freebsd-nq/sys/dev/mfi/mfi.c
Konstantin Belousov cd85379104 Make MAXPHYS tunable. Bump MAXPHYS to 1M.
Replace MAXPHYS by runtime variable maxphys. It is initialized from
MAXPHYS by default, but can be also adjusted with the tunable kern.maxphys.

Make b_pages[] array in struct buf flexible.  Size b_pages[] for buffer
cache buffers exactly to atop(maxbcachebuf) (currently it is sized to
atop(MAXPHYS)), and b_pages[] for pbufs is sized to atop(maxphys) + 1.
The +1 for pbufs allow several pbuf consumers, among them vmapbuf(),
to use unaligned buffers still sized to maxphys, esp. when such
buffers come from userspace (*).  Overall, we save significant amount
of otherwise wasted memory in b_pages[] for buffer cache buffers,
while bumping MAXPHYS to desired high value.

Eliminate all direct uses of the MAXPHYS constant in kernel and driver
sources, except a place which initialize maxphys.  Some random (and
arguably weird) uses of MAXPHYS, e.g. in linuxolator, are converted
straight.  Some drivers, which use MAXPHYS to size embeded structures,
get private MAXPHYS-like constant; their convertion is out of scope
for this work.

Changes to cam/, dev/ahci, dev/ata, dev/mpr, dev/mpt, dev/mvs,
dev/siis, where either submitted by, or based on changes by mav.

Suggested by: mav (*)
Reviewed by:	imp, mav, imp, mckusick, scottl (intermediate versions)
Tested by:	pho
Sponsored by:	The FreeBSD Foundation
Differential revision:	https://reviews.freebsd.org/D27225
2020-11-28 12:12:51 +00:00

3797 lines
102 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD AND BSD-2-Clause
*
* Copyright (c) 2006 IronPort Systems
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*-
* Copyright (c) 2007 LSI Corp.
* Copyright (c) 2007 Rajesh Prabhakaran.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_mfi.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysctl.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/poll.h>
#include <sys/selinfo.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/eventhandler.h>
#include <sys/rman.h>
#include <sys/bio.h>
#include <sys/ioccom.h>
#include <sys/uio.h>
#include <sys/proc.h>
#include <sys/signalvar.h>
#include <sys/sysent.h>
#include <sys/taskqueue.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <dev/mfi/mfireg.h>
#include <dev/mfi/mfi_ioctl.h>
#include <dev/mfi/mfivar.h>
#include <sys/interrupt.h>
#include <sys/priority.h>
static int mfi_alloc_commands(struct mfi_softc *);
static int mfi_comms_init(struct mfi_softc *);
static int mfi_get_controller_info(struct mfi_softc *);
static int mfi_get_log_state(struct mfi_softc *,
struct mfi_evt_log_state **);
static int mfi_parse_entries(struct mfi_softc *, int, int);
static void mfi_data_cb(void *, bus_dma_segment_t *, int, int);
static void mfi_startup(void *arg);
static void mfi_intr(void *arg);
static void mfi_ldprobe(struct mfi_softc *sc);
static void mfi_syspdprobe(struct mfi_softc *sc);
static void mfi_handle_evt(void *context, int pending);
static int mfi_aen_register(struct mfi_softc *sc, int seq, int locale);
static void mfi_aen_complete(struct mfi_command *);
static int mfi_add_ld(struct mfi_softc *sc, int);
static void mfi_add_ld_complete(struct mfi_command *);
static int mfi_add_sys_pd(struct mfi_softc *sc, int);
static void mfi_add_sys_pd_complete(struct mfi_command *);
static struct mfi_command * mfi_bio_command(struct mfi_softc *);
static void mfi_bio_complete(struct mfi_command *);
static struct mfi_command *mfi_build_ldio(struct mfi_softc *,struct bio*);
static struct mfi_command *mfi_build_syspdio(struct mfi_softc *,struct bio*);
static int mfi_send_frame(struct mfi_softc *, struct mfi_command *);
static int mfi_std_send_frame(struct mfi_softc *, struct mfi_command *);
static int mfi_abort(struct mfi_softc *, struct mfi_command **);
static int mfi_linux_ioctl_int(struct cdev *, u_long, caddr_t, int, struct thread *);
static void mfi_timeout(void *);
static int mfi_user_command(struct mfi_softc *,
struct mfi_ioc_passthru *);
static void mfi_enable_intr_xscale(struct mfi_softc *sc);
static void mfi_enable_intr_ppc(struct mfi_softc *sc);
static int32_t mfi_read_fw_status_xscale(struct mfi_softc *sc);
static int32_t mfi_read_fw_status_ppc(struct mfi_softc *sc);
static int mfi_check_clear_intr_xscale(struct mfi_softc *sc);
static int mfi_check_clear_intr_ppc(struct mfi_softc *sc);
static void mfi_issue_cmd_xscale(struct mfi_softc *sc, bus_addr_t bus_add,
uint32_t frame_cnt);
static void mfi_issue_cmd_ppc(struct mfi_softc *sc, bus_addr_t bus_add,
uint32_t frame_cnt);
static int mfi_config_lock(struct mfi_softc *sc, uint32_t opcode);
static void mfi_config_unlock(struct mfi_softc *sc, int locked);
static int mfi_check_command_pre(struct mfi_softc *sc, struct mfi_command *cm);
static void mfi_check_command_post(struct mfi_softc *sc, struct mfi_command *cm);
static int mfi_check_for_sscd(struct mfi_softc *sc, struct mfi_command *cm);
SYSCTL_NODE(_hw, OID_AUTO, mfi, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
"MFI driver parameters");
static int mfi_event_locale = MFI_EVT_LOCALE_ALL;
SYSCTL_INT(_hw_mfi, OID_AUTO, event_locale, CTLFLAG_RWTUN, &mfi_event_locale,
0, "event message locale");
static int mfi_event_class = MFI_EVT_CLASS_INFO;
SYSCTL_INT(_hw_mfi, OID_AUTO, event_class, CTLFLAG_RWTUN, &mfi_event_class,
0, "event message class");
static int mfi_max_cmds = 128;
SYSCTL_INT(_hw_mfi, OID_AUTO, max_cmds, CTLFLAG_RDTUN, &mfi_max_cmds,
0, "Max commands limit (-1 = controller limit)");
static int mfi_detect_jbod_change = 1;
SYSCTL_INT(_hw_mfi, OID_AUTO, detect_jbod_change, CTLFLAG_RWTUN,
&mfi_detect_jbod_change, 0, "Detect a change to a JBOD");
int mfi_polled_cmd_timeout = MFI_POLL_TIMEOUT_SECS;
SYSCTL_INT(_hw_mfi, OID_AUTO, polled_cmd_timeout, CTLFLAG_RWTUN,
&mfi_polled_cmd_timeout, 0,
"Polled command timeout - used for firmware flash etc (in seconds)");
static int mfi_cmd_timeout = MFI_CMD_TIMEOUT;
SYSCTL_INT(_hw_mfi, OID_AUTO, cmd_timeout, CTLFLAG_RWTUN, &mfi_cmd_timeout,
0, "Command timeout (in seconds)");
/* Management interface */
static d_open_t mfi_open;
static d_close_t mfi_close;
static d_ioctl_t mfi_ioctl;
static d_poll_t mfi_poll;
static struct cdevsw mfi_cdevsw = {
.d_version = D_VERSION,
.d_flags = 0,
.d_open = mfi_open,
.d_close = mfi_close,
.d_ioctl = mfi_ioctl,
.d_poll = mfi_poll,
.d_name = "mfi",
};
MALLOC_DEFINE(M_MFIBUF, "mfibuf", "Buffers for the MFI driver");
#define MFI_INQ_LENGTH SHORT_INQUIRY_LENGTH
struct mfi_skinny_dma_info mfi_skinny;
static void
mfi_enable_intr_xscale(struct mfi_softc *sc)
{
MFI_WRITE4(sc, MFI_OMSK, 0x01);
}
static void
mfi_enable_intr_ppc(struct mfi_softc *sc)
{
if (sc->mfi_flags & MFI_FLAGS_1078) {
MFI_WRITE4(sc, MFI_ODCR0, 0xFFFFFFFF);
MFI_WRITE4(sc, MFI_OMSK, ~MFI_1078_EIM);
}
else if (sc->mfi_flags & MFI_FLAGS_GEN2) {
MFI_WRITE4(sc, MFI_ODCR0, 0xFFFFFFFF);
MFI_WRITE4(sc, MFI_OMSK, ~MFI_GEN2_EIM);
}
else if (sc->mfi_flags & MFI_FLAGS_SKINNY) {
MFI_WRITE4(sc, MFI_OMSK, ~0x00000001);
}
}
static int32_t
mfi_read_fw_status_xscale(struct mfi_softc *sc)
{
return MFI_READ4(sc, MFI_OMSG0);
}
static int32_t
mfi_read_fw_status_ppc(struct mfi_softc *sc)
{
return MFI_READ4(sc, MFI_OSP0);
}
static int
mfi_check_clear_intr_xscale(struct mfi_softc *sc)
{
int32_t status;
status = MFI_READ4(sc, MFI_OSTS);
if ((status & MFI_OSTS_INTR_VALID) == 0)
return 1;
MFI_WRITE4(sc, MFI_OSTS, status);
return 0;
}
static int
mfi_check_clear_intr_ppc(struct mfi_softc *sc)
{
int32_t status;
status = MFI_READ4(sc, MFI_OSTS);
if (sc->mfi_flags & MFI_FLAGS_1078) {
if (!(status & MFI_1078_RM)) {
return 1;
}
}
else if (sc->mfi_flags & MFI_FLAGS_GEN2) {
if (!(status & MFI_GEN2_RM)) {
return 1;
}
}
else if (sc->mfi_flags & MFI_FLAGS_SKINNY) {
if (!(status & MFI_SKINNY_RM)) {
return 1;
}
}
if (sc->mfi_flags & MFI_FLAGS_SKINNY)
MFI_WRITE4(sc, MFI_OSTS, status);
else
MFI_WRITE4(sc, MFI_ODCR0, status);
return 0;
}
static void
mfi_issue_cmd_xscale(struct mfi_softc *sc, bus_addr_t bus_add, uint32_t frame_cnt)
{
MFI_WRITE4(sc, MFI_IQP,(bus_add >>3)|frame_cnt);
}
static void
mfi_issue_cmd_ppc(struct mfi_softc *sc, bus_addr_t bus_add, uint32_t frame_cnt)
{
if (sc->mfi_flags & MFI_FLAGS_SKINNY) {
MFI_WRITE4(sc, MFI_IQPL, (bus_add | frame_cnt <<1)|1 );
MFI_WRITE4(sc, MFI_IQPH, 0x00000000);
} else {
MFI_WRITE4(sc, MFI_IQP, (bus_add | frame_cnt <<1)|1 );
}
}
int
mfi_transition_firmware(struct mfi_softc *sc)
{
uint32_t fw_state, cur_state;
int max_wait, i;
uint32_t cur_abs_reg_val = 0;
uint32_t prev_abs_reg_val = 0;
cur_abs_reg_val = sc->mfi_read_fw_status(sc);
fw_state = cur_abs_reg_val & MFI_FWSTATE_MASK;
while (fw_state != MFI_FWSTATE_READY) {
if (bootverbose)
device_printf(sc->mfi_dev, "Waiting for firmware to "
"become ready\n");
cur_state = fw_state;
switch (fw_state) {
case MFI_FWSTATE_FAULT:
device_printf(sc->mfi_dev, "Firmware fault\n");
return (ENXIO);
case MFI_FWSTATE_WAIT_HANDSHAKE:
if (sc->mfi_flags & MFI_FLAGS_SKINNY || sc->mfi_flags & MFI_FLAGS_TBOLT)
MFI_WRITE4(sc, MFI_SKINNY_IDB, MFI_FWINIT_CLEAR_HANDSHAKE);
else
MFI_WRITE4(sc, MFI_IDB, MFI_FWINIT_CLEAR_HANDSHAKE);
max_wait = MFI_RESET_WAIT_TIME;
break;
case MFI_FWSTATE_OPERATIONAL:
if (sc->mfi_flags & MFI_FLAGS_SKINNY || sc->mfi_flags & MFI_FLAGS_TBOLT)
MFI_WRITE4(sc, MFI_SKINNY_IDB, 7);
else
MFI_WRITE4(sc, MFI_IDB, MFI_FWINIT_READY);
max_wait = MFI_RESET_WAIT_TIME;
break;
case MFI_FWSTATE_UNDEFINED:
case MFI_FWSTATE_BB_INIT:
max_wait = MFI_RESET_WAIT_TIME;
break;
case MFI_FWSTATE_FW_INIT_2:
max_wait = MFI_RESET_WAIT_TIME;
break;
case MFI_FWSTATE_FW_INIT:
case MFI_FWSTATE_FLUSH_CACHE:
max_wait = MFI_RESET_WAIT_TIME;
break;
case MFI_FWSTATE_DEVICE_SCAN:
max_wait = MFI_RESET_WAIT_TIME; /* wait for 180 seconds */
prev_abs_reg_val = cur_abs_reg_val;
break;
case MFI_FWSTATE_BOOT_MESSAGE_PENDING:
if (sc->mfi_flags & MFI_FLAGS_SKINNY || sc->mfi_flags & MFI_FLAGS_TBOLT)
MFI_WRITE4(sc, MFI_SKINNY_IDB, MFI_FWINIT_HOTPLUG);
else
MFI_WRITE4(sc, MFI_IDB, MFI_FWINIT_HOTPLUG);
max_wait = MFI_RESET_WAIT_TIME;
break;
default:
device_printf(sc->mfi_dev, "Unknown firmware state %#x\n",
fw_state);
return (ENXIO);
}
for (i = 0; i < (max_wait * 10); i++) {
cur_abs_reg_val = sc->mfi_read_fw_status(sc);
fw_state = cur_abs_reg_val & MFI_FWSTATE_MASK;
if (fw_state == cur_state)
DELAY(100000);
else
break;
}
if (fw_state == MFI_FWSTATE_DEVICE_SCAN) {
/* Check the device scanning progress */
if (prev_abs_reg_val != cur_abs_reg_val) {
continue;
}
}
if (fw_state == cur_state) {
device_printf(sc->mfi_dev, "Firmware stuck in state "
"%#x\n", fw_state);
return (ENXIO);
}
}
return (0);
}
static void
mfi_addr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
bus_addr_t *addr;
addr = arg;
*addr = segs[0].ds_addr;
}
int
mfi_attach(struct mfi_softc *sc)
{
uint32_t status;
int error, commsz, framessz, sensesz;
int frames, unit, max_fw_sge, max_fw_cmds;
uint32_t tb_mem_size = 0;
struct cdev *dev_t;
if (sc == NULL)
return EINVAL;
device_printf(sc->mfi_dev, "Megaraid SAS driver Ver %s \n",
MEGASAS_VERSION);
mtx_init(&sc->mfi_io_lock, "MFI I/O lock", NULL, MTX_DEF);
sx_init(&sc->mfi_config_lock, "MFI config");
TAILQ_INIT(&sc->mfi_ld_tqh);
TAILQ_INIT(&sc->mfi_syspd_tqh);
TAILQ_INIT(&sc->mfi_ld_pend_tqh);
TAILQ_INIT(&sc->mfi_syspd_pend_tqh);
TAILQ_INIT(&sc->mfi_evt_queue);
TASK_INIT(&sc->mfi_evt_task, 0, mfi_handle_evt, sc);
TASK_INIT(&sc->mfi_map_sync_task, 0, mfi_handle_map_sync, sc);
TAILQ_INIT(&sc->mfi_aen_pids);
TAILQ_INIT(&sc->mfi_cam_ccbq);
mfi_initq_free(sc);
mfi_initq_ready(sc);
mfi_initq_busy(sc);
mfi_initq_bio(sc);
sc->adpreset = 0;
sc->last_seq_num = 0;
sc->disableOnlineCtrlReset = 1;
sc->issuepend_done = 1;
sc->hw_crit_error = 0;
if (sc->mfi_flags & MFI_FLAGS_1064R) {
sc->mfi_enable_intr = mfi_enable_intr_xscale;
sc->mfi_read_fw_status = mfi_read_fw_status_xscale;
sc->mfi_check_clear_intr = mfi_check_clear_intr_xscale;
sc->mfi_issue_cmd = mfi_issue_cmd_xscale;
} else if (sc->mfi_flags & MFI_FLAGS_TBOLT) {
sc->mfi_enable_intr = mfi_tbolt_enable_intr_ppc;
sc->mfi_disable_intr = mfi_tbolt_disable_intr_ppc;
sc->mfi_read_fw_status = mfi_tbolt_read_fw_status_ppc;
sc->mfi_check_clear_intr = mfi_tbolt_check_clear_intr_ppc;
sc->mfi_issue_cmd = mfi_tbolt_issue_cmd_ppc;
sc->mfi_adp_reset = mfi_tbolt_adp_reset;
sc->mfi_tbolt = 1;
TAILQ_INIT(&sc->mfi_cmd_tbolt_tqh);
} else {
sc->mfi_enable_intr = mfi_enable_intr_ppc;
sc->mfi_read_fw_status = mfi_read_fw_status_ppc;
sc->mfi_check_clear_intr = mfi_check_clear_intr_ppc;
sc->mfi_issue_cmd = mfi_issue_cmd_ppc;
}
/* Before we get too far, see if the firmware is working */
if ((error = mfi_transition_firmware(sc)) != 0) {
device_printf(sc->mfi_dev, "Firmware not in READY state, "
"error %d\n", error);
return (ENXIO);
}
/* Start: LSIP200113393 */
if (bus_dma_tag_create( sc->mfi_parent_dmat, /* parent */
1, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MEGASAS_MAX_NAME*sizeof(bus_addr_t), /* maxsize */
1, /* msegments */
MEGASAS_MAX_NAME*sizeof(bus_addr_t), /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->verbuf_h_dmat)) {
device_printf(sc->mfi_dev, "Cannot allocate verbuf_h_dmat DMA tag\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->verbuf_h_dmat, (void **)&sc->verbuf,
BUS_DMA_NOWAIT, &sc->verbuf_h_dmamap)) {
device_printf(sc->mfi_dev, "Cannot allocate verbuf_h_dmamap memory\n");
return (ENOMEM);
}
bzero(sc->verbuf, MEGASAS_MAX_NAME*sizeof(bus_addr_t));
bus_dmamap_load(sc->verbuf_h_dmat, sc->verbuf_h_dmamap,
sc->verbuf, MEGASAS_MAX_NAME*sizeof(bus_addr_t),
mfi_addr_cb, &sc->verbuf_h_busaddr, 0);
/* End: LSIP200113393 */
/*
* Get information needed for sizing the contiguous memory for the
* frame pool. Size down the sgl parameter since we know that
* we will never need more than what's required for MFI_MAXPHYS.
* It would be nice if these constants were available at runtime
* instead of compile time.
*/
status = sc->mfi_read_fw_status(sc);
max_fw_cmds = status & MFI_FWSTATE_MAXCMD_MASK;
if (mfi_max_cmds > 0 && mfi_max_cmds < max_fw_cmds) {
device_printf(sc->mfi_dev, "FW MaxCmds = %d, limiting to %d\n",
max_fw_cmds, mfi_max_cmds);
sc->mfi_max_fw_cmds = mfi_max_cmds;
} else {
sc->mfi_max_fw_cmds = max_fw_cmds;
}
max_fw_sge = (status & MFI_FWSTATE_MAXSGL_MASK) >> 16;
sc->mfi_max_sge = min(max_fw_sge, ((MFI_MAXPHYS / PAGE_SIZE) + 1));
/* ThunderBolt Support get the contiguous memory */
if (sc->mfi_flags & MFI_FLAGS_TBOLT) {
mfi_tbolt_init_globals(sc);
device_printf(sc->mfi_dev, "MaxCmd = %d, Drv MaxCmd = %d, "
"MaxSgl = %d, state = %#x\n", max_fw_cmds,
sc->mfi_max_fw_cmds, sc->mfi_max_sge, status);
tb_mem_size = mfi_tbolt_get_memory_requirement(sc);
if (bus_dma_tag_create( sc->mfi_parent_dmat, /* parent */
1, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
tb_mem_size, /* maxsize */
1, /* msegments */
tb_mem_size, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->mfi_tb_dmat)) {
device_printf(sc->mfi_dev, "Cannot allocate comms DMA tag\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->mfi_tb_dmat, (void **)&sc->request_message_pool,
BUS_DMA_NOWAIT, &sc->mfi_tb_dmamap)) {
device_printf(sc->mfi_dev, "Cannot allocate comms memory\n");
return (ENOMEM);
}
bzero(sc->request_message_pool, tb_mem_size);
bus_dmamap_load(sc->mfi_tb_dmat, sc->mfi_tb_dmamap,
sc->request_message_pool, tb_mem_size, mfi_addr_cb, &sc->mfi_tb_busaddr, 0);
/* For ThunderBolt memory init */
if (bus_dma_tag_create( sc->mfi_parent_dmat, /* parent */
0x100, 0, /* alignmnt, boundary */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MFI_FRAME_SIZE, /* maxsize */
1, /* msegments */
MFI_FRAME_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->mfi_tb_init_dmat)) {
device_printf(sc->mfi_dev, "Cannot allocate init DMA tag\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->mfi_tb_init_dmat, (void **)&sc->mfi_tb_init,
BUS_DMA_NOWAIT, &sc->mfi_tb_init_dmamap)) {
device_printf(sc->mfi_dev, "Cannot allocate init memory\n");
return (ENOMEM);
}
bzero(sc->mfi_tb_init, MFI_FRAME_SIZE);
bus_dmamap_load(sc->mfi_tb_init_dmat, sc->mfi_tb_init_dmamap,
sc->mfi_tb_init, MFI_FRAME_SIZE, mfi_addr_cb,
&sc->mfi_tb_init_busaddr, 0);
if (mfi_tbolt_init_desc_pool(sc, sc->request_message_pool,
tb_mem_size)) {
device_printf(sc->mfi_dev,
"Thunderbolt pool preparation error\n");
return 0;
}
/*
Allocate DMA memory mapping for MPI2 IOC Init descriptor,
we are taking it different from what we have allocated for Request
and reply descriptors to avoid confusion later
*/
tb_mem_size = sizeof(struct MPI2_IOC_INIT_REQUEST);
if (bus_dma_tag_create( sc->mfi_parent_dmat, /* parent */
1, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
tb_mem_size, /* maxsize */
1, /* msegments */
tb_mem_size, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->mfi_tb_ioc_init_dmat)) {
device_printf(sc->mfi_dev,
"Cannot allocate comms DMA tag\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->mfi_tb_ioc_init_dmat,
(void **)&sc->mfi_tb_ioc_init_desc,
BUS_DMA_NOWAIT, &sc->mfi_tb_ioc_init_dmamap)) {
device_printf(sc->mfi_dev, "Cannot allocate comms memory\n");
return (ENOMEM);
}
bzero(sc->mfi_tb_ioc_init_desc, tb_mem_size);
bus_dmamap_load(sc->mfi_tb_ioc_init_dmat, sc->mfi_tb_ioc_init_dmamap,
sc->mfi_tb_ioc_init_desc, tb_mem_size, mfi_addr_cb,
&sc->mfi_tb_ioc_init_busaddr, 0);
}
/*
* Create the dma tag for data buffers. Used both for block I/O
* and for various internal data queries.
*/
if (bus_dma_tag_create( sc->mfi_parent_dmat, /* parent */
1, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
sc->mfi_max_sge, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
busdma_lock_mutex, /* lockfunc */
&sc->mfi_io_lock, /* lockfuncarg */
&sc->mfi_buffer_dmat)) {
device_printf(sc->mfi_dev, "Cannot allocate buffer DMA tag\n");
return (ENOMEM);
}
/*
* Allocate DMA memory for the comms queues. Keep it under 4GB for
* efficiency. The mfi_hwcomms struct includes space for 1 reply queue
* entry, so the calculated size here will be will be 1 more than
* mfi_max_fw_cmds. This is apparently a requirement of the hardware.
*/
commsz = (sizeof(uint32_t) * sc->mfi_max_fw_cmds) +
sizeof(struct mfi_hwcomms);
if (bus_dma_tag_create( sc->mfi_parent_dmat, /* parent */
1, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
commsz, /* maxsize */
1, /* msegments */
commsz, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->mfi_comms_dmat)) {
device_printf(sc->mfi_dev, "Cannot allocate comms DMA tag\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->mfi_comms_dmat, (void **)&sc->mfi_comms,
BUS_DMA_NOWAIT, &sc->mfi_comms_dmamap)) {
device_printf(sc->mfi_dev, "Cannot allocate comms memory\n");
return (ENOMEM);
}
bzero(sc->mfi_comms, commsz);
bus_dmamap_load(sc->mfi_comms_dmat, sc->mfi_comms_dmamap,
sc->mfi_comms, commsz, mfi_addr_cb, &sc->mfi_comms_busaddr, 0);
/*
* Allocate DMA memory for the command frames. Keep them in the
* lower 4GB for efficiency. Calculate the size of the commands at
* the same time; each command is one 64 byte frame plus a set of
* additional frames for holding sg lists or other data.
* The assumption here is that the SG list will start at the second
* frame and not use the unused bytes in the first frame. While this
* isn't technically correct, it simplifies the calculation and allows
* for command frames that might be larger than an mfi_io_frame.
*/
if (sizeof(bus_addr_t) == 8) {
sc->mfi_sge_size = sizeof(struct mfi_sg64);
sc->mfi_flags |= MFI_FLAGS_SG64;
} else {
sc->mfi_sge_size = sizeof(struct mfi_sg32);
}
if (sc->mfi_flags & MFI_FLAGS_SKINNY)
sc->mfi_sge_size = sizeof(struct mfi_sg_skinny);
frames = (sc->mfi_sge_size * sc->mfi_max_sge - 1) / MFI_FRAME_SIZE + 2;
sc->mfi_cmd_size = frames * MFI_FRAME_SIZE;
framessz = sc->mfi_cmd_size * sc->mfi_max_fw_cmds;
if (bus_dma_tag_create( sc->mfi_parent_dmat, /* parent */
64, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
framessz, /* maxsize */
1, /* nsegments */
framessz, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->mfi_frames_dmat)) {
device_printf(sc->mfi_dev, "Cannot allocate frame DMA tag\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->mfi_frames_dmat, (void **)&sc->mfi_frames,
BUS_DMA_NOWAIT, &sc->mfi_frames_dmamap)) {
device_printf(sc->mfi_dev, "Cannot allocate frames memory\n");
return (ENOMEM);
}
bzero(sc->mfi_frames, framessz);
bus_dmamap_load(sc->mfi_frames_dmat, sc->mfi_frames_dmamap,
sc->mfi_frames, framessz, mfi_addr_cb, &sc->mfi_frames_busaddr,0);
/*
* Allocate DMA memory for the frame sense data. Keep them in the
* lower 4GB for efficiency
*/
sensesz = sc->mfi_max_fw_cmds * MFI_SENSE_LEN;
if (bus_dma_tag_create( sc->mfi_parent_dmat, /* parent */
4, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
sensesz, /* maxsize */
1, /* nsegments */
sensesz, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->mfi_sense_dmat)) {
device_printf(sc->mfi_dev, "Cannot allocate sense DMA tag\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->mfi_sense_dmat, (void **)&sc->mfi_sense,
BUS_DMA_NOWAIT, &sc->mfi_sense_dmamap)) {
device_printf(sc->mfi_dev, "Cannot allocate sense memory\n");
return (ENOMEM);
}
bus_dmamap_load(sc->mfi_sense_dmat, sc->mfi_sense_dmamap,
sc->mfi_sense, sensesz, mfi_addr_cb, &sc->mfi_sense_busaddr, 0);
if ((error = mfi_alloc_commands(sc)) != 0)
return (error);
/* Before moving the FW to operational state, check whether
* hostmemory is required by the FW or not
*/
/* ThunderBolt MFI_IOC2 INIT */
if (sc->mfi_flags & MFI_FLAGS_TBOLT) {
sc->mfi_disable_intr(sc);
mtx_lock(&sc->mfi_io_lock);
if ((error = mfi_tbolt_init_MFI_queue(sc)) != 0) {
device_printf(sc->mfi_dev,
"TB Init has failed with error %d\n",error);
mtx_unlock(&sc->mfi_io_lock);
return error;
}
mtx_unlock(&sc->mfi_io_lock);
if ((error = mfi_tbolt_alloc_cmd(sc)) != 0)
return error;
if (bus_setup_intr(sc->mfi_dev, sc->mfi_irq,
INTR_MPSAFE|INTR_TYPE_BIO, NULL, mfi_intr_tbolt, sc,
&sc->mfi_intr)) {
device_printf(sc->mfi_dev, "Cannot set up interrupt\n");
return (EINVAL);
}
sc->mfi_intr_ptr = mfi_intr_tbolt;
sc->mfi_enable_intr(sc);
} else {
if ((error = mfi_comms_init(sc)) != 0)
return (error);
if (bus_setup_intr(sc->mfi_dev, sc->mfi_irq,
INTR_MPSAFE|INTR_TYPE_BIO, NULL, mfi_intr, sc, &sc->mfi_intr)) {
device_printf(sc->mfi_dev, "Cannot set up interrupt\n");
return (EINVAL);
}
sc->mfi_intr_ptr = mfi_intr;
sc->mfi_enable_intr(sc);
}
if ((error = mfi_get_controller_info(sc)) != 0)
return (error);
sc->disableOnlineCtrlReset = 0;
/* Register a config hook to probe the bus for arrays */
sc->mfi_ich.ich_func = mfi_startup;
sc->mfi_ich.ich_arg = sc;
if (config_intrhook_establish(&sc->mfi_ich) != 0) {
device_printf(sc->mfi_dev, "Cannot establish configuration "
"hook\n");
return (EINVAL);
}
mtx_lock(&sc->mfi_io_lock);
if ((error = mfi_aen_setup(sc, 0), 0) != 0) {
mtx_unlock(&sc->mfi_io_lock);
return (error);
}
mtx_unlock(&sc->mfi_io_lock);
/*
* Register a shutdown handler.
*/
if ((sc->mfi_eh = EVENTHANDLER_REGISTER(shutdown_final, mfi_shutdown,
sc, SHUTDOWN_PRI_DEFAULT)) == NULL) {
device_printf(sc->mfi_dev, "Warning: shutdown event "
"registration failed\n");
}
/*
* Create the control device for doing management
*/
unit = device_get_unit(sc->mfi_dev);
sc->mfi_cdev = make_dev(&mfi_cdevsw, unit, UID_ROOT, GID_OPERATOR,
0640, "mfi%d", unit);
if (unit == 0)
make_dev_alias_p(MAKEDEV_CHECKNAME | MAKEDEV_WAITOK, &dev_t,
sc->mfi_cdev, "%s", "megaraid_sas_ioctl_node");
if (sc->mfi_cdev != NULL)
sc->mfi_cdev->si_drv1 = sc;
SYSCTL_ADD_INT(device_get_sysctl_ctx(sc->mfi_dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(sc->mfi_dev)),
OID_AUTO, "delete_busy_volumes", CTLFLAG_RW,
&sc->mfi_delete_busy_volumes, 0, "Allow removal of busy volumes");
SYSCTL_ADD_INT(device_get_sysctl_ctx(sc->mfi_dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(sc->mfi_dev)),
OID_AUTO, "keep_deleted_volumes", CTLFLAG_RW,
&sc->mfi_keep_deleted_volumes, 0,
"Don't detach the mfid device for a busy volume that is deleted");
device_add_child(sc->mfi_dev, "mfip", -1);
bus_generic_attach(sc->mfi_dev);
/* Start the timeout watchdog */
callout_init(&sc->mfi_watchdog_callout, 1);
callout_reset(&sc->mfi_watchdog_callout, mfi_cmd_timeout * hz,
mfi_timeout, sc);
if (sc->mfi_flags & MFI_FLAGS_TBOLT) {
mtx_lock(&sc->mfi_io_lock);
mfi_tbolt_sync_map_info(sc);
mtx_unlock(&sc->mfi_io_lock);
}
return (0);
}
static int
mfi_alloc_commands(struct mfi_softc *sc)
{
struct mfi_command *cm;
int i, j;
/*
* XXX Should we allocate all the commands up front, or allocate on
* demand later like 'aac' does?
*/
sc->mfi_commands = malloc(sizeof(sc->mfi_commands[0]) *
sc->mfi_max_fw_cmds, M_MFIBUF, M_WAITOK | M_ZERO);
for (i = 0; i < sc->mfi_max_fw_cmds; i++) {
cm = &sc->mfi_commands[i];
cm->cm_frame = (union mfi_frame *)((uintptr_t)sc->mfi_frames +
sc->mfi_cmd_size * i);
cm->cm_frame_busaddr = sc->mfi_frames_busaddr +
sc->mfi_cmd_size * i;
cm->cm_frame->header.context = i;
cm->cm_sense = &sc->mfi_sense[i];
cm->cm_sense_busaddr= sc->mfi_sense_busaddr + MFI_SENSE_LEN * i;
cm->cm_sc = sc;
cm->cm_index = i;
if (bus_dmamap_create(sc->mfi_buffer_dmat, 0,
&cm->cm_dmamap) == 0) {
mtx_lock(&sc->mfi_io_lock);
mfi_release_command(cm);
mtx_unlock(&sc->mfi_io_lock);
} else {
device_printf(sc->mfi_dev, "Failed to allocate %d "
"command blocks, only allocated %d\n",
sc->mfi_max_fw_cmds, i - 1);
for (j = 0; j < i; j++) {
cm = &sc->mfi_commands[i];
bus_dmamap_destroy(sc->mfi_buffer_dmat,
cm->cm_dmamap);
}
free(sc->mfi_commands, M_MFIBUF);
sc->mfi_commands = NULL;
return (ENOMEM);
}
}
return (0);
}
void
mfi_release_command(struct mfi_command *cm)
{
struct mfi_frame_header *hdr;
uint32_t *hdr_data;
mtx_assert(&cm->cm_sc->mfi_io_lock, MA_OWNED);
/*
* Zero out the important fields of the frame, but make sure the
* context field is preserved. For efficiency, handle the fields
* as 32 bit words. Clear out the first S/G entry too for safety.
*/
hdr = &cm->cm_frame->header;
if (cm->cm_data != NULL && hdr->sg_count) {
cm->cm_sg->sg32[0].len = 0;
cm->cm_sg->sg32[0].addr = 0;
}
/*
* Command may be on other queues e.g. busy queue depending on the
* flow of a previous call to mfi_mapcmd, so ensure its dequeued
* properly
*/
if ((cm->cm_flags & MFI_ON_MFIQ_BUSY) != 0)
mfi_remove_busy(cm);
if ((cm->cm_flags & MFI_ON_MFIQ_READY) != 0)
mfi_remove_ready(cm);
/* We're not expecting it to be on any other queue but check */
if ((cm->cm_flags & MFI_ON_MFIQ_MASK) != 0) {
panic("Command %p is still on another queue, flags = %#x",
cm, cm->cm_flags);
}
/* tbolt cleanup */
if ((cm->cm_flags & MFI_CMD_TBOLT) != 0) {
mfi_tbolt_return_cmd(cm->cm_sc,
cm->cm_sc->mfi_cmd_pool_tbolt[cm->cm_extra_frames - 1],
cm);
}
hdr_data = (uint32_t *)cm->cm_frame;
hdr_data[0] = 0; /* cmd, sense_len, cmd_status, scsi_status */
hdr_data[1] = 0; /* target_id, lun_id, cdb_len, sg_count */
hdr_data[4] = 0; /* flags, timeout */
hdr_data[5] = 0; /* data_len */
cm->cm_extra_frames = 0;
cm->cm_flags = 0;
cm->cm_complete = NULL;
cm->cm_private = NULL;
cm->cm_data = NULL;
cm->cm_sg = 0;
cm->cm_total_frame_size = 0;
cm->retry_for_fw_reset = 0;
mfi_enqueue_free(cm);
}
int
mfi_dcmd_command(struct mfi_softc *sc, struct mfi_command **cmp,
uint32_t opcode, void **bufp, size_t bufsize)
{
struct mfi_command *cm;
struct mfi_dcmd_frame *dcmd;
void *buf = NULL;
uint32_t context = 0;
mtx_assert(&sc->mfi_io_lock, MA_OWNED);
cm = mfi_dequeue_free(sc);
if (cm == NULL)
return (EBUSY);
/* Zero out the MFI frame */
context = cm->cm_frame->header.context;
bzero(cm->cm_frame, sizeof(union mfi_frame));
cm->cm_frame->header.context = context;
if ((bufsize > 0) && (bufp != NULL)) {
if (*bufp == NULL) {
buf = malloc(bufsize, M_MFIBUF, M_NOWAIT|M_ZERO);
if (buf == NULL) {
mfi_release_command(cm);
return (ENOMEM);
}
*bufp = buf;
} else {
buf = *bufp;
}
}
dcmd = &cm->cm_frame->dcmd;
bzero(dcmd->mbox, MFI_MBOX_SIZE);
dcmd->header.cmd = MFI_CMD_DCMD;
dcmd->header.timeout = 0;
dcmd->header.flags = 0;
dcmd->header.data_len = bufsize;
dcmd->header.scsi_status = 0;
dcmd->opcode = opcode;
cm->cm_sg = &dcmd->sgl;
cm->cm_total_frame_size = MFI_DCMD_FRAME_SIZE;
cm->cm_flags = 0;
cm->cm_data = buf;
cm->cm_private = buf;
cm->cm_len = bufsize;
*cmp = cm;
if ((bufp != NULL) && (*bufp == NULL) && (buf != NULL))
*bufp = buf;
return (0);
}
static int
mfi_comms_init(struct mfi_softc *sc)
{
struct mfi_command *cm;
struct mfi_init_frame *init;
struct mfi_init_qinfo *qinfo;
int error;
uint32_t context = 0;
mtx_lock(&sc->mfi_io_lock);
if ((cm = mfi_dequeue_free(sc)) == NULL) {
mtx_unlock(&sc->mfi_io_lock);
return (EBUSY);
}
/* Zero out the MFI frame */
context = cm->cm_frame->header.context;
bzero(cm->cm_frame, sizeof(union mfi_frame));
cm->cm_frame->header.context = context;
/*
* Abuse the SG list area of the frame to hold the init_qinfo
* object;
*/
init = &cm->cm_frame->init;
qinfo = (struct mfi_init_qinfo *)((uintptr_t)init + MFI_FRAME_SIZE);
bzero(qinfo, sizeof(struct mfi_init_qinfo));
qinfo->rq_entries = sc->mfi_max_fw_cmds + 1;
qinfo->rq_addr_lo = sc->mfi_comms_busaddr +
offsetof(struct mfi_hwcomms, hw_reply_q);
qinfo->pi_addr_lo = sc->mfi_comms_busaddr +
offsetof(struct mfi_hwcomms, hw_pi);
qinfo->ci_addr_lo = sc->mfi_comms_busaddr +
offsetof(struct mfi_hwcomms, hw_ci);
init->header.cmd = MFI_CMD_INIT;
init->header.data_len = sizeof(struct mfi_init_qinfo);
init->qinfo_new_addr_lo = cm->cm_frame_busaddr + MFI_FRAME_SIZE;
cm->cm_data = NULL;
cm->cm_flags = MFI_CMD_POLLED;
if ((error = mfi_mapcmd(sc, cm)) != 0)
device_printf(sc->mfi_dev, "failed to send init command\n");
mfi_release_command(cm);
mtx_unlock(&sc->mfi_io_lock);
return (error);
}
static int
mfi_get_controller_info(struct mfi_softc *sc)
{
struct mfi_command *cm = NULL;
struct mfi_ctrl_info *ci = NULL;
uint32_t max_sectors_1, max_sectors_2;
int error;
mtx_lock(&sc->mfi_io_lock);
error = mfi_dcmd_command(sc, &cm, MFI_DCMD_CTRL_GETINFO,
(void **)&ci, sizeof(*ci));
if (error)
goto out;
cm->cm_flags = MFI_CMD_DATAIN | MFI_CMD_POLLED;
if ((error = mfi_mapcmd(sc, cm)) != 0) {
device_printf(sc->mfi_dev, "Failed to get controller info\n");
sc->mfi_max_io = (sc->mfi_max_sge - 1) * PAGE_SIZE /
MFI_SECTOR_LEN;
error = 0;
goto out;
}
bus_dmamap_sync(sc->mfi_buffer_dmat, cm->cm_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->mfi_buffer_dmat, cm->cm_dmamap);
max_sectors_1 = (1 << ci->stripe_sz_ops.max) * ci->max_strips_per_io;
max_sectors_2 = ci->max_request_size;
sc->mfi_max_io = min(max_sectors_1, max_sectors_2);
sc->disableOnlineCtrlReset =
ci->properties.OnOffProperties.disableOnlineCtrlReset;
out:
if (ci)
free(ci, M_MFIBUF);
if (cm)
mfi_release_command(cm);
mtx_unlock(&sc->mfi_io_lock);
return (error);
}
static int
mfi_get_log_state(struct mfi_softc *sc, struct mfi_evt_log_state **log_state)
{
struct mfi_command *cm = NULL;
int error;
mtx_assert(&sc->mfi_io_lock, MA_OWNED);
error = mfi_dcmd_command(sc, &cm, MFI_DCMD_CTRL_EVENT_GETINFO,
(void **)log_state, sizeof(**log_state));
if (error)
goto out;
cm->cm_flags = MFI_CMD_DATAIN | MFI_CMD_POLLED;
if ((error = mfi_mapcmd(sc, cm)) != 0) {
device_printf(sc->mfi_dev, "Failed to get log state\n");
goto out;
}
bus_dmamap_sync(sc->mfi_buffer_dmat, cm->cm_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->mfi_buffer_dmat, cm->cm_dmamap);
out:
if (cm)
mfi_release_command(cm);
return (error);
}
int
mfi_aen_setup(struct mfi_softc *sc, uint32_t seq_start)
{
struct mfi_evt_log_state *log_state = NULL;
union mfi_evt class_locale;
int error = 0;
uint32_t seq;
mtx_assert(&sc->mfi_io_lock, MA_OWNED);
class_locale.members.reserved = 0;
class_locale.members.locale = mfi_event_locale;
class_locale.members.evt_class = mfi_event_class;
if (seq_start == 0) {
if ((error = mfi_get_log_state(sc, &log_state)) != 0)
goto out;
sc->mfi_boot_seq_num = log_state->boot_seq_num;
/*
* Walk through any events that fired since the last
* shutdown.
*/
if ((error = mfi_parse_entries(sc, log_state->shutdown_seq_num,
log_state->newest_seq_num)) != 0)
goto out;
seq = log_state->newest_seq_num;
} else
seq = seq_start;
error = mfi_aen_register(sc, seq, class_locale.word);
out:
free(log_state, M_MFIBUF);
return (error);
}
int
mfi_wait_command(struct mfi_softc *sc, struct mfi_command *cm)
{
mtx_assert(&sc->mfi_io_lock, MA_OWNED);
cm->cm_complete = NULL;
/*
* MegaCli can issue a DCMD of 0. In this case do nothing
* and return 0 to it as status
*/
if (cm->cm_frame->dcmd.opcode == 0) {
cm->cm_frame->header.cmd_status = MFI_STAT_OK;
cm->cm_error = 0;
return (cm->cm_error);
}
mfi_enqueue_ready(cm);
mfi_startio(sc);
if ((cm->cm_flags & MFI_CMD_COMPLETED) == 0)
msleep(cm, &sc->mfi_io_lock, PRIBIO, "mfiwait", 0);
return (cm->cm_error);
}
void
mfi_free(struct mfi_softc *sc)
{
struct mfi_command *cm;
int i;
callout_drain(&sc->mfi_watchdog_callout);
if (sc->mfi_cdev != NULL)
destroy_dev(sc->mfi_cdev);
if (sc->mfi_commands != NULL) {
for (i = 0; i < sc->mfi_max_fw_cmds; i++) {
cm = &sc->mfi_commands[i];
bus_dmamap_destroy(sc->mfi_buffer_dmat, cm->cm_dmamap);
}
free(sc->mfi_commands, M_MFIBUF);
sc->mfi_commands = NULL;
}
if (sc->mfi_intr)
bus_teardown_intr(sc->mfi_dev, sc->mfi_irq, sc->mfi_intr);
if (sc->mfi_irq != NULL)
bus_release_resource(sc->mfi_dev, SYS_RES_IRQ, sc->mfi_irq_rid,
sc->mfi_irq);
if (sc->mfi_sense_busaddr != 0)
bus_dmamap_unload(sc->mfi_sense_dmat, sc->mfi_sense_dmamap);
if (sc->mfi_sense != NULL)
bus_dmamem_free(sc->mfi_sense_dmat, sc->mfi_sense,
sc->mfi_sense_dmamap);
if (sc->mfi_sense_dmat != NULL)
bus_dma_tag_destroy(sc->mfi_sense_dmat);
if (sc->mfi_frames_busaddr != 0)
bus_dmamap_unload(sc->mfi_frames_dmat, sc->mfi_frames_dmamap);
if (sc->mfi_frames != NULL)
bus_dmamem_free(sc->mfi_frames_dmat, sc->mfi_frames,
sc->mfi_frames_dmamap);
if (sc->mfi_frames_dmat != NULL)
bus_dma_tag_destroy(sc->mfi_frames_dmat);
if (sc->mfi_comms_busaddr != 0)
bus_dmamap_unload(sc->mfi_comms_dmat, sc->mfi_comms_dmamap);
if (sc->mfi_comms != NULL)
bus_dmamem_free(sc->mfi_comms_dmat, sc->mfi_comms,
sc->mfi_comms_dmamap);
if (sc->mfi_comms_dmat != NULL)
bus_dma_tag_destroy(sc->mfi_comms_dmat);
/* ThunderBolt contiguous memory free here */
if (sc->mfi_flags & MFI_FLAGS_TBOLT) {
if (sc->mfi_tb_busaddr != 0)
bus_dmamap_unload(sc->mfi_tb_dmat, sc->mfi_tb_dmamap);
if (sc->request_message_pool != NULL)
bus_dmamem_free(sc->mfi_tb_dmat, sc->request_message_pool,
sc->mfi_tb_dmamap);
if (sc->mfi_tb_dmat != NULL)
bus_dma_tag_destroy(sc->mfi_tb_dmat);
/* Version buffer memory free */
/* Start LSIP200113393 */
if (sc->verbuf_h_busaddr != 0)
bus_dmamap_unload(sc->verbuf_h_dmat, sc->verbuf_h_dmamap);
if (sc->verbuf != NULL)
bus_dmamem_free(sc->verbuf_h_dmat, sc->verbuf,
sc->verbuf_h_dmamap);
if (sc->verbuf_h_dmat != NULL)
bus_dma_tag_destroy(sc->verbuf_h_dmat);
/* End LSIP200113393 */
/* ThunderBolt INIT packet memory Free */
if (sc->mfi_tb_init_busaddr != 0)
bus_dmamap_unload(sc->mfi_tb_init_dmat,
sc->mfi_tb_init_dmamap);
if (sc->mfi_tb_init != NULL)
bus_dmamem_free(sc->mfi_tb_init_dmat, sc->mfi_tb_init,
sc->mfi_tb_init_dmamap);
if (sc->mfi_tb_init_dmat != NULL)
bus_dma_tag_destroy(sc->mfi_tb_init_dmat);
/* ThunderBolt IOC Init Desc memory free here */
if (sc->mfi_tb_ioc_init_busaddr != 0)
bus_dmamap_unload(sc->mfi_tb_ioc_init_dmat,
sc->mfi_tb_ioc_init_dmamap);
if (sc->mfi_tb_ioc_init_desc != NULL)
bus_dmamem_free(sc->mfi_tb_ioc_init_dmat,
sc->mfi_tb_ioc_init_desc,
sc->mfi_tb_ioc_init_dmamap);
if (sc->mfi_tb_ioc_init_dmat != NULL)
bus_dma_tag_destroy(sc->mfi_tb_ioc_init_dmat);
if (sc->mfi_cmd_pool_tbolt != NULL) {
for (int i = 0; i < sc->mfi_max_fw_cmds; i++) {
if (sc->mfi_cmd_pool_tbolt[i] != NULL) {
free(sc->mfi_cmd_pool_tbolt[i],
M_MFIBUF);
sc->mfi_cmd_pool_tbolt[i] = NULL;
}
}
free(sc->mfi_cmd_pool_tbolt, M_MFIBUF);
sc->mfi_cmd_pool_tbolt = NULL;
}
if (sc->request_desc_pool != NULL) {
free(sc->request_desc_pool, M_MFIBUF);
sc->request_desc_pool = NULL;
}
}
if (sc->mfi_buffer_dmat != NULL)
bus_dma_tag_destroy(sc->mfi_buffer_dmat);
if (sc->mfi_parent_dmat != NULL)
bus_dma_tag_destroy(sc->mfi_parent_dmat);
if (mtx_initialized(&sc->mfi_io_lock)) {
mtx_destroy(&sc->mfi_io_lock);
sx_destroy(&sc->mfi_config_lock);
}
return;
}
static void
mfi_startup(void *arg)
{
struct mfi_softc *sc;
sc = (struct mfi_softc *)arg;
sc->mfi_enable_intr(sc);
sx_xlock(&sc->mfi_config_lock);
mtx_lock(&sc->mfi_io_lock);
mfi_ldprobe(sc);
if (sc->mfi_flags & MFI_FLAGS_SKINNY)
mfi_syspdprobe(sc);
mtx_unlock(&sc->mfi_io_lock);
sx_xunlock(&sc->mfi_config_lock);
config_intrhook_disestablish(&sc->mfi_ich);
}
static void
mfi_intr(void *arg)
{
struct mfi_softc *sc;
struct mfi_command *cm;
uint32_t pi, ci, context;
sc = (struct mfi_softc *)arg;
if (sc->mfi_check_clear_intr(sc))
return;
restart:
pi = sc->mfi_comms->hw_pi;
ci = sc->mfi_comms->hw_ci;
mtx_lock(&sc->mfi_io_lock);
while (ci != pi) {
context = sc->mfi_comms->hw_reply_q[ci];
if (context < sc->mfi_max_fw_cmds) {
cm = &sc->mfi_commands[context];
mfi_remove_busy(cm);
cm->cm_error = 0;
mfi_complete(sc, cm);
}
if (++ci == (sc->mfi_max_fw_cmds + 1))
ci = 0;
}
sc->mfi_comms->hw_ci = ci;
/* Give defered I/O a chance to run */
sc->mfi_flags &= ~MFI_FLAGS_QFRZN;
mfi_startio(sc);
mtx_unlock(&sc->mfi_io_lock);
/*
* Dummy read to flush the bus; this ensures that the indexes are up
* to date. Restart processing if more commands have come it.
*/
(void)sc->mfi_read_fw_status(sc);
if (pi != sc->mfi_comms->hw_pi)
goto restart;
return;
}
int
mfi_shutdown(struct mfi_softc *sc)
{
struct mfi_dcmd_frame *dcmd;
struct mfi_command *cm;
int error;
if (sc->mfi_aen_cm != NULL) {
sc->cm_aen_abort = 1;
mfi_abort(sc, &sc->mfi_aen_cm);
}
if (sc->mfi_map_sync_cm != NULL) {
sc->cm_map_abort = 1;
mfi_abort(sc, &sc->mfi_map_sync_cm);
}
mtx_lock(&sc->mfi_io_lock);
error = mfi_dcmd_command(sc, &cm, MFI_DCMD_CTRL_SHUTDOWN, NULL, 0);
if (error) {
mtx_unlock(&sc->mfi_io_lock);
return (error);
}
dcmd = &cm->cm_frame->dcmd;
dcmd->header.flags = MFI_FRAME_DIR_NONE;
cm->cm_flags = MFI_CMD_POLLED;
cm->cm_data = NULL;
if ((error = mfi_mapcmd(sc, cm)) != 0)
device_printf(sc->mfi_dev, "Failed to shutdown controller\n");
mfi_release_command(cm);
mtx_unlock(&sc->mfi_io_lock);
return (error);
}
static void
mfi_syspdprobe(struct mfi_softc *sc)
{
struct mfi_frame_header *hdr;
struct mfi_command *cm = NULL;
struct mfi_pd_list *pdlist = NULL;
struct mfi_system_pd *syspd, *tmp;
struct mfi_system_pending *syspd_pend;
int error, i, found;
sx_assert(&sc->mfi_config_lock, SA_XLOCKED);
mtx_assert(&sc->mfi_io_lock, MA_OWNED);
/* Add SYSTEM PD's */
error = mfi_dcmd_command(sc, &cm, MFI_DCMD_PD_LIST_QUERY,
(void **)&pdlist, sizeof(*pdlist));
if (error) {
device_printf(sc->mfi_dev,
"Error while forming SYSTEM PD list\n");
goto out;
}
cm->cm_flags = MFI_CMD_DATAIN | MFI_CMD_POLLED;
cm->cm_frame->dcmd.mbox[0] = MR_PD_QUERY_TYPE_EXPOSED_TO_HOST;
cm->cm_frame->dcmd.mbox[1] = 0;
if (mfi_mapcmd(sc, cm) != 0) {
device_printf(sc->mfi_dev,
"Failed to get syspd device listing\n");
goto out;
}
bus_dmamap_sync(sc->mfi_buffer_dmat,cm->cm_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->mfi_buffer_dmat, cm->cm_dmamap);
hdr = &cm->cm_frame->header;
if (hdr->cmd_status != MFI_STAT_OK) {
device_printf(sc->mfi_dev,
"MFI_DCMD_PD_LIST_QUERY failed %x\n", hdr->cmd_status);
goto out;
}
/* Get each PD and add it to the system */
for (i = 0; i < pdlist->count; i++) {
if (pdlist->addr[i].device_id ==
pdlist->addr[i].encl_device_id)
continue;
found = 0;
TAILQ_FOREACH(syspd, &sc->mfi_syspd_tqh, pd_link) {
if (syspd->pd_id == pdlist->addr[i].device_id)
found = 1;
}
TAILQ_FOREACH(syspd_pend, &sc->mfi_syspd_pend_tqh, pd_link) {
if (syspd_pend->pd_id == pdlist->addr[i].device_id)
found = 1;
}
if (found == 0)
mfi_add_sys_pd(sc, pdlist->addr[i].device_id);
}
/* Delete SYSPD's whose state has been changed */
TAILQ_FOREACH_SAFE(syspd, &sc->mfi_syspd_tqh, pd_link, tmp) {
found = 0;
for (i = 0; i < pdlist->count; i++) {
if (syspd->pd_id == pdlist->addr[i].device_id) {
found = 1;
break;
}
}
if (found == 0) {
printf("DELETE\n");
mtx_unlock(&sc->mfi_io_lock);
mtx_lock(&Giant);
device_delete_child(sc->mfi_dev, syspd->pd_dev);
mtx_unlock(&Giant);
mtx_lock(&sc->mfi_io_lock);
}
}
out:
if (pdlist)
free(pdlist, M_MFIBUF);
if (cm)
mfi_release_command(cm);
return;
}
static void
mfi_ldprobe(struct mfi_softc *sc)
{
struct mfi_frame_header *hdr;
struct mfi_command *cm = NULL;
struct mfi_ld_list *list = NULL;
struct mfi_disk *ld;
struct mfi_disk_pending *ld_pend;
int error, i;
sx_assert(&sc->mfi_config_lock, SA_XLOCKED);
mtx_assert(&sc->mfi_io_lock, MA_OWNED);
error = mfi_dcmd_command(sc, &cm, MFI_DCMD_LD_GET_LIST,
(void **)&list, sizeof(*list));
if (error)
goto out;
cm->cm_flags = MFI_CMD_DATAIN;
if (mfi_wait_command(sc, cm) != 0) {
device_printf(sc->mfi_dev, "Failed to get device listing\n");
goto out;
}
hdr = &cm->cm_frame->header;
if (hdr->cmd_status != MFI_STAT_OK) {
device_printf(sc->mfi_dev, "MFI_DCMD_LD_GET_LIST failed %x\n",
hdr->cmd_status);
goto out;
}
for (i = 0; i < list->ld_count; i++) {
TAILQ_FOREACH(ld, &sc->mfi_ld_tqh, ld_link) {
if (ld->ld_id == list->ld_list[i].ld.v.target_id)
goto skip_add;
}
TAILQ_FOREACH(ld_pend, &sc->mfi_ld_pend_tqh, ld_link) {
if (ld_pend->ld_id == list->ld_list[i].ld.v.target_id)
goto skip_add;
}
mfi_add_ld(sc, list->ld_list[i].ld.v.target_id);
skip_add:;
}
out:
if (list)
free(list, M_MFIBUF);
if (cm)
mfi_release_command(cm);
return;
}
/*
* The timestamp is the number of seconds since 00:00 Jan 1, 2000. If
* the bits in 24-31 are all set, then it is the number of seconds since
* boot.
*/
static const char *
format_timestamp(uint32_t timestamp)
{
static char buffer[32];
if ((timestamp & 0xff000000) == 0xff000000)
snprintf(buffer, sizeof(buffer), "boot + %us", timestamp &
0x00ffffff);
else
snprintf(buffer, sizeof(buffer), "%us", timestamp);
return (buffer);
}
static const char *
format_class(int8_t class)
{
static char buffer[6];
switch (class) {
case MFI_EVT_CLASS_DEBUG:
return ("debug");
case MFI_EVT_CLASS_PROGRESS:
return ("progress");
case MFI_EVT_CLASS_INFO:
return ("info");
case MFI_EVT_CLASS_WARNING:
return ("WARN");
case MFI_EVT_CLASS_CRITICAL:
return ("CRIT");
case MFI_EVT_CLASS_FATAL:
return ("FATAL");
case MFI_EVT_CLASS_DEAD:
return ("DEAD");
default:
snprintf(buffer, sizeof(buffer), "%d", class);
return (buffer);
}
}
static void
mfi_decode_evt(struct mfi_softc *sc, struct mfi_evt_detail *detail)
{
struct mfi_system_pd *syspd = NULL;
device_printf(sc->mfi_dev, "%d (%s/0x%04x/%s) - %s\n", detail->seq,
format_timestamp(detail->time), detail->evt_class.members.locale,
format_class(detail->evt_class.members.evt_class),
detail->description);
/* Don't act on old AEN's or while shutting down */
if (detail->seq < sc->mfi_boot_seq_num || sc->mfi_detaching)
return;
switch (detail->arg_type) {
case MR_EVT_ARGS_NONE:
if (detail->code == MR_EVT_CTRL_HOST_BUS_SCAN_REQUESTED) {
device_printf(sc->mfi_dev, "HostBus scan raised\n");
if (mfi_detect_jbod_change) {
/*
* Probe for new SYSPD's and Delete
* invalid SYSPD's
*/
sx_xlock(&sc->mfi_config_lock);
mtx_lock(&sc->mfi_io_lock);
mfi_syspdprobe(sc);
mtx_unlock(&sc->mfi_io_lock);
sx_xunlock(&sc->mfi_config_lock);
}
}
break;
case MR_EVT_ARGS_LD_STATE:
/* During load time driver reads all the events starting
* from the one that has been logged after shutdown. Avoid
* these old events.
*/
if (detail->args.ld_state.new_state == MFI_LD_STATE_OFFLINE ) {
/* Remove the LD */
struct mfi_disk *ld;
TAILQ_FOREACH(ld, &sc->mfi_ld_tqh, ld_link) {
if (ld->ld_id ==
detail->args.ld_state.ld.target_id)
break;
}
/*
Fix: for kernel panics when SSCD is removed
KASSERT(ld != NULL, ("volume dissappeared"));
*/
if (ld != NULL) {
mtx_lock(&Giant);
device_delete_child(sc->mfi_dev, ld->ld_dev);
mtx_unlock(&Giant);
}
}
break;
case MR_EVT_ARGS_PD:
if (detail->code == MR_EVT_PD_REMOVED) {
if (mfi_detect_jbod_change) {
/*
* If the removed device is a SYSPD then
* delete it
*/
TAILQ_FOREACH(syspd, &sc->mfi_syspd_tqh,
pd_link) {
if (syspd->pd_id ==
detail->args.pd.device_id) {
mtx_lock(&Giant);
device_delete_child(
sc->mfi_dev,
syspd->pd_dev);
mtx_unlock(&Giant);
break;
}
}
}
}
if (detail->code == MR_EVT_PD_INSERTED) {
if (mfi_detect_jbod_change) {
/* Probe for new SYSPD's */
sx_xlock(&sc->mfi_config_lock);
mtx_lock(&sc->mfi_io_lock);
mfi_syspdprobe(sc);
mtx_unlock(&sc->mfi_io_lock);
sx_xunlock(&sc->mfi_config_lock);
}
}
if (sc->mfi_cam_rescan_cb != NULL &&
(detail->code == MR_EVT_PD_INSERTED ||
detail->code == MR_EVT_PD_REMOVED)) {
sc->mfi_cam_rescan_cb(sc, detail->args.pd.device_id);
}
break;
}
}
static void
mfi_queue_evt(struct mfi_softc *sc, struct mfi_evt_detail *detail)
{
struct mfi_evt_queue_elm *elm;
mtx_assert(&sc->mfi_io_lock, MA_OWNED);
elm = malloc(sizeof(*elm), M_MFIBUF, M_NOWAIT|M_ZERO);
if (elm == NULL)
return;
memcpy(&elm->detail, detail, sizeof(*detail));
TAILQ_INSERT_TAIL(&sc->mfi_evt_queue, elm, link);
taskqueue_enqueue(taskqueue_swi, &sc->mfi_evt_task);
}
static void
mfi_handle_evt(void *context, int pending)
{
TAILQ_HEAD(,mfi_evt_queue_elm) queue;
struct mfi_softc *sc;
struct mfi_evt_queue_elm *elm;
sc = context;
TAILQ_INIT(&queue);
mtx_lock(&sc->mfi_io_lock);
TAILQ_CONCAT(&queue, &sc->mfi_evt_queue, link);
mtx_unlock(&sc->mfi_io_lock);
while ((elm = TAILQ_FIRST(&queue)) != NULL) {
TAILQ_REMOVE(&queue, elm, link);
mfi_decode_evt(sc, &elm->detail);
free(elm, M_MFIBUF);
}
}
static int
mfi_aen_register(struct mfi_softc *sc, int seq, int locale)
{
struct mfi_command *cm;
struct mfi_dcmd_frame *dcmd;
union mfi_evt current_aen, prior_aen;
struct mfi_evt_detail *ed = NULL;
int error = 0;
mtx_assert(&sc->mfi_io_lock, MA_OWNED);
current_aen.word = locale;
if (sc->mfi_aen_cm != NULL) {
prior_aen.word =
((uint32_t *)&sc->mfi_aen_cm->cm_frame->dcmd.mbox)[1];
if (prior_aen.members.evt_class <= current_aen.members.evt_class &&
!((prior_aen.members.locale & current_aen.members.locale)
^current_aen.members.locale)) {
return (0);
} else {
prior_aen.members.locale |= current_aen.members.locale;
if (prior_aen.members.evt_class
< current_aen.members.evt_class)
current_aen.members.evt_class =
prior_aen.members.evt_class;
mfi_abort(sc, &sc->mfi_aen_cm);
}
}
error = mfi_dcmd_command(sc, &cm, MFI_DCMD_CTRL_EVENT_WAIT,
(void **)&ed, sizeof(*ed));
if (error)
goto out;
dcmd = &cm->cm_frame->dcmd;
((uint32_t *)&dcmd->mbox)[0] = seq;
((uint32_t *)&dcmd->mbox)[1] = locale;
cm->cm_flags = MFI_CMD_DATAIN;
cm->cm_complete = mfi_aen_complete;
sc->last_seq_num = seq;
sc->mfi_aen_cm = cm;
mfi_enqueue_ready(cm);
mfi_startio(sc);
out:
return (error);
}
static void
mfi_aen_complete(struct mfi_command *cm)
{
struct mfi_frame_header *hdr;
struct mfi_softc *sc;
struct mfi_evt_detail *detail;
struct mfi_aen *mfi_aen_entry, *tmp;
int seq = 0, aborted = 0;
sc = cm->cm_sc;
mtx_assert(&sc->mfi_io_lock, MA_OWNED);
if (sc->mfi_aen_cm == NULL)
return;
hdr = &cm->cm_frame->header;
if (sc->cm_aen_abort ||
hdr->cmd_status == MFI_STAT_INVALID_STATUS) {
sc->cm_aen_abort = 0;
aborted = 1;
} else {
sc->mfi_aen_triggered = 1;
if (sc->mfi_poll_waiting) {
sc->mfi_poll_waiting = 0;
selwakeup(&sc->mfi_select);
}
detail = cm->cm_data;
mfi_queue_evt(sc, detail);
seq = detail->seq + 1;
TAILQ_FOREACH_SAFE(mfi_aen_entry, &sc->mfi_aen_pids, aen_link,
tmp) {
TAILQ_REMOVE(&sc->mfi_aen_pids, mfi_aen_entry,
aen_link);
PROC_LOCK(mfi_aen_entry->p);
kern_psignal(mfi_aen_entry->p, SIGIO);
PROC_UNLOCK(mfi_aen_entry->p);
free(mfi_aen_entry, M_MFIBUF);
}
}
free(cm->cm_data, M_MFIBUF);
wakeup(&sc->mfi_aen_cm);
sc->mfi_aen_cm = NULL;
mfi_release_command(cm);
/* set it up again so the driver can catch more events */
if (!aborted)
mfi_aen_setup(sc, seq);
}
#define MAX_EVENTS 15
static int
mfi_parse_entries(struct mfi_softc *sc, int start_seq, int stop_seq)
{
struct mfi_command *cm;
struct mfi_dcmd_frame *dcmd;
struct mfi_evt_list *el;
union mfi_evt class_locale;
int error, i, seq, size;
mtx_assert(&sc->mfi_io_lock, MA_OWNED);
class_locale.members.reserved = 0;
class_locale.members.locale = mfi_event_locale;
class_locale.members.evt_class = mfi_event_class;
size = sizeof(struct mfi_evt_list) + sizeof(struct mfi_evt_detail)
* (MAX_EVENTS - 1);
el = malloc(size, M_MFIBUF, M_NOWAIT | M_ZERO);
if (el == NULL)
return (ENOMEM);
for (seq = start_seq;;) {
if ((cm = mfi_dequeue_free(sc)) == NULL) {
free(el, M_MFIBUF);
return (EBUSY);
}
dcmd = &cm->cm_frame->dcmd;
bzero(dcmd->mbox, MFI_MBOX_SIZE);
dcmd->header.cmd = MFI_CMD_DCMD;
dcmd->header.timeout = 0;
dcmd->header.data_len = size;
dcmd->opcode = MFI_DCMD_CTRL_EVENT_GET;
((uint32_t *)&dcmd->mbox)[0] = seq;
((uint32_t *)&dcmd->mbox)[1] = class_locale.word;
cm->cm_sg = &dcmd->sgl;
cm->cm_total_frame_size = MFI_DCMD_FRAME_SIZE;
cm->cm_flags = MFI_CMD_DATAIN | MFI_CMD_POLLED;
cm->cm_data = el;
cm->cm_len = size;
if ((error = mfi_mapcmd(sc, cm)) != 0) {
device_printf(sc->mfi_dev,
"Failed to get controller entries\n");
mfi_release_command(cm);
break;
}
bus_dmamap_sync(sc->mfi_buffer_dmat, cm->cm_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->mfi_buffer_dmat, cm->cm_dmamap);
if (dcmd->header.cmd_status == MFI_STAT_NOT_FOUND) {
mfi_release_command(cm);
break;
}
if (dcmd->header.cmd_status != MFI_STAT_OK) {
device_printf(sc->mfi_dev,
"Error %d fetching controller entries\n",
dcmd->header.cmd_status);
mfi_release_command(cm);
error = EIO;
break;
}
mfi_release_command(cm);
for (i = 0; i < el->count; i++) {
/*
* If this event is newer than 'stop_seq' then
* break out of the loop. Note that the log
* is a circular buffer so we have to handle
* the case that our stop point is earlier in
* the buffer than our start point.
*/
if (el->event[i].seq >= stop_seq) {
if (start_seq <= stop_seq)
break;
else if (el->event[i].seq < start_seq)
break;
}
mfi_queue_evt(sc, &el->event[i]);
}
seq = el->event[el->count - 1].seq + 1;
}
free(el, M_MFIBUF);
return (error);
}
static int
mfi_add_ld(struct mfi_softc *sc, int id)
{
struct mfi_command *cm;
struct mfi_dcmd_frame *dcmd = NULL;
struct mfi_ld_info *ld_info = NULL;
struct mfi_disk_pending *ld_pend;
int error;
mtx_assert(&sc->mfi_io_lock, MA_OWNED);
ld_pend = malloc(sizeof(*ld_pend), M_MFIBUF, M_NOWAIT | M_ZERO);
if (ld_pend != NULL) {
ld_pend->ld_id = id;
TAILQ_INSERT_TAIL(&sc->mfi_ld_pend_tqh, ld_pend, ld_link);
}
error = mfi_dcmd_command(sc, &cm, MFI_DCMD_LD_GET_INFO,
(void **)&ld_info, sizeof(*ld_info));
if (error) {
device_printf(sc->mfi_dev,
"Failed to allocate for MFI_DCMD_LD_GET_INFO %d\n", error);
if (ld_info)
free(ld_info, M_MFIBUF);
return (error);
}
cm->cm_flags = MFI_CMD_DATAIN;
dcmd = &cm->cm_frame->dcmd;
dcmd->mbox[0] = id;
if (mfi_wait_command(sc, cm) != 0) {
device_printf(sc->mfi_dev,
"Failed to get logical drive: %d\n", id);
free(ld_info, M_MFIBUF);
return (0);
}
if (ld_info->ld_config.params.isSSCD != 1)
mfi_add_ld_complete(cm);
else {
mfi_release_command(cm);
if (ld_info) /* SSCD drives ld_info free here */
free(ld_info, M_MFIBUF);
}
return (0);
}
static void
mfi_add_ld_complete(struct mfi_command *cm)
{
struct mfi_frame_header *hdr;
struct mfi_ld_info *ld_info;
struct mfi_softc *sc;
device_t child;
sc = cm->cm_sc;
hdr = &cm->cm_frame->header;
ld_info = cm->cm_private;
if (sc->cm_map_abort || hdr->cmd_status != MFI_STAT_OK) {
free(ld_info, M_MFIBUF);
wakeup(&sc->mfi_map_sync_cm);
mfi_release_command(cm);
return;
}
wakeup(&sc->mfi_map_sync_cm);
mfi_release_command(cm);
mtx_unlock(&sc->mfi_io_lock);
mtx_lock(&Giant);
if ((child = device_add_child(sc->mfi_dev, "mfid", -1)) == NULL) {
device_printf(sc->mfi_dev, "Failed to add logical disk\n");
free(ld_info, M_MFIBUF);
mtx_unlock(&Giant);
mtx_lock(&sc->mfi_io_lock);
return;
}
device_set_ivars(child, ld_info);
device_set_desc(child, "MFI Logical Disk");
bus_generic_attach(sc->mfi_dev);
mtx_unlock(&Giant);
mtx_lock(&sc->mfi_io_lock);
}
static int mfi_add_sys_pd(struct mfi_softc *sc, int id)
{
struct mfi_command *cm;
struct mfi_dcmd_frame *dcmd = NULL;
struct mfi_pd_info *pd_info = NULL;
struct mfi_system_pending *syspd_pend;
int error;
mtx_assert(&sc->mfi_io_lock, MA_OWNED);
syspd_pend = malloc(sizeof(*syspd_pend), M_MFIBUF, M_NOWAIT | M_ZERO);
if (syspd_pend != NULL) {
syspd_pend->pd_id = id;
TAILQ_INSERT_TAIL(&sc->mfi_syspd_pend_tqh, syspd_pend, pd_link);
}
error = mfi_dcmd_command(sc, &cm, MFI_DCMD_PD_GET_INFO,
(void **)&pd_info, sizeof(*pd_info));
if (error) {
device_printf(sc->mfi_dev,
"Failed to allocated for MFI_DCMD_PD_GET_INFO %d\n",
error);
if (pd_info)
free(pd_info, M_MFIBUF);
return (error);
}
cm->cm_flags = MFI_CMD_DATAIN | MFI_CMD_POLLED;
dcmd = &cm->cm_frame->dcmd;
dcmd->mbox[0]=id;
dcmd->header.scsi_status = 0;
dcmd->header.pad0 = 0;
if ((error = mfi_mapcmd(sc, cm)) != 0) {
device_printf(sc->mfi_dev,
"Failed to get physical drive info %d\n", id);
free(pd_info, M_MFIBUF);
mfi_release_command(cm);
return (error);
}
bus_dmamap_sync(sc->mfi_buffer_dmat, cm->cm_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->mfi_buffer_dmat, cm->cm_dmamap);
mfi_add_sys_pd_complete(cm);
return (0);
}
static void
mfi_add_sys_pd_complete(struct mfi_command *cm)
{
struct mfi_frame_header *hdr;
struct mfi_pd_info *pd_info;
struct mfi_softc *sc;
device_t child;
sc = cm->cm_sc;
hdr = &cm->cm_frame->header;
pd_info = cm->cm_private;
if (hdr->cmd_status != MFI_STAT_OK) {
free(pd_info, M_MFIBUF);
mfi_release_command(cm);
return;
}
if (pd_info->fw_state != MFI_PD_STATE_SYSTEM) {
device_printf(sc->mfi_dev, "PD=%x is not SYSTEM PD\n",
pd_info->ref.v.device_id);
free(pd_info, M_MFIBUF);
mfi_release_command(cm);
return;
}
mfi_release_command(cm);
mtx_unlock(&sc->mfi_io_lock);
mtx_lock(&Giant);
if ((child = device_add_child(sc->mfi_dev, "mfisyspd", -1)) == NULL) {
device_printf(sc->mfi_dev, "Failed to add system pd\n");
free(pd_info, M_MFIBUF);
mtx_unlock(&Giant);
mtx_lock(&sc->mfi_io_lock);
return;
}
device_set_ivars(child, pd_info);
device_set_desc(child, "MFI System PD");
bus_generic_attach(sc->mfi_dev);
mtx_unlock(&Giant);
mtx_lock(&sc->mfi_io_lock);
}
static struct mfi_command *
mfi_bio_command(struct mfi_softc *sc)
{
struct bio *bio;
struct mfi_command *cm = NULL;
/*reserving two commands to avoid starvation for IOCTL*/
if (sc->mfi_qstat[MFIQ_FREE].q_length < 2) {
return (NULL);
}
if ((bio = mfi_dequeue_bio(sc)) == NULL) {
return (NULL);
}
if ((uintptr_t)bio->bio_driver2 == MFI_LD_IO) {
cm = mfi_build_ldio(sc, bio);
} else if ((uintptr_t) bio->bio_driver2 == MFI_SYS_PD_IO) {
cm = mfi_build_syspdio(sc, bio);
}
if (!cm)
mfi_enqueue_bio(sc, bio);
return cm;
}
/*
* mostly copied from cam/scsi/scsi_all.c:scsi_read_write
*/
int
mfi_build_cdb(int readop, uint8_t byte2, u_int64_t lba, u_int32_t block_count, uint8_t *cdb)
{
int cdb_len;
if (((lba & 0x1fffff) == lba)
&& ((block_count & 0xff) == block_count)
&& (byte2 == 0)) {
/* We can fit in a 6 byte cdb */
struct scsi_rw_6 *scsi_cmd;
scsi_cmd = (struct scsi_rw_6 *)cdb;
scsi_cmd->opcode = readop ? READ_6 : WRITE_6;
scsi_ulto3b(lba, scsi_cmd->addr);
scsi_cmd->length = block_count & 0xff;
scsi_cmd->control = 0;
cdb_len = sizeof(*scsi_cmd);
} else if (((block_count & 0xffff) == block_count) && ((lba & 0xffffffff) == lba)) {
/* Need a 10 byte CDB */
struct scsi_rw_10 *scsi_cmd;
scsi_cmd = (struct scsi_rw_10 *)cdb;
scsi_cmd->opcode = readop ? READ_10 : WRITE_10;
scsi_cmd->byte2 = byte2;
scsi_ulto4b(lba, scsi_cmd->addr);
scsi_cmd->reserved = 0;
scsi_ulto2b(block_count, scsi_cmd->length);
scsi_cmd->control = 0;
cdb_len = sizeof(*scsi_cmd);
} else if (((block_count & 0xffffffff) == block_count) &&
((lba & 0xffffffff) == lba)) {
/* Block count is too big for 10 byte CDB use a 12 byte CDB */
struct scsi_rw_12 *scsi_cmd;
scsi_cmd = (struct scsi_rw_12 *)cdb;
scsi_cmd->opcode = readop ? READ_12 : WRITE_12;
scsi_cmd->byte2 = byte2;
scsi_ulto4b(lba, scsi_cmd->addr);
scsi_cmd->reserved = 0;
scsi_ulto4b(block_count, scsi_cmd->length);
scsi_cmd->control = 0;
cdb_len = sizeof(*scsi_cmd);
} else {
/*
* 16 byte CDB. We'll only get here if the LBA is larger
* than 2^32
*/
struct scsi_rw_16 *scsi_cmd;
scsi_cmd = (struct scsi_rw_16 *)cdb;
scsi_cmd->opcode = readop ? READ_16 : WRITE_16;
scsi_cmd->byte2 = byte2;
scsi_u64to8b(lba, scsi_cmd->addr);
scsi_cmd->reserved = 0;
scsi_ulto4b(block_count, scsi_cmd->length);
scsi_cmd->control = 0;
cdb_len = sizeof(*scsi_cmd);
}
return cdb_len;
}
extern char *unmapped_buf;
static struct mfi_command *
mfi_build_syspdio(struct mfi_softc *sc, struct bio *bio)
{
struct mfi_command *cm;
struct mfi_pass_frame *pass;
uint32_t context = 0;
int flags = 0, blkcount = 0, readop;
uint8_t cdb_len;
mtx_assert(&sc->mfi_io_lock, MA_OWNED);
if ((cm = mfi_dequeue_free(sc)) == NULL)
return (NULL);
/* Zero out the MFI frame */
context = cm->cm_frame->header.context;
bzero(cm->cm_frame, sizeof(union mfi_frame));
cm->cm_frame->header.context = context;
pass = &cm->cm_frame->pass;
bzero(pass->cdb, 16);
pass->header.cmd = MFI_CMD_PD_SCSI_IO;
switch (bio->bio_cmd) {
case BIO_READ:
flags = MFI_CMD_DATAIN | MFI_CMD_BIO;
readop = 1;
break;
case BIO_WRITE:
flags = MFI_CMD_DATAOUT | MFI_CMD_BIO;
readop = 0;
break;
default:
/* TODO: what about BIO_DELETE??? */
biofinish(bio, NULL, EOPNOTSUPP);
mfi_enqueue_free(cm);
return (NULL);
}
/* Cheat with the sector length to avoid a non-constant division */
blkcount = howmany(bio->bio_bcount, MFI_SECTOR_LEN);
/* Fill the LBA and Transfer length in CDB */
cdb_len = mfi_build_cdb(readop, 0, bio->bio_pblkno, blkcount,
pass->cdb);
pass->header.target_id = (uintptr_t)bio->bio_driver1;
pass->header.lun_id = 0;
pass->header.timeout = 0;
pass->header.flags = 0;
pass->header.scsi_status = 0;
pass->header.sense_len = MFI_SENSE_LEN;
pass->header.data_len = bio->bio_bcount;
pass->header.cdb_len = cdb_len;
pass->sense_addr_lo = (uint32_t)cm->cm_sense_busaddr;
pass->sense_addr_hi = (uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32);
cm->cm_complete = mfi_bio_complete;
cm->cm_private = bio;
cm->cm_data = unmapped_buf;
cm->cm_len = bio->bio_bcount;
cm->cm_sg = &pass->sgl;
cm->cm_total_frame_size = MFI_PASS_FRAME_SIZE;
cm->cm_flags = flags;
return (cm);
}
static struct mfi_command *
mfi_build_ldio(struct mfi_softc *sc, struct bio *bio)
{
struct mfi_io_frame *io;
struct mfi_command *cm;
int flags;
uint32_t blkcount;
uint32_t context = 0;
mtx_assert(&sc->mfi_io_lock, MA_OWNED);
if ((cm = mfi_dequeue_free(sc)) == NULL)
return (NULL);
/* Zero out the MFI frame */
context = cm->cm_frame->header.context;
bzero(cm->cm_frame, sizeof(union mfi_frame));
cm->cm_frame->header.context = context;
io = &cm->cm_frame->io;
switch (bio->bio_cmd) {
case BIO_READ:
io->header.cmd = MFI_CMD_LD_READ;
flags = MFI_CMD_DATAIN | MFI_CMD_BIO;
break;
case BIO_WRITE:
io->header.cmd = MFI_CMD_LD_WRITE;
flags = MFI_CMD_DATAOUT | MFI_CMD_BIO;
break;
default:
/* TODO: what about BIO_DELETE??? */
biofinish(bio, NULL, EOPNOTSUPP);
mfi_enqueue_free(cm);
return (NULL);
}
/* Cheat with the sector length to avoid a non-constant division */
blkcount = howmany(bio->bio_bcount, MFI_SECTOR_LEN);
io->header.target_id = (uintptr_t)bio->bio_driver1;
io->header.timeout = 0;
io->header.flags = 0;
io->header.scsi_status = 0;
io->header.sense_len = MFI_SENSE_LEN;
io->header.data_len = blkcount;
io->sense_addr_lo = (uint32_t)cm->cm_sense_busaddr;
io->sense_addr_hi = (uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32);
io->lba_hi = (bio->bio_pblkno & 0xffffffff00000000) >> 32;
io->lba_lo = bio->bio_pblkno & 0xffffffff;
cm->cm_complete = mfi_bio_complete;
cm->cm_private = bio;
cm->cm_data = unmapped_buf;
cm->cm_len = bio->bio_bcount;
cm->cm_sg = &io->sgl;
cm->cm_total_frame_size = MFI_IO_FRAME_SIZE;
cm->cm_flags = flags;
return (cm);
}
static void
mfi_bio_complete(struct mfi_command *cm)
{
struct bio *bio;
struct mfi_frame_header *hdr;
struct mfi_softc *sc;
bio = cm->cm_private;
hdr = &cm->cm_frame->header;
sc = cm->cm_sc;
if ((hdr->cmd_status != MFI_STAT_OK) || (hdr->scsi_status != 0)) {
bio->bio_flags |= BIO_ERROR;
bio->bio_error = EIO;
device_printf(sc->mfi_dev, "I/O error, cmd=%p, status=%#x, "
"scsi_status=%#x\n", cm, hdr->cmd_status, hdr->scsi_status);
mfi_print_sense(cm->cm_sc, cm->cm_sense);
} else if (cm->cm_error != 0) {
bio->bio_flags |= BIO_ERROR;
bio->bio_error = cm->cm_error;
device_printf(sc->mfi_dev, "I/O error, cmd=%p, error=%#x\n",
cm, cm->cm_error);
}
mfi_release_command(cm);
mfi_disk_complete(bio);
}
void
mfi_startio(struct mfi_softc *sc)
{
struct mfi_command *cm;
struct ccb_hdr *ccbh;
for (;;) {
/* Don't bother if we're short on resources */
if (sc->mfi_flags & MFI_FLAGS_QFRZN)
break;
/* Try a command that has already been prepared */
cm = mfi_dequeue_ready(sc);
if (cm == NULL) {
if ((ccbh = TAILQ_FIRST(&sc->mfi_cam_ccbq)) != NULL)
cm = sc->mfi_cam_start(ccbh);
}
/* Nope, so look for work on the bioq */
if (cm == NULL)
cm = mfi_bio_command(sc);
/* No work available, so exit */
if (cm == NULL)
break;
/* Send the command to the controller */
if (mfi_mapcmd(sc, cm) != 0) {
device_printf(sc->mfi_dev, "Failed to startio\n");
mfi_requeue_ready(cm);
break;
}
}
}
int
mfi_mapcmd(struct mfi_softc *sc, struct mfi_command *cm)
{
int error, polled;
mtx_assert(&sc->mfi_io_lock, MA_OWNED);
if ((cm->cm_data != NULL) && (cm->cm_frame->header.cmd != MFI_CMD_STP )) {
polled = (cm->cm_flags & MFI_CMD_POLLED) ? BUS_DMA_NOWAIT : 0;
if (cm->cm_flags & MFI_CMD_CCB)
error = bus_dmamap_load_ccb(sc->mfi_buffer_dmat,
cm->cm_dmamap, cm->cm_data, mfi_data_cb, cm,
polled);
else if (cm->cm_flags & MFI_CMD_BIO)
error = bus_dmamap_load_bio(sc->mfi_buffer_dmat,
cm->cm_dmamap, cm->cm_private, mfi_data_cb, cm,
polled);
else
error = bus_dmamap_load(sc->mfi_buffer_dmat,
cm->cm_dmamap, cm->cm_data, cm->cm_len,
mfi_data_cb, cm, polled);
if (error == EINPROGRESS) {
sc->mfi_flags |= MFI_FLAGS_QFRZN;
return (0);
}
} else {
error = mfi_send_frame(sc, cm);
}
return (error);
}
static void
mfi_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
struct mfi_frame_header *hdr;
struct mfi_command *cm;
union mfi_sgl *sgl;
struct mfi_softc *sc;
int i, j, first, dir;
int sge_size, locked;
cm = (struct mfi_command *)arg;
sc = cm->cm_sc;
hdr = &cm->cm_frame->header;
sgl = cm->cm_sg;
/*
* We need to check if we have the lock as this is async
* callback so even though our caller mfi_mapcmd asserts
* it has the lock, there is no guarantee that hasn't been
* dropped if bus_dmamap_load returned prior to our
* completion.
*/
if ((locked = mtx_owned(&sc->mfi_io_lock)) == 0)
mtx_lock(&sc->mfi_io_lock);
if (error) {
printf("error %d in callback\n", error);
cm->cm_error = error;
mfi_complete(sc, cm);
goto out;
}
/* Use IEEE sgl only for IO's on a SKINNY controller
* For other commands on a SKINNY controller use either
* sg32 or sg64 based on the sizeof(bus_addr_t).
* Also calculate the total frame size based on the type
* of SGL used.
*/
if (((cm->cm_frame->header.cmd == MFI_CMD_PD_SCSI_IO) ||
(cm->cm_frame->header.cmd == MFI_CMD_LD_READ) ||
(cm->cm_frame->header.cmd == MFI_CMD_LD_WRITE)) &&
(sc->mfi_flags & MFI_FLAGS_SKINNY)) {
for (i = 0; i < nsegs; i++) {
sgl->sg_skinny[i].addr = segs[i].ds_addr;
sgl->sg_skinny[i].len = segs[i].ds_len;
sgl->sg_skinny[i].flag = 0;
}
hdr->flags |= MFI_FRAME_IEEE_SGL | MFI_FRAME_SGL64;
sge_size = sizeof(struct mfi_sg_skinny);
hdr->sg_count = nsegs;
} else {
j = 0;
if (cm->cm_frame->header.cmd == MFI_CMD_STP) {
first = cm->cm_stp_len;
if ((sc->mfi_flags & MFI_FLAGS_SG64) == 0) {
sgl->sg32[j].addr = segs[0].ds_addr;
sgl->sg32[j++].len = first;
} else {
sgl->sg64[j].addr = segs[0].ds_addr;
sgl->sg64[j++].len = first;
}
} else
first = 0;
if ((sc->mfi_flags & MFI_FLAGS_SG64) == 0) {
for (i = 0; i < nsegs; i++) {
sgl->sg32[j].addr = segs[i].ds_addr + first;
sgl->sg32[j++].len = segs[i].ds_len - first;
first = 0;
}
} else {
for (i = 0; i < nsegs; i++) {
sgl->sg64[j].addr = segs[i].ds_addr + first;
sgl->sg64[j++].len = segs[i].ds_len - first;
first = 0;
}
hdr->flags |= MFI_FRAME_SGL64;
}
hdr->sg_count = j;
sge_size = sc->mfi_sge_size;
}
dir = 0;
if (cm->cm_flags & MFI_CMD_DATAIN) {
dir |= BUS_DMASYNC_PREREAD;
hdr->flags |= MFI_FRAME_DIR_READ;
}
if (cm->cm_flags & MFI_CMD_DATAOUT) {
dir |= BUS_DMASYNC_PREWRITE;
hdr->flags |= MFI_FRAME_DIR_WRITE;
}
bus_dmamap_sync(sc->mfi_buffer_dmat, cm->cm_dmamap, dir);
cm->cm_flags |= MFI_CMD_MAPPED;
/*
* Instead of calculating the total number of frames in the
* compound frame, it's already assumed that there will be at
* least 1 frame, so don't compensate for the modulo of the
* following division.
*/
cm->cm_total_frame_size += (sc->mfi_sge_size * nsegs);
cm->cm_extra_frames = (cm->cm_total_frame_size - 1) / MFI_FRAME_SIZE;
if ((error = mfi_send_frame(sc, cm)) != 0) {
printf("error %d in callback from mfi_send_frame\n", error);
cm->cm_error = error;
mfi_complete(sc, cm);
goto out;
}
out:
/* leave the lock in the state we found it */
if (locked == 0)
mtx_unlock(&sc->mfi_io_lock);
return;
}
static int
mfi_send_frame(struct mfi_softc *sc, struct mfi_command *cm)
{
int error;
mtx_assert(&sc->mfi_io_lock, MA_OWNED);
if (sc->MFA_enabled)
error = mfi_tbolt_send_frame(sc, cm);
else
error = mfi_std_send_frame(sc, cm);
if (error != 0 && (cm->cm_flags & MFI_ON_MFIQ_BUSY) != 0)
mfi_remove_busy(cm);
return (error);
}
static int
mfi_std_send_frame(struct mfi_softc *sc, struct mfi_command *cm)
{
struct mfi_frame_header *hdr;
int tm = mfi_polled_cmd_timeout * 1000;
hdr = &cm->cm_frame->header;
if ((cm->cm_flags & MFI_CMD_POLLED) == 0) {
cm->cm_timestamp = time_uptime;
mfi_enqueue_busy(cm);
} else {
hdr->cmd_status = MFI_STAT_INVALID_STATUS;
hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
}
/*
* The bus address of the command is aligned on a 64 byte boundary,
* leaving the least 6 bits as zero. For whatever reason, the
* hardware wants the address shifted right by three, leaving just
* 3 zero bits. These three bits are then used as a prefetching
* hint for the hardware to predict how many frames need to be
* fetched across the bus. If a command has more than 8 frames
* then the 3 bits are set to 0x7 and the firmware uses other
* information in the command to determine the total amount to fetch.
* However, FreeBSD doesn't support I/O larger than 128K, so 8 frames
* is enough for both 32bit and 64bit systems.
*/
if (cm->cm_extra_frames > 7)
cm->cm_extra_frames = 7;
sc->mfi_issue_cmd(sc, cm->cm_frame_busaddr, cm->cm_extra_frames);
if ((cm->cm_flags & MFI_CMD_POLLED) == 0)
return (0);
/* This is a polled command, so busy-wait for it to complete. */
while (hdr->cmd_status == MFI_STAT_INVALID_STATUS) {
DELAY(1000);
tm -= 1;
if (tm <= 0)
break;
}
if (hdr->cmd_status == MFI_STAT_INVALID_STATUS) {
device_printf(sc->mfi_dev, "Frame %p timed out "
"command 0x%X\n", hdr, cm->cm_frame->dcmd.opcode);
return (ETIMEDOUT);
}
return (0);
}
void
mfi_complete(struct mfi_softc *sc, struct mfi_command *cm)
{
int dir;
mtx_assert(&sc->mfi_io_lock, MA_OWNED);
if ((cm->cm_flags & MFI_CMD_MAPPED) != 0) {
dir = 0;
if ((cm->cm_flags & MFI_CMD_DATAIN) ||
(cm->cm_frame->header.cmd == MFI_CMD_STP))
dir |= BUS_DMASYNC_POSTREAD;
if (cm->cm_flags & MFI_CMD_DATAOUT)
dir |= BUS_DMASYNC_POSTWRITE;
bus_dmamap_sync(sc->mfi_buffer_dmat, cm->cm_dmamap, dir);
bus_dmamap_unload(sc->mfi_buffer_dmat, cm->cm_dmamap);
cm->cm_flags &= ~MFI_CMD_MAPPED;
}
cm->cm_flags |= MFI_CMD_COMPLETED;
if (cm->cm_complete != NULL)
cm->cm_complete(cm);
else
wakeup(cm);
}
static int
mfi_abort(struct mfi_softc *sc, struct mfi_command **cm_abort)
{
struct mfi_command *cm;
struct mfi_abort_frame *abort;
int i = 0, error;
uint32_t context = 0;
mtx_lock(&sc->mfi_io_lock);
if ((cm = mfi_dequeue_free(sc)) == NULL) {
mtx_unlock(&sc->mfi_io_lock);
return (EBUSY);
}
/* Zero out the MFI frame */
context = cm->cm_frame->header.context;
bzero(cm->cm_frame, sizeof(union mfi_frame));
cm->cm_frame->header.context = context;
abort = &cm->cm_frame->abort;
abort->header.cmd = MFI_CMD_ABORT;
abort->header.flags = 0;
abort->header.scsi_status = 0;
abort->abort_context = (*cm_abort)->cm_frame->header.context;
abort->abort_mfi_addr_lo = (uint32_t)(*cm_abort)->cm_frame_busaddr;
abort->abort_mfi_addr_hi =
(uint32_t)((uint64_t)(*cm_abort)->cm_frame_busaddr >> 32);
cm->cm_data = NULL;
cm->cm_flags = MFI_CMD_POLLED;
if ((error = mfi_mapcmd(sc, cm)) != 0)
device_printf(sc->mfi_dev, "failed to abort command\n");
mfi_release_command(cm);
mtx_unlock(&sc->mfi_io_lock);
while (i < 5 && *cm_abort != NULL) {
tsleep(cm_abort, 0, "mfiabort",
5 * hz);
i++;
}
if (*cm_abort != NULL) {
/* Force a complete if command didn't abort */
mtx_lock(&sc->mfi_io_lock);
(*cm_abort)->cm_complete(*cm_abort);
mtx_unlock(&sc->mfi_io_lock);
}
return (error);
}
int
mfi_dump_blocks(struct mfi_softc *sc, int id, uint64_t lba, void *virt,
int len)
{
struct mfi_command *cm;
struct mfi_io_frame *io;
int error;
uint32_t context = 0;
if ((cm = mfi_dequeue_free(sc)) == NULL)
return (EBUSY);
/* Zero out the MFI frame */
context = cm->cm_frame->header.context;
bzero(cm->cm_frame, sizeof(union mfi_frame));
cm->cm_frame->header.context = context;
io = &cm->cm_frame->io;
io->header.cmd = MFI_CMD_LD_WRITE;
io->header.target_id = id;
io->header.timeout = 0;
io->header.flags = 0;
io->header.scsi_status = 0;
io->header.sense_len = MFI_SENSE_LEN;
io->header.data_len = howmany(len, MFI_SECTOR_LEN);
io->sense_addr_lo = (uint32_t)cm->cm_sense_busaddr;
io->sense_addr_hi = (uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32);
io->lba_hi = (lba & 0xffffffff00000000) >> 32;
io->lba_lo = lba & 0xffffffff;
cm->cm_data = virt;
cm->cm_len = len;
cm->cm_sg = &io->sgl;
cm->cm_total_frame_size = MFI_IO_FRAME_SIZE;
cm->cm_flags = MFI_CMD_POLLED | MFI_CMD_DATAOUT;
if ((error = mfi_mapcmd(sc, cm)) != 0)
device_printf(sc->mfi_dev, "failed dump blocks\n");
bus_dmamap_sync(sc->mfi_buffer_dmat, cm->cm_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->mfi_buffer_dmat, cm->cm_dmamap);
mfi_release_command(cm);
return (error);
}
int
mfi_dump_syspd_blocks(struct mfi_softc *sc, int id, uint64_t lba, void *virt,
int len)
{
struct mfi_command *cm;
struct mfi_pass_frame *pass;
int error, readop, cdb_len;
uint32_t blkcount;
if ((cm = mfi_dequeue_free(sc)) == NULL)
return (EBUSY);
pass = &cm->cm_frame->pass;
bzero(pass->cdb, 16);
pass->header.cmd = MFI_CMD_PD_SCSI_IO;
readop = 0;
blkcount = howmany(len, MFI_SECTOR_LEN);
cdb_len = mfi_build_cdb(readop, 0, lba, blkcount, pass->cdb);
pass->header.target_id = id;
pass->header.timeout = 0;
pass->header.flags = 0;
pass->header.scsi_status = 0;
pass->header.sense_len = MFI_SENSE_LEN;
pass->header.data_len = len;
pass->header.cdb_len = cdb_len;
pass->sense_addr_lo = (uint32_t)cm->cm_sense_busaddr;
pass->sense_addr_hi = (uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32);
cm->cm_data = virt;
cm->cm_len = len;
cm->cm_sg = &pass->sgl;
cm->cm_total_frame_size = MFI_PASS_FRAME_SIZE;
cm->cm_flags = MFI_CMD_POLLED | MFI_CMD_DATAOUT | MFI_CMD_SCSI;
if ((error = mfi_mapcmd(sc, cm)) != 0)
device_printf(sc->mfi_dev, "failed dump blocks\n");
bus_dmamap_sync(sc->mfi_buffer_dmat, cm->cm_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->mfi_buffer_dmat, cm->cm_dmamap);
mfi_release_command(cm);
return (error);
}
static int
mfi_open(struct cdev *dev, int flags, int fmt, struct thread *td)
{
struct mfi_softc *sc;
int error;
sc = dev->si_drv1;
mtx_lock(&sc->mfi_io_lock);
if (sc->mfi_detaching)
error = ENXIO;
else {
sc->mfi_flags |= MFI_FLAGS_OPEN;
error = 0;
}
mtx_unlock(&sc->mfi_io_lock);
return (error);
}
static int
mfi_close(struct cdev *dev, int flags, int fmt, struct thread *td)
{
struct mfi_softc *sc;
struct mfi_aen *mfi_aen_entry, *tmp;
sc = dev->si_drv1;
mtx_lock(&sc->mfi_io_lock);
sc->mfi_flags &= ~MFI_FLAGS_OPEN;
TAILQ_FOREACH_SAFE(mfi_aen_entry, &sc->mfi_aen_pids, aen_link, tmp) {
if (mfi_aen_entry->p == curproc) {
TAILQ_REMOVE(&sc->mfi_aen_pids, mfi_aen_entry,
aen_link);
free(mfi_aen_entry, M_MFIBUF);
}
}
mtx_unlock(&sc->mfi_io_lock);
return (0);
}
static int
mfi_config_lock(struct mfi_softc *sc, uint32_t opcode)
{
switch (opcode) {
case MFI_DCMD_LD_DELETE:
case MFI_DCMD_CFG_ADD:
case MFI_DCMD_CFG_CLEAR:
case MFI_DCMD_CFG_FOREIGN_IMPORT:
sx_xlock(&sc->mfi_config_lock);
return (1);
default:
return (0);
}
}
static void
mfi_config_unlock(struct mfi_softc *sc, int locked)
{
if (locked)
sx_xunlock(&sc->mfi_config_lock);
}
/*
* Perform pre-issue checks on commands from userland and possibly veto
* them.
*/
static int
mfi_check_command_pre(struct mfi_softc *sc, struct mfi_command *cm)
{
struct mfi_disk *ld, *ld2;
int error;
struct mfi_system_pd *syspd = NULL;
uint16_t syspd_id;
uint16_t *mbox;
mtx_assert(&sc->mfi_io_lock, MA_OWNED);
error = 0;
switch (cm->cm_frame->dcmd.opcode) {
case MFI_DCMD_LD_DELETE:
TAILQ_FOREACH(ld, &sc->mfi_ld_tqh, ld_link) {
if (ld->ld_id == cm->cm_frame->dcmd.mbox[0])
break;
}
if (ld == NULL)
error = ENOENT;
else
error = mfi_disk_disable(ld);
break;
case MFI_DCMD_CFG_CLEAR:
TAILQ_FOREACH(ld, &sc->mfi_ld_tqh, ld_link) {
error = mfi_disk_disable(ld);
if (error)
break;
}
if (error) {
TAILQ_FOREACH(ld2, &sc->mfi_ld_tqh, ld_link) {
if (ld2 == ld)
break;
mfi_disk_enable(ld2);
}
}
break;
case MFI_DCMD_PD_STATE_SET:
mbox = (uint16_t *) cm->cm_frame->dcmd.mbox;
syspd_id = mbox[0];
if (mbox[2] == MFI_PD_STATE_UNCONFIGURED_GOOD) {
TAILQ_FOREACH(syspd, &sc->mfi_syspd_tqh, pd_link) {
if (syspd->pd_id == syspd_id)
break;
}
}
else
break;
if (syspd)
error = mfi_syspd_disable(syspd);
break;
default:
break;
}
return (error);
}
/* Perform post-issue checks on commands from userland. */
static void
mfi_check_command_post(struct mfi_softc *sc, struct mfi_command *cm)
{
struct mfi_disk *ld, *ldn;
struct mfi_system_pd *syspd = NULL;
uint16_t syspd_id;
uint16_t *mbox;
switch (cm->cm_frame->dcmd.opcode) {
case MFI_DCMD_LD_DELETE:
TAILQ_FOREACH(ld, &sc->mfi_ld_tqh, ld_link) {
if (ld->ld_id == cm->cm_frame->dcmd.mbox[0])
break;
}
KASSERT(ld != NULL, ("volume dissappeared"));
if (cm->cm_frame->header.cmd_status == MFI_STAT_OK) {
mtx_unlock(&sc->mfi_io_lock);
mtx_lock(&Giant);
device_delete_child(sc->mfi_dev, ld->ld_dev);
mtx_unlock(&Giant);
mtx_lock(&sc->mfi_io_lock);
} else
mfi_disk_enable(ld);
break;
case MFI_DCMD_CFG_CLEAR:
if (cm->cm_frame->header.cmd_status == MFI_STAT_OK) {
mtx_unlock(&sc->mfi_io_lock);
mtx_lock(&Giant);
TAILQ_FOREACH_SAFE(ld, &sc->mfi_ld_tqh, ld_link, ldn) {
device_delete_child(sc->mfi_dev, ld->ld_dev);
}
mtx_unlock(&Giant);
mtx_lock(&sc->mfi_io_lock);
} else {
TAILQ_FOREACH(ld, &sc->mfi_ld_tqh, ld_link)
mfi_disk_enable(ld);
}
break;
case MFI_DCMD_CFG_ADD:
mfi_ldprobe(sc);
break;
case MFI_DCMD_CFG_FOREIGN_IMPORT:
mfi_ldprobe(sc);
break;
case MFI_DCMD_PD_STATE_SET:
mbox = (uint16_t *) cm->cm_frame->dcmd.mbox;
syspd_id = mbox[0];
if (mbox[2] == MFI_PD_STATE_UNCONFIGURED_GOOD) {
TAILQ_FOREACH(syspd, &sc->mfi_syspd_tqh,pd_link) {
if (syspd->pd_id == syspd_id)
break;
}
}
else
break;
/* If the transition fails then enable the syspd again */
if (syspd && cm->cm_frame->header.cmd_status != MFI_STAT_OK)
mfi_syspd_enable(syspd);
break;
}
}
static int
mfi_check_for_sscd(struct mfi_softc *sc, struct mfi_command *cm)
{
struct mfi_config_data *conf_data;
struct mfi_command *ld_cm = NULL;
struct mfi_ld_info *ld_info = NULL;
struct mfi_ld_config *ld;
char *p;
int error = 0;
conf_data = (struct mfi_config_data *)cm->cm_data;
if (cm->cm_frame->dcmd.opcode == MFI_DCMD_CFG_ADD) {
p = (char *)conf_data->array;
p += conf_data->array_size * conf_data->array_count;
ld = (struct mfi_ld_config *)p;
if (ld->params.isSSCD == 1)
error = 1;
} else if (cm->cm_frame->dcmd.opcode == MFI_DCMD_LD_DELETE) {
error = mfi_dcmd_command (sc, &ld_cm, MFI_DCMD_LD_GET_INFO,
(void **)&ld_info, sizeof(*ld_info));
if (error) {
device_printf(sc->mfi_dev, "Failed to allocate"
"MFI_DCMD_LD_GET_INFO %d", error);
if (ld_info)
free(ld_info, M_MFIBUF);
return 0;
}
ld_cm->cm_flags = MFI_CMD_DATAIN;
ld_cm->cm_frame->dcmd.mbox[0]= cm->cm_frame->dcmd.mbox[0];
ld_cm->cm_frame->header.target_id = cm->cm_frame->dcmd.mbox[0];
if (mfi_wait_command(sc, ld_cm) != 0) {
device_printf(sc->mfi_dev, "failed to get log drv\n");
mfi_release_command(ld_cm);
free(ld_info, M_MFIBUF);
return 0;
}
if (ld_cm->cm_frame->header.cmd_status != MFI_STAT_OK) {
free(ld_info, M_MFIBUF);
mfi_release_command(ld_cm);
return 0;
}
else
ld_info = (struct mfi_ld_info *)ld_cm->cm_private;
if (ld_info->ld_config.params.isSSCD == 1)
error = 1;
mfi_release_command(ld_cm);
free(ld_info, M_MFIBUF);
}
return error;
}
static int
mfi_stp_cmd(struct mfi_softc *sc, struct mfi_command *cm,caddr_t arg)
{
uint8_t i;
struct mfi_ioc_packet *ioc;
ioc = (struct mfi_ioc_packet *)arg;
int sge_size, error;
struct megasas_sge *kern_sge;
memset(sc->kbuff_arr, 0, sizeof(sc->kbuff_arr));
kern_sge =(struct megasas_sge *) ((uintptr_t)cm->cm_frame + ioc->mfi_sgl_off);
cm->cm_frame->header.sg_count = ioc->mfi_sge_count;
if (sizeof(bus_addr_t) == 8) {
cm->cm_frame->header.flags |= MFI_FRAME_SGL64;
cm->cm_extra_frames = 2;
sge_size = sizeof(struct mfi_sg64);
} else {
cm->cm_extra_frames = (cm->cm_total_frame_size - 1) / MFI_FRAME_SIZE;
sge_size = sizeof(struct mfi_sg32);
}
cm->cm_total_frame_size += (sge_size * ioc->mfi_sge_count);
for (i = 0; i < ioc->mfi_sge_count; i++) {
if (bus_dma_tag_create( sc->mfi_parent_dmat, /* parent */
1, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
ioc->mfi_sgl[i].iov_len,/* maxsize */
2, /* nsegments */
ioc->mfi_sgl[i].iov_len,/* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->mfi_kbuff_arr_dmat[i])) {
device_printf(sc->mfi_dev,
"Cannot allocate mfi_kbuff_arr_dmat tag\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->mfi_kbuff_arr_dmat[i],
(void **)&sc->kbuff_arr[i], BUS_DMA_NOWAIT,
&sc->mfi_kbuff_arr_dmamap[i])) {
device_printf(sc->mfi_dev,
"Cannot allocate mfi_kbuff_arr_dmamap memory\n");
return (ENOMEM);
}
bus_dmamap_load(sc->mfi_kbuff_arr_dmat[i],
sc->mfi_kbuff_arr_dmamap[i], sc->kbuff_arr[i],
ioc->mfi_sgl[i].iov_len, mfi_addr_cb,
&sc->mfi_kbuff_arr_busaddr[i], 0);
if (!sc->kbuff_arr[i]) {
device_printf(sc->mfi_dev,
"Could not allocate memory for kbuff_arr info\n");
return -1;
}
kern_sge[i].phys_addr = sc->mfi_kbuff_arr_busaddr[i];
kern_sge[i].length = ioc->mfi_sgl[i].iov_len;
if (sizeof(bus_addr_t) == 8) {
cm->cm_frame->stp.sgl.sg64[i].addr =
kern_sge[i].phys_addr;
cm->cm_frame->stp.sgl.sg64[i].len =
ioc->mfi_sgl[i].iov_len;
} else {
cm->cm_frame->stp.sgl.sg32[i].addr =
kern_sge[i].phys_addr;
cm->cm_frame->stp.sgl.sg32[i].len =
ioc->mfi_sgl[i].iov_len;
}
error = copyin(ioc->mfi_sgl[i].iov_base,
sc->kbuff_arr[i],
ioc->mfi_sgl[i].iov_len);
if (error != 0) {
device_printf(sc->mfi_dev, "Copy in failed\n");
return error;
}
}
cm->cm_flags |=MFI_CMD_MAPPED;
return 0;
}
static int
mfi_user_command(struct mfi_softc *sc, struct mfi_ioc_passthru *ioc)
{
struct mfi_command *cm;
struct mfi_dcmd_frame *dcmd;
void *ioc_buf = NULL;
uint32_t context;
int error = 0, locked;
if (ioc->buf_size > 0) {
if (ioc->buf_size > 1024 * 1024)
return (ENOMEM);
ioc_buf = malloc(ioc->buf_size, M_MFIBUF, M_WAITOK);
error = copyin(ioc->buf, ioc_buf, ioc->buf_size);
if (error) {
device_printf(sc->mfi_dev, "failed to copyin\n");
free(ioc_buf, M_MFIBUF);
return (error);
}
}
locked = mfi_config_lock(sc, ioc->ioc_frame.opcode);
mtx_lock(&sc->mfi_io_lock);
while ((cm = mfi_dequeue_free(sc)) == NULL)
msleep(mfi_user_command, &sc->mfi_io_lock, 0, "mfiioc", hz);
/* Save context for later */
context = cm->cm_frame->header.context;
dcmd = &cm->cm_frame->dcmd;
bcopy(&ioc->ioc_frame, dcmd, sizeof(struct mfi_dcmd_frame));
cm->cm_sg = &dcmd->sgl;
cm->cm_total_frame_size = MFI_DCMD_FRAME_SIZE;
cm->cm_data = ioc_buf;
cm->cm_len = ioc->buf_size;
/* restore context */
cm->cm_frame->header.context = context;
/* Cheat since we don't know if we're writing or reading */
cm->cm_flags = MFI_CMD_DATAIN | MFI_CMD_DATAOUT;
error = mfi_check_command_pre(sc, cm);
if (error)
goto out;
error = mfi_wait_command(sc, cm);
if (error) {
device_printf(sc->mfi_dev, "ioctl failed %d\n", error);
goto out;
}
bcopy(dcmd, &ioc->ioc_frame, sizeof(struct mfi_dcmd_frame));
mfi_check_command_post(sc, cm);
out:
mfi_release_command(cm);
mtx_unlock(&sc->mfi_io_lock);
mfi_config_unlock(sc, locked);
if (ioc->buf_size > 0)
error = copyout(ioc_buf, ioc->buf, ioc->buf_size);
if (ioc_buf)
free(ioc_buf, M_MFIBUF);
return (error);
}
#define PTRIN(p) ((void *)(uintptr_t)(p))
static int
mfi_ioctl(struct cdev *dev, u_long cmd, caddr_t arg, int flag, struct thread *td)
{
struct mfi_softc *sc;
union mfi_statrequest *ms;
struct mfi_ioc_packet *ioc;
#ifdef COMPAT_FREEBSD32
struct mfi_ioc_packet32 *ioc32;
#endif
struct mfi_ioc_aen *aen;
struct mfi_command *cm = NULL;
uint32_t context = 0;
union mfi_sense_ptr sense_ptr;
uint8_t *data = NULL, *temp, *addr, skip_pre_post = 0;
size_t len;
int i, res;
struct mfi_ioc_passthru *iop = (struct mfi_ioc_passthru *)arg;
#ifdef COMPAT_FREEBSD32
struct mfi_ioc_passthru32 *iop32 = (struct mfi_ioc_passthru32 *)arg;
struct mfi_ioc_passthru iop_swab;
#endif
int error, locked;
union mfi_sgl *sgl;
sc = dev->si_drv1;
error = 0;
if (sc->adpreset)
return EBUSY;
if (sc->hw_crit_error)
return EBUSY;
if (sc->issuepend_done == 0)
return EBUSY;
switch (cmd) {
case MFIIO_STATS:
ms = (union mfi_statrequest *)arg;
switch (ms->ms_item) {
case MFIQ_FREE:
case MFIQ_BIO:
case MFIQ_READY:
case MFIQ_BUSY:
bcopy(&sc->mfi_qstat[ms->ms_item], &ms->ms_qstat,
sizeof(struct mfi_qstat));
break;
default:
error = ENOIOCTL;
break;
}
break;
case MFIIO_QUERY_DISK:
{
struct mfi_query_disk *qd;
struct mfi_disk *ld;
qd = (struct mfi_query_disk *)arg;
mtx_lock(&sc->mfi_io_lock);
TAILQ_FOREACH(ld, &sc->mfi_ld_tqh, ld_link) {
if (ld->ld_id == qd->array_id)
break;
}
if (ld == NULL) {
qd->present = 0;
mtx_unlock(&sc->mfi_io_lock);
return (0);
}
qd->present = 1;
if (ld->ld_flags & MFI_DISK_FLAGS_OPEN)
qd->open = 1;
bzero(qd->devname, SPECNAMELEN + 1);
snprintf(qd->devname, SPECNAMELEN, "mfid%d", ld->ld_unit);
mtx_unlock(&sc->mfi_io_lock);
break;
}
case MFI_CMD:
#ifdef COMPAT_FREEBSD32
case MFI_CMD32:
#endif
{
devclass_t devclass;
ioc = (struct mfi_ioc_packet *)arg;
int adapter;
adapter = ioc->mfi_adapter_no;
if (device_get_unit(sc->mfi_dev) == 0 && adapter != 0) {
devclass = devclass_find("mfi");
sc = devclass_get_softc(devclass, adapter);
}
mtx_lock(&sc->mfi_io_lock);
if ((cm = mfi_dequeue_free(sc)) == NULL) {
mtx_unlock(&sc->mfi_io_lock);
return (EBUSY);
}
mtx_unlock(&sc->mfi_io_lock);
locked = 0;
/*
* save off original context since copying from user
* will clobber some data
*/
context = cm->cm_frame->header.context;
cm->cm_frame->header.context = cm->cm_index;
bcopy(ioc->mfi_frame.raw, cm->cm_frame,
2 * MEGAMFI_FRAME_SIZE);
cm->cm_total_frame_size = (sizeof(union mfi_sgl)
* ioc->mfi_sge_count) + ioc->mfi_sgl_off;
cm->cm_frame->header.scsi_status = 0;
cm->cm_frame->header.pad0 = 0;
if (ioc->mfi_sge_count) {
cm->cm_sg =
(union mfi_sgl *)&cm->cm_frame->bytes[ioc->mfi_sgl_off];
}
sgl = cm->cm_sg;
cm->cm_flags = 0;
if (cm->cm_frame->header.flags & MFI_FRAME_DATAIN)
cm->cm_flags |= MFI_CMD_DATAIN;
if (cm->cm_frame->header.flags & MFI_FRAME_DATAOUT)
cm->cm_flags |= MFI_CMD_DATAOUT;
/* Legacy app shim */
if (cm->cm_flags == 0)
cm->cm_flags |= MFI_CMD_DATAIN | MFI_CMD_DATAOUT;
cm->cm_len = cm->cm_frame->header.data_len;
if (cm->cm_frame->header.cmd == MFI_CMD_STP) {
#ifdef COMPAT_FREEBSD32
if (cmd == MFI_CMD) {
#endif
/* Native */
cm->cm_stp_len = ioc->mfi_sgl[0].iov_len;
#ifdef COMPAT_FREEBSD32
} else {
/* 32bit on 64bit */
ioc32 = (struct mfi_ioc_packet32 *)ioc;
cm->cm_stp_len = ioc32->mfi_sgl[0].iov_len;
}
#endif
cm->cm_len += cm->cm_stp_len;
}
if (cm->cm_len &&
(cm->cm_flags & (MFI_CMD_DATAIN | MFI_CMD_DATAOUT))) {
cm->cm_data = data = malloc(cm->cm_len, M_MFIBUF,
M_WAITOK | M_ZERO);
} else {
cm->cm_data = 0;
}
/* restore header context */
cm->cm_frame->header.context = context;
if (cm->cm_frame->header.cmd == MFI_CMD_STP) {
res = mfi_stp_cmd(sc, cm, arg);
if (res != 0)
goto out;
} else {
temp = data;
if ((cm->cm_flags & MFI_CMD_DATAOUT) ||
(cm->cm_frame->header.cmd == MFI_CMD_STP)) {
for (i = 0; i < ioc->mfi_sge_count; i++) {
#ifdef COMPAT_FREEBSD32
if (cmd == MFI_CMD) {
#endif
/* Native */
addr = ioc->mfi_sgl[i].iov_base;
len = ioc->mfi_sgl[i].iov_len;
#ifdef COMPAT_FREEBSD32
} else {
/* 32bit on 64bit */
ioc32 = (struct mfi_ioc_packet32 *)ioc;
addr = PTRIN(ioc32->mfi_sgl[i].iov_base);
len = ioc32->mfi_sgl[i].iov_len;
}
#endif
error = copyin(addr, temp, len);
if (error != 0) {
device_printf(sc->mfi_dev,
"Copy in failed\n");
goto out;
}
temp = &temp[len];
}
}
}
if (cm->cm_frame->header.cmd == MFI_CMD_DCMD)
locked = mfi_config_lock(sc,
cm->cm_frame->dcmd.opcode);
if (cm->cm_frame->header.cmd == MFI_CMD_PD_SCSI_IO) {
cm->cm_frame->pass.sense_addr_lo =
(uint32_t)cm->cm_sense_busaddr;
cm->cm_frame->pass.sense_addr_hi =
(uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32);
}
mtx_lock(&sc->mfi_io_lock);
skip_pre_post = mfi_check_for_sscd (sc, cm);
if (!skip_pre_post) {
error = mfi_check_command_pre(sc, cm);
if (error) {
mtx_unlock(&sc->mfi_io_lock);
goto out;
}
}
if ((error = mfi_wait_command(sc, cm)) != 0) {
device_printf(sc->mfi_dev,
"Controller polled failed\n");
mtx_unlock(&sc->mfi_io_lock);
goto out;
}
if (!skip_pre_post) {
mfi_check_command_post(sc, cm);
}
mtx_unlock(&sc->mfi_io_lock);
if (cm->cm_frame->header.cmd != MFI_CMD_STP) {
temp = data;
if ((cm->cm_flags & MFI_CMD_DATAIN) ||
(cm->cm_frame->header.cmd == MFI_CMD_STP)) {
for (i = 0; i < ioc->mfi_sge_count; i++) {
#ifdef COMPAT_FREEBSD32
if (cmd == MFI_CMD) {
#endif
/* Native */
addr = ioc->mfi_sgl[i].iov_base;
len = ioc->mfi_sgl[i].iov_len;
#ifdef COMPAT_FREEBSD32
} else {
/* 32bit on 64bit */
ioc32 = (struct mfi_ioc_packet32 *)ioc;
addr = PTRIN(ioc32->mfi_sgl[i].iov_base);
len = ioc32->mfi_sgl[i].iov_len;
}
#endif
error = copyout(temp, addr, len);
if (error != 0) {
device_printf(sc->mfi_dev,
"Copy out failed\n");
goto out;
}
temp = &temp[len];
}
}
}
if (ioc->mfi_sense_len) {
/* get user-space sense ptr then copy out sense */
bcopy(&ioc->mfi_frame.raw[ioc->mfi_sense_off],
&sense_ptr.sense_ptr_data[0],
sizeof(sense_ptr.sense_ptr_data));
#ifdef COMPAT_FREEBSD32
if (cmd != MFI_CMD) {
/*
* not 64bit native so zero out any address
* over 32bit */
sense_ptr.addr.high = 0;
}
#endif
error = copyout(cm->cm_sense, sense_ptr.user_space,
ioc->mfi_sense_len);
if (error != 0) {
device_printf(sc->mfi_dev,
"Copy out failed\n");
goto out;
}
}
ioc->mfi_frame.hdr.cmd_status = cm->cm_frame->header.cmd_status;
out:
mfi_config_unlock(sc, locked);
if (data)
free(data, M_MFIBUF);
if (cm->cm_frame->header.cmd == MFI_CMD_STP) {
for (i = 0; i < 2; i++) {
if (sc->kbuff_arr[i]) {
if (sc->mfi_kbuff_arr_busaddr[i] != 0)
bus_dmamap_unload(
sc->mfi_kbuff_arr_dmat[i],
sc->mfi_kbuff_arr_dmamap[i]
);
if (sc->kbuff_arr[i] != NULL)
bus_dmamem_free(
sc->mfi_kbuff_arr_dmat[i],
sc->kbuff_arr[i],
sc->mfi_kbuff_arr_dmamap[i]
);
if (sc->mfi_kbuff_arr_dmat[i] != NULL)
bus_dma_tag_destroy(
sc->mfi_kbuff_arr_dmat[i]);
}
}
}
if (cm) {
mtx_lock(&sc->mfi_io_lock);
mfi_release_command(cm);
mtx_unlock(&sc->mfi_io_lock);
}
break;
}
case MFI_SET_AEN:
aen = (struct mfi_ioc_aen *)arg;
mtx_lock(&sc->mfi_io_lock);
error = mfi_aen_register(sc, aen->aen_seq_num,
aen->aen_class_locale);
mtx_unlock(&sc->mfi_io_lock);
break;
case MFI_LINUX_CMD_2: /* Firmware Linux ioctl shim */
{
devclass_t devclass;
struct mfi_linux_ioc_packet l_ioc;
int adapter;
devclass = devclass_find("mfi");
if (devclass == NULL)
return (ENOENT);
error = copyin(arg, &l_ioc, sizeof(l_ioc));
if (error)
return (error);
adapter = l_ioc.lioc_adapter_no;
sc = devclass_get_softc(devclass, adapter);
if (sc == NULL)
return (ENOENT);
return (mfi_linux_ioctl_int(sc->mfi_cdev,
cmd, arg, flag, td));
break;
}
case MFI_LINUX_SET_AEN_2: /* AEN Linux ioctl shim */
{
devclass_t devclass;
struct mfi_linux_ioc_aen l_aen;
int adapter;
devclass = devclass_find("mfi");
if (devclass == NULL)
return (ENOENT);
error = copyin(arg, &l_aen, sizeof(l_aen));
if (error)
return (error);
adapter = l_aen.laen_adapter_no;
sc = devclass_get_softc(devclass, adapter);
if (sc == NULL)
return (ENOENT);
return (mfi_linux_ioctl_int(sc->mfi_cdev,
cmd, arg, flag, td));
break;
}
#ifdef COMPAT_FREEBSD32
case MFIIO_PASSTHRU32:
if (!SV_CURPROC_FLAG(SV_ILP32)) {
error = ENOTTY;
break;
}
iop_swab.ioc_frame = iop32->ioc_frame;
iop_swab.buf_size = iop32->buf_size;
iop_swab.buf = PTRIN(iop32->buf);
iop = &iop_swab;
/* FALLTHROUGH */
#endif
case MFIIO_PASSTHRU:
error = mfi_user_command(sc, iop);
#ifdef COMPAT_FREEBSD32
if (cmd == MFIIO_PASSTHRU32)
iop32->ioc_frame = iop_swab.ioc_frame;
#endif
break;
default:
device_printf(sc->mfi_dev, "IOCTL 0x%lx not handled\n", cmd);
error = ENOTTY;
break;
}
return (error);
}
static int
mfi_linux_ioctl_int(struct cdev *dev, u_long cmd, caddr_t arg, int flag, struct thread *td)
{
struct mfi_softc *sc;
struct mfi_linux_ioc_packet l_ioc;
struct mfi_linux_ioc_aen l_aen;
struct mfi_command *cm = NULL;
struct mfi_aen *mfi_aen_entry;
union mfi_sense_ptr sense_ptr;
uint32_t context = 0;
uint8_t *data = NULL, *temp;
int i;
int error, locked;
sc = dev->si_drv1;
error = 0;
switch (cmd) {
case MFI_LINUX_CMD_2: /* Firmware Linux ioctl shim */
error = copyin(arg, &l_ioc, sizeof(l_ioc));
if (error != 0)
return (error);
if (l_ioc.lioc_sge_count > MAX_LINUX_IOCTL_SGE) {
return (EINVAL);
}
mtx_lock(&sc->mfi_io_lock);
if ((cm = mfi_dequeue_free(sc)) == NULL) {
mtx_unlock(&sc->mfi_io_lock);
return (EBUSY);
}
mtx_unlock(&sc->mfi_io_lock);
locked = 0;
/*
* save off original context since copying from user
* will clobber some data
*/
context = cm->cm_frame->header.context;
bcopy(l_ioc.lioc_frame.raw, cm->cm_frame,
2 * MFI_DCMD_FRAME_SIZE); /* this isn't quite right */
cm->cm_total_frame_size = (sizeof(union mfi_sgl)
* l_ioc.lioc_sge_count) + l_ioc.lioc_sgl_off;
cm->cm_frame->header.scsi_status = 0;
cm->cm_frame->header.pad0 = 0;
if (l_ioc.lioc_sge_count)
cm->cm_sg =
(union mfi_sgl *)&cm->cm_frame->bytes[l_ioc.lioc_sgl_off];
cm->cm_flags = 0;
if (cm->cm_frame->header.flags & MFI_FRAME_DATAIN)
cm->cm_flags |= MFI_CMD_DATAIN;
if (cm->cm_frame->header.flags & MFI_FRAME_DATAOUT)
cm->cm_flags |= MFI_CMD_DATAOUT;
cm->cm_len = cm->cm_frame->header.data_len;
if (cm->cm_len &&
(cm->cm_flags & (MFI_CMD_DATAIN | MFI_CMD_DATAOUT))) {
cm->cm_data = data = malloc(cm->cm_len, M_MFIBUF,
M_WAITOK | M_ZERO);
} else {
cm->cm_data = 0;
}
/* restore header context */
cm->cm_frame->header.context = context;
temp = data;
if (cm->cm_flags & MFI_CMD_DATAOUT) {
for (i = 0; i < l_ioc.lioc_sge_count; i++) {
error = copyin(PTRIN(l_ioc.lioc_sgl[i].iov_base),
temp,
l_ioc.lioc_sgl[i].iov_len);
if (error != 0) {
device_printf(sc->mfi_dev,
"Copy in failed\n");
goto out;
}
temp = &temp[l_ioc.lioc_sgl[i].iov_len];
}
}
if (cm->cm_frame->header.cmd == MFI_CMD_DCMD)
locked = mfi_config_lock(sc, cm->cm_frame->dcmd.opcode);
if (cm->cm_frame->header.cmd == MFI_CMD_PD_SCSI_IO) {
cm->cm_frame->pass.sense_addr_lo =
(uint32_t)cm->cm_sense_busaddr;
cm->cm_frame->pass.sense_addr_hi =
(uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32);
}
mtx_lock(&sc->mfi_io_lock);
error = mfi_check_command_pre(sc, cm);
if (error) {
mtx_unlock(&sc->mfi_io_lock);
goto out;
}
if ((error = mfi_wait_command(sc, cm)) != 0) {
device_printf(sc->mfi_dev,
"Controller polled failed\n");
mtx_unlock(&sc->mfi_io_lock);
goto out;
}
mfi_check_command_post(sc, cm);
mtx_unlock(&sc->mfi_io_lock);
temp = data;
if (cm->cm_flags & MFI_CMD_DATAIN) {
for (i = 0; i < l_ioc.lioc_sge_count; i++) {
error = copyout(temp,
PTRIN(l_ioc.lioc_sgl[i].iov_base),
l_ioc.lioc_sgl[i].iov_len);
if (error != 0) {
device_printf(sc->mfi_dev,
"Copy out failed\n");
goto out;
}
temp = &temp[l_ioc.lioc_sgl[i].iov_len];
}
}
if (l_ioc.lioc_sense_len) {
/* get user-space sense ptr then copy out sense */
bcopy(&((struct mfi_linux_ioc_packet*)arg)
->lioc_frame.raw[l_ioc.lioc_sense_off],
&sense_ptr.sense_ptr_data[0],
sizeof(sense_ptr.sense_ptr_data));
#ifdef __amd64__
/*
* only 32bit Linux support so zero out any
* address over 32bit
*/
sense_ptr.addr.high = 0;
#endif
error = copyout(cm->cm_sense, sense_ptr.user_space,
l_ioc.lioc_sense_len);
if (error != 0) {
device_printf(sc->mfi_dev,
"Copy out failed\n");
goto out;
}
}
error = copyout(&cm->cm_frame->header.cmd_status,
&((struct mfi_linux_ioc_packet*)arg)
->lioc_frame.hdr.cmd_status,
1);
if (error != 0) {
device_printf(sc->mfi_dev,
"Copy out failed\n");
goto out;
}
out:
mfi_config_unlock(sc, locked);
if (data)
free(data, M_MFIBUF);
if (cm) {
mtx_lock(&sc->mfi_io_lock);
mfi_release_command(cm);
mtx_unlock(&sc->mfi_io_lock);
}
return (error);
case MFI_LINUX_SET_AEN_2: /* AEN Linux ioctl shim */
error = copyin(arg, &l_aen, sizeof(l_aen));
if (error != 0)
return (error);
printf("AEN IMPLEMENTED for pid %d\n", curproc->p_pid);
mfi_aen_entry = malloc(sizeof(struct mfi_aen), M_MFIBUF,
M_WAITOK);
mtx_lock(&sc->mfi_io_lock);
if (mfi_aen_entry != NULL) {
mfi_aen_entry->p = curproc;
TAILQ_INSERT_TAIL(&sc->mfi_aen_pids, mfi_aen_entry,
aen_link);
}
error = mfi_aen_register(sc, l_aen.laen_seq_num,
l_aen.laen_class_locale);
if (error != 0) {
TAILQ_REMOVE(&sc->mfi_aen_pids, mfi_aen_entry,
aen_link);
free(mfi_aen_entry, M_MFIBUF);
}
mtx_unlock(&sc->mfi_io_lock);
return (error);
default:
device_printf(sc->mfi_dev, "IOCTL 0x%lx not handled\n", cmd);
error = ENOENT;
break;
}
return (error);
}
static int
mfi_poll(struct cdev *dev, int poll_events, struct thread *td)
{
struct mfi_softc *sc;
int revents = 0;
sc = dev->si_drv1;
if (poll_events & (POLLIN | POLLRDNORM)) {
if (sc->mfi_aen_triggered != 0) {
revents |= poll_events & (POLLIN | POLLRDNORM);
sc->mfi_aen_triggered = 0;
}
if (sc->mfi_aen_triggered == 0 && sc->mfi_aen_cm == NULL) {
revents |= POLLERR;
}
}
if (revents == 0) {
if (poll_events & (POLLIN | POLLRDNORM)) {
sc->mfi_poll_waiting = 1;
selrecord(td, &sc->mfi_select);
}
}
return revents;
}
static void
mfi_dump_all(void)
{
struct mfi_softc *sc;
struct mfi_command *cm;
devclass_t dc;
time_t deadline;
int timedout;
int i;
dc = devclass_find("mfi");
if (dc == NULL) {
printf("No mfi dev class\n");
return;
}
for (i = 0; ; i++) {
sc = devclass_get_softc(dc, i);
if (sc == NULL)
break;
device_printf(sc->mfi_dev, "Dumping\n\n");
timedout = 0;
deadline = time_uptime - mfi_cmd_timeout;
mtx_lock(&sc->mfi_io_lock);
TAILQ_FOREACH(cm, &sc->mfi_busy, cm_link) {
if (cm->cm_timestamp <= deadline) {
device_printf(sc->mfi_dev,
"COMMAND %p TIMEOUT AFTER %d SECONDS\n",
cm, (int)(time_uptime - cm->cm_timestamp));
MFI_PRINT_CMD(cm);
timedout++;
}
}
#if 0
if (timedout)
MFI_DUMP_CMDS(sc);
#endif
mtx_unlock(&sc->mfi_io_lock);
}
return;
}
static void
mfi_timeout(void *data)
{
struct mfi_softc *sc = (struct mfi_softc *)data;
struct mfi_command *cm, *tmp;
time_t deadline;
int timedout = 0;
deadline = time_uptime - mfi_cmd_timeout;
if (sc->adpreset == 0) {
if (!mfi_tbolt_reset(sc)) {
callout_reset(&sc->mfi_watchdog_callout,
mfi_cmd_timeout * hz, mfi_timeout, sc);
return;
}
}
mtx_lock(&sc->mfi_io_lock);
TAILQ_FOREACH_SAFE(cm, &sc->mfi_busy, cm_link, tmp) {
if (sc->mfi_aen_cm == cm || sc->mfi_map_sync_cm == cm)
continue;
if (cm->cm_timestamp <= deadline) {
if (sc->adpreset != 0 && sc->issuepend_done == 0) {
cm->cm_timestamp = time_uptime;
} else {
device_printf(sc->mfi_dev,
"COMMAND %p TIMEOUT AFTER %d SECONDS\n",
cm, (int)(time_uptime - cm->cm_timestamp)
);
MFI_PRINT_CMD(cm);
MFI_VALIDATE_CMD(sc, cm);
/*
* While commands can get stuck forever we do
* not fail them as there is no way to tell if
* the controller has actually processed them
* or not.
*
* In addition its very likely that force
* failing a command here would cause a panic
* e.g. in UFS.
*/
timedout++;
}
}
}
#if 0
if (timedout)
MFI_DUMP_CMDS(sc);
#endif
mtx_unlock(&sc->mfi_io_lock);
callout_reset(&sc->mfi_watchdog_callout, mfi_cmd_timeout * hz,
mfi_timeout, sc);
if (0)
mfi_dump_all();
return;
}