_txg(spa);
boolean_t frozen = txg > spa_freeze_txg(spa);
/*
* If the txg of this itx has already been synced out, then
* we don't need to commit this itx to an lwb. This is
* because the data of this itx will have already been
* written to the main pool. This is inherently racy, and
* it's still ok to commit an itx whose txg has already
* been synced; this will result in a write that's
* unnecessary, but will do no harm.
*
* With that said, we always want to commit TX_COMMIT itxs
* to an lwb, regardless of whether or not that itx's txg
* has been synced out. We do this to ensure any OPENED lwb
* will always have at least one zil_commit_waiter_t linked
* to the lwb.
*
* As a counter-example, if we skipped TX_COMMIT itx's
* whose txg had already been synced, the following
* situation could occur if we happened to be racing with
* spa_sync:
*
* 1. We commit a non-TX_COMMIT itx to an lwb, where the
* itx's txg is 10 and the last synced txg is 9.
* 2. spa_sync finishes syncing out txg 10.
* 3. We move to the next itx in the list, it's a TX_COMMIT
* whose txg is 10, so we skip it rather than committing
* it to the lwb used in (1).
*
* If the itx that is skipped in (3) is the last TX_COMMIT
* itx in the commit list, than it's possible for the lwb
* used in (1) to remain in the OPENED state indefinitely.
*
* To prevent the above scenario from occurring, ensuring
* that once an lwb is OPENED it will transition to ISSUED
* and eventually DONE, we always commit TX_COMMIT itx's to
* an lwb here, even if that itx's txg has already been
* synced.
*
* Finally, if the pool is frozen, we _always_ commit the
* itx. The point of freezing the pool is to prevent data
* from being written to the main pool via spa_sync, and
* instead rely solely on the ZIL to persistently store the
* data; i.e. when the pool is frozen, the last synced txg
* value can't be trusted.
*/
if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
if (lwb != NULL) {
lwb = zil_lwb_commit(zilog, itx, lwb);
if (lwb == NULL)
list_insert_tail(&nolwb_itxs, itx);
else
list_insert_tail(&lwb->lwb_itxs, itx);
} else {
if (lrc->lrc_txtype == TX_COMMIT) {
zil_commit_waiter_link_nolwb(
itx->itx_private, &nolwb_waiters);
}
list_insert_tail(&nolwb_itxs, itx);
}
} else {
ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT);
zil_itx_destroy(itx);
}
}
if (lwb == NULL) {
/*
* This indicates zio_alloc_zil() failed to allocate the
* "next" lwb on-disk. When this happens, we must stall
* the ZIL write pipeline; see the comment within
* zil_commit_writer_stall() for more details.
*/
zil_commit_writer_stall(zilog);
/*
* Additionally, we have to signal and mark the "nolwb"
* waiters as "done" here, since without an lwb, we
* can't do this via zil_lwb_flush_vdevs_done() like
* normal.
*/
zil_commit_waiter_t *zcw;
while ((zcw = list_head(&nolwb_waiters)) != NULL) {
zil_commit_waiter_skip(zcw);
list_remove(&nolwb_waiters, zcw);
}
/*
* And finally, we have to destroy the itx's that
* couldn't be committed to an lwb; this will also call
* the itx's callback if one exists for the itx.
*/
while ((itx = list_head(&nolwb_itxs)) != NULL) {
list_remove(&nolwb_itxs, itx);
zil_itx_destroy(itx);
}
} else {
ASSERT(list_is_empty(&nolwb_waiters));
ASSERT3P(lwb, !=, NULL);
ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
/*
* At this point, the ZIL block pointed at by the "lwb"
* variable is in one of the following states: "closed"
* or "open".
*
* If it's "closed", then no itxs have been committed to
* it, so there's no point in issuing its zio (i.e. it's
* "empty").
*
* If it's "open", then it contains one or more itxs that
* eventually need to be committed to stable storage. In
* this case we intentionally do not issue the lwb's zio
* to disk yet, and instead rely on one of the following
* two mechanisms for issuing the zio:
*
* 1. Ideally, there will be more ZIL activity occurring
* on the system, such that this function will be
* immediately called again (not necessarily by the same
* thread) and this lwb's zio will be issued via
* zil_lwb_commit(). This way, the lwb is guaranteed to
* be "full" when it is issued to disk, and we'll make
* use of the lwb's size the best we can.
*
* 2. If there isn't sufficient ZIL activity occurring on
* the system, such that this lwb's zio isn't issued via
* zil_lwb_commit(), zil_commit_waiter() will issue the
* lwb's zio. If this occurs, the lwb is not guaranteed
* to be "full" by the time its zio is issued, and means
* the size of the lwb was "too large" given the amount
* of ZIL activity occurring on the system at that time.
*
* We do this for a couple of reasons:
*
* 1. To try and reduce the number of IOPs needed to
* write the same number of itxs. If an lwb has space
* available in its buffer for more itxs, and more itxs
* will be committed relatively soon (relative to the
* latency of performing a write), then it's beneficial
* to wait for these "next" itxs. This way, more itxs
* can be committed to stable storage with fewer writes.
*
* 2. To try and use the largest lwb block size that the
* incoming rate of itxs can support. Again, this is to
* try and pack as many itxs into as few lwbs as
* possible, without significantly impacting the latency
* of each individual itx.
*/
}
}
/*
* This function is responsible for ensuring the passed in commit waiter
* (and associated commit itx) is committed to an lwb. If the waiter is
* not already committed to an lwb, all itxs in the zilog's queue of
* itxs will be processed. The assumption is the passed in waiter's
* commit itx will found in the queue just like the other non-commit
* itxs, such that when the entire queue is processed, the waiter will
* have been committed to an lwb.
*
* The lwb associated with the passed in waiter is not guaranteed to
* have been issued by the time this function completes. If the lwb is
* not issued, we rely on future calls to zil_commit_writer() to issue
* the lwb, or the timeout mechanism found in zil_commit_waiter().
*/
static void
zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
{
ASSERT(!MUTEX_HELD(&zilog->zl_lock));
ASSERT(spa_writeable(zilog->zl_spa));
mutex_enter(&zilog->zl_issuer_lock);
if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
/*
* It's possible that, while we were waiting to acquire
* the "zl_issuer_lock", another thread committed this
* waiter to an lwb. If that occurs, we bail out early,
* without processing any of the zilog's queue of itxs.
*
* On certain workloads and system configurations, the
* "zl_issuer_lock" can become highly contended. In an
* attempt to reduce this contention, we immediately drop
* the lock if the waiter has already been processed.
*
* We've measured this optimization to reduce CPU spent
* contending on this lock by up to 5%, using a system
* with 32 CPUs, low latency storage (~50 usec writes),
* and 1024 threads performing sync writes.
*/
goto out;
}
ZIL_STAT_BUMP(zil_commit_writer_count);
zil_get_commit_list(zilog);
zil_prune_commit_list(zilog);
zil_process_commit_list(zilog);
out:
mutex_exit(&zilog->zl_issuer_lock);
}
static void
zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
{
ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
ASSERT(MUTEX_HELD(&zcw->zcw_lock));
ASSERT3B(zcw->zcw_done, ==, B_FALSE);
lwb_t *lwb = zcw->zcw_lwb;
ASSERT3P(lwb, !=, NULL);
ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
/*
* If the lwb has already been issued by another thread, we can
* immediately return since there's no work to be done (the
* point of this function is to issue the lwb). Additionally, we
* do this prior to acquiring the zl_issuer_lock, to avoid
* acquiring it when it's not necessary to do so.
*/
if (lwb->lwb_state == LWB_STATE_ISSUED ||
lwb->lwb_state == LWB_STATE_WRITE_DONE ||
lwb->lwb_state == LWB_STATE_FLUSH_DONE)
return;
/*
* In order to call zil_lwb_write_issue() we must hold the
* zilog's "zl_issuer_lock". We can't simply acquire that lock,
* since we're already holding the commit waiter's "zcw_lock",
* and those two locks are acquired in the opposite order
* elsewhere.
*/
mutex_exit(&zcw->zcw_lock);
mutex_enter(&zilog->zl_issuer_lock);
mutex_enter(&zcw->zcw_lock);
/*
* Since we just dropped and re-acquired the commit waiter's
* lock, we have to re-check to see if the waiter was marked
* "done" during that process. If the waiter was marked "done",
* the "lwb" pointer is no longer valid (it can be free'd after
* the waiter is marked "done"), so without this check we could
* wind up with a use-after-free error below.
*/
if (zcw->zcw_done)
goto out;
ASSERT3P(lwb, ==, zcw->zcw_lwb);
/*
* We've already checked this above, but since we hadn't acquired
* the zilog's zl_issuer_lock, we have to perform this check a
* second time while holding the lock.
*
* We don't need to hold the zl_lock since the lwb cannot transition
* from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
* _can_ transition from ISSUED to DONE, but it's OK to race with
* that transition since we treat the lwb the same, whether it's in
* the ISSUED or DONE states.
*
* The important thing, is we treat the lwb differently depending on
* if it's ISSUED or OPENED, and block any other threads that might
* attempt to issue this lwb. For that reason we hold the
* zl_issuer_lock when checking the lwb_state; we must not call
* zil_lwb_write_issue() if the lwb had already been issued.
*
* See the comment above the lwb_state_t structure definition for
* more details on the lwb states, and locking requirements.
*/
if (lwb->lwb_state == LWB_STATE_ISSUED ||
lwb->lwb_state == LWB_STATE_WRITE_DONE ||
lwb->lwb_state == LWB_STATE_FLUSH_DONE)
goto out;
ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
/*
* As described in the comments above zil_commit_waiter() and
* zil_process_commit_list(), we need to issue this lwb's zio
* since we've reached the commit waiter's timeout and it still
* hasn't been issued.
*/
lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
IMPLY(nlwb != NULL, lwb->lwb_state != LWB_STATE_OPENED);
/*
* Since the lwb's zio hadn't been issued by the time this thread
* reached its timeout, we reset the zilog's "zl_cur_used" field
* to influence the zil block size selection algorithm.
*
* By having to issue the lwb's zio here, it means the size of the
* lwb was too large, given the incoming throughput of itxs. By
* setting "zl_cur_used" to zero, we communicate this fact to the
* block size selection algorithm, so it can take this information
* into account, and potentially select a smaller size for the
* next lwb block that is allocated.
*/
zilog->zl_cur_used = 0;
if (nlwb == NULL) {
/*
* When zil_lwb_write_issue() returns NULL, this
* indicates zio_alloc_zil() failed to allocate the
* "next" lwb on-disk. When this occurs, the ZIL write
* pipeline must be stalled; see the comment within the
* zil_commit_writer_stall() function for more details.
*
* We must drop the commit waiter's lock prior to
* calling zil_commit_writer_stall() or else we can wind
* up with the following deadlock:
*
* - This thread is waiting for the txg to sync while
* holding the waiter's lock; txg_wait_synced() is
* used within txg_commit_writer_stall().
*
* - The txg can't sync because it is waiting for this
* lwb's zio callback to call dmu_tx_commit().
*
* - The lwb's zio callback can't call dmu_tx_commit()
* because it's blocked trying to acquire the waiter's
* lock, which occurs prior to calling dmu_tx_commit()
*/
mutex_exit(&zcw->zcw_lock);
zil_commit_writer_stall(zilog);
mutex_enter(&zcw->zcw_lock);
}
out:
mutex_exit(&zilog->zl_issuer_lock);
ASSERT(MUTEX_HELD(&zcw->zcw_lock));
}
/*
* This function is responsible for performing the following two tasks:
*
* 1. its primary responsibility is to block until the given "commit
* waiter" is considered "done".
*
* 2. its secondary responsibility is to issue the zio for the lwb that
* the given "commit waiter" is waiting on, if this function has
* waited "long enough" and the lwb is still in the "open" state.
*
* Given a sufficient amount of itxs being generated and written using
* the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
* function. If this does not occur, this secondary responsibility will
* ensure the lwb is issued even if there is not other synchronous
* activity on the system.
*
* For more details, see zil_process_commit_list(); more specifically,
* the comment at the bottom of that function.
*/
static void
zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
{
ASSERT(!MUTEX_HELD(&zilog->zl_lock));
ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
ASSERT(spa_writeable(zilog->zl_spa));
mutex_enter(&zcw->zcw_lock);
/*
* The timeout is scaled based on the lwb latency to avoid
* significantly impacting the latency of each individual itx.
* For more details, see the comment at the bottom of the
* zil_process_commit_list() function.
*/
int pct = MAX(zfs_commit_timeout_pct, 1);
hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
hrtime_t wakeup = gethrtime() + sleep;
boolean_t timedout = B_FALSE;
while (!zcw->zcw_done) {
ASSERT(MUTEX_HELD(&zcw->zcw_lock));
lwb_t *lwb = zcw->zcw_lwb;
/*
* Usually, the waiter will have a non-NULL lwb field here,
* but it's possible for it to be NULL as a result of
* zil_commit() racing with spa_sync().
*
* When zil_clean() is called, it's possible for the itxg
* list (which may be cleaned via a taskq) to contain
* commit itxs. When this occurs, the commit waiters linked
* off of these commit itxs will not be committed to an
* lwb. Additionally, these commit waiters will not be
* marked done until zil_commit_waiter_skip() is called via
* zil_itxg_clean().
*
* Thus, it's possible for this commit waiter (i.e. the
* "zcw" variable) to be found in this "in between" state;
* where it's "zcw_lwb" field is NULL, and it hasn't yet
* been skipped, so it's "zcw_done" field is still B_FALSE.
*/
IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
ASSERT3B(timedout, ==, B_FALSE);
/*
* If the lwb hasn't been issued yet, then we
* need to wait with a timeout, in case this
* function needs to issue the lwb after the
* timeout is reached; responsibility (2) from
* the comment above this function.
*/
clock_t timeleft = cv_timedwait_hires(&zcw->zcw_cv,
&zcw->zcw_lock, wakeup, USEC2NSEC(1),
CALLOUT_FLAG_ABSOLUTE);
if (timeleft >= 0 || zcw->zcw_done)
continue;
timedout = B_TRUE;
zil_commit_waiter_timeout(zilog, zcw);
if (!zcw->zcw_done) {
/*
* If the commit waiter has already been
* marked "done", it's possible for the
* waiter's lwb structure to have already
* been freed. Thus, we can only reliably
* make these assertions if the waiter
* isn't done.
*/
ASSERT3P(lwb, ==, zcw->zcw_lwb);
ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
}
} else {
/*
* If the lwb isn't open, then it must have already
* been issued. In that case, there's no need to
* use a timeout when waiting for the lwb to
* complete.
*
* Additionally, if the lwb is NULL, the waiter
* will soon be signaled and marked done via
* zil_clean() and zil_itxg_clean(), so no timeout
* is required.
*/
IMPLY(lwb != NULL,
lwb->lwb_state == LWB_STATE_ISSUED ||
lwb->lwb_state == LWB_STATE_WRITE_DONE ||
lwb->lwb_state == LWB_STATE_FLUSH_DONE);
cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
}
}
mutex_exit(&zcw->zcw_lock);
}
static zil_commit_waiter_t *
zil_alloc_commit_waiter(void)
{
zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
list_link_init(&zcw->zcw_node);
zcw->zcw_lwb = NULL;
zcw->zcw_done = B_FALSE;
zcw->zcw_zio_error = 0;
return (zcw);
}
static void
zil_free_commit_waiter(zil_commit_waiter_t *zcw)
{
ASSERT(!list_link_active(&zcw->zcw_node));
ASSERT3P(zcw->zcw_lwb, ==, NULL);
ASSERT3B(zcw->zcw_done, ==, B_TRUE);
mutex_destroy(&zcw->zcw_lock);
cv_destroy(&zcw->zcw_cv);
kmem_cache_free(zil_zcw_cache, zcw);
}
/*
* This function is used to create a TX_COMMIT itx and assign it. This
* way, it will be linked into the ZIL's list of synchronous itxs, and
* then later committed to an lwb (or skipped) when
* zil_process_commit_list() is called.
*/
static void
zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
{
dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
itx->itx_sync = B_TRUE;
itx->itx_private = zcw;
zil_itx_assign(zilog, itx, tx);
dmu_tx_commit(tx);
}
/*
* Commit ZFS Intent Log transactions (itxs) to stable storage.
*
* When writing ZIL transactions to the on-disk representation of the
* ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
* itxs can be committed to a single lwb. Once a lwb is written and
* committed to stable storage (i.e. the lwb is written, and vdevs have
* been flushed), each itx that was committed to that lwb is also
* considered to be committed to stable storage.
*
* When an itx is committed to an lwb, the log record (lr_t) contained
* by the itx is copied into the lwb's zio buffer, and once this buffer
* is written to disk, it becomes an on-disk ZIL block.
*
* As itxs are generated, they're inserted into the ZIL's queue of
* uncommitted itxs. The semantics of zil_commit() are such that it will
* block until all itxs that were in the queue when it was called, are
* committed to stable storage.
*
* If "foid" is zero, this means all "synchronous" and "asynchronous"
* itxs, for all objects in the dataset, will be committed to stable
* storage prior to zil_commit() returning. If "foid" is non-zero, all
* "synchronous" itxs for all objects, but only "asynchronous" itxs
* that correspond to the foid passed in, will be committed to stable
* storage prior to zil_commit() returning.
*
* Generally speaking, when zil_commit() is called, the consumer doesn't
* actually care about _all_ of the uncommitted itxs. Instead, they're
* simply trying to waiting for a specific itx to be committed to disk,
* but the interface(s) for interacting with the ZIL don't allow such
* fine-grained communication. A better interface would allow a consumer
* to create and assign an itx, and then pass a reference to this itx to
* zil_commit(); such that zil_commit() would return as soon as that
* specific itx was committed to disk (instead of waiting for _all_
* itxs to be committed).
*
* When a thread calls zil_commit() a special "commit itx" will be
* generated, along with a corresponding "waiter" for this commit itx.
* zil_commit() will wait on this waiter's CV, such that when the waiter
* is marked done, and signaled, zil_commit() will return.
*
* This commit itx is inserted into the queue of uncommitted itxs. This
* provides an easy mechanism for determining which itxs were in the
* queue prior to zil_commit() having been called, and which itxs were
* added after zil_commit() was called.
*
* The commit it is special; it doesn't have any on-disk representation.
* When a commit itx is "committed" to an lwb, the waiter associated
* with it is linked onto the lwb's list of waiters. Then, when that lwb
* completes, each waiter on the lwb's list is marked done and signaled
* -- allowing the thread waiting on the waiter to return from zil_commit().
*
* It's important to point out a few critical factors that allow us
* to make use of the commit itxs, commit waiters, per-lwb lists of
* commit waiters, and zio completion callbacks like we're doing:
*
* 1. The list of waiters for each lwb is traversed, and each commit
* waiter is marked "done" and signaled, in the zio completion
* callback of the lwb's zio[*].
*
* * Actually, the waiters are signaled in the zio completion
* callback of the root zio for the DKIOCFLUSHWRITECACHE commands
* that are sent to the vdevs upon completion of the lwb zio.
*
* 2. When the itxs are inserted into the ZIL's queue of uncommitted
* itxs, the order in which they are inserted is preserved[*]; as
* itxs are added to the queue, they are added to the tail of
* in-memory linked lists.
*
* When committing the itxs to lwbs (to be written to disk), they
* are committed in the same order in which the itxs were added to
* the uncommitted queue's linked list(s); i.e. the linked list of
* itxs to commit is traversed from head to tail, and each itx is
* committed to an lwb in that order.
*
* * To clarify:
*
* - the order of "sync" itxs is preserved w.r.t. other
* "sync" itxs, regardless of the corresponding objects.
* - the order of "async" itxs is preserved w.r.t. other
* "async" itxs corresponding to the same object.
* - the order of "async" itxs is *not* preserved w.r.t. other
* "async" itxs corresponding to different objects.
* - the order of "sync" itxs w.r.t. "async" itxs (or vice
* versa) is *not* preserved, even for itxs that correspond
* to the same object.
*
* For more details, see: zil_itx_assign(), zil_async_to_sync(),
* zil_get_commit_list(), and zil_process_commit_list().
*
* 3. The lwbs represent a linked list of blocks on disk. Thus, any
* lwb cannot be considered committed to stable storage, until its
* "previous" lwb is also committed to stable storage. This fact,
* coupled with the fact described above, means that itxs are
* committed in (roughly) the order in which they were generated.
* This is essential because itxs are dependent on prior itxs.
* Thus, we *must not* deem an itx as being committed to stable
* storage, until *all* prior itxs have also been committed to
* stable storage.
*
* To enforce this ordering of lwb zio's, while still leveraging as
* much of the underlying storage performance as possible, we rely
* on two fundamental concepts:
*
* 1. The creation and issuance of lwb zio's is protected by
* the zilog's "zl_issuer_lock", which ensures only a single
* thread is creating and/or issuing lwb's at a time
* 2. The "previous" lwb is a child of the "current" lwb
* (leveraging the zio parent-child dependency graph)
*
* By relying on this parent-child zio relationship, we can have
* many lwb zio's concurrently issued to the underlying storage,
* but the order in which they complete will be the same order in
* which they were created.
*/
void
zil_commit(zilog_t *zilog, uint64_t foid)
{
/*
* We should never attempt to call zil_commit on a snapshot for
* a couple of reasons:
*
* 1. A snapshot may never be modified, thus it cannot have any
* in-flight itxs that would have modified the dataset.
*
* 2. By design, when zil_commit() is called, a commit itx will
* be assigned to this zilog; as a result, the zilog will be
* dirtied. We must not dirty the zilog of a snapshot; there's
* checks in the code that enforce this invariant, and will
* cause a panic if it's not upheld.
*/
ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
if (zilog->zl_sync == ZFS_SYNC_DISABLED)
return;
if (!spa_writeable(zilog->zl_spa)) {
/*
* If the SPA is not writable, there should never be any
* pending itxs waiting to be committed to disk. If that
* weren't true, we'd skip writing those itxs out, and
* would break the semantics of zil_commit(); thus, we're
* verifying that truth before we return to the caller.
*/
ASSERT(list_is_empty(&zilog->zl_lwb_list));
ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
for (int i = 0; i < TXG_SIZE; i++)
ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
return;
}
/*
* If the ZIL is suspended, we don't want to dirty it by calling
* zil_commit_itx_assign() below, nor can we write out
* lwbs like would be done in zil_commit_write(). Thus, we
* simply rely on txg_wait_synced() to maintain the necessary
* semantics, and avoid calling those functions altogether.
*/
if (zilog->zl_suspend > 0) {
txg_wait_synced(zilog->zl_dmu_pool, 0);
return;
}
zil_commit_impl(zilog, foid);
}
void
zil_commit_impl(zilog_t *zilog, uint64_t foid)
{
ZIL_STAT_BUMP(zil_commit_count);
/*
* Move the "async" itxs for the specified foid to the "sync"
* queues, such that they will be later committed (or skipped)
* to an lwb when zil_process_commit_list() is called.
*
* Since these "async" itxs must be committed prior to this
* call to zil_commit returning, we must perform this operation
* before we call zil_commit_itx_assign().
*/
zil_async_to_sync(zilog, foid);
/*
* We allocate a new "waiter" structure which will initially be
* linked to the commit itx using the itx's "itx_private" field.
* Since the commit itx doesn't represent any on-disk state,
* when it's committed to an lwb, rather than copying the its
* lr_t into the lwb's buffer, the commit itx's "waiter" will be
* added to the lwb's list of waiters. Then, when the lwb is
* committed to stable storage, each waiter in the lwb's list of
* waiters will be marked "done", and signalled.
*
* We must create the waiter and assign the commit itx prior to
* calling zil_commit_writer(), or else our specific commit itx
* is not guaranteed to be committed to an lwb prior to calling
* zil_commit_waiter().
*/
zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
zil_commit_itx_assign(zilog, zcw);
zil_commit_writer(zilog, zcw);
zil_commit_waiter(zilog, zcw);
if (zcw->zcw_zio_error != 0) {
/*
* If there was an error writing out the ZIL blocks that
* this thread is waiting on, then we fallback to
* relying on spa_sync() to write out the data this
* thread is waiting on. Obviously this has performance
* implications, but the expectation is for this to be
* an exceptional case, and shouldn't occur often.
*/
DTRACE_PROBE2(zil__commit__io__error,
zilog_t *, zilog, zil_commit_waiter_t *, zcw);
txg_wait_synced(zilog->zl_dmu_pool, 0);
}
zil_free_commit_waiter(zcw);
}
/*
* Called in syncing context to free committed log blocks and update log header.
*/
void
zil_sync(zilog_t *zilog, dmu_tx_t *tx)
{
zil_header_t *zh = zil_header_in_syncing_context(zilog);
uint64_t txg = dmu_tx_get_txg(tx);
spa_t *spa = zilog->zl_spa;
uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
lwb_t *lwb;
/*
* We don't zero out zl_destroy_txg, so make sure we don't try
* to destroy it twice.
*/
if (spa_sync_pass(spa) != 1)
return;
mutex_enter(&zilog->zl_lock);
ASSERT(zilog->zl_stop_sync == 0);
if (*replayed_seq != 0) {
ASSERT(zh->zh_replay_seq < *replayed_seq);
zh->zh_replay_seq = *replayed_seq;
*replayed_seq = 0;
}
if (zilog->zl_destroy_txg == txg) {
blkptr_t blk = zh->zh_log;
ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
bzero(zh, sizeof (zil_header_t));
bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
if (zilog->zl_keep_first) {
/*
* If this block was part of log chain that couldn't
* be claimed because a device was missing during
* zil_claim(), but that device later returns,
* then this block could erroneously appear valid.
* To guard against this, assign a new GUID to the new
* log chain so it doesn't matter what blk points to.
*/
zil_init_log_chain(zilog, &blk);
zh->zh_log = blk;
}
}
while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
zh->zh_log = lwb->lwb_blk;
if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
break;
list_remove(&zilog->zl_lwb_list, lwb);
zio_free(spa, txg, &lwb->lwb_blk);
zil_free_lwb(zilog, lwb);
/*
* If we don't have anything left in the lwb list then
* we've had an allocation failure and we need to zero
* out the zil_header blkptr so that we don't end
* up freeing the same block twice.
*/
if (list_head(&zilog->zl_lwb_list) == NULL)
BP_ZERO(&zh->zh_log);
}
/*
* Remove fastwrite on any blocks that have been pre-allocated for
* the next commit. This prevents fastwrite counter pollution by
* unused, long-lived LWBs.
*/
for (; lwb != NULL; lwb = list_next(&zilog->zl_lwb_list, lwb)) {
if (lwb->lwb_fastwrite && !lwb->lwb_write_zio) {
metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
lwb->lwb_fastwrite = 0;
}
}
mutex_exit(&zilog->zl_lock);
}
/* ARGSUSED */
static int
zil_lwb_cons(void *vbuf, void *unused, int kmflag)
{
lwb_t *lwb = vbuf;
list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
offsetof(zil_commit_waiter_t, zcw_node));
avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
return (0);
}
/* ARGSUSED */
static void
zil_lwb_dest(void *vbuf, void *unused)
{
lwb_t *lwb = vbuf;
mutex_destroy(&lwb->lwb_vdev_lock);
avl_destroy(&lwb->lwb_vdev_tree);
list_destroy(&lwb->lwb_waiters);
list_destroy(&lwb->lwb_itxs);
}
void
zil_init(void)
{
zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
zil_ksp = kstat_create("zfs", 0, "zil", "misc",
KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
KSTAT_FLAG_VIRTUAL);
if (zil_ksp != NULL) {
zil_ksp->ks_data = &zil_stats;
kstat_install(zil_ksp);
}
}
void
zil_fini(void)
{
kmem_cache_destroy(zil_zcw_cache);
kmem_cache_destroy(zil_lwb_cache);
if (zil_ksp != NULL) {
kstat_delete(zil_ksp);
zil_ksp = NULL;
}
}
void
zil_set_sync(zilog_t *zilog, uint64_t sync)
{
zilog->zl_sync = sync;
}
void
zil_set_logbias(zilog_t *zilog, uint64_t logbias)
{
zilog->zl_logbias = logbias;
}
zilog_t *
zil_alloc(objset_t *os, zil_header_t *zh_phys)
{
zilog_t *zilog;
zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
zilog->zl_header = zh_phys;
zilog->zl_os = os;
zilog->zl_spa = dmu_objset_spa(os);
zilog->zl_dmu_pool = dmu_objset_pool(os);
zilog->zl_destroy_txg = TXG_INITIAL - 1;
zilog->zl_logbias = dmu_objset_logbias(os);
zilog->zl_sync = dmu_objset_syncprop(os);
zilog->zl_dirty_max_txg = 0;
zilog->zl_last_lwb_opened = NULL;
zilog->zl_last_lwb_latency = 0;
zilog->zl_max_block_size = zil_maxblocksize;
mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
for (int i = 0; i < TXG_SIZE; i++) {
mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
MUTEX_DEFAULT, NULL);
}
list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
offsetof(lwb_t, lwb_node));
list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
offsetof(itx_t, itx_node));
cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
return (zilog);
}
void
zil_free(zilog_t *zilog)
{
int i;
zilog->zl_stop_sync = 1;
ASSERT0(zilog->zl_suspend);
ASSERT0(zilog->zl_suspending);
ASSERT(list_is_empty(&zilog->zl_lwb_list));
list_destroy(&zilog->zl_lwb_list);
ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
list_destroy(&zilog->zl_itx_commit_list);
for (i = 0; i < TXG_SIZE; i++) {
/*
* It's possible for an itx to be generated that doesn't dirty
* a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
* callback to remove the entry. We remove those here.
*
* Also free up the ziltest itxs.
*/
if (zilog->zl_itxg[i].itxg_itxs)
zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
}
mutex_destroy(&zilog->zl_issuer_lock);
mutex_destroy(&zilog->zl_lock);
cv_destroy(&zilog->zl_cv_suspend);
kmem_free(zilog, sizeof (zilog_t));
}
/*
* Open an intent log.
*/
zilog_t *
zil_open(objset_t *os, zil_get_data_t *get_data)
{
zilog_t *zilog = dmu_objset_zil(os);
ASSERT3P(zilog->zl_get_data, ==, NULL);
ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
ASSERT(list_is_empty(&zilog->zl_lwb_list));
zilog->zl_get_data = get_data;
return (zilog);
}
/*
* Close an intent log.
*/
void
zil_close(zilog_t *zilog)
{
lwb_t *lwb;
uint64_t txg;
if (!dmu_objset_is_snapshot(zilog->zl_os)) {
zil_commit(zilog, 0);
} else {
ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
ASSERT0(zilog->zl_dirty_max_txg);
ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
}
mutex_enter(&zilog->zl_lock);
lwb = list_tail(&zilog->zl_lwb_list);
if (lwb == NULL)
txg = zilog->zl_dirty_max_txg;
else
txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
mutex_exit(&zilog->zl_lock);
/*
* We need to use txg_wait_synced() to wait long enough for the
* ZIL to be clean, and to wait for all pending lwbs to be
* written out.
*/
if (txg != 0)
txg_wait_synced(zilog->zl_dmu_pool, txg);
if (zilog_is_dirty(zilog))
zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog, txg);
if (txg < spa_freeze_txg(zilog->zl_spa))
VERIFY(!zilog_is_dirty(zilog));
zilog->zl_get_data = NULL;
/*
* We should have only one lwb left on the list; remove it now.
*/
mutex_enter(&zilog->zl_lock);
lwb = list_head(&zilog->zl_lwb_list);
if (lwb != NULL) {
ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
if (lwb->lwb_fastwrite)
metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
list_remove(&zilog->zl_lwb_list, lwb);
zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
zil_free_lwb(zilog, lwb);
}
mutex_exit(&zilog->zl_lock);
}
static char *suspend_tag = "zil suspending";
/*
* Suspend an intent log. While in suspended mode, we still honor
* synchronous semantics, but we rely on txg_wait_synced() to do it.
* On old version pools, we suspend the log briefly when taking a
* snapshot so that it will have an empty intent log.
*
* Long holds are not really intended to be used the way we do here --
* held for such a short time. A concurrent caller of dsl_dataset_long_held()
* could fail. Therefore we take pains to only put a long hold if it is
* actually necessary. Fortunately, it will only be necessary if the
* objset is currently mounted (or the ZVOL equivalent). In that case it
* will already have a long hold, so we are not really making things any worse.
*
* Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
* zvol_state_t), and use their mechanism to prevent their hold from being
* dropped (e.g. VFS_HOLD()). However, that would be even more pain for
* very little gain.
*
* if cookiep == NULL, this does both the suspend & resume.
* Otherwise, it returns with the dataset "long held", and the cookie
* should be passed into zil_resume().
*/
int
zil_suspend(const char *osname, void **cookiep)
{
objset_t *os;
zilog_t *zilog;
const zil_header_t *zh;
int error;
error = dmu_objset_hold(osname, suspend_tag, &os);
if (error != 0)
return (error);
zilog = dmu_objset_zil(os);
mutex_enter(&zilog->zl_lock);
zh = zilog->zl_header;
if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */
mutex_exit(&zilog->zl_lock);
dmu_objset_rele(os, suspend_tag);
return (SET_ERROR(EBUSY));
}
/*
* Don't put a long hold in the cases where we can avoid it. This
* is when there is no cookie so we are doing a suspend & resume
* (i.e. called from zil_vdev_offline()), and there's nothing to do
* for the suspend because it's already suspended, or there's no ZIL.
*/
if (cookiep == NULL && !zilog->zl_suspending &&
(zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
mutex_exit(&zilog->zl_lock);
dmu_objset_rele(os, suspend_tag);
return (0);
}
dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
zilog->zl_suspend++;
if (zilog->zl_suspend > 1) {
/*
* Someone else is already suspending it.
* Just wait for them to finish.
*/
while (zilog->zl_suspending)
cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
mutex_exit(&zilog->zl_lock);
if (cookiep == NULL)
zil_resume(os);
else
*cookiep = os;
return (0);
}
/*
* If there is no pointer to an on-disk block, this ZIL must not
* be active (e.g. filesystem not mounted), so there's nothing
* to clean up.
*/
if (BP_IS_HOLE(&zh->zh_log)) {
ASSERT(cookiep != NULL); /* fast path already handled */
*cookiep = os;
mutex_exit(&zilog->zl_lock);
return (0);
}
/*
* The ZIL has work to do. Ensure that the associated encryption
* key will remain mapped while we are committing the log by
* grabbing a reference to it. If the key isn't loaded we have no
* choice but to return an error until the wrapping key is loaded.
*/
if (os->os_encrypted &&
dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) {
zilog->zl_suspend--;
mutex_exit(&zilog->zl_lock);
dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
return (SET_ERROR(EACCES));
}
zilog->zl_suspending = B_TRUE;
mutex_exit(&zilog->zl_lock);
/*
* We need to use zil_commit_impl to ensure we wait for all
* LWB_STATE_OPENED and LWB_STATE_ISSUED lwbs to be committed
* to disk before proceeding. If we used zil_commit instead, it
* would just call txg_wait_synced(), because zl_suspend is set.
* txg_wait_synced() doesn't wait for these lwb's to be
* LWB_STATE_FLUSH_DONE before returning.
*/
zil_commit_impl(zilog, 0);
/*
* Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
* use txg_wait_synced() to ensure the data from the zilog has
* migrated to the main pool before calling zil_destroy().
*/
txg_wait_synced(zilog->zl_dmu_pool, 0);
zil_destroy(zilog, B_FALSE);
mutex_enter(&zilog->zl_lock);
zilog->zl_suspending = B_FALSE;
cv_broadcast(&zilog->zl_cv_suspend);
mutex_exit(&zilog->zl_lock);
if (os->os_encrypted)
dsl_dataset_remove_key_mapping(dmu_objset_ds(os));
if (cookiep == NULL)
zil_resume(os);
else
*cookiep = os;
return (0);
}
void
zil_resume(void *cookie)
{
objset_t *os = cookie;
zilog_t *zilog = dmu_objset_zil(os);
mutex_enter(&zilog->zl_lock);
ASSERT(zilog->zl_suspend != 0);
zilog->zl_suspend--;
mutex_exit(&zilog->zl_lock);
dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
}
typedef struct zil_replay_arg {
zil_replay_func_t **zr_replay;
void *zr_arg;
boolean_t zr_byteswap;
char *zr_lr;
} zil_replay_arg_t;
static int
zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
{
char name[ZFS_MAX_DATASET_NAME_LEN];
zilog->zl_replaying_seq--; /* didn't actually replay this one */
dmu_objset_name(zilog->zl_os, name);
cmn_err(CE_WARN, "ZFS replay transaction error %d, "
"dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
(u_longlong_t)lr->lrc_seq,
(u_longlong_t)(lr->lrc_txtype & ~TX_CI),
(lr->lrc_txtype & TX_CI) ? "CI" : "");
return (error);
}
static int
zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
{
zil_replay_arg_t *zr = zra;
const zil_header_t *zh = zilog->zl_header;
uint64_t reclen = lr->lrc_reclen;
uint64_t txtype = lr->lrc_txtype;
int error = 0;
zilog->zl_replaying_seq = lr->lrc_seq;
if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */
return (0);
if (lr->lrc_txg < claim_txg) /* already committed */
return (0);
/* Strip case-insensitive bit, still present in log record */
txtype &= ~TX_CI;
if (txtype == 0 || txtype >= TX_MAX_TYPE)
return (zil_replay_error(zilog, lr, EINVAL));
/*
* If this record type can be logged out of order, the object
* (lr_foid) may no longer exist. That's legitimate, not an error.
*/
if (TX_OOO(txtype)) {
error = dmu_object_info(zilog->zl_os,
LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
if (error == ENOENT || error == EEXIST)
return (0);
}
/*
* Make a copy of the data so we can revise and extend it.
*/
bcopy(lr, zr->zr_lr, reclen);
/*
* If this is a TX_WRITE with a blkptr, suck in the data.
*/
if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
error = zil_read_log_data(zilog, (lr_write_t *)lr,
zr->zr_lr + reclen);
if (error != 0)
return (zil_replay_error(zilog, lr, error));
}
/*
* The log block containing this lr may have been byteswapped
* so that we can easily examine common fields like lrc_txtype.
* However, the log is a mix of different record types, and only the
* replay vectors know how to byteswap their records. Therefore, if
* the lr was byteswapped, undo it before invoking the replay vector.
*/
if (zr->zr_byteswap)
byteswap_uint64_array(zr->zr_lr, reclen);
/*
* We must now do two things atomically: replay this log record,
* and update the log header sequence number to reflect the fact that
* we did so. At the end of each replay function the sequence number
* is updated if we are in replay mode.
*/
error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
if (error != 0) {
/*
* The DMU's dnode layer doesn't see removes until the txg
* commits, so a subsequent claim can spuriously fail with
* EEXIST. So if we receive any error we try syncing out
* any removes then retry the transaction. Note that we
* specify B_FALSE for byteswap now, so we don't do it twice.
*/
txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
if (error != 0)
return (zil_replay_error(zilog, lr, error));
}
return (0);
}
/* ARGSUSED */
static int
zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
{
zilog->zl_replay_blks++;
return (0);
}
/*
* If this dataset has a non-empty intent log, replay it and destroy it.
*/
void
zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
{
zilog_t *zilog = dmu_objset_zil(os);
const zil_header_t *zh = zilog->zl_header;
zil_replay_arg_t zr;
if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
zil_destroy(zilog, B_TRUE);
return;
}
zr.zr_replay = replay_func;
zr.zr_arg = arg;
zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
/*
* Wait for in-progress removes to sync before starting replay.
*/
txg_wait_synced(zilog->zl_dmu_pool, 0);
zilog->zl_replay = B_TRUE;
zilog->zl_replay_time = ddi_get_lbolt();
ASSERT(zilog->zl_replay_blks == 0);
(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
zh->zh_claim_txg, B_TRUE);
vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
zil_destroy(zilog, B_FALSE);
txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
zilog->zl_replay = B_FALSE;
}
boolean_t
zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
{
if (zilog->zl_sync == ZFS_SYNC_DISABLED)
return (B_TRUE);
if (zilog->zl_replay) {
dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
zilog->zl_replaying_seq;
return (B_TRUE);
}
return (B_FALSE);
}
/* ARGSUSED */
int
zil_reset(const char *osname, void *arg)
{
int error;
error = zil_suspend(osname, NULL);
/* EACCES means crypto key not loaded */
if ((error == EACCES) || (error == EBUSY))
return (SET_ERROR(error));
if (error != 0)
return (SET_ERROR(EEXIST));
return (0);
}
EXPORT_SYMBOL(zil_alloc);
EXPORT_SYMBOL(zil_free);
EXPORT_SYMBOL(zil_open);
EXPORT_SYMBOL(zil_close);
EXPORT_SYMBOL(zil_replay);
EXPORT_SYMBOL(zil_replaying);
EXPORT_SYMBOL(zil_destroy);
EXPORT_SYMBOL(zil_destroy_sync);
EXPORT_SYMBOL(zil_itx_create);
EXPORT_SYMBOL(zil_itx_destroy);
EXPORT_SYMBOL(zil_itx_assign);
EXPORT_SYMBOL(zil_commit);
EXPORT_SYMBOL(zil_claim);
EXPORT_SYMBOL(zil_check_log_chain);
EXPORT_SYMBOL(zil_sync);
EXPORT_SYMBOL(zil_clean);
EXPORT_SYMBOL(zil_suspend);
EXPORT_SYMBOL(zil_resume);
EXPORT_SYMBOL(zil_lwb_add_block);
EXPORT_SYMBOL(zil_bp_tree_add);
EXPORT_SYMBOL(zil_set_sync);
EXPORT_SYMBOL(zil_set_logbias);
/* BEGIN CSTYLED */
ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, INT, ZMOD_RW,
"ZIL block open timeout percentage");
ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW,
"Disable intent logging replay");
ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW,
"Disable ZIL cache flushes");
ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, ULONG, ZMOD_RW,
"Limit in bytes slog sync writes per commit");
ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, INT, ZMOD_RW,
"Limit in bytes of ZIL log block size");
/* END CSTYLED */