03ab093569
I .. stupidly added code to return HAL_ANI_STATS to HAL_DIAG_ANI_STATS. I discovered this in a noisy environment when the returned values were enough to .. well, make everything terrible. So - restore functionality. Tested: * AR5416 (uses the AR5212 HAL), in a /very/ noisy 2GHz environment. Enough to trigger ANI to get upset and generate useful data.
1460 lines
40 KiB
C
1460 lines
40 KiB
C
/*
|
|
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
|
|
* Copyright (c) 2002-2008 Atheros Communications, Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
#include "opt_ah.h"
|
|
|
|
#include "ah.h"
|
|
#include "ah_internal.h"
|
|
#include "ah_devid.h"
|
|
#include "ah_desc.h" /* NB: for HAL_PHYERR* */
|
|
|
|
#include "ar5212/ar5212.h"
|
|
#include "ar5212/ar5212reg.h"
|
|
#include "ar5212/ar5212phy.h"
|
|
|
|
#include "ah_eeprom_v3.h"
|
|
|
|
#define AR_NUM_GPIO 6 /* 6 GPIO pins */
|
|
#define AR_GPIOD_MASK 0x0000002F /* GPIO data reg r/w mask */
|
|
|
|
void
|
|
ar5212GetMacAddress(struct ath_hal *ah, uint8_t *mac)
|
|
{
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
|
|
OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5212SetMacAddress(struct ath_hal *ah, const uint8_t *mac)
|
|
{
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
|
|
OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
|
|
return AH_TRUE;
|
|
}
|
|
|
|
void
|
|
ar5212GetBssIdMask(struct ath_hal *ah, uint8_t *mask)
|
|
{
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
|
|
OS_MEMCPY(mask, ahp->ah_bssidmask, IEEE80211_ADDR_LEN);
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5212SetBssIdMask(struct ath_hal *ah, const uint8_t *mask)
|
|
{
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
|
|
/* save it since it must be rewritten on reset */
|
|
OS_MEMCPY(ahp->ah_bssidmask, mask, IEEE80211_ADDR_LEN);
|
|
|
|
OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
|
|
OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Attempt to change the cards operating regulatory domain to the given value
|
|
*/
|
|
HAL_BOOL
|
|
ar5212SetRegulatoryDomain(struct ath_hal *ah,
|
|
uint16_t regDomain, HAL_STATUS *status)
|
|
{
|
|
HAL_STATUS ecode;
|
|
|
|
if (AH_PRIVATE(ah)->ah_currentRD == regDomain) {
|
|
ecode = HAL_EINVAL;
|
|
goto bad;
|
|
}
|
|
if (ath_hal_eepromGetFlag(ah, AR_EEP_WRITEPROTECT)) {
|
|
ecode = HAL_EEWRITE;
|
|
goto bad;
|
|
}
|
|
#ifdef AH_SUPPORT_WRITE_REGDOMAIN
|
|
if (ath_hal_eepromWrite(ah, AR_EEPROM_REG_DOMAIN, regDomain)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: set regulatory domain to %u (0x%x)\n",
|
|
__func__, regDomain, regDomain);
|
|
AH_PRIVATE(ah)->ah_currentRD = regDomain;
|
|
return AH_TRUE;
|
|
}
|
|
#endif
|
|
ecode = HAL_EIO;
|
|
bad:
|
|
if (status)
|
|
*status = ecode;
|
|
return AH_FALSE;
|
|
}
|
|
|
|
/*
|
|
* Return the wireless modes (a,b,g,t) supported by hardware.
|
|
*
|
|
* This value is what is actually supported by the hardware
|
|
* and is unaffected by regulatory/country code settings.
|
|
*/
|
|
u_int
|
|
ar5212GetWirelessModes(struct ath_hal *ah)
|
|
{
|
|
u_int mode = 0;
|
|
|
|
if (ath_hal_eepromGetFlag(ah, AR_EEP_AMODE)) {
|
|
mode = HAL_MODE_11A;
|
|
if (!ath_hal_eepromGetFlag(ah, AR_EEP_TURBO5DISABLE))
|
|
mode |= HAL_MODE_TURBO | HAL_MODE_108A;
|
|
if (AH_PRIVATE(ah)->ah_caps.halChanHalfRate)
|
|
mode |= HAL_MODE_11A_HALF_RATE;
|
|
if (AH_PRIVATE(ah)->ah_caps.halChanQuarterRate)
|
|
mode |= HAL_MODE_11A_QUARTER_RATE;
|
|
}
|
|
if (ath_hal_eepromGetFlag(ah, AR_EEP_BMODE))
|
|
mode |= HAL_MODE_11B;
|
|
if (ath_hal_eepromGetFlag(ah, AR_EEP_GMODE) &&
|
|
AH_PRIVATE(ah)->ah_subvendorid != AR_SUBVENDOR_ID_NOG) {
|
|
mode |= HAL_MODE_11G;
|
|
if (!ath_hal_eepromGetFlag(ah, AR_EEP_TURBO2DISABLE))
|
|
mode |= HAL_MODE_108G;
|
|
if (AH_PRIVATE(ah)->ah_caps.halChanHalfRate)
|
|
mode |= HAL_MODE_11G_HALF_RATE;
|
|
if (AH_PRIVATE(ah)->ah_caps.halChanQuarterRate)
|
|
mode |= HAL_MODE_11G_QUARTER_RATE;
|
|
}
|
|
return mode;
|
|
}
|
|
|
|
/*
|
|
* Set the interrupt and GPIO values so the ISR can disable RF
|
|
* on a switch signal. Assumes GPIO port and interrupt polarity
|
|
* are set prior to call.
|
|
*/
|
|
void
|
|
ar5212EnableRfKill(struct ath_hal *ah)
|
|
{
|
|
uint16_t rfsilent = AH_PRIVATE(ah)->ah_rfsilent;
|
|
int select = MS(rfsilent, AR_EEPROM_RFSILENT_GPIO_SEL);
|
|
int polarity = MS(rfsilent, AR_EEPROM_RFSILENT_POLARITY);
|
|
|
|
/*
|
|
* Configure the desired GPIO port for input
|
|
* and enable baseband rf silence.
|
|
*/
|
|
ath_hal_gpioCfgInput(ah, select);
|
|
OS_REG_SET_BIT(ah, AR_PHY(0), 0x00002000);
|
|
/*
|
|
* If radio disable switch connection to GPIO bit x is enabled
|
|
* program GPIO interrupt.
|
|
* If rfkill bit on eeprom is 1, setupeeprommap routine has already
|
|
* verified that it is a later version of eeprom, it has a place for
|
|
* rfkill bit and it is set to 1, indicating that GPIO bit x hardware
|
|
* connection is present.
|
|
*/
|
|
ath_hal_gpioSetIntr(ah, select,
|
|
(ath_hal_gpioGet(ah, select) == polarity ? !polarity : polarity));
|
|
}
|
|
|
|
/*
|
|
* Change the LED blinking pattern to correspond to the connectivity
|
|
*/
|
|
void
|
|
ar5212SetLedState(struct ath_hal *ah, HAL_LED_STATE state)
|
|
{
|
|
static const uint32_t ledbits[8] = {
|
|
AR_PCICFG_LEDCTL_NONE, /* HAL_LED_INIT */
|
|
AR_PCICFG_LEDCTL_PEND, /* HAL_LED_SCAN */
|
|
AR_PCICFG_LEDCTL_PEND, /* HAL_LED_AUTH */
|
|
AR_PCICFG_LEDCTL_ASSOC, /* HAL_LED_ASSOC*/
|
|
AR_PCICFG_LEDCTL_ASSOC, /* HAL_LED_RUN */
|
|
AR_PCICFG_LEDCTL_NONE,
|
|
AR_PCICFG_LEDCTL_NONE,
|
|
AR_PCICFG_LEDCTL_NONE,
|
|
};
|
|
uint32_t bits;
|
|
|
|
bits = OS_REG_READ(ah, AR_PCICFG);
|
|
if (IS_2417(ah)) {
|
|
/*
|
|
* Enable LED for Nala. There is a bit marked reserved
|
|
* that must be set and we also turn on the power led.
|
|
* Because we mark s/w LED control setting the control
|
|
* status bits below is meangless (the driver must flash
|
|
* the LED(s) using the GPIO lines).
|
|
*/
|
|
bits = (bits &~ AR_PCICFG_LEDMODE)
|
|
| SM(AR_PCICFG_LEDMODE_POWON, AR_PCICFG_LEDMODE)
|
|
#if 0
|
|
| SM(AR_PCICFG_LEDMODE_NETON, AR_PCICFG_LEDMODE)
|
|
#endif
|
|
| 0x08000000;
|
|
}
|
|
bits = (bits &~ AR_PCICFG_LEDCTL)
|
|
| SM(ledbits[state & 0x7], AR_PCICFG_LEDCTL);
|
|
OS_REG_WRITE(ah, AR_PCICFG, bits);
|
|
}
|
|
|
|
/*
|
|
* Change association related fields programmed into the hardware.
|
|
* Writing a valid BSSID to the hardware effectively enables the hardware
|
|
* to synchronize its TSF to the correct beacons and receive frames coming
|
|
* from that BSSID. It is called by the SME JOIN operation.
|
|
*/
|
|
void
|
|
ar5212WriteAssocid(struct ath_hal *ah, const uint8_t *bssid, uint16_t assocId)
|
|
{
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
|
|
/* save bssid for possible re-use on reset */
|
|
OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
|
|
ahp->ah_assocId = assocId;
|
|
OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
|
|
OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid+4) |
|
|
((assocId & 0x3fff)<<AR_BSS_ID1_AID_S));
|
|
}
|
|
|
|
/*
|
|
* Get the current hardware tsf for stamlme
|
|
*/
|
|
uint64_t
|
|
ar5212GetTsf64(struct ath_hal *ah)
|
|
{
|
|
uint32_t low1, low2, u32;
|
|
|
|
/* sync multi-word read */
|
|
low1 = OS_REG_READ(ah, AR_TSF_L32);
|
|
u32 = OS_REG_READ(ah, AR_TSF_U32);
|
|
low2 = OS_REG_READ(ah, AR_TSF_L32);
|
|
if (low2 < low1) { /* roll over */
|
|
/*
|
|
* If we are not preempted this will work. If we are
|
|
* then we re-reading AR_TSF_U32 does no good as the
|
|
* low bits will be meaningless. Likewise reading
|
|
* L32, U32, U32, then comparing the last two reads
|
|
* to check for rollover doesn't help if preempted--so
|
|
* we take this approach as it costs one less PCI read
|
|
* which can be noticeable when doing things like
|
|
* timestamping packets in monitor mode.
|
|
*/
|
|
u32++;
|
|
}
|
|
return (((uint64_t) u32) << 32) | ((uint64_t) low2);
|
|
}
|
|
|
|
/*
|
|
* Get the current hardware tsf for stamlme
|
|
*/
|
|
uint32_t
|
|
ar5212GetTsf32(struct ath_hal *ah)
|
|
{
|
|
return OS_REG_READ(ah, AR_TSF_L32);
|
|
}
|
|
|
|
void
|
|
ar5212SetTsf64(struct ath_hal *ah, uint64_t tsf64)
|
|
{
|
|
OS_REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
|
|
OS_REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
|
|
}
|
|
|
|
/*
|
|
* Reset the current hardware tsf for stamlme.
|
|
*/
|
|
void
|
|
ar5212ResetTsf(struct ath_hal *ah)
|
|
{
|
|
|
|
uint32_t val = OS_REG_READ(ah, AR_BEACON);
|
|
|
|
OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF);
|
|
/*
|
|
* When resetting the TSF, write twice to the
|
|
* corresponding register; each write to the RESET_TSF bit toggles
|
|
* the internal signal to cause a reset of the TSF - but if the signal
|
|
* is left high, it will reset the TSF on the next chip reset also!
|
|
* writing the bit an even number of times fixes this issue
|
|
*/
|
|
OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF);
|
|
}
|
|
|
|
/*
|
|
* Set or clear hardware basic rate bit
|
|
* Set hardware basic rate set if basic rate is found
|
|
* and basic rate is equal or less than 2Mbps
|
|
*/
|
|
void
|
|
ar5212SetBasicRate(struct ath_hal *ah, HAL_RATE_SET *rs)
|
|
{
|
|
const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
|
|
uint32_t reg;
|
|
uint8_t xset;
|
|
int i;
|
|
|
|
if (chan == AH_NULL || !IEEE80211_IS_CHAN_CCK(chan))
|
|
return;
|
|
xset = 0;
|
|
for (i = 0; i < rs->rs_count; i++) {
|
|
uint8_t rset = rs->rs_rates[i];
|
|
/* Basic rate defined? */
|
|
if ((rset & 0x80) && (rset &= 0x7f) >= xset)
|
|
xset = rset;
|
|
}
|
|
/*
|
|
* Set the h/w bit to reflect whether or not the basic
|
|
* rate is found to be equal or less than 2Mbps.
|
|
*/
|
|
reg = OS_REG_READ(ah, AR_STA_ID1);
|
|
if (xset && xset/2 <= 2)
|
|
OS_REG_WRITE(ah, AR_STA_ID1, reg | AR_STA_ID1_BASE_RATE_11B);
|
|
else
|
|
OS_REG_WRITE(ah, AR_STA_ID1, reg &~ AR_STA_ID1_BASE_RATE_11B);
|
|
}
|
|
|
|
/*
|
|
* Grab a semi-random value from hardware registers - may not
|
|
* change often
|
|
*/
|
|
uint32_t
|
|
ar5212GetRandomSeed(struct ath_hal *ah)
|
|
{
|
|
uint32_t nf;
|
|
|
|
nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
|
|
if (nf & 0x100)
|
|
nf = 0 - ((nf ^ 0x1ff) + 1);
|
|
return (OS_REG_READ(ah, AR_TSF_U32) ^
|
|
OS_REG_READ(ah, AR_TSF_L32) ^ nf);
|
|
}
|
|
|
|
/*
|
|
* Detect if our card is present
|
|
*/
|
|
HAL_BOOL
|
|
ar5212DetectCardPresent(struct ath_hal *ah)
|
|
{
|
|
uint16_t macVersion, macRev;
|
|
uint32_t v;
|
|
|
|
/*
|
|
* Read the Silicon Revision register and compare that
|
|
* to what we read at attach time. If the same, we say
|
|
* a card/device is present.
|
|
*/
|
|
v = OS_REG_READ(ah, AR_SREV) & AR_SREV_ID;
|
|
macVersion = v >> AR_SREV_ID_S;
|
|
macRev = v & AR_SREV_REVISION;
|
|
return (AH_PRIVATE(ah)->ah_macVersion == macVersion &&
|
|
AH_PRIVATE(ah)->ah_macRev == macRev);
|
|
}
|
|
|
|
void
|
|
ar5212EnableMibCounters(struct ath_hal *ah)
|
|
{
|
|
/* NB: this just resets the mib counter machinery */
|
|
OS_REG_WRITE(ah, AR_MIBC,
|
|
~(AR_MIBC_COW | AR_MIBC_FMC | AR_MIBC_CMC | AR_MIBC_MCS) & 0x0f);
|
|
}
|
|
|
|
void
|
|
ar5212DisableMibCounters(struct ath_hal *ah)
|
|
{
|
|
OS_REG_WRITE(ah, AR_MIBC, AR_MIBC | AR_MIBC_CMC);
|
|
}
|
|
|
|
/*
|
|
* Update MIB Counters
|
|
*/
|
|
void
|
|
ar5212UpdateMibCounters(struct ath_hal *ah, HAL_MIB_STATS* stats)
|
|
{
|
|
stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
|
|
stats->rts_bad += OS_REG_READ(ah, AR_RTS_FAIL);
|
|
stats->fcs_bad += OS_REG_READ(ah, AR_FCS_FAIL);
|
|
stats->rts_good += OS_REG_READ(ah, AR_RTS_OK);
|
|
stats->beacons += OS_REG_READ(ah, AR_BEACON_CNT);
|
|
}
|
|
|
|
/*
|
|
* Detect if the HW supports spreading a CCK signal on channel 14
|
|
*/
|
|
HAL_BOOL
|
|
ar5212IsJapanChannelSpreadSupported(struct ath_hal *ah)
|
|
{
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Get the rssi of frame curently being received.
|
|
*/
|
|
uint32_t
|
|
ar5212GetCurRssi(struct ath_hal *ah)
|
|
{
|
|
return (OS_REG_READ(ah, AR_PHY_CURRENT_RSSI) & 0xff);
|
|
}
|
|
|
|
u_int
|
|
ar5212GetDefAntenna(struct ath_hal *ah)
|
|
{
|
|
return (OS_REG_READ(ah, AR_DEF_ANTENNA) & 0x7);
|
|
}
|
|
|
|
void
|
|
ar5212SetDefAntenna(struct ath_hal *ah, u_int antenna)
|
|
{
|
|
OS_REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
|
|
}
|
|
|
|
HAL_ANT_SETTING
|
|
ar5212GetAntennaSwitch(struct ath_hal *ah)
|
|
{
|
|
return AH5212(ah)->ah_antControl;
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5212SetAntennaSwitch(struct ath_hal *ah, HAL_ANT_SETTING setting)
|
|
{
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
|
|
|
|
if (!ahp->ah_phyPowerOn || chan == AH_NULL) {
|
|
/* PHY powered off, just stash settings */
|
|
ahp->ah_antControl = setting;
|
|
ahp->ah_diversity = (setting == HAL_ANT_VARIABLE);
|
|
return AH_TRUE;
|
|
}
|
|
return ar5212SetAntennaSwitchInternal(ah, setting, chan);
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5212IsSleepAfterBeaconBroken(struct ath_hal *ah)
|
|
{
|
|
return AH_TRUE;
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5212SetSifsTime(struct ath_hal *ah, u_int us)
|
|
{
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
|
|
if (us > ath_hal_mac_usec(ah, 0xffff)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad SIFS time %u\n",
|
|
__func__, us);
|
|
ahp->ah_sifstime = (u_int) -1; /* restore default handling */
|
|
return AH_FALSE;
|
|
} else {
|
|
/* convert to system clocks */
|
|
OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, ath_hal_mac_clks(ah, us-2));
|
|
ahp->ah_sifstime = us;
|
|
return AH_TRUE;
|
|
}
|
|
}
|
|
|
|
u_int
|
|
ar5212GetSifsTime(struct ath_hal *ah)
|
|
{
|
|
u_int clks = OS_REG_READ(ah, AR_D_GBL_IFS_SIFS) & 0xffff;
|
|
return ath_hal_mac_usec(ah, clks)+2; /* convert from system clocks */
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5212SetSlotTime(struct ath_hal *ah, u_int us)
|
|
{
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
|
|
if (us < HAL_SLOT_TIME_6 || us > ath_hal_mac_usec(ah, 0xffff)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad slot time %u\n",
|
|
__func__, us);
|
|
ahp->ah_slottime = (u_int) -1; /* restore default handling */
|
|
return AH_FALSE;
|
|
} else {
|
|
/* convert to system clocks */
|
|
OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath_hal_mac_clks(ah, us));
|
|
ahp->ah_slottime = us;
|
|
return AH_TRUE;
|
|
}
|
|
}
|
|
|
|
u_int
|
|
ar5212GetSlotTime(struct ath_hal *ah)
|
|
{
|
|
u_int clks = OS_REG_READ(ah, AR_D_GBL_IFS_SLOT) & 0xffff;
|
|
return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5212SetAckTimeout(struct ath_hal *ah, u_int us)
|
|
{
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
|
|
if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad ack timeout %u\n",
|
|
__func__, us);
|
|
ahp->ah_acktimeout = (u_int) -1; /* restore default handling */
|
|
return AH_FALSE;
|
|
} else {
|
|
/* convert to system clocks */
|
|
OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
|
|
AR_TIME_OUT_ACK, ath_hal_mac_clks(ah, us));
|
|
ahp->ah_acktimeout = us;
|
|
return AH_TRUE;
|
|
}
|
|
}
|
|
|
|
u_int
|
|
ar5212GetAckTimeout(struct ath_hal *ah)
|
|
{
|
|
u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
|
|
return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
|
|
}
|
|
|
|
u_int
|
|
ar5212GetAckCTSRate(struct ath_hal *ah)
|
|
{
|
|
return ((AH5212(ah)->ah_staId1Defaults & AR_STA_ID1_ACKCTS_6MB) == 0);
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5212SetAckCTSRate(struct ath_hal *ah, u_int high)
|
|
{
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
|
|
if (high) {
|
|
OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
|
|
ahp->ah_staId1Defaults &= ~AR_STA_ID1_ACKCTS_6MB;
|
|
} else {
|
|
OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
|
|
ahp->ah_staId1Defaults |= AR_STA_ID1_ACKCTS_6MB;
|
|
}
|
|
return AH_TRUE;
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5212SetCTSTimeout(struct ath_hal *ah, u_int us)
|
|
{
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
|
|
if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad cts timeout %u\n",
|
|
__func__, us);
|
|
ahp->ah_ctstimeout = (u_int) -1; /* restore default handling */
|
|
return AH_FALSE;
|
|
} else {
|
|
/* convert to system clocks */
|
|
OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
|
|
AR_TIME_OUT_CTS, ath_hal_mac_clks(ah, us));
|
|
ahp->ah_ctstimeout = us;
|
|
return AH_TRUE;
|
|
}
|
|
}
|
|
|
|
u_int
|
|
ar5212GetCTSTimeout(struct ath_hal *ah)
|
|
{
|
|
u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_CTS);
|
|
return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
|
|
}
|
|
|
|
/* Setup decompression for given key index */
|
|
HAL_BOOL
|
|
ar5212SetDecompMask(struct ath_hal *ah, uint16_t keyidx, int en)
|
|
{
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
|
|
if (keyidx >= HAL_DECOMP_MASK_SIZE)
|
|
return AH_FALSE;
|
|
OS_REG_WRITE(ah, AR_DCM_A, keyidx);
|
|
OS_REG_WRITE(ah, AR_DCM_D, en ? AR_DCM_D_EN : 0);
|
|
ahp->ah_decompMask[keyidx] = en;
|
|
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/* Setup coverage class */
|
|
void
|
|
ar5212SetCoverageClass(struct ath_hal *ah, uint8_t coverageclass, int now)
|
|
{
|
|
uint32_t slot, timeout, eifs;
|
|
u_int clkRate;
|
|
|
|
AH_PRIVATE(ah)->ah_coverageClass = coverageclass;
|
|
|
|
if (now) {
|
|
if (AH_PRIVATE(ah)->ah_coverageClass == 0)
|
|
return;
|
|
|
|
/* Don't apply coverage class to non A channels */
|
|
if (!IEEE80211_IS_CHAN_A(AH_PRIVATE(ah)->ah_curchan))
|
|
return;
|
|
|
|
/* Get core clock rate */
|
|
clkRate = ath_hal_mac_clks(ah, 1);
|
|
|
|
/* Compute EIFS */
|
|
slot = coverageclass * 3 * clkRate;
|
|
eifs = coverageclass * 6 * clkRate;
|
|
if (IEEE80211_IS_CHAN_HALF(AH_PRIVATE(ah)->ah_curchan)) {
|
|
slot += IFS_SLOT_HALF_RATE;
|
|
eifs += IFS_EIFS_HALF_RATE;
|
|
} else if (IEEE80211_IS_CHAN_QUARTER(AH_PRIVATE(ah)->ah_curchan)) {
|
|
slot += IFS_SLOT_QUARTER_RATE;
|
|
eifs += IFS_EIFS_QUARTER_RATE;
|
|
} else { /* full rate */
|
|
slot += IFS_SLOT_FULL_RATE;
|
|
eifs += IFS_EIFS_FULL_RATE;
|
|
}
|
|
|
|
/*
|
|
* Add additional time for air propagation for ACK and CTS
|
|
* timeouts. This value is in core clocks.
|
|
*/
|
|
timeout = ACK_CTS_TIMEOUT_11A + (coverageclass * 3 * clkRate);
|
|
|
|
/*
|
|
* Write the values: slot, eifs, ack/cts timeouts.
|
|
*/
|
|
OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot);
|
|
OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs);
|
|
OS_REG_WRITE(ah, AR_TIME_OUT,
|
|
SM(timeout, AR_TIME_OUT_CTS)
|
|
| SM(timeout, AR_TIME_OUT_ACK));
|
|
}
|
|
}
|
|
|
|
HAL_STATUS
|
|
ar5212SetQuiet(struct ath_hal *ah, uint32_t period, uint32_t duration,
|
|
uint32_t nextStart, HAL_QUIET_FLAG flag)
|
|
{
|
|
OS_REG_WRITE(ah, AR_QUIET2, period | (duration << AR_QUIET2_QUIET_DUR_S));
|
|
if (flag & HAL_QUIET_ENABLE) {
|
|
OS_REG_WRITE(ah, AR_QUIET1, nextStart | (1 << 16));
|
|
}
|
|
else {
|
|
OS_REG_WRITE(ah, AR_QUIET1, nextStart);
|
|
}
|
|
return HAL_OK;
|
|
}
|
|
|
|
void
|
|
ar5212SetPCUConfig(struct ath_hal *ah)
|
|
{
|
|
ar5212SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode);
|
|
}
|
|
|
|
/*
|
|
* Return whether an external 32KHz crystal should be used
|
|
* to reduce power consumption when sleeping. We do so if
|
|
* the crystal is present (obtained from EEPROM) and if we
|
|
* are not running as an AP and are configured to use it.
|
|
*/
|
|
HAL_BOOL
|
|
ar5212Use32KHzclock(struct ath_hal *ah, HAL_OPMODE opmode)
|
|
{
|
|
if (opmode != HAL_M_HOSTAP) {
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
return ath_hal_eepromGetFlag(ah, AR_EEP_32KHZCRYSTAL) &&
|
|
(ahp->ah_enable32kHzClock == USE_32KHZ ||
|
|
ahp->ah_enable32kHzClock == AUTO_32KHZ);
|
|
} else
|
|
return AH_FALSE;
|
|
}
|
|
|
|
/*
|
|
* If 32KHz clock exists, use it to lower power consumption during sleep
|
|
*
|
|
* Note: If clock is set to 32 KHz, delays on accessing certain
|
|
* baseband registers (27-31, 124-127) are required.
|
|
*/
|
|
void
|
|
ar5212SetupClock(struct ath_hal *ah, HAL_OPMODE opmode)
|
|
{
|
|
if (ar5212Use32KHzclock(ah, opmode)) {
|
|
/*
|
|
* Enable clocks to be turned OFF in BB during sleep
|
|
* and also enable turning OFF 32MHz/40MHz Refclk
|
|
* from A2.
|
|
*/
|
|
OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_CONTROL, 0x1f);
|
|
OS_REG_WRITE(ah, AR_PHY_REFCLKPD,
|
|
IS_RAD5112_ANY(ah) || IS_5413(ah) ? 0x14 : 0x18);
|
|
OS_REG_RMW_FIELD(ah, AR_USEC, AR_USEC_USEC32, 1);
|
|
OS_REG_WRITE(ah, AR_TSF_PARM, 61); /* 32 KHz TSF incr */
|
|
OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_SEL, 1);
|
|
|
|
if (IS_2413(ah) || IS_5413(ah) || IS_2417(ah)) {
|
|
OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT, 0x26);
|
|
OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0d);
|
|
OS_REG_WRITE(ah, AR_PHY_M_SLEEP, 0x07);
|
|
OS_REG_WRITE(ah, AR_PHY_REFCLKDLY, 0x3f);
|
|
/* # Set sleep clock rate to 32 KHz. */
|
|
OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0x2);
|
|
} else {
|
|
OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT, 0x0a);
|
|
OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0c);
|
|
OS_REG_WRITE(ah, AR_PHY_M_SLEEP, 0x03);
|
|
OS_REG_WRITE(ah, AR_PHY_REFCLKDLY, 0x20);
|
|
OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0x3);
|
|
}
|
|
} else {
|
|
OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0x0);
|
|
OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_SEL, 0);
|
|
|
|
OS_REG_WRITE(ah, AR_TSF_PARM, 1); /* 32MHz TSF inc */
|
|
|
|
OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_CONTROL, 0x1f);
|
|
OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT, 0x7f);
|
|
|
|
if (IS_2417(ah))
|
|
OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0a);
|
|
else if (IS_HB63(ah))
|
|
OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x32);
|
|
else
|
|
OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e);
|
|
OS_REG_WRITE(ah, AR_PHY_M_SLEEP, 0x0c);
|
|
OS_REG_WRITE(ah, AR_PHY_REFCLKDLY, 0xff);
|
|
OS_REG_WRITE(ah, AR_PHY_REFCLKPD,
|
|
IS_RAD5112_ANY(ah) || IS_5413(ah) || IS_2417(ah) ? 0x14 : 0x18);
|
|
OS_REG_RMW_FIELD(ah, AR_USEC, AR_USEC_USEC32,
|
|
IS_RAD5112_ANY(ah) || IS_5413(ah) ? 39 : 31);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If 32KHz clock exists, turn it off and turn back on the 32Mhz
|
|
*/
|
|
void
|
|
ar5212RestoreClock(struct ath_hal *ah, HAL_OPMODE opmode)
|
|
{
|
|
if (ar5212Use32KHzclock(ah, opmode)) {
|
|
/* # Set sleep clock rate back to 32 MHz. */
|
|
OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0);
|
|
OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_SEL, 0);
|
|
|
|
OS_REG_WRITE(ah, AR_TSF_PARM, 1); /* 32 MHz TSF incr */
|
|
OS_REG_RMW_FIELD(ah, AR_USEC, AR_USEC_USEC32,
|
|
IS_RAD5112_ANY(ah) || IS_5413(ah) ? 39 : 31);
|
|
|
|
/*
|
|
* Restore BB registers to power-on defaults
|
|
*/
|
|
OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_CONTROL, 0x1f);
|
|
OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT, 0x7f);
|
|
OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e);
|
|
OS_REG_WRITE(ah, AR_PHY_M_SLEEP, 0x0c);
|
|
OS_REG_WRITE(ah, AR_PHY_REFCLKDLY, 0xff);
|
|
OS_REG_WRITE(ah, AR_PHY_REFCLKPD,
|
|
IS_RAD5112_ANY(ah) || IS_5413(ah) ? 0x14 : 0x18);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Adjust NF based on statistical values for 5GHz frequencies.
|
|
* Default method: this may be overridden by the rf backend.
|
|
*/
|
|
int16_t
|
|
ar5212GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
|
|
{
|
|
static const struct {
|
|
uint16_t freqLow;
|
|
int16_t adjust;
|
|
} adjustDef[] = {
|
|
{ 5790, 11 }, /* NB: ordered high -> low */
|
|
{ 5730, 10 },
|
|
{ 5690, 9 },
|
|
{ 5660, 8 },
|
|
{ 5610, 7 },
|
|
{ 5530, 5 },
|
|
{ 5450, 4 },
|
|
{ 5379, 2 },
|
|
{ 5209, 0 },
|
|
{ 3000, 1 },
|
|
{ 0, 0 },
|
|
};
|
|
int i;
|
|
|
|
for (i = 0; c->channel <= adjustDef[i].freqLow; i++)
|
|
;
|
|
return adjustDef[i].adjust;
|
|
}
|
|
|
|
HAL_STATUS
|
|
ar5212GetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
|
|
uint32_t capability, uint32_t *result)
|
|
{
|
|
#define MACVERSION(ah) AH_PRIVATE(ah)->ah_macVersion
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
|
|
const struct ar5212AniState *ani;
|
|
|
|
switch (type) {
|
|
case HAL_CAP_CIPHER: /* cipher handled in hardware */
|
|
switch (capability) {
|
|
case HAL_CIPHER_AES_CCM:
|
|
return pCap->halCipherAesCcmSupport ?
|
|
HAL_OK : HAL_ENOTSUPP;
|
|
case HAL_CIPHER_AES_OCB:
|
|
case HAL_CIPHER_TKIP:
|
|
case HAL_CIPHER_WEP:
|
|
case HAL_CIPHER_MIC:
|
|
case HAL_CIPHER_CLR:
|
|
return HAL_OK;
|
|
default:
|
|
return HAL_ENOTSUPP;
|
|
}
|
|
case HAL_CAP_TKIP_MIC: /* handle TKIP MIC in hardware */
|
|
switch (capability) {
|
|
case 0: /* hardware capability */
|
|
return HAL_OK;
|
|
case 1:
|
|
return (ahp->ah_staId1Defaults &
|
|
AR_STA_ID1_CRPT_MIC_ENABLE) ? HAL_OK : HAL_ENXIO;
|
|
}
|
|
return HAL_EINVAL;
|
|
case HAL_CAP_TKIP_SPLIT: /* hardware TKIP uses split keys */
|
|
switch (capability) {
|
|
case 0: /* hardware capability */
|
|
return pCap->halTkipMicTxRxKeySupport ?
|
|
HAL_ENXIO : HAL_OK;
|
|
case 1: /* current setting */
|
|
return (ahp->ah_miscMode &
|
|
AR_MISC_MODE_MIC_NEW_LOC_ENABLE) ? HAL_ENXIO : HAL_OK;
|
|
}
|
|
return HAL_EINVAL;
|
|
case HAL_CAP_WME_TKIPMIC: /* hardware can do TKIP MIC w/ WMM */
|
|
/* XXX move to capability bit */
|
|
return MACVERSION(ah) > AR_SREV_VERSION_VENICE ||
|
|
(MACVERSION(ah) == AR_SREV_VERSION_VENICE &&
|
|
AH_PRIVATE(ah)->ah_macRev >= 8) ? HAL_OK : HAL_ENOTSUPP;
|
|
case HAL_CAP_DIVERSITY: /* hardware supports fast diversity */
|
|
switch (capability) {
|
|
case 0: /* hardware capability */
|
|
return HAL_OK;
|
|
case 1: /* current setting */
|
|
return ahp->ah_diversity ? HAL_OK : HAL_ENXIO;
|
|
case HAL_CAP_STRONG_DIV:
|
|
*result = OS_REG_READ(ah, AR_PHY_RESTART);
|
|
*result = MS(*result, AR_PHY_RESTART_DIV_GC);
|
|
return HAL_OK;
|
|
}
|
|
return HAL_EINVAL;
|
|
case HAL_CAP_DIAG:
|
|
*result = AH_PRIVATE(ah)->ah_diagreg;
|
|
return HAL_OK;
|
|
case HAL_CAP_TPC:
|
|
switch (capability) {
|
|
case 0: /* hardware capability */
|
|
return HAL_OK;
|
|
case 1:
|
|
return ahp->ah_tpcEnabled ? HAL_OK : HAL_ENXIO;
|
|
}
|
|
return HAL_OK;
|
|
case HAL_CAP_PHYDIAG: /* radar pulse detection capability */
|
|
switch (capability) {
|
|
case HAL_CAP_RADAR:
|
|
return ath_hal_eepromGetFlag(ah, AR_EEP_AMODE) ?
|
|
HAL_OK: HAL_ENXIO;
|
|
case HAL_CAP_AR:
|
|
return (ath_hal_eepromGetFlag(ah, AR_EEP_GMODE) ||
|
|
ath_hal_eepromGetFlag(ah, AR_EEP_BMODE)) ?
|
|
HAL_OK: HAL_ENXIO;
|
|
}
|
|
return HAL_ENXIO;
|
|
case HAL_CAP_MCAST_KEYSRCH: /* multicast frame keycache search */
|
|
switch (capability) {
|
|
case 0: /* hardware capability */
|
|
return pCap->halMcastKeySrchSupport ? HAL_OK : HAL_ENXIO;
|
|
case 1:
|
|
return (ahp->ah_staId1Defaults &
|
|
AR_STA_ID1_MCAST_KSRCH) ? HAL_OK : HAL_ENXIO;
|
|
}
|
|
return HAL_EINVAL;
|
|
case HAL_CAP_TSF_ADJUST: /* hardware has beacon tsf adjust */
|
|
switch (capability) {
|
|
case 0: /* hardware capability */
|
|
return pCap->halTsfAddSupport ? HAL_OK : HAL_ENOTSUPP;
|
|
case 1:
|
|
return (ahp->ah_miscMode & AR_MISC_MODE_TX_ADD_TSF) ?
|
|
HAL_OK : HAL_ENXIO;
|
|
}
|
|
return HAL_EINVAL;
|
|
case HAL_CAP_TPC_ACK:
|
|
*result = MS(ahp->ah_macTPC, AR_TPC_ACK);
|
|
return HAL_OK;
|
|
case HAL_CAP_TPC_CTS:
|
|
*result = MS(ahp->ah_macTPC, AR_TPC_CTS);
|
|
return HAL_OK;
|
|
case HAL_CAP_INTMIT: /* interference mitigation */
|
|
switch (capability) {
|
|
case HAL_CAP_INTMIT_PRESENT: /* hardware capability */
|
|
return HAL_OK;
|
|
case HAL_CAP_INTMIT_ENABLE:
|
|
return (ahp->ah_procPhyErr & HAL_ANI_ENA) ?
|
|
HAL_OK : HAL_ENXIO;
|
|
case HAL_CAP_INTMIT_NOISE_IMMUNITY_LEVEL:
|
|
case HAL_CAP_INTMIT_OFDM_WEAK_SIGNAL_LEVEL:
|
|
case HAL_CAP_INTMIT_CCK_WEAK_SIGNAL_THR:
|
|
case HAL_CAP_INTMIT_FIRSTEP_LEVEL:
|
|
case HAL_CAP_INTMIT_SPUR_IMMUNITY_LEVEL:
|
|
ani = ar5212AniGetCurrentState(ah);
|
|
if (ani == AH_NULL)
|
|
return HAL_ENXIO;
|
|
switch (capability) {
|
|
case 2: *result = ani->noiseImmunityLevel; break;
|
|
case 3: *result = !ani->ofdmWeakSigDetectOff; break;
|
|
case 4: *result = ani->cckWeakSigThreshold; break;
|
|
case 5: *result = ani->firstepLevel; break;
|
|
case 6: *result = ani->spurImmunityLevel; break;
|
|
}
|
|
return HAL_OK;
|
|
}
|
|
return HAL_EINVAL;
|
|
default:
|
|
return ath_hal_getcapability(ah, type, capability, result);
|
|
}
|
|
#undef MACVERSION
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5212SetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
|
|
uint32_t capability, uint32_t setting, HAL_STATUS *status)
|
|
{
|
|
#define N(a) (sizeof(a)/sizeof(a[0]))
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
|
|
uint32_t v;
|
|
|
|
switch (type) {
|
|
case HAL_CAP_TKIP_MIC: /* handle TKIP MIC in hardware */
|
|
if (setting)
|
|
ahp->ah_staId1Defaults |= AR_STA_ID1_CRPT_MIC_ENABLE;
|
|
else
|
|
ahp->ah_staId1Defaults &= ~AR_STA_ID1_CRPT_MIC_ENABLE;
|
|
return AH_TRUE;
|
|
case HAL_CAP_TKIP_SPLIT: /* hardware TKIP uses split keys */
|
|
if (!pCap->halTkipMicTxRxKeySupport)
|
|
return AH_FALSE;
|
|
/* NB: true =>'s use split key cache layout */
|
|
if (setting)
|
|
ahp->ah_miscMode &= ~AR_MISC_MODE_MIC_NEW_LOC_ENABLE;
|
|
else
|
|
ahp->ah_miscMode |= AR_MISC_MODE_MIC_NEW_LOC_ENABLE;
|
|
/* NB: write here so keys can be setup w/o a reset */
|
|
OS_REG_WRITE(ah, AR_MISC_MODE, OS_REG_READ(ah, AR_MISC_MODE) | ahp->ah_miscMode);
|
|
return AH_TRUE;
|
|
case HAL_CAP_DIVERSITY:
|
|
switch (capability) {
|
|
case 0:
|
|
return AH_FALSE;
|
|
case 1: /* setting */
|
|
if (ahp->ah_phyPowerOn) {
|
|
if (capability == HAL_CAP_STRONG_DIV) {
|
|
v = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
|
|
if (setting)
|
|
v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
|
|
else
|
|
v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
|
|
OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
|
|
}
|
|
}
|
|
ahp->ah_diversity = (setting != 0);
|
|
return AH_TRUE;
|
|
|
|
case HAL_CAP_STRONG_DIV:
|
|
if (! ahp->ah_phyPowerOn)
|
|
return AH_FALSE;
|
|
v = OS_REG_READ(ah, AR_PHY_RESTART);
|
|
v &= ~AR_PHY_RESTART_DIV_GC;
|
|
v |= SM(setting, AR_PHY_RESTART_DIV_GC);
|
|
OS_REG_WRITE(ah, AR_PHY_RESTART, v);
|
|
return AH_TRUE;
|
|
default:
|
|
return AH_FALSE;
|
|
}
|
|
case HAL_CAP_DIAG: /* hardware diagnostic support */
|
|
/*
|
|
* NB: could split this up into virtual capabilities,
|
|
* (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
|
|
* seems worth the additional complexity.
|
|
*/
|
|
AH_PRIVATE(ah)->ah_diagreg = setting;
|
|
OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
|
|
return AH_TRUE;
|
|
case HAL_CAP_TPC:
|
|
ahp->ah_tpcEnabled = (setting != 0);
|
|
return AH_TRUE;
|
|
case HAL_CAP_MCAST_KEYSRCH: /* multicast frame keycache search */
|
|
if (setting)
|
|
ahp->ah_staId1Defaults |= AR_STA_ID1_MCAST_KSRCH;
|
|
else
|
|
ahp->ah_staId1Defaults &= ~AR_STA_ID1_MCAST_KSRCH;
|
|
return AH_TRUE;
|
|
case HAL_CAP_TPC_ACK:
|
|
case HAL_CAP_TPC_CTS:
|
|
setting += ahp->ah_txPowerIndexOffset;
|
|
if (setting > 63)
|
|
setting = 63;
|
|
if (type == HAL_CAP_TPC_ACK) {
|
|
ahp->ah_macTPC &= AR_TPC_ACK;
|
|
ahp->ah_macTPC |= MS(setting, AR_TPC_ACK);
|
|
} else {
|
|
ahp->ah_macTPC &= AR_TPC_CTS;
|
|
ahp->ah_macTPC |= MS(setting, AR_TPC_CTS);
|
|
}
|
|
OS_REG_WRITE(ah, AR_TPC, ahp->ah_macTPC);
|
|
return AH_TRUE;
|
|
case HAL_CAP_INTMIT: { /* interference mitigation */
|
|
/* This maps the public ANI commands to the internal ANI commands */
|
|
/* Private: HAL_ANI_CMD; Public: HAL_CAP_INTMIT_CMD */
|
|
static const HAL_ANI_CMD cmds[] = {
|
|
HAL_ANI_PRESENT,
|
|
HAL_ANI_MODE,
|
|
HAL_ANI_NOISE_IMMUNITY_LEVEL,
|
|
HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION,
|
|
HAL_ANI_CCK_WEAK_SIGNAL_THR,
|
|
HAL_ANI_FIRSTEP_LEVEL,
|
|
HAL_ANI_SPUR_IMMUNITY_LEVEL,
|
|
};
|
|
return capability < N(cmds) ?
|
|
AH5212(ah)->ah_aniControl(ah, cmds[capability], setting) :
|
|
AH_FALSE;
|
|
}
|
|
case HAL_CAP_TSF_ADJUST: /* hardware has beacon tsf adjust */
|
|
if (pCap->halTsfAddSupport) {
|
|
if (setting)
|
|
ahp->ah_miscMode |= AR_MISC_MODE_TX_ADD_TSF;
|
|
else
|
|
ahp->ah_miscMode &= ~AR_MISC_MODE_TX_ADD_TSF;
|
|
return AH_TRUE;
|
|
}
|
|
/* fall thru... */
|
|
default:
|
|
return ath_hal_setcapability(ah, type, capability,
|
|
setting, status);
|
|
}
|
|
#undef N
|
|
}
|
|
|
|
HAL_BOOL
|
|
ar5212GetDiagState(struct ath_hal *ah, int request,
|
|
const void *args, uint32_t argsize,
|
|
void **result, uint32_t *resultsize)
|
|
{
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
HAL_ANI_STATS *astats;
|
|
|
|
(void) ahp;
|
|
if (ath_hal_getdiagstate(ah, request, args, argsize, result, resultsize))
|
|
return AH_TRUE;
|
|
switch (request) {
|
|
case HAL_DIAG_EEPROM:
|
|
case HAL_DIAG_EEPROM_EXP_11A:
|
|
case HAL_DIAG_EEPROM_EXP_11B:
|
|
case HAL_DIAG_EEPROM_EXP_11G:
|
|
case HAL_DIAG_RFGAIN:
|
|
return ath_hal_eepromDiag(ah, request,
|
|
args, argsize, result, resultsize);
|
|
case HAL_DIAG_RFGAIN_CURSTEP:
|
|
*result = __DECONST(void *, ahp->ah_gainValues.currStep);
|
|
*resultsize = (*result == AH_NULL) ?
|
|
0 : sizeof(GAIN_OPTIMIZATION_STEP);
|
|
return AH_TRUE;
|
|
case HAL_DIAG_PCDAC:
|
|
*result = ahp->ah_pcdacTable;
|
|
*resultsize = ahp->ah_pcdacTableSize;
|
|
return AH_TRUE;
|
|
case HAL_DIAG_TXRATES:
|
|
*result = &ahp->ah_ratesArray[0];
|
|
*resultsize = sizeof(ahp->ah_ratesArray);
|
|
return AH_TRUE;
|
|
case HAL_DIAG_ANI_CURRENT:
|
|
*result = ar5212AniGetCurrentState(ah);
|
|
*resultsize = (*result == AH_NULL) ?
|
|
0 : sizeof(struct ar5212AniState);
|
|
return AH_TRUE;
|
|
case HAL_DIAG_ANI_STATS:
|
|
OS_MEMZERO(&ahp->ext_ani_stats, sizeof(ahp->ext_ani_stats));
|
|
astats = ar5212AniGetCurrentStats(ah);
|
|
if (astats == NULL) {
|
|
*result = NULL;
|
|
*resultsize = 0;
|
|
} else {
|
|
OS_MEMCPY(&ahp->ext_ani_stats, astats, sizeof(HAL_ANI_STATS));
|
|
*result = &ahp->ext_ani_stats;
|
|
*resultsize = sizeof(ahp->ext_ani_stats);
|
|
}
|
|
return AH_TRUE;
|
|
case HAL_DIAG_ANI_CMD:
|
|
if (argsize != 2*sizeof(uint32_t))
|
|
return AH_FALSE;
|
|
AH5212(ah)->ah_aniControl(ah, ((const uint32_t *)args)[0],
|
|
((const uint32_t *)args)[1]);
|
|
return AH_TRUE;
|
|
case HAL_DIAG_ANI_PARAMS:
|
|
/*
|
|
* NB: We assume struct ar5212AniParams is identical
|
|
* to HAL_ANI_PARAMS; if they diverge then we'll need
|
|
* to handle it here
|
|
*/
|
|
if (argsize == 0 && args == AH_NULL) {
|
|
struct ar5212AniState *aniState =
|
|
ar5212AniGetCurrentState(ah);
|
|
if (aniState == AH_NULL)
|
|
return AH_FALSE;
|
|
*result = __DECONST(void *, aniState->params);
|
|
*resultsize = sizeof(struct ar5212AniParams);
|
|
return AH_TRUE;
|
|
} else {
|
|
if (argsize != sizeof(struct ar5212AniParams))
|
|
return AH_FALSE;
|
|
return ar5212AniSetParams(ah, args, args);
|
|
}
|
|
break;
|
|
}
|
|
return AH_FALSE;
|
|
}
|
|
|
|
/*
|
|
* Check whether there's an in-progress NF completion.
|
|
*
|
|
* Returns AH_TRUE if there's a in-progress NF calibration, AH_FALSE
|
|
* otherwise.
|
|
*/
|
|
HAL_BOOL
|
|
ar5212IsNFCalInProgress(struct ath_hal *ah)
|
|
{
|
|
if (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF)
|
|
return AH_TRUE;
|
|
return AH_FALSE;
|
|
}
|
|
|
|
/*
|
|
* Wait for an in-progress NF calibration to complete.
|
|
*
|
|
* The completion function waits "i" times 10uS.
|
|
* It returns AH_TRUE if the NF calibration completed (or was never
|
|
* in progress); AH_FALSE if it was still in progress after "i" checks.
|
|
*/
|
|
HAL_BOOL
|
|
ar5212WaitNFCalComplete(struct ath_hal *ah, int i)
|
|
{
|
|
int j;
|
|
if (i <= 0)
|
|
i = 1; /* it should run at least once */
|
|
for (j = 0; j < i; j++) {
|
|
if (! ar5212IsNFCalInProgress(ah))
|
|
return AH_TRUE;
|
|
OS_DELAY(10);
|
|
}
|
|
return AH_FALSE;
|
|
}
|
|
|
|
void
|
|
ar5212EnableDfs(struct ath_hal *ah, HAL_PHYERR_PARAM *pe)
|
|
{
|
|
uint32_t val;
|
|
val = OS_REG_READ(ah, AR_PHY_RADAR_0);
|
|
|
|
if (pe->pe_firpwr != HAL_PHYERR_PARAM_NOVAL) {
|
|
val &= ~AR_PHY_RADAR_0_FIRPWR;
|
|
val |= SM(pe->pe_firpwr, AR_PHY_RADAR_0_FIRPWR);
|
|
}
|
|
if (pe->pe_rrssi != HAL_PHYERR_PARAM_NOVAL) {
|
|
val &= ~AR_PHY_RADAR_0_RRSSI;
|
|
val |= SM(pe->pe_rrssi, AR_PHY_RADAR_0_RRSSI);
|
|
}
|
|
if (pe->pe_height != HAL_PHYERR_PARAM_NOVAL) {
|
|
val &= ~AR_PHY_RADAR_0_HEIGHT;
|
|
val |= SM(pe->pe_height, AR_PHY_RADAR_0_HEIGHT);
|
|
}
|
|
if (pe->pe_prssi != HAL_PHYERR_PARAM_NOVAL) {
|
|
val &= ~AR_PHY_RADAR_0_PRSSI;
|
|
val |= SM(pe->pe_prssi, AR_PHY_RADAR_0_PRSSI);
|
|
}
|
|
if (pe->pe_inband != HAL_PHYERR_PARAM_NOVAL) {
|
|
val &= ~AR_PHY_RADAR_0_INBAND;
|
|
val |= SM(pe->pe_inband, AR_PHY_RADAR_0_INBAND);
|
|
}
|
|
if (pe->pe_enabled)
|
|
val |= AR_PHY_RADAR_0_ENA;
|
|
else
|
|
val &= ~ AR_PHY_RADAR_0_ENA;
|
|
|
|
if (IS_5413(ah)) {
|
|
|
|
if (pe->pe_blockradar == 1)
|
|
OS_REG_SET_BIT(ah, AR_PHY_RADAR_2,
|
|
AR_PHY_RADAR_2_BLOCKOFDMWEAK);
|
|
else
|
|
OS_REG_CLR_BIT(ah, AR_PHY_RADAR_2,
|
|
AR_PHY_RADAR_2_BLOCKOFDMWEAK);
|
|
|
|
if (pe->pe_en_relstep_check == 1)
|
|
OS_REG_SET_BIT(ah, AR_PHY_RADAR_2,
|
|
AR_PHY_RADAR_2_ENRELSTEPCHK);
|
|
else
|
|
OS_REG_CLR_BIT(ah, AR_PHY_RADAR_2,
|
|
AR_PHY_RADAR_2_ENRELSTEPCHK);
|
|
|
|
if (pe->pe_usefir128 == 1)
|
|
OS_REG_SET_BIT(ah, AR_PHY_RADAR_2,
|
|
AR_PHY_RADAR_2_USEFIR128);
|
|
else
|
|
OS_REG_CLR_BIT(ah, AR_PHY_RADAR_2,
|
|
AR_PHY_RADAR_2_USEFIR128);
|
|
|
|
if (pe->pe_enmaxrssi == 1)
|
|
OS_REG_SET_BIT(ah, AR_PHY_RADAR_2,
|
|
AR_PHY_RADAR_2_ENMAXRSSI);
|
|
else
|
|
OS_REG_CLR_BIT(ah, AR_PHY_RADAR_2,
|
|
AR_PHY_RADAR_2_ENMAXRSSI);
|
|
|
|
if (pe->pe_enrelpwr == 1)
|
|
OS_REG_SET_BIT(ah, AR_PHY_RADAR_2,
|
|
AR_PHY_RADAR_2_ENRELPWRCHK);
|
|
else
|
|
OS_REG_CLR_BIT(ah, AR_PHY_RADAR_2,
|
|
AR_PHY_RADAR_2_ENRELPWRCHK);
|
|
|
|
if (pe->pe_relpwr != HAL_PHYERR_PARAM_NOVAL)
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_RADAR_2,
|
|
AR_PHY_RADAR_2_RELPWR, pe->pe_relpwr);
|
|
|
|
if (pe->pe_relstep != HAL_PHYERR_PARAM_NOVAL)
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_RADAR_2,
|
|
AR_PHY_RADAR_2_RELSTEP, pe->pe_relstep);
|
|
|
|
if (pe->pe_maxlen != HAL_PHYERR_PARAM_NOVAL)
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_RADAR_2,
|
|
AR_PHY_RADAR_2_MAXLEN, pe->pe_maxlen);
|
|
}
|
|
|
|
OS_REG_WRITE(ah, AR_PHY_RADAR_0, val);
|
|
}
|
|
|
|
/*
|
|
* Parameters for the AR5212 PHY.
|
|
*/
|
|
#define AR5212_DFS_FIRPWR -35
|
|
#define AR5212_DFS_RRSSI 20
|
|
#define AR5212_DFS_HEIGHT 14
|
|
#define AR5212_DFS_PRSSI 6
|
|
#define AR5212_DFS_INBAND 4
|
|
|
|
/*
|
|
* Default parameters for the AR5413 PHY.
|
|
*/
|
|
#define AR5413_DFS_FIRPWR -34
|
|
#define AR5413_DFS_RRSSI 20
|
|
#define AR5413_DFS_HEIGHT 10
|
|
#define AR5413_DFS_PRSSI 15
|
|
#define AR5413_DFS_INBAND 6
|
|
#define AR5413_DFS_RELPWR 8
|
|
#define AR5413_DFS_RELSTEP 31
|
|
#define AR5413_DFS_MAXLEN 255
|
|
|
|
HAL_BOOL
|
|
ar5212GetDfsDefaultThresh(struct ath_hal *ah, HAL_PHYERR_PARAM *pe)
|
|
{
|
|
|
|
if (IS_5413(ah)) {
|
|
pe->pe_firpwr = AR5413_DFS_FIRPWR;
|
|
pe->pe_rrssi = AR5413_DFS_RRSSI;
|
|
pe->pe_height = AR5413_DFS_HEIGHT;
|
|
pe->pe_prssi = AR5413_DFS_PRSSI;
|
|
pe->pe_inband = AR5413_DFS_INBAND;
|
|
pe->pe_relpwr = AR5413_DFS_RELPWR;
|
|
pe->pe_relstep = AR5413_DFS_RELSTEP;
|
|
pe->pe_maxlen = AR5413_DFS_MAXLEN;
|
|
pe->pe_usefir128 = 0;
|
|
pe->pe_blockradar = 1;
|
|
pe->pe_enmaxrssi = 1;
|
|
pe->pe_enrelpwr = 1;
|
|
pe->pe_en_relstep_check = 0;
|
|
} else {
|
|
pe->pe_firpwr = AR5212_DFS_FIRPWR;
|
|
pe->pe_rrssi = AR5212_DFS_RRSSI;
|
|
pe->pe_height = AR5212_DFS_HEIGHT;
|
|
pe->pe_prssi = AR5212_DFS_PRSSI;
|
|
pe->pe_inband = AR5212_DFS_INBAND;
|
|
pe->pe_relpwr = 0;
|
|
pe->pe_relstep = 0;
|
|
pe->pe_maxlen = 0;
|
|
pe->pe_usefir128 = 0;
|
|
pe->pe_blockradar = 0;
|
|
pe->pe_enmaxrssi = 0;
|
|
pe->pe_enrelpwr = 0;
|
|
pe->pe_en_relstep_check = 0;
|
|
}
|
|
|
|
return (AH_TRUE);
|
|
}
|
|
|
|
void
|
|
ar5212GetDfsThresh(struct ath_hal *ah, HAL_PHYERR_PARAM *pe)
|
|
{
|
|
uint32_t val,temp;
|
|
|
|
val = OS_REG_READ(ah, AR_PHY_RADAR_0);
|
|
|
|
temp = MS(val,AR_PHY_RADAR_0_FIRPWR);
|
|
temp |= 0xFFFFFF80;
|
|
pe->pe_firpwr = temp;
|
|
pe->pe_rrssi = MS(val, AR_PHY_RADAR_0_RRSSI);
|
|
pe->pe_height = MS(val, AR_PHY_RADAR_0_HEIGHT);
|
|
pe->pe_prssi = MS(val, AR_PHY_RADAR_0_PRSSI);
|
|
pe->pe_inband = MS(val, AR_PHY_RADAR_0_INBAND);
|
|
pe->pe_enabled = !! (val & AR_PHY_RADAR_0_ENA);
|
|
|
|
pe->pe_relpwr = 0;
|
|
pe->pe_relstep = 0;
|
|
pe->pe_maxlen = 0;
|
|
pe->pe_usefir128 = 0;
|
|
pe->pe_blockradar = 0;
|
|
pe->pe_enmaxrssi = 0;
|
|
pe->pe_enrelpwr = 0;
|
|
pe->pe_en_relstep_check = 0;
|
|
pe->pe_extchannel = AH_FALSE;
|
|
|
|
if (IS_5413(ah)) {
|
|
val = OS_REG_READ(ah, AR_PHY_RADAR_2);
|
|
pe->pe_relpwr = !! MS(val, AR_PHY_RADAR_2_RELPWR);
|
|
pe->pe_relstep = !! MS(val, AR_PHY_RADAR_2_RELSTEP);
|
|
pe->pe_maxlen = !! MS(val, AR_PHY_RADAR_2_MAXLEN);
|
|
|
|
pe->pe_usefir128 = !! (val & AR_PHY_RADAR_2_USEFIR128);
|
|
pe->pe_blockradar = !! (val & AR_PHY_RADAR_2_BLOCKOFDMWEAK);
|
|
pe->pe_enmaxrssi = !! (val & AR_PHY_RADAR_2_ENMAXRSSI);
|
|
pe->pe_enrelpwr = !! (val & AR_PHY_RADAR_2_ENRELPWRCHK);
|
|
pe->pe_en_relstep_check =
|
|
!! (val & AR_PHY_RADAR_2_ENRELSTEPCHK);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Process the radar phy error and extract the pulse duration.
|
|
*/
|
|
HAL_BOOL
|
|
ar5212ProcessRadarEvent(struct ath_hal *ah, struct ath_rx_status *rxs,
|
|
uint64_t fulltsf, const char *buf, HAL_DFS_EVENT *event)
|
|
{
|
|
uint8_t dur;
|
|
uint8_t rssi;
|
|
|
|
/* Check whether the given phy error is a radar event */
|
|
if ((rxs->rs_phyerr != HAL_PHYERR_RADAR) &&
|
|
(rxs->rs_phyerr != HAL_PHYERR_FALSE_RADAR_EXT))
|
|
return AH_FALSE;
|
|
|
|
/*
|
|
* The first byte is the pulse width - if there's
|
|
* no data, simply set the duration to 0
|
|
*/
|
|
if (rxs->rs_datalen >= 1)
|
|
/* The pulse width is byte 0 of the data */
|
|
dur = ((uint8_t) buf[0]) & 0xff;
|
|
else
|
|
dur = 0;
|
|
|
|
/* Pulse RSSI is the normal reported RSSI */
|
|
rssi = (uint8_t) rxs->rs_rssi;
|
|
|
|
/* 0 duration/rssi is not a valid radar event */
|
|
if (dur == 0 && rssi == 0)
|
|
return AH_FALSE;
|
|
|
|
HALDEBUG(ah, HAL_DEBUG_DFS, "%s: rssi=%d, dur=%d\n",
|
|
__func__, rssi, dur);
|
|
|
|
/* Record the event */
|
|
event->re_full_ts = fulltsf;
|
|
event->re_ts = rxs->rs_tstamp;
|
|
event->re_rssi = rssi;
|
|
event->re_dur = dur;
|
|
event->re_flags = HAL_DFS_EVENT_PRICH;
|
|
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Return whether 5GHz fast-clock (44MHz) is enabled.
|
|
* It's always disabled for AR5212 series NICs.
|
|
*/
|
|
HAL_BOOL
|
|
ar5212IsFastClockEnabled(struct ath_hal *ah)
|
|
{
|
|
return AH_FALSE;
|
|
}
|
|
|
|
/*
|
|
* Return what percentage of the extension channel is busy.
|
|
* This is always disabled for AR5212 series NICs.
|
|
*/
|
|
uint32_t
|
|
ar5212Get11nExtBusy(struct ath_hal *ah)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Channel survey support.
|
|
*/
|
|
HAL_BOOL
|
|
ar5212GetMibCycleCounts(struct ath_hal *ah, HAL_SURVEY_SAMPLE *hsample)
|
|
{
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
u_int32_t good = AH_TRUE;
|
|
|
|
/* XXX freeze/unfreeze mib counters */
|
|
uint32_t rc = OS_REG_READ(ah, AR_RCCNT);
|
|
uint32_t rf = OS_REG_READ(ah, AR_RFCNT);
|
|
uint32_t tf = OS_REG_READ(ah, AR_TFCNT);
|
|
uint32_t cc = OS_REG_READ(ah, AR_CCCNT); /* read cycles last */
|
|
|
|
if (ahp->ah_cycleCount == 0 || ahp->ah_cycleCount > cc) {
|
|
/*
|
|
* Cycle counter wrap (or initial call); it's not possible
|
|
* to accurately calculate a value because the registers
|
|
* right shift rather than wrap--so punt and return 0.
|
|
*/
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: cycle counter wrap. ExtBusy = 0\n", __func__);
|
|
good = AH_FALSE;
|
|
} else {
|
|
hsample->cycle_count = cc - ahp->ah_cycleCount;
|
|
hsample->chan_busy = rc - ahp->ah_ctlBusy;
|
|
hsample->ext_chan_busy = 0;
|
|
hsample->rx_busy = rf - ahp->ah_rxBusy;
|
|
hsample->tx_busy = tf - ahp->ah_txBusy;
|
|
}
|
|
|
|
/*
|
|
* Keep a copy of the MIB results so the next sample has something
|
|
* to work from.
|
|
*/
|
|
ahp->ah_cycleCount = cc;
|
|
ahp->ah_rxBusy = rf;
|
|
ahp->ah_ctlBusy = rc;
|
|
ahp->ah_txBusy = tf;
|
|
|
|
return (good);
|
|
}
|
|
|
|
void
|
|
ar5212SetChainMasks(struct ath_hal *ah, uint32_t tx_chainmask,
|
|
uint32_t rx_chainmask)
|
|
{
|
|
}
|