Xin LI f6b74a7d16 MFV r317581: less v491.
MFC after:	1 month
2017-05-05 14:33:39 +00:00

1748 lines
35 KiB
C

/*
* Copyright (C) 1984-2017 Mark Nudelman
*
* You may distribute under the terms of either the GNU General Public
* License or the Less License, as specified in the README file.
*
* For more information, see the README file.
*/
/*
* Routines to search a file for a pattern.
*/
#include "less.h"
#include "position.h"
#include "charset.h"
#define MINPOS(a,b) (((a) < (b)) ? (a) : (b))
#define MAXPOS(a,b) (((a) > (b)) ? (a) : (b))
extern int sigs;
extern int how_search;
extern int caseless;
extern int linenums;
extern int sc_height;
extern int jump_sline;
extern int bs_mode;
extern int ctldisp;
extern int status_col;
extern void *ml_search;
extern POSITION start_attnpos;
extern POSITION end_attnpos;
extern int utf_mode;
extern int screen_trashed;
#if HILITE_SEARCH
extern int hilite_search;
extern int size_linebuf;
extern int squished;
extern int can_goto_line;
static int hide_hilite;
static POSITION prep_startpos;
static POSITION prep_endpos;
static int is_caseless;
static int is_ucase_pattern;
/*
* Structures for maintaining a set of ranges for hilites and filtered-out
* lines. Each range is stored as a node within a red-black tree, and we
* try to extend existing ranges (without creating overlaps) rather than
* create new nodes if possible. We remember the last node found by a
* search for constant-time lookup if the next search is near enough to
* the previous. To aid that, we overlay a secondary doubly-linked list
* on top of the red-black tree so we can find the preceding/succeeding
* nodes also in constant time.
*
* Each node is allocated from a series of pools, each pool double the size
* of the previous (for amortised constant time allocation). Since our only
* tree operations are clear and node insertion, not node removal, we don't
* need to maintain a usage bitmap or freelist and can just return nodes
* from the pool in-order until capacity is reached.
*/
struct hilite
{
POSITION hl_startpos;
POSITION hl_endpos;
};
struct hilite_node
{
struct hilite_node *parent;
struct hilite_node *left;
struct hilite_node *right;
struct hilite_node *prev;
struct hilite_node *next;
int red;
struct hilite r;
};
struct hilite_storage
{
int capacity;
int used;
struct hilite_storage *next;
struct hilite_node *nodes;
};
struct hilite_tree
{
struct hilite_storage *first;
struct hilite_storage *current;
struct hilite_node *root;
struct hilite_node *lookaside;
};
#define HILITE_INITIALIZER() { NULL, NULL, NULL, NULL }
#define HILITE_LOOKASIDE_STEPS 2
static struct hilite_tree hilite_anchor = HILITE_INITIALIZER();
static struct hilite_tree filter_anchor = HILITE_INITIALIZER();
#endif
/*
* These are the static variables that represent the "remembered"
* search pattern and filter pattern.
*/
struct pattern_info {
PATTERN_TYPE compiled;
char* text;
int search_type;
};
#if NO_REGEX
#define info_compiled(info) ((void*)0)
#else
#define info_compiled(info) ((info)->compiled)
#endif
static struct pattern_info search_info;
static struct pattern_info filter_info;
/*
* Are there any uppercase letters in this string?
*/
static int
is_ucase(str)
char *str;
{
char *str_end = str + strlen(str);
LWCHAR ch;
while (str < str_end)
{
ch = step_char(&str, +1, str_end);
if (IS_UPPER(ch))
return (1);
}
return (0);
}
/*
* Compile and save a search pattern.
*/
static int
set_pattern(info, pattern, search_type)
struct pattern_info *info;
char *pattern;
int search_type;
{
#if !NO_REGEX
if (pattern == NULL)
CLEAR_PATTERN(info->compiled);
else if (compile_pattern(pattern, search_type, &info->compiled) < 0)
return -1;
#endif
/* Pattern compiled successfully; save the text too. */
if (info->text != NULL)
free(info->text);
info->text = NULL;
if (pattern != NULL)
{
info->text = (char *) ecalloc(1, strlen(pattern)+1);
strcpy(info->text, pattern);
}
info->search_type = search_type;
/*
* Ignore case if -I is set OR
* -i is set AND the pattern is all lowercase.
*/
is_ucase_pattern = is_ucase(pattern);
if (is_ucase_pattern && caseless != OPT_ONPLUS)
is_caseless = 0;
else
is_caseless = caseless;
return 0;
}
/*
* Discard a saved pattern.
*/
static void
clear_pattern(info)
struct pattern_info *info;
{
if (info->text != NULL)
free(info->text);
info->text = NULL;
#if !NO_REGEX
uncompile_pattern(&info->compiled);
#endif
}
/*
* Initialize saved pattern to nothing.
*/
static void
init_pattern(info)
struct pattern_info *info;
{
CLEAR_PATTERN(info->compiled);
info->text = NULL;
info->search_type = 0;
}
/*
* Initialize search variables.
*/
public void
init_search()
{
init_pattern(&search_info);
init_pattern(&filter_info);
}
/*
* Determine which text conversions to perform before pattern matching.
*/
static int
get_cvt_ops()
{
int ops = 0;
if (is_caseless || bs_mode == BS_SPECIAL)
{
if (is_caseless)
ops |= CVT_TO_LC;
if (bs_mode == BS_SPECIAL)
ops |= CVT_BS;
if (bs_mode != BS_CONTROL)
ops |= CVT_CRLF;
} else if (bs_mode != BS_CONTROL)
{
ops |= CVT_CRLF;
}
if (ctldisp == OPT_ONPLUS)
ops |= CVT_ANSI;
return (ops);
}
/*
* Is there a previous (remembered) search pattern?
*/
static int
prev_pattern(info)
struct pattern_info *info;
{
#if !NO_REGEX
if ((info->search_type & SRCH_NO_REGEX) == 0)
return (!is_null_pattern(info->compiled));
#endif
return (info->text != NULL);
}
#if HILITE_SEARCH
/*
* Repaint the hilites currently displayed on the screen.
* Repaint each line which contains highlighted text.
* If on==0, force all hilites off.
*/
public void
repaint_hilite(on)
int on;
{
int slinenum;
POSITION pos;
int save_hide_hilite;
if (squished)
repaint();
save_hide_hilite = hide_hilite;
if (!on)
{
if (hide_hilite)
return;
hide_hilite = 1;
}
if (!can_goto_line)
{
repaint();
hide_hilite = save_hide_hilite;
return;
}
for (slinenum = TOP; slinenum < TOP + sc_height-1; slinenum++)
{
pos = position(slinenum);
if (pos == NULL_POSITION)
continue;
(void) forw_line(pos);
goto_line(slinenum);
put_line();
}
lower_left();
hide_hilite = save_hide_hilite;
}
/*
* Clear the attn hilite.
*/
public void
clear_attn()
{
int slinenum;
POSITION old_start_attnpos;
POSITION old_end_attnpos;
POSITION pos;
POSITION epos;
int moved = 0;
if (start_attnpos == NULL_POSITION)
return;
old_start_attnpos = start_attnpos;
old_end_attnpos = end_attnpos;
start_attnpos = end_attnpos = NULL_POSITION;
if (!can_goto_line)
{
repaint();
return;
}
if (squished)
repaint();
for (slinenum = TOP; slinenum < TOP + sc_height-1; slinenum++)
{
pos = position(slinenum);
if (pos == NULL_POSITION)
continue;
epos = position(slinenum+1);
if (pos < old_end_attnpos &&
(epos == NULL_POSITION || epos > old_start_attnpos))
{
(void) forw_line(pos);
goto_line(slinenum);
put_line();
moved = 1;
}
}
if (moved)
lower_left();
}
#endif
/*
* Hide search string highlighting.
*/
public void
undo_search()
{
if (!prev_pattern(&search_info))
{
error("No previous regular expression", NULL_PARG);
return;
}
#if HILITE_SEARCH
hide_hilite = !hide_hilite;
repaint_hilite(1);
#endif
}
#if HILITE_SEARCH
/*
* Clear the hilite list.
*/
public void
clr_hlist(anchor)
struct hilite_tree *anchor;
{
struct hilite_storage *hls;
struct hilite_storage *nexthls;
for (hls = anchor->first; hls != NULL; hls = nexthls)
{
nexthls = hls->next;
free((void*)hls->nodes);
free((void*)hls);
}
anchor->first = NULL;
anchor->current = NULL;
anchor->root = NULL;
anchor->lookaside = NULL;
prep_startpos = prep_endpos = NULL_POSITION;
}
public void
clr_hilite()
{
clr_hlist(&hilite_anchor);
}
public void
clr_filter()
{
clr_hlist(&filter_anchor);
}
struct hilite_node*
hlist_last(anchor)
struct hilite_tree *anchor;
{
struct hilite_node *n = anchor->root;
while (n != NULL && n->right != NULL)
n = n->right;
return n;
}
struct hilite_node*
hlist_next(n)
struct hilite_node *n;
{
return n->next;
}
struct hilite_node*
hlist_prev(n)
struct hilite_node *n;
{
return n->prev;
}
/*
* Find the node covering pos, or the node after it if no node covers it,
* or return NULL if pos is after the last range. Remember the found node,
* to speed up subsequent searches for the same or similar positions (if
* we return NULL, remember the last node.)
*/
struct hilite_node*
hlist_find(anchor, pos)
struct hilite_tree *anchor;
POSITION pos;
{
struct hilite_node *n, *m;
if (anchor->lookaside)
{
int steps = 0;
int hit = 0;
n = anchor->lookaside;
for (;;)
{
if (pos < n->r.hl_endpos)
{
if (n->prev == NULL || pos >= n->prev->r.hl_endpos)
{
hit = 1;
break;
}
} else if (n->next == NULL)
{
n = NULL;
hit = 1;
break;
}
/*
* If we don't find the right node within a small
* distance, don't keep doing a linear search!
*/
if (steps >= HILITE_LOOKASIDE_STEPS)
break;
steps++;
if (pos < n->r.hl_endpos)
anchor->lookaside = n = n->prev;
else
anchor->lookaside = n = n->next;
}
if (hit)
return n;
}
n = anchor->root;
m = NULL;
while (n != NULL)
{
if (pos < n->r.hl_startpos)
{
if (n->left != NULL)
{
m = n;
n = n->left;
continue;
}
break;
}
if (pos >= n->r.hl_endpos)
{
if (n->right != NULL)
{
n = n->right;
continue;
}
if (m != NULL)
{
n = m;
} else
{
m = n;
n = NULL;
}
}
break;
}
if (n != NULL)
anchor->lookaside = n;
else if (m != NULL)
anchor->lookaside = m;
return n;
}
/*
* Should any characters in a specified range be highlighted?
*/
static int
is_hilited_range(pos, epos)
POSITION pos;
POSITION epos;
{
struct hilite_node *n = hlist_find(&hilite_anchor, pos);
return (n != NULL && (epos == NULL_POSITION || epos > n->r.hl_startpos));
}
/*
* Is a line "filtered" -- that is, should it be hidden?
*/
public int
is_filtered(pos)
POSITION pos;
{
struct hilite_node *n;
if (ch_getflags() & CH_HELPFILE)
return (0);
n = hlist_find(&filter_anchor, pos);
return (n != NULL && pos >= n->r.hl_startpos);
}
/*
* If pos is hidden, return the next position which isn't, otherwise
* just return pos.
*/
public POSITION
next_unfiltered(pos)
POSITION pos;
{
struct hilite_node *n;
if (ch_getflags() & CH_HELPFILE)
return (pos);
n = hlist_find(&filter_anchor, pos);
while (n != NULL && pos >= n->r.hl_startpos)
{
pos = n->r.hl_endpos;
n = n->next;
}
return (pos);
}
/*
* If pos is hidden, return the previous position which isn't or 0 if
* we're filtered right to the beginning, otherwise just return pos.
*/
public POSITION
prev_unfiltered(pos)
POSITION pos;
{
struct hilite_node *n;
if (ch_getflags() & CH_HELPFILE)
return (pos);
n = hlist_find(&filter_anchor, pos);
while (n != NULL && pos >= n->r.hl_startpos)
{
pos = n->r.hl_startpos;
if (pos == 0)
break;
pos--;
n = n->prev;
}
return (pos);
}
/*
* Should any characters in a specified range be highlighted?
* If nohide is nonzero, don't consider hide_hilite.
*/
public int
is_hilited(pos, epos, nohide, p_matches)
POSITION pos;
POSITION epos;
int nohide;
int *p_matches;
{
int match;
if (p_matches != NULL)
*p_matches = 0;
if (!status_col &&
start_attnpos != NULL_POSITION &&
pos < end_attnpos &&
(epos == NULL_POSITION || epos > start_attnpos))
/*
* The attn line overlaps this range.
*/
return (1);
match = is_hilited_range(pos, epos);
if (!match)
return (0);
if (p_matches != NULL)
/*
* Report matches, even if we're hiding highlights.
*/
*p_matches = 1;
if (hilite_search == 0)
/*
* Not doing highlighting.
*/
return (0);
if (!nohide && hide_hilite)
/*
* Highlighting is hidden.
*/
return (0);
return (1);
}
/*
* Tree node storage: get the current block of nodes if it has spare
* capacity, or create a new one if not.
*/
static struct hilite_storage*
hlist_getstorage(anchor)
struct hilite_tree *anchor;
{
int capacity = 1;
struct hilite_storage *s;
if (anchor->current)
{
if (anchor->current->used < anchor->current->capacity)
return anchor->current;
capacity = anchor->current->capacity * 2;
}
s = (struct hilite_storage *) ecalloc(1, sizeof(struct hilite_storage));
s->nodes = (struct hilite_node *) ecalloc(capacity, sizeof(struct hilite_node));
s->capacity = capacity;
s->used = 0;
s->next = NULL;
if (anchor->current)
anchor->current->next = s;
else
anchor->first = s;
anchor->current = s;
return s;
}
/*
* Tree node storage: retrieve a new empty node to be inserted into the
* tree.
*/
static struct hilite_node*
hlist_getnode(anchor)
struct hilite_tree *anchor;
{
struct hilite_storage *s = hlist_getstorage(anchor);
return &s->nodes[s->used++];
}
/*
* Rotate the tree left around a pivot node.
*/
static void
hlist_rotate_left(anchor, n)
struct hilite_tree *anchor;
struct hilite_node *n;
{
struct hilite_node *np = n->parent;
struct hilite_node *nr = n->right;
struct hilite_node *nrl = n->right->left;
if (np != NULL)
{
if (n == np->left)
np->left = nr;
else
np->right = nr;
} else
{
anchor->root = nr;
}
nr->left = n;
n->right = nrl;
nr->parent = np;
n->parent = nr;
if (nrl != NULL)
nrl->parent = n;
}
/*
* Rotate the tree right around a pivot node.
*/
static void
hlist_rotate_right(anchor, n)
struct hilite_tree *anchor;
struct hilite_node *n;
{
struct hilite_node *np = n->parent;
struct hilite_node *nl = n->left;
struct hilite_node *nlr = n->left->right;
if (np != NULL)
{
if (n == np->right)
np->right = nl;
else
np->left = nl;
} else
{
anchor->root = nl;
}
nl->right = n;
n->left = nlr;
nl->parent = np;
n->parent = nl;
if (nlr != NULL)
nlr->parent = n;
}
/*
* Add a new hilite to a hilite list.
*/
static void
add_hilite(anchor, hl)
struct hilite_tree *anchor;
struct hilite *hl;
{
struct hilite_node *p, *n, *u;
/* Ignore empty ranges. */
if (hl->hl_startpos >= hl->hl_endpos)
return;
p = anchor->root;
/* Inserting the very first node is trivial. */
if (p == NULL)
{
n = hlist_getnode(anchor);
n->r = *hl;
anchor->root = n;
anchor->lookaside = n;
return;
}
/*
* Find our insertion point. If we come across any overlapping
* or adjoining existing ranges, shrink our range and discard
* if it become empty.
*/
for (;;)
{
if (hl->hl_startpos < p->r.hl_startpos)
{
if (hl->hl_endpos > p->r.hl_startpos)
hl->hl_endpos = p->r.hl_startpos;
if (p->left != NULL)
{
p = p->left;
continue;
}
break;
}
if (hl->hl_startpos < p->r.hl_endpos) {
hl->hl_startpos = p->r.hl_endpos;
if (hl->hl_startpos >= hl->hl_endpos)
return;
}
if (p->right != NULL)
{
p = p->right;
continue;
}
break;
}
/*
* Now we're at the right leaf, again check for contiguous ranges
* and extend the existing node if possible to avoid the
* insertion. Otherwise insert a new node at the leaf.
*/
if (hl->hl_startpos < p->r.hl_startpos) {
if (hl->hl_endpos == p->r.hl_startpos)
{
p->r.hl_startpos = hl->hl_startpos;
return;
}
if (p->prev != NULL && p->prev->r.hl_endpos == hl->hl_startpos)
{
p->prev->r.hl_endpos = hl->hl_endpos;
return;
}
p->left = n = hlist_getnode(anchor);
n->next = p;
if (p->prev != NULL)
{
n->prev = p->prev;
p->prev->next = n;
}
p->prev = n;
} else {
if (p->r.hl_endpos == hl->hl_startpos)
{
p->r.hl_endpos = hl->hl_endpos;
return;
}
if (p->next != NULL && hl->hl_endpos == p->next->r.hl_startpos) {
p->next->r.hl_startpos = hl->hl_startpos;
return;
}
p->right = n = hlist_getnode(anchor);
n->prev = p;
if (p->next != NULL)
{
n->next = p->next;
p->next->prev = n;
}
p->next = n;
}
n->parent = p;
n->red = 1;
n->r = *hl;
/*
* The tree is in the correct order and covers the right ranges
* now, but may have become unbalanced. Rebalance it using the
* standard red-black tree constraints and operations.
*/
for (;;)
{
/* case 1 - current is root, root is always black */
if (n->parent == NULL)
{
n->red = 0;
break;
}
/* case 2 - parent is black, we can always be red */
if (!n->parent->red)
break;
/*
* constraint: because the root must be black, if our
* parent is red it cannot be the root therefore we must
* have a grandparent
*/
/*
* case 3 - parent and uncle are red, repaint them black,
* the grandparent red, and start again at the grandparent.
*/
u = n->parent->parent->left;
if (n->parent == u)
u = n->parent->parent->right;
if (u != NULL && u->red)
{
n->parent->red = 0;
u->red = 0;
n = n->parent->parent;
n->red = 1;
continue;
}
/*
* case 4 - parent is red but uncle is black, parent and
* grandparent on opposite sides. We need to start
* changing the structure now. This and case 5 will shorten
* our branch and lengthen the sibling, between them
* restoring balance.
*/
if (n == n->parent->right &&
n->parent == n->parent->parent->left)
{
hlist_rotate_left(anchor, n->parent);
n = n->left;
} else if (n == n->parent->left &&
n->parent == n->parent->parent->right)
{
hlist_rotate_right(anchor, n->parent);
n = n->right;
}
/*
* case 5 - parent is red but uncle is black, parent and
* grandparent on same side
*/
n->parent->red = 0;
n->parent->parent->red = 1;
if (n == n->parent->left)
hlist_rotate_right(anchor, n->parent->parent);
else
hlist_rotate_left(anchor, n->parent->parent);
break;
}
}
/*
* Hilight every character in a range of displayed characters.
*/
static void
create_hilites(linepos, start_index, end_index, chpos)
POSITION linepos;
int start_index;
int end_index;
int *chpos;
{
struct hilite hl;
int i;
/* Start the first hilite. */
hl.hl_startpos = linepos + chpos[start_index];
/*
* Step through the displayed chars.
* If the source position (before cvt) of the char is one more
* than the source pos of the previous char (the usual case),
* just increase the size of the current hilite by one.
* Otherwise (there are backspaces or something involved),
* finish the current hilite and start a new one.
*/
for (i = start_index+1; i <= end_index; i++)
{
if (chpos[i] != chpos[i-1] + 1 || i == end_index)
{
hl.hl_endpos = linepos + chpos[i-1] + 1;
add_hilite(&hilite_anchor, &hl);
/* Start new hilite unless this is the last char. */
if (i < end_index)
{
hl.hl_startpos = linepos + chpos[i];
}
}
}
}
/*
* Make a hilite for each string in a physical line which matches
* the current pattern.
* sp,ep delimit the first match already found.
*/
static void
hilite_line(linepos, line, line_len, chpos, sp, ep, cvt_ops)
POSITION linepos;
char *line;
int line_len;
int *chpos;
char *sp;
char *ep;
int cvt_ops;
{
char *searchp;
char *line_end = line + line_len;
/*
* sp and ep delimit the first match in the line.
* Mark the corresponding file positions, then
* look for further matches and mark them.
* {{ This technique, of calling match_pattern on subsequent
* substrings of the line, may mark more than is correct
* if the pattern starts with "^". This bug is fixed
* for those regex functions that accept a notbol parameter
* (currently POSIX, PCRE and V8-with-regexec2). }}
*/
searchp = line;
do {
if (sp == NULL || ep == NULL)
return;
create_hilites(linepos, sp-line, ep-line, chpos);
/*
* If we matched more than zero characters,
* move to the first char after the string we matched.
* If we matched zero, just move to the next char.
*/
if (ep > searchp)
searchp = ep;
else if (searchp != line_end)
searchp++;
else /* end of line */
break;
} while (match_pattern(info_compiled(&search_info), search_info.text,
searchp, line_end - searchp, &sp, &ep, 1, search_info.search_type));
}
#endif
#if HILITE_SEARCH
/*
* Find matching text which is currently on screen and highlight it.
*/
static void
hilite_screen()
{
struct scrpos scrpos;
get_scrpos(&scrpos);
if (scrpos.pos == NULL_POSITION)
return;
prep_hilite(scrpos.pos, position(BOTTOM_PLUS_ONE), -1);
repaint_hilite(1);
}
/*
* Change highlighting parameters.
*/
public void
chg_hilite()
{
/*
* Erase any highlights currently on screen.
*/
clr_hilite();
hide_hilite = 0;
if (hilite_search == OPT_ONPLUS)
/*
* Display highlights.
*/
hilite_screen();
}
#endif
/*
* Figure out where to start a search.
*/
static POSITION
search_pos(search_type)
int search_type;
{
POSITION pos;
int linenum;
if (empty_screen())
{
/*
* Start at the beginning (or end) of the file.
* The empty_screen() case is mainly for
* command line initiated searches;
* for example, "+/xyz" on the command line.
* Also for multi-file (SRCH_PAST_EOF) searches.
*/
if (search_type & SRCH_FORW)
{
pos = ch_zero();
} else
{
pos = ch_length();
if (pos == NULL_POSITION)
{
(void) ch_end_seek();
pos = ch_length();
}
}
linenum = 0;
} else
{
int add_one = 0;
if (how_search == OPT_ON)
{
/*
* Search does not include current screen.
*/
if (search_type & SRCH_FORW)
linenum = sc_height-1; /* BOTTOM_PLUS_ONE */
else
linenum = 0; /* TOP */
} else if (how_search == OPT_ONPLUS && !(search_type & SRCH_AFTER_TARGET))
{
/*
* Search includes all of displayed screen.
*/
if (search_type & SRCH_FORW)
linenum = 0; /* TOP */
else
linenum = sc_height-1; /* BOTTOM_PLUS_ONE */
} else
{
/*
* Search includes the part of current screen beyond the jump target.
* It starts at the jump target (if searching backwards),
* or at the jump target plus one (if forwards).
*/
linenum = adjsline(jump_sline);
if (search_type & SRCH_FORW)
add_one = 1;
}
pos = position(linenum);
if (add_one)
pos = forw_raw_line(pos, (char **)NULL, (int *)NULL);
}
/*
* If the line is empty, look around for a plausible starting place.
*/
if (search_type & SRCH_FORW)
{
while (pos == NULL_POSITION)
{
if (++linenum >= sc_height)
break;
pos = position(linenum);
}
} else
{
while (pos == NULL_POSITION)
{
if (--linenum < 0)
break;
pos = position(linenum);
}
}
return (pos);
}
/*
* Search a subset of the file, specified by start/end position.
*/
static int
search_range(pos, endpos, search_type, matches, maxlines, plinepos, pendpos)
POSITION pos;
POSITION endpos;
int search_type;
int matches;
int maxlines;
POSITION *plinepos;
POSITION *pendpos;
{
char *line;
char *cline;
int line_len;
LINENUM linenum;
char *sp, *ep;
int line_match;
int cvt_ops;
int cvt_len;
int *chpos;
POSITION linepos, oldpos;
linenum = find_linenum(pos);
oldpos = pos;
for (;;)
{
/*
* Get lines until we find a matching one or until
* we hit end-of-file (or beginning-of-file if we're
* going backwards), or until we hit the end position.
*/
if (ABORT_SIGS())
{
/*
* A signal aborts the search.
*/
return (-1);
}
if ((endpos != NULL_POSITION && pos >= endpos) || maxlines == 0)
{
/*
* Reached end position without a match.
*/
if (pendpos != NULL)
*pendpos = pos;
return (matches);
}
if (maxlines > 0)
maxlines--;
if (search_type & SRCH_FORW)
{
/*
* Read the next line, and save the
* starting position of that line in linepos.
*/
linepos = pos;
pos = forw_raw_line(pos, &line, &line_len);
if (linenum != 0)
linenum++;
} else
{
/*
* Read the previous line and save the
* starting position of that line in linepos.
*/
pos = back_raw_line(pos, &line, &line_len);
linepos = pos;
if (linenum != 0)
linenum--;
}
if (pos == NULL_POSITION)
{
/*
* Reached EOF/BOF without a match.
*/
if (pendpos != NULL)
*pendpos = oldpos;
return (matches);
}
/*
* If we're using line numbers, we might as well
* remember the information we have now (the position
* and line number of the current line).
* Don't do it for every line because it slows down
* the search. Remember the line number only if
* we're "far" from the last place we remembered it.
*/
if (linenums && abs((int)(pos - oldpos)) > 2048)
add_lnum(linenum, pos);
oldpos = pos;
if (is_filtered(linepos))
continue;
/*
* If it's a caseless search, convert the line to lowercase.
* If we're doing backspace processing, delete backspaces.
*/
cvt_ops = get_cvt_ops();
cvt_len = cvt_length(line_len, cvt_ops);
cline = (char *) ecalloc(1, cvt_len);
chpos = cvt_alloc_chpos(cvt_len);
cvt_text(cline, line, chpos, &line_len, cvt_ops);
#if HILITE_SEARCH
/*
* Check to see if the line matches the filter pattern.
* If so, add an entry to the filter list.
*/
if (((search_type & SRCH_FIND_ALL) ||
prep_startpos == NULL_POSITION ||
linepos < prep_startpos || linepos >= prep_endpos) &&
prev_pattern(&filter_info)) {
int line_filter = match_pattern(info_compiled(&filter_info), filter_info.text,
cline, line_len, &sp, &ep, 0, filter_info.search_type);
if (line_filter)
{
struct hilite hl;
hl.hl_startpos = linepos;
hl.hl_endpos = pos;
add_hilite(&filter_anchor, &hl);
free(cline);
free(chpos);
continue;
}
}
#endif
/*
* Test the next line to see if we have a match.
* We are successful if we either want a match and got one,
* or if we want a non-match and got one.
*/
if (prev_pattern(&search_info))
{
line_match = match_pattern(info_compiled(&search_info), search_info.text,
cline, line_len, &sp, &ep, 0, search_type);
if (line_match)
{
/*
* Got a match.
*/
if (search_type & SRCH_FIND_ALL)
{
#if HILITE_SEARCH
/*
* We are supposed to find all matches in the range.
* Just add the matches in this line to the
* hilite list and keep searching.
*/
hilite_line(linepos, cline, line_len, chpos, sp, ep, cvt_ops);
#endif
} else if (--matches <= 0)
{
/*
* Found the one match we're looking for.
* Return it.
*/
#if HILITE_SEARCH
if (hilite_search == OPT_ON)
{
/*
* Clear the hilite list and add only
* the matches in this one line.
*/
clr_hilite();
hilite_line(linepos, cline, line_len, chpos, sp, ep, cvt_ops);
}
#endif
free(cline);
free(chpos);
if (plinepos != NULL)
*plinepos = linepos;
return (0);
}
}
}
free(cline);
free(chpos);
}
}
/*
* search for a pattern in history. If found, compile that pattern.
*/
static int
hist_pattern(search_type)
int search_type;
{
#if CMD_HISTORY
char *pattern;
set_mlist(ml_search, 0);
pattern = cmd_lastpattern();
if (pattern == NULL)
return (0);
if (set_pattern(&search_info, pattern, search_type) < 0)
return (0);
#if HILITE_SEARCH
if (hilite_search == OPT_ONPLUS && !hide_hilite)
hilite_screen();
#endif
return (1);
#else /* CMD_HISTORY */
return (0);
#endif /* CMD_HISTORY */
}
/*
* Change the caseless-ness of searches.
* Updates the internal search state to reflect a change in the -i flag.
*/
public void
chg_caseless()
{
if (!is_ucase_pattern)
/*
* Pattern did not have uppercase.
* Just set the search caselessness to the global caselessness.
*/
is_caseless = caseless;
else
{
/*
* Pattern did have uppercase.
* Regenerate the pattern using the new state.
*/
clear_pattern(&search_info);
hist_pattern(search_info.search_type);
}
}
/*
* Search for the n-th occurrence of a specified pattern,
* either forward or backward.
* Return the number of matches not yet found in this file
* (that is, n minus the number of matches found).
* Return -1 if the search should be aborted.
* Caller may continue the search in another file
* if less than n matches are found in this file.
*/
public int
search(search_type, pattern, n)
int search_type;
char *pattern;
int n;
{
POSITION pos;
if (pattern == NULL || *pattern == '\0')
{
/*
* A null pattern means use the previously compiled pattern.
*/
search_type |= SRCH_AFTER_TARGET;
if (!prev_pattern(&search_info) && !hist_pattern(search_type))
{
error("No previous regular expression", NULL_PARG);
return (-1);
}
if ((search_type & SRCH_NO_REGEX) !=
(search_info.search_type & SRCH_NO_REGEX))
{
error("Please re-enter search pattern", NULL_PARG);
return -1;
}
#if HILITE_SEARCH
if (hilite_search == OPT_ON)
{
/*
* Erase the highlights currently on screen.
* If the search fails, we'll redisplay them later.
*/
repaint_hilite(0);
}
if (hilite_search == OPT_ONPLUS && hide_hilite)
{
/*
* Highlight any matches currently on screen,
* before we actually start the search.
*/
hide_hilite = 0;
hilite_screen();
}
hide_hilite = 0;
#endif
} else
{
/*
* Compile the pattern.
*/
if (set_pattern(&search_info, pattern, search_type) < 0)
return (-1);
#if HILITE_SEARCH
if (hilite_search)
{
/*
* Erase the highlights currently on screen.
* Also permanently delete them from the hilite list.
*/
repaint_hilite(0);
hide_hilite = 0;
clr_hilite();
}
if (hilite_search == OPT_ONPLUS)
{
/*
* Highlight any matches currently on screen,
* before we actually start the search.
*/
hilite_screen();
}
#endif
}
/*
* Figure out where to start the search.
*/
pos = search_pos(search_type);
if (pos == NULL_POSITION)
{
/*
* Can't find anyplace to start searching from.
*/
if (search_type & SRCH_PAST_EOF)
return (n);
/* repaint(); -- why was this here? */
error("Nothing to search", NULL_PARG);
return (-1);
}
n = search_range(pos, NULL_POSITION, search_type, n, -1,
&pos, (POSITION*)NULL);
if (n != 0)
{
/*
* Search was unsuccessful.
*/
#if HILITE_SEARCH
if (hilite_search == OPT_ON && n > 0)
/*
* Redisplay old hilites.
*/
repaint_hilite(1);
#endif
return (n);
}
if (!(search_type & SRCH_NO_MOVE))
{
/*
* Go to the matching line.
*/
jump_loc(pos, jump_sline);
}
#if HILITE_SEARCH
if (hilite_search == OPT_ON)
/*
* Display new hilites in the matching line.
*/
repaint_hilite(1);
#endif
return (0);
}
#if HILITE_SEARCH
/*
* Prepare hilites in a given range of the file.
*
* The pair (prep_startpos,prep_endpos) delimits a contiguous region
* of the file that has been "prepared"; that is, scanned for matches for
* the current search pattern, and hilites have been created for such matches.
* If prep_startpos == NULL_POSITION, the prep region is empty.
* If prep_endpos == NULL_POSITION, the prep region extends to EOF.
* prep_hilite asks that the range (spos,epos) be covered by the prep region.
*/
public void
prep_hilite(spos, epos, maxlines)
POSITION spos;
POSITION epos;
int maxlines;
{
POSITION nprep_startpos = prep_startpos;
POSITION nprep_endpos = prep_endpos;
POSITION new_epos;
POSITION max_epos;
int result;
int i;
/*
* Search beyond where we're asked to search, so the prep region covers
* more than we need. Do one big search instead of a bunch of small ones.
*/
#define SEARCH_MORE (3*size_linebuf)
if (!prev_pattern(&search_info) && !is_filtering())
return;
/*
* Make sure our prep region always starts at the beginning of
* a line. (search_range takes care of the end boundary below.)
*/
spos = back_raw_line(spos+1, (char **)NULL, (int *)NULL);
/*
* If we're limited to a max number of lines, figure out the
* file position we should stop at.
*/
if (maxlines < 0)
max_epos = NULL_POSITION;
else
{
max_epos = spos;
for (i = 0; i < maxlines; i++)
max_epos = forw_raw_line(max_epos, (char **)NULL, (int *)NULL);
}
/*
* Find two ranges:
* The range that we need to search (spos,epos); and the range that
* the "prep" region will then cover (nprep_startpos,nprep_endpos).
*/
if (prep_startpos == NULL_POSITION ||
(epos != NULL_POSITION && epos < prep_startpos) ||
spos > prep_endpos)
{
/*
* New range is not contiguous with old prep region.
* Discard the old prep region and start a new one.
*/
clr_hilite();
clr_filter();
if (epos != NULL_POSITION)
epos += SEARCH_MORE;
nprep_startpos = spos;
} else
{
/*
* New range partially or completely overlaps old prep region.
*/
if (epos == NULL_POSITION)
{
/*
* New range goes to end of file.
*/
;
} else if (epos > prep_endpos)
{
/*
* New range ends after old prep region.
* Extend prep region to end at end of new range.
*/
epos += SEARCH_MORE;
} else /* (epos <= prep_endpos) */
{
/*
* New range ends within old prep region.
* Truncate search to end at start of old prep region.
*/
epos = prep_startpos;
}
if (spos < prep_startpos)
{
/*
* New range starts before old prep region.
* Extend old prep region backwards to start at
* start of new range.
*/
if (spos < SEARCH_MORE)
spos = 0;
else
spos -= SEARCH_MORE;
nprep_startpos = spos;
} else /* (spos >= prep_startpos) */
{
/*
* New range starts within or after old prep region.
* Trim search to start at end of old prep region.
*/
spos = prep_endpos;
}
}
if (epos != NULL_POSITION && max_epos != NULL_POSITION &&
epos > max_epos)
/*
* Don't go past the max position we're allowed.
*/
epos = max_epos;
if (epos == NULL_POSITION || epos > spos)
{
int search_type = SRCH_FORW | SRCH_FIND_ALL;
search_type |= (search_info.search_type & SRCH_NO_REGEX);
for (;;)
{
result = search_range(spos, epos, search_type, 0, maxlines, (POSITION*)NULL, &new_epos);
if (result < 0)
return;
if (prep_endpos == NULL_POSITION || new_epos > prep_endpos)
nprep_endpos = new_epos;
/*
* Check both ends of the resulting prep region to
* make sure they're not filtered. If they are,
* keep going at least one more line until we find
* something that isn't filtered, or hit the end.
*/
if (prep_endpos == NULL_POSITION || nprep_endpos > prep_endpos)
{
if (new_epos >= nprep_endpos && is_filtered(new_epos-1))
{
spos = nprep_endpos;
epos = forw_raw_line(nprep_endpos, (char **)NULL, (int *)NULL);
if (epos == NULL_POSITION)
break;
maxlines = 1;
continue;
}
}
if (prep_startpos == NULL_POSITION || nprep_startpos < prep_startpos)
{
if (nprep_startpos > 0 && is_filtered(nprep_startpos))
{
epos = nprep_startpos;
spos = back_raw_line(nprep_startpos, (char **)NULL, (int *)NULL);
if (spos == NULL_POSITION)
break;
nprep_startpos = spos;
maxlines = 1;
continue;
}
}
break;
}
}
prep_startpos = nprep_startpos;
prep_endpos = nprep_endpos;
}
/*
* Set the pattern to be used for line filtering.
*/
public void
set_filter_pattern(pattern, search_type)
char *pattern;
int search_type;
{
clr_filter();
if (pattern == NULL || *pattern == '\0')
clear_pattern(&filter_info);
else
set_pattern(&filter_info, pattern, search_type);
screen_trashed = 1;
}
/*
* Is there a line filter in effect?
*/
public int
is_filtering()
{
if (ch_getflags() & CH_HELPFILE)
return (0);
return prev_pattern(&filter_info);
}
#endif
#if HAVE_V8_REGCOMP
/*
* This function is called by the V8 regcomp to report
* errors in regular expressions.
*/
public int reg_show_error = 1;
void
regerror(s)
char *s;
{
PARG parg;
if (!reg_show_error)
return;
parg.p_string = s;
error("%s", &parg);
}
#endif