freebsd-nq/sys/dev/advansys/advansys.c
Scott Long 2b83592fdc Remove Giant from CAM. Drivers (SIMs) now register a mutex that CAM will
use to synchornize and protect all data objects that are used for that
SIM.  Drivers that are not yet MPSAFE register Giant and operate as
usual.  RIght now, no drivers are MPSAFE, though a few will be changed
in the coming week as this work settles down.

The driver API has changed, so all CAM drivers will need to be recompiled.
The userland API has not changed, so tools like camcontrol do not need to
be recompiled.
2007-04-15 08:49:19 +00:00

1448 lines
40 KiB
C

/*-
* Generic driver for the Advanced Systems Inc. SCSI controllers
* Product specific probe and attach routines can be found in:
*
* i386/isa/adv_isa.c ABP5140, ABP542, ABP5150, ABP842, ABP852
* i386/eisa/adv_eisa.c ABP742, ABP752
* pci/adv_pci.c ABP920, ABP930, ABP930U, ABP930UA, ABP940, ABP940U,
* ABP940UA, ABP950, ABP960, ABP960U, ABP960UA,
* ABP970, ABP970U
*
* Copyright (c) 1996-2000 Justin Gibbs.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*-
* Ported from:
* advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
*
* Copyright (c) 1995-1997 Advanced System Products, Inc.
* All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that redistributions of source
* code retain the above copyright notice and this comment without
* modification.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
#include <cam/cam_debug.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_message.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <dev/advansys/advansys.h>
static void adv_action(struct cam_sim *sim, union ccb *ccb);
static void adv_execute_ccb(void *arg, bus_dma_segment_t *dm_segs,
int nsegments, int error);
static void adv_poll(struct cam_sim *sim);
static void adv_run_doneq(struct adv_softc *adv);
static struct adv_ccb_info *
adv_alloc_ccb_info(struct adv_softc *adv);
static void adv_destroy_ccb_info(struct adv_softc *adv,
struct adv_ccb_info *cinfo);
static __inline struct adv_ccb_info *
adv_get_ccb_info(struct adv_softc *adv);
static __inline void adv_free_ccb_info(struct adv_softc *adv,
struct adv_ccb_info *cinfo);
static __inline void adv_set_state(struct adv_softc *adv, adv_state state);
static __inline void adv_clear_state(struct adv_softc *adv, union ccb* ccb);
static void adv_clear_state_really(struct adv_softc *adv, union ccb* ccb);
static __inline struct adv_ccb_info *
adv_get_ccb_info(struct adv_softc *adv)
{
struct adv_ccb_info *cinfo;
int opri;
opri = splcam();
if ((cinfo = SLIST_FIRST(&adv->free_ccb_infos)) != NULL) {
SLIST_REMOVE_HEAD(&adv->free_ccb_infos, links);
} else {
cinfo = adv_alloc_ccb_info(adv);
}
splx(opri);
return (cinfo);
}
static __inline void
adv_free_ccb_info(struct adv_softc *adv, struct adv_ccb_info *cinfo)
{
int opri;
opri = splcam();
cinfo->state = ACCB_FREE;
SLIST_INSERT_HEAD(&adv->free_ccb_infos, cinfo, links);
splx(opri);
}
static __inline void
adv_set_state(struct adv_softc *adv, adv_state state)
{
if (adv->state == 0)
xpt_freeze_simq(adv->sim, /*count*/1);
adv->state |= state;
}
static __inline void
adv_clear_state(struct adv_softc *adv, union ccb* ccb)
{
if (adv->state != 0)
adv_clear_state_really(adv, ccb);
}
static void
adv_clear_state_really(struct adv_softc *adv, union ccb* ccb)
{
if ((adv->state & ADV_BUSDMA_BLOCK_CLEARED) != 0)
adv->state &= ~(ADV_BUSDMA_BLOCK_CLEARED|ADV_BUSDMA_BLOCK);
if ((adv->state & ADV_RESOURCE_SHORTAGE) != 0) {
int openings;
openings = adv->max_openings - adv->cur_active - ADV_MIN_FREE_Q;
if (openings >= adv->openings_needed) {
adv->state &= ~ADV_RESOURCE_SHORTAGE;
adv->openings_needed = 0;
}
}
if ((adv->state & ADV_IN_TIMEOUT) != 0) {
struct adv_ccb_info *cinfo;
cinfo = (struct adv_ccb_info *)ccb->ccb_h.ccb_cinfo_ptr;
if ((cinfo->state & ACCB_RECOVERY_CCB) != 0) {
struct ccb_hdr *ccb_h;
/*
* We now traverse our list of pending CCBs
* and reinstate their timeouts.
*/
ccb_h = LIST_FIRST(&adv->pending_ccbs);
while (ccb_h != NULL) {
ccb_h->timeout_ch =
timeout(adv_timeout, (caddr_t)ccb_h,
(ccb_h->timeout * hz) / 1000);
ccb_h = LIST_NEXT(ccb_h, sim_links.le);
}
adv->state &= ~ADV_IN_TIMEOUT;
printf("%s: No longer in timeout\n", adv_name(adv));
}
}
if (adv->state == 0)
ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
}
void
adv_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
bus_addr_t* physaddr;
physaddr = (bus_addr_t*)arg;
*physaddr = segs->ds_addr;
}
char *
adv_name(struct adv_softc *adv)
{
static char name[10];
snprintf(name, sizeof(name), "adv%d", adv->unit);
return (name);
}
static void
adv_action(struct cam_sim *sim, union ccb *ccb)
{
struct adv_softc *adv;
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("adv_action\n"));
adv = (struct adv_softc *)cam_sim_softc(sim);
switch (ccb->ccb_h.func_code) {
/* Common cases first */
case XPT_SCSI_IO: /* Execute the requested I/O operation */
{
struct ccb_hdr *ccb_h;
struct ccb_scsiio *csio;
struct adv_ccb_info *cinfo;
ccb_h = &ccb->ccb_h;
csio = &ccb->csio;
cinfo = adv_get_ccb_info(adv);
if (cinfo == NULL)
panic("XXX Handle CCB info error!!!");
ccb_h->ccb_cinfo_ptr = cinfo;
cinfo->ccb = ccb;
/* Only use S/G if there is a transfer */
if ((ccb_h->flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
if ((ccb_h->flags & CAM_SCATTER_VALID) == 0) {
/*
* We've been given a pointer
* to a single buffer
*/
if ((ccb_h->flags & CAM_DATA_PHYS) == 0) {
int s;
int error;
s = splsoftvm();
error =
bus_dmamap_load(adv->buffer_dmat,
cinfo->dmamap,
csio->data_ptr,
csio->dxfer_len,
adv_execute_ccb,
csio, /*flags*/0);
if (error == EINPROGRESS) {
/*
* So as to maintain ordering,
* freeze the controller queue
* until our mapping is
* returned.
*/
adv_set_state(adv,
ADV_BUSDMA_BLOCK);
}
splx(s);
} else {
struct bus_dma_segment seg;
/* Pointer to physical buffer */
seg.ds_addr =
(bus_addr_t)csio->data_ptr;
seg.ds_len = csio->dxfer_len;
adv_execute_ccb(csio, &seg, 1, 0);
}
} else {
struct bus_dma_segment *segs;
if ((ccb_h->flags & CAM_DATA_PHYS) != 0)
panic("adv_setup_data - Physical "
"segment pointers unsupported");
if ((ccb_h->flags & CAM_SG_LIST_PHYS) == 0)
panic("adv_setup_data - Virtual "
"segment addresses unsupported");
/* Just use the segments provided */
segs = (struct bus_dma_segment *)csio->data_ptr;
adv_execute_ccb(ccb, segs, csio->sglist_cnt, 0);
}
} else {
adv_execute_ccb(ccb, NULL, 0, 0);
}
break;
}
case XPT_RESET_DEV: /* Bus Device Reset the specified SCSI device */
case XPT_TARGET_IO: /* Execute target I/O request */
case XPT_ACCEPT_TARGET_IO: /* Accept Host Target Mode CDB */
case XPT_CONT_TARGET_IO: /* Continue Host Target I/O Connection*/
case XPT_EN_LUN: /* Enable LUN as a target */
case XPT_ABORT: /* Abort the specified CCB */
/* XXX Implement */
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
#define IS_CURRENT_SETTINGS(c) (c->type == CTS_TYPE_CURRENT_SETTINGS)
#define IS_USER_SETTINGS(c) (c->type == CTS_TYPE_USER_SETTINGS)
case XPT_SET_TRAN_SETTINGS:
{
struct ccb_trans_settings_scsi *scsi;
struct ccb_trans_settings_spi *spi;
struct ccb_trans_settings *cts;
target_bit_vector targ_mask;
struct adv_transinfo *tconf;
u_int update_type;
int s;
cts = &ccb->cts;
targ_mask = ADV_TID_TO_TARGET_MASK(cts->ccb_h.target_id);
update_type = 0;
/*
* The user must specify which type of settings he wishes
* to change.
*/
if (IS_CURRENT_SETTINGS(cts) && !IS_USER_SETTINGS(cts)) {
tconf = &adv->tinfo[cts->ccb_h.target_id].current;
update_type |= ADV_TRANS_GOAL;
} else if (IS_USER_SETTINGS(cts) && !IS_CURRENT_SETTINGS(cts)) {
tconf = &adv->tinfo[cts->ccb_h.target_id].user;
update_type |= ADV_TRANS_USER;
} else {
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
s = splcam();
scsi = &cts->proto_specific.scsi;
spi = &cts->xport_specific.spi;
if ((update_type & ADV_TRANS_GOAL) != 0) {
if ((spi->valid & CTS_SPI_VALID_DISC) != 0) {
if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0)
adv->disc_enable |= targ_mask;
else
adv->disc_enable &= ~targ_mask;
adv_write_lram_8(adv, ADVV_DISC_ENABLE_B,
adv->disc_enable);
}
if ((scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0)
adv->cmd_qng_enabled |= targ_mask;
else
adv->cmd_qng_enabled &= ~targ_mask;
}
}
if ((update_type & ADV_TRANS_USER) != 0) {
if ((spi->valid & CTS_SPI_VALID_DISC) != 0) {
if ((spi->flags & CTS_SPI_VALID_DISC) != 0)
adv->user_disc_enable |= targ_mask;
else
adv->user_disc_enable &= ~targ_mask;
}
if ((scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0)
adv->user_cmd_qng_enabled |= targ_mask;
else
adv->user_cmd_qng_enabled &= ~targ_mask;
}
}
/*
* If the user specifies either the sync rate, or offset,
* but not both, the unspecified parameter defaults to its
* current value in transfer negotiations.
*/
if (((spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0)
|| ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0)) {
/*
* If the user provided a sync rate but no offset,
* use the current offset.
*/
if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
spi->sync_offset = tconf->offset;
/*
* If the user provided an offset but no sync rate,
* use the current sync rate.
*/
if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
spi->sync_period = tconf->period;
adv_period_offset_to_sdtr(adv, &spi->sync_period,
&spi->sync_offset,
cts->ccb_h.target_id);
adv_set_syncrate(adv, /*struct cam_path */NULL,
cts->ccb_h.target_id, spi->sync_period,
spi->sync_offset, update_type);
}
splx(s);
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
case XPT_GET_TRAN_SETTINGS:
/* Get default/user set transfer settings for the target */
{
struct ccb_trans_settings_scsi *scsi;
struct ccb_trans_settings_spi *spi;
struct ccb_trans_settings *cts;
struct adv_transinfo *tconf;
target_bit_vector target_mask;
int s;
cts = &ccb->cts;
target_mask = ADV_TID_TO_TARGET_MASK(cts->ccb_h.target_id);
scsi = &cts->proto_specific.scsi;
spi = &cts->xport_specific.spi;
cts->protocol = PROTO_SCSI;
cts->protocol_version = SCSI_REV_2;
cts->transport = XPORT_SPI;
cts->transport_version = 2;
scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
s = splcam();
if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
tconf = &adv->tinfo[cts->ccb_h.target_id].current;
if ((adv->disc_enable & target_mask) != 0)
spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
if ((adv->cmd_qng_enabled & target_mask) != 0)
scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
} else {
tconf = &adv->tinfo[cts->ccb_h.target_id].user;
if ((adv->user_disc_enable & target_mask) != 0)
spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
if ((adv->user_cmd_qng_enabled & target_mask) != 0)
scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
}
spi->sync_period = tconf->period;
spi->sync_offset = tconf->offset;
splx(s);
spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
spi->valid = CTS_SPI_VALID_SYNC_RATE
| CTS_SPI_VALID_SYNC_OFFSET
| CTS_SPI_VALID_BUS_WIDTH
| CTS_SPI_VALID_DISC;
scsi->valid = CTS_SCSI_VALID_TQ;
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
case XPT_CALC_GEOMETRY:
{
int extended;
extended = (adv->control & ADV_CNTL_BIOS_GT_1GB) != 0;
cam_calc_geometry(&ccb->ccg, extended);
xpt_done(ccb);
break;
}
case XPT_RESET_BUS: /* Reset the specified SCSI bus */
{
int s;
s = splcam();
adv_stop_execution(adv);
adv_reset_bus(adv, /*initiate_reset*/TRUE);
adv_start_execution(adv);
splx(s);
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
case XPT_TERM_IO: /* Terminate the I/O process */
/* XXX Implement */
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
case XPT_PATH_INQ: /* Path routing inquiry */
{
struct ccb_pathinq *cpi = &ccb->cpi;
cpi->version_num = 1; /* XXX??? */
cpi->hba_inquiry = PI_SDTR_ABLE|PI_TAG_ABLE;
cpi->target_sprt = 0;
cpi->hba_misc = 0;
cpi->hba_eng_cnt = 0;
cpi->max_target = 7;
cpi->max_lun = 7;
cpi->initiator_id = adv->scsi_id;
cpi->bus_id = cam_sim_bus(sim);
cpi->base_transfer_speed = 3300;
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "Advansys", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
cpi->ccb_h.status = CAM_REQ_CMP;
cpi->transport = XPORT_SPI;
cpi->transport_version = 2;
cpi->protocol = PROTO_SCSI;
cpi->protocol_version = SCSI_REV_2;
xpt_done(ccb);
break;
}
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
}
}
/*
* Currently, the output of bus_dmammap_load suits our needs just
* fine, but should it change, we'd need to do something here.
*/
#define adv_fixup_dmasegs(adv, dm_segs) (struct adv_sg_entry *)(dm_segs)
static void
adv_execute_ccb(void *arg, bus_dma_segment_t *dm_segs,
int nsegments, int error)
{
struct ccb_scsiio *csio;
struct ccb_hdr *ccb_h;
struct cam_sim *sim;
struct adv_softc *adv;
struct adv_ccb_info *cinfo;
struct adv_scsi_q scsiq;
struct adv_sg_head sghead;
int s;
csio = (struct ccb_scsiio *)arg;
ccb_h = &csio->ccb_h;
sim = xpt_path_sim(ccb_h->path);
adv = (struct adv_softc *)cam_sim_softc(sim);
cinfo = (struct adv_ccb_info *)csio->ccb_h.ccb_cinfo_ptr;
/*
* Setup our done routine to release the simq on
* the next ccb that completes.
*/
if ((adv->state & ADV_BUSDMA_BLOCK) != 0)
adv->state |= ADV_BUSDMA_BLOCK_CLEARED;
if ((ccb_h->flags & CAM_CDB_POINTER) != 0) {
if ((ccb_h->flags & CAM_CDB_PHYS) == 0) {
/* XXX Need phystovirt!!!! */
/* How about pmap_kenter??? */
scsiq.cdbptr = csio->cdb_io.cdb_ptr;
} else {
scsiq.cdbptr = csio->cdb_io.cdb_ptr;
}
} else {
scsiq.cdbptr = csio->cdb_io.cdb_bytes;
}
/*
* Build up the request
*/
scsiq.q1.status = 0;
scsiq.q1.q_no = 0;
scsiq.q1.cntl = 0;
scsiq.q1.sg_queue_cnt = 0;
scsiq.q1.target_id = ADV_TID_TO_TARGET_MASK(ccb_h->target_id);
scsiq.q1.target_lun = ccb_h->target_lun;
scsiq.q1.sense_len = csio->sense_len;
scsiq.q1.extra_bytes = 0;
scsiq.q2.ccb_index = cinfo - adv->ccb_infos;
scsiq.q2.target_ix = ADV_TIDLUN_TO_IX(ccb_h->target_id,
ccb_h->target_lun);
scsiq.q2.flag = 0;
scsiq.q2.cdb_len = csio->cdb_len;
if ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0)
scsiq.q2.tag_code = csio->tag_action;
else
scsiq.q2.tag_code = 0;
scsiq.q2.vm_id = 0;
if (nsegments != 0) {
bus_dmasync_op_t op;
scsiq.q1.data_addr = dm_segs->ds_addr;
scsiq.q1.data_cnt = dm_segs->ds_len;
if (nsegments > 1) {
scsiq.q1.cntl |= QC_SG_HEAD;
sghead.entry_cnt
= sghead.entry_to_copy
= nsegments;
sghead.res = 0;
sghead.sg_list = adv_fixup_dmasegs(adv, dm_segs);
scsiq.sg_head = &sghead;
} else {
scsiq.sg_head = NULL;
}
if ((ccb_h->flags & CAM_DIR_MASK) == CAM_DIR_IN)
op = BUS_DMASYNC_PREREAD;
else
op = BUS_DMASYNC_PREWRITE;
bus_dmamap_sync(adv->buffer_dmat, cinfo->dmamap, op);
} else {
scsiq.q1.data_addr = 0;
scsiq.q1.data_cnt = 0;
scsiq.sg_head = NULL;
}
s = splcam();
/*
* Last time we need to check if this SCB needs to
* be aborted.
*/
if (ccb_h->status != CAM_REQ_INPROG) {
if (nsegments != 0)
bus_dmamap_unload(adv->buffer_dmat, cinfo->dmamap);
adv_clear_state(adv, (union ccb *)csio);
adv_free_ccb_info(adv, cinfo);
xpt_done((union ccb *)csio);
splx(s);
return;
}
if (adv_execute_scsi_queue(adv, &scsiq, csio->dxfer_len) != 0) {
/* Temporary resource shortage */
adv_set_state(adv, ADV_RESOURCE_SHORTAGE);
if (nsegments != 0)
bus_dmamap_unload(adv->buffer_dmat, cinfo->dmamap);
csio->ccb_h.status = CAM_REQUEUE_REQ;
adv_clear_state(adv, (union ccb *)csio);
adv_free_ccb_info(adv, cinfo);
xpt_done((union ccb *)csio);
splx(s);
return;
}
cinfo->state |= ACCB_ACTIVE;
ccb_h->status |= CAM_SIM_QUEUED;
LIST_INSERT_HEAD(&adv->pending_ccbs, ccb_h, sim_links.le);
/* Schedule our timeout */
ccb_h->timeout_ch =
timeout(adv_timeout, csio, (ccb_h->timeout * hz)/1000);
splx(s);
}
static struct adv_ccb_info *
adv_alloc_ccb_info(struct adv_softc *adv)
{
int error;
struct adv_ccb_info *cinfo;
cinfo = &adv->ccb_infos[adv->ccb_infos_allocated];
cinfo->state = ACCB_FREE;
error = bus_dmamap_create(adv->buffer_dmat, /*flags*/0,
&cinfo->dmamap);
if (error != 0) {
printf("%s: Unable to allocate CCB info "
"dmamap - error %d\n", adv_name(adv), error);
return (NULL);
}
adv->ccb_infos_allocated++;
return (cinfo);
}
static void
adv_destroy_ccb_info(struct adv_softc *adv, struct adv_ccb_info *cinfo)
{
bus_dmamap_destroy(adv->buffer_dmat, cinfo->dmamap);
}
void
adv_timeout(void *arg)
{
int s;
union ccb *ccb;
struct adv_softc *adv;
struct adv_ccb_info *cinfo;
ccb = (union ccb *)arg;
adv = (struct adv_softc *)xpt_path_sim(ccb->ccb_h.path)->softc;
cinfo = (struct adv_ccb_info *)ccb->ccb_h.ccb_cinfo_ptr;
xpt_print_path(ccb->ccb_h.path);
printf("Timed out\n");
s = splcam();
/* Have we been taken care of already?? */
if (cinfo == NULL || cinfo->state == ACCB_FREE) {
splx(s);
return;
}
adv_stop_execution(adv);
if ((cinfo->state & ACCB_ABORT_QUEUED) == 0) {
struct ccb_hdr *ccb_h;
/*
* In order to simplify the recovery process, we ask the XPT
* layer to halt the queue of new transactions and we traverse
* the list of pending CCBs and remove their timeouts. This
* means that the driver attempts to clear only one error
* condition at a time. In general, timeouts that occur
* close together are related anyway, so there is no benefit
* in attempting to handle errors in parrallel. Timeouts will
* be reinstated when the recovery process ends.
*/
adv_set_state(adv, ADV_IN_TIMEOUT);
/* This CCB is the CCB representing our recovery actions */
cinfo->state |= ACCB_RECOVERY_CCB|ACCB_ABORT_QUEUED;
ccb_h = LIST_FIRST(&adv->pending_ccbs);
while (ccb_h != NULL) {
untimeout(adv_timeout, ccb_h, ccb_h->timeout_ch);
ccb_h = LIST_NEXT(ccb_h, sim_links.le);
}
/* XXX Should send a BDR */
/* Attempt an abort as our first tact */
xpt_print_path(ccb->ccb_h.path);
printf("Attempting abort\n");
adv_abort_ccb(adv, ccb->ccb_h.target_id,
ccb->ccb_h.target_lun, ccb,
CAM_CMD_TIMEOUT, /*queued_only*/FALSE);
ccb->ccb_h.timeout_ch =
timeout(adv_timeout, ccb, 2 * hz);
} else {
/* Our attempt to perform an abort failed, go for a reset */
xpt_print_path(ccb->ccb_h.path);
printf("Resetting bus\n");
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
ccb->ccb_h.status |= CAM_CMD_TIMEOUT;
adv_reset_bus(adv, /*initiate_reset*/TRUE);
}
adv_start_execution(adv);
splx(s);
}
struct adv_softc *
adv_alloc(device_t dev, bus_space_tag_t tag, bus_space_handle_t bsh)
{
struct adv_softc *adv = device_get_softc(dev);
/*
* Allocate a storage area for us
*/
LIST_INIT(&adv->pending_ccbs);
SLIST_INIT(&adv->free_ccb_infos);
adv->dev = dev;
adv->unit = device_get_unit(dev);
adv->tag = tag;
adv->bsh = bsh;
return(adv);
}
void
adv_free(struct adv_softc *adv)
{
switch (adv->init_level) {
case 6:
{
struct adv_ccb_info *cinfo;
while ((cinfo = SLIST_FIRST(&adv->free_ccb_infos)) != NULL) {
SLIST_REMOVE_HEAD(&adv->free_ccb_infos, links);
adv_destroy_ccb_info(adv, cinfo);
}
bus_dmamap_unload(adv->sense_dmat, adv->sense_dmamap);
}
case 5:
bus_dmamem_free(adv->sense_dmat, adv->sense_buffers,
adv->sense_dmamap);
case 4:
bus_dma_tag_destroy(adv->sense_dmat);
case 3:
bus_dma_tag_destroy(adv->buffer_dmat);
case 2:
bus_dma_tag_destroy(adv->parent_dmat);
case 1:
if (adv->ccb_infos != NULL)
free(adv->ccb_infos, M_DEVBUF);
case 0:
break;
}
}
int
adv_init(struct adv_softc *adv)
{
struct adv_eeprom_config eeprom_config;
int checksum, i;
int max_sync;
u_int16_t config_lsw;
u_int16_t config_msw;
adv_lib_init(adv);
/*
* Stop script execution.
*/
adv_write_lram_16(adv, ADV_HALTCODE_W, 0x00FE);
adv_stop_execution(adv);
if (adv_stop_chip(adv) == 0 || adv_is_chip_halted(adv) == 0) {
printf("adv%d: Unable to halt adapter. Initialization"
"failed\n", adv->unit);
return (1);
}
ADV_OUTW(adv, ADV_REG_PROG_COUNTER, ADV_MCODE_START_ADDR);
if (ADV_INW(adv, ADV_REG_PROG_COUNTER) != ADV_MCODE_START_ADDR) {
printf("adv%d: Unable to set program counter. Initialization"
"failed\n", adv->unit);
return (1);
}
config_msw = ADV_INW(adv, ADV_CONFIG_MSW);
config_lsw = ADV_INW(adv, ADV_CONFIG_LSW);
if ((config_msw & ADV_CFG_MSW_CLR_MASK) != 0) {
config_msw &= ~ADV_CFG_MSW_CLR_MASK;
/*
* XXX The Linux code flags this as an error,
* but what should we report to the user???
* It seems that clearing the config register
* makes this error recoverable.
*/
ADV_OUTW(adv, ADV_CONFIG_MSW, config_msw);
}
/* Suck in the configuration from the EEProm */
checksum = adv_get_eeprom_config(adv, &eeprom_config);
if (ADV_INW(adv, ADV_CHIP_STATUS) & ADV_CSW_AUTO_CONFIG) {
/*
* XXX The Linux code sets a warning level for this
* condition, yet nothing of meaning is printed to
* the user. What does this mean???
*/
if (adv->chip_version == 3) {
if (eeprom_config.cfg_lsw != config_lsw)
eeprom_config.cfg_lsw = config_lsw;
if (eeprom_config.cfg_msw != config_msw) {
eeprom_config.cfg_msw = config_msw;
}
}
}
if (checksum == eeprom_config.chksum) {
/* Range/Sanity checking */
if (eeprom_config.max_total_qng < ADV_MIN_TOTAL_QNG) {
eeprom_config.max_total_qng = ADV_MIN_TOTAL_QNG;
}
if (eeprom_config.max_total_qng > ADV_MAX_TOTAL_QNG) {
eeprom_config.max_total_qng = ADV_MAX_TOTAL_QNG;
}
if (eeprom_config.max_tag_qng > eeprom_config.max_total_qng) {
eeprom_config.max_tag_qng = eeprom_config.max_total_qng;
}
if (eeprom_config.max_tag_qng < ADV_MIN_TAG_Q_PER_DVC) {
eeprom_config.max_tag_qng = ADV_MIN_TAG_Q_PER_DVC;
}
adv->max_openings = eeprom_config.max_total_qng;
adv->user_disc_enable = eeprom_config.disc_enable;
adv->user_cmd_qng_enabled = eeprom_config.use_cmd_qng;
adv->isa_dma_speed = EEPROM_DMA_SPEED(eeprom_config);
adv->scsi_id = EEPROM_SCSIID(eeprom_config) & ADV_MAX_TID;
EEPROM_SET_SCSIID(eeprom_config, adv->scsi_id);
adv->control = eeprom_config.cntl;
for (i = 0; i <= ADV_MAX_TID; i++) {
u_int8_t sync_data;
if ((eeprom_config.init_sdtr & (0x1 << i)) == 0)
sync_data = 0;
else
sync_data = eeprom_config.sdtr_data[i];
adv_sdtr_to_period_offset(adv,
sync_data,
&adv->tinfo[i].user.period,
&adv->tinfo[i].user.offset,
i);
}
config_lsw = eeprom_config.cfg_lsw;
eeprom_config.cfg_msw = config_msw;
} else {
u_int8_t sync_data;
printf("adv%d: Warning EEPROM Checksum mismatch. "
"Using default device parameters\n", adv->unit);
/* Set reasonable defaults since we can't read the EEPROM */
adv->isa_dma_speed = /*ADV_DEF_ISA_DMA_SPEED*/1;
adv->max_openings = ADV_DEF_MAX_TOTAL_QNG;
adv->disc_enable = TARGET_BIT_VECTOR_SET;
adv->user_disc_enable = TARGET_BIT_VECTOR_SET;
adv->cmd_qng_enabled = TARGET_BIT_VECTOR_SET;
adv->user_cmd_qng_enabled = TARGET_BIT_VECTOR_SET;
adv->scsi_id = 7;
adv->control = 0xFFFF;
if (adv->chip_version == ADV_CHIP_VER_PCI_ULTRA_3050)
/* Default to no Ultra to support the 3030 */
adv->control &= ~ADV_CNTL_SDTR_ENABLE_ULTRA;
sync_data = ADV_DEF_SDTR_OFFSET | (ADV_DEF_SDTR_INDEX << 4);
for (i = 0; i <= ADV_MAX_TID; i++) {
adv_sdtr_to_period_offset(adv, sync_data,
&adv->tinfo[i].user.period,
&adv->tinfo[i].user.offset,
i);
}
config_lsw |= ADV_CFG_LSW_SCSI_PARITY_ON;
}
config_msw &= ~ADV_CFG_MSW_CLR_MASK;
config_lsw |= ADV_CFG_LSW_HOST_INT_ON;
if ((adv->type & (ADV_PCI|ADV_ULTRA)) == (ADV_PCI|ADV_ULTRA)
&& (adv->control & ADV_CNTL_SDTR_ENABLE_ULTRA) == 0)
/* 25ns or 10MHz */
max_sync = 25;
else
/* Unlimited */
max_sync = 0;
for (i = 0; i <= ADV_MAX_TID; i++) {
if (adv->tinfo[i].user.period < max_sync)
adv->tinfo[i].user.period = max_sync;
}
if (adv_test_external_lram(adv) == 0) {
if ((adv->type & (ADV_PCI|ADV_ULTRA)) == (ADV_PCI|ADV_ULTRA)) {
eeprom_config.max_total_qng =
ADV_MAX_PCI_ULTRA_INRAM_TOTAL_QNG;
eeprom_config.max_tag_qng =
ADV_MAX_PCI_ULTRA_INRAM_TAG_QNG;
} else {
eeprom_config.cfg_msw |= 0x0800;
config_msw |= 0x0800;
eeprom_config.max_total_qng =
ADV_MAX_PCI_INRAM_TOTAL_QNG;
eeprom_config.max_tag_qng = ADV_MAX_INRAM_TAG_QNG;
}
adv->max_openings = eeprom_config.max_total_qng;
}
ADV_OUTW(adv, ADV_CONFIG_MSW, config_msw);
ADV_OUTW(adv, ADV_CONFIG_LSW, config_lsw);
#if 0
/*
* Don't write the eeprom data back for now.
* I'd rather not mess up the user's card. We also don't
* fully sanitize the eeprom settings above for the write-back
* to be 100% correct.
*/
if (adv_set_eeprom_config(adv, &eeprom_config) != 0)
printf("%s: WARNING! Failure writing to EEPROM.\n",
adv_name(adv));
#endif
adv_set_chip_scsiid(adv, adv->scsi_id);
if (adv_init_lram_and_mcode(adv))
return (1);
adv->disc_enable = adv->user_disc_enable;
adv_write_lram_8(adv, ADVV_DISC_ENABLE_B, adv->disc_enable);
for (i = 0; i <= ADV_MAX_TID; i++) {
/*
* Start off in async mode.
*/
adv_set_syncrate(adv, /*struct cam_path */NULL,
i, /*period*/0, /*offset*/0,
ADV_TRANS_CUR);
/*
* Enable the use of tagged commands on all targets.
* This allows the kernel driver to make up it's own mind
* as it sees fit to tag queue instead of having the
* firmware try and second guess the tag_code settins.
*/
adv_write_lram_8(adv, ADVV_MAX_DVC_QNG_BEG + i,
adv->max_openings);
}
adv_write_lram_8(adv, ADVV_USE_TAGGED_QNG_B, TARGET_BIT_VECTOR_SET);
adv_write_lram_8(adv, ADVV_CAN_TAGGED_QNG_B, TARGET_BIT_VECTOR_SET);
printf("adv%d: AdvanSys %s Host Adapter, SCSI ID %d, queue depth %d\n",
adv->unit, (adv->type & ADV_ULTRA) && (max_sync == 0)
? "Ultra SCSI" : "SCSI",
adv->scsi_id, adv->max_openings);
return (0);
}
void
adv_intr(void *arg)
{
struct adv_softc *adv;
u_int16_t chipstat;
u_int16_t saved_ram_addr;
u_int8_t ctrl_reg;
u_int8_t saved_ctrl_reg;
u_int8_t host_flag;
adv = (struct adv_softc *)arg;
chipstat = ADV_INW(adv, ADV_CHIP_STATUS);
/* Is it for us? */
if ((chipstat & (ADV_CSW_INT_PENDING|ADV_CSW_SCSI_RESET_LATCH)) == 0)
return;
ctrl_reg = ADV_INB(adv, ADV_CHIP_CTRL);
saved_ctrl_reg = ctrl_reg & (~(ADV_CC_SCSI_RESET | ADV_CC_CHIP_RESET |
ADV_CC_SINGLE_STEP | ADV_CC_DIAG |
ADV_CC_TEST));
if ((chipstat & (ADV_CSW_SCSI_RESET_LATCH|ADV_CSW_SCSI_RESET_ACTIVE))) {
printf("Detected Bus Reset\n");
adv_reset_bus(adv, /*initiate_reset*/FALSE);
return;
}
if ((chipstat & ADV_CSW_INT_PENDING) != 0) {
saved_ram_addr = ADV_INW(adv, ADV_LRAM_ADDR);
host_flag = adv_read_lram_8(adv, ADVV_HOST_FLAG_B);
adv_write_lram_8(adv, ADVV_HOST_FLAG_B,
host_flag | ADV_HOST_FLAG_IN_ISR);
adv_ack_interrupt(adv);
if ((chipstat & ADV_CSW_HALTED) != 0
&& (ctrl_reg & ADV_CC_SINGLE_STEP) != 0) {
adv_isr_chip_halted(adv);
saved_ctrl_reg &= ~ADV_CC_HALT;
} else {
adv_run_doneq(adv);
}
ADV_OUTW(adv, ADV_LRAM_ADDR, saved_ram_addr);
#ifdef DIAGNOSTIC
if (ADV_INW(adv, ADV_LRAM_ADDR) != saved_ram_addr)
panic("adv_intr: Unable to set LRAM addr");
#endif
adv_write_lram_8(adv, ADVV_HOST_FLAG_B, host_flag);
}
ADV_OUTB(adv, ADV_CHIP_CTRL, saved_ctrl_reg);
}
static void
adv_run_doneq(struct adv_softc *adv)
{
struct adv_q_done_info scsiq;
u_int doneq_head;
u_int done_qno;
doneq_head = adv_read_lram_16(adv, ADVV_DONE_Q_TAIL_W) & 0xFF;
done_qno = adv_read_lram_8(adv, ADV_QNO_TO_QADDR(doneq_head)
+ ADV_SCSIQ_B_FWD);
while (done_qno != ADV_QLINK_END) {
union ccb* ccb;
struct adv_ccb_info *cinfo;
u_int done_qaddr;
u_int sg_queue_cnt;
int aborted;
done_qaddr = ADV_QNO_TO_QADDR(done_qno);
/* Pull status from this request */
sg_queue_cnt = adv_copy_lram_doneq(adv, done_qaddr, &scsiq,
adv->max_dma_count);
/* Mark it as free */
adv_write_lram_8(adv, done_qaddr + ADV_SCSIQ_B_STATUS,
scsiq.q_status & ~(QS_READY|QS_ABORTED));
/* Process request based on retrieved info */
if ((scsiq.cntl & QC_SG_HEAD) != 0) {
u_int i;
/*
* S/G based request. Free all of the queue
* structures that contained S/G information.
*/
for (i = 0; i < sg_queue_cnt; i++) {
done_qno = adv_read_lram_8(adv, done_qaddr
+ ADV_SCSIQ_B_FWD);
#ifdef DIAGNOSTIC
if (done_qno == ADV_QLINK_END) {
panic("adv_qdone: Corrupted SG "
"list encountered");
}
#endif
done_qaddr = ADV_QNO_TO_QADDR(done_qno);
/* Mark SG queue as free */
adv_write_lram_8(adv, done_qaddr
+ ADV_SCSIQ_B_STATUS, QS_FREE);
}
} else
sg_queue_cnt = 0;
#ifdef DIAGNOSTIC
if (adv->cur_active < (sg_queue_cnt + 1))
panic("adv_qdone: Attempting to free more "
"queues than are active");
#endif
adv->cur_active -= sg_queue_cnt + 1;
aborted = (scsiq.q_status & QS_ABORTED) != 0;
if ((scsiq.q_status != QS_DONE)
&& (scsiq.q_status & QS_ABORTED) == 0)
panic("adv_qdone: completed scsiq with unknown status");
scsiq.remain_bytes += scsiq.extra_bytes;
if ((scsiq.d3.done_stat == QD_WITH_ERROR) &&
(scsiq.d3.host_stat == QHSTA_M_DATA_OVER_RUN)) {
if ((scsiq.cntl & (QC_DATA_IN|QC_DATA_OUT)) == 0) {
scsiq.d3.done_stat = QD_NO_ERROR;
scsiq.d3.host_stat = QHSTA_NO_ERROR;
}
}
cinfo = &adv->ccb_infos[scsiq.d2.ccb_index];
ccb = cinfo->ccb;
ccb->csio.resid = scsiq.remain_bytes;
adv_done(adv, ccb,
scsiq.d3.done_stat, scsiq.d3.host_stat,
scsiq.d3.scsi_stat, scsiq.q_no);
doneq_head = done_qno;
done_qno = adv_read_lram_8(adv, done_qaddr + ADV_SCSIQ_B_FWD);
}
adv_write_lram_16(adv, ADVV_DONE_Q_TAIL_W, doneq_head);
}
void
adv_done(struct adv_softc *adv, union ccb *ccb, u_int done_stat,
u_int host_stat, u_int scsi_status, u_int q_no)
{
struct adv_ccb_info *cinfo;
cinfo = (struct adv_ccb_info *)ccb->ccb_h.ccb_cinfo_ptr;
LIST_REMOVE(&ccb->ccb_h, sim_links.le);
untimeout(adv_timeout, ccb, ccb->ccb_h.timeout_ch);
if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
bus_dmasync_op_t op;
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN)
op = BUS_DMASYNC_POSTREAD;
else
op = BUS_DMASYNC_POSTWRITE;
bus_dmamap_sync(adv->buffer_dmat, cinfo->dmamap, op);
bus_dmamap_unload(adv->buffer_dmat, cinfo->dmamap);
}
switch (done_stat) {
case QD_NO_ERROR:
if (host_stat == QHSTA_NO_ERROR) {
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
xpt_print_path(ccb->ccb_h.path);
printf("adv_done - queue done without error, "
"but host status non-zero(%x)\n", host_stat);
/*FALLTHROUGH*/
case QD_WITH_ERROR:
switch (host_stat) {
case QHSTA_M_TARGET_STATUS_BUSY:
case QHSTA_M_BAD_QUEUE_FULL_OR_BUSY:
/*
* Assume that if we were a tagged transaction
* the target reported queue full. Otherwise,
* report busy. The firmware really should just
* pass the original status back up to us even
* if it thinks the target was in error for
* returning this status as no other transactions
* from this initiator are in effect, but this
* ignores multi-initiator setups and there is
* evidence that the firmware gets its per-device
* transaction counts screwed up occassionally.
*/
ccb->ccb_h.status |= CAM_SCSI_STATUS_ERROR;
if ((ccb->ccb_h.flags & CAM_TAG_ACTION_VALID) != 0
&& host_stat != QHSTA_M_TARGET_STATUS_BUSY)
scsi_status = SCSI_STATUS_QUEUE_FULL;
else
scsi_status = SCSI_STATUS_BUSY;
adv_abort_ccb(adv, ccb->ccb_h.target_id,
ccb->ccb_h.target_lun,
/*ccb*/NULL, CAM_REQUEUE_REQ,
/*queued_only*/TRUE);
/*FALLTHROUGH*/
case QHSTA_M_NO_AUTO_REQ_SENSE:
case QHSTA_NO_ERROR:
ccb->csio.scsi_status = scsi_status;
switch (scsi_status) {
case SCSI_STATUS_CHECK_COND:
case SCSI_STATUS_CMD_TERMINATED:
ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
/* Structure copy */
ccb->csio.sense_data =
adv->sense_buffers[q_no - 1];
/* FALLTHROUGH */
case SCSI_STATUS_BUSY:
case SCSI_STATUS_RESERV_CONFLICT:
case SCSI_STATUS_QUEUE_FULL:
case SCSI_STATUS_COND_MET:
case SCSI_STATUS_INTERMED:
case SCSI_STATUS_INTERMED_COND_MET:
ccb->ccb_h.status |= CAM_SCSI_STATUS_ERROR;
break;
case SCSI_STATUS_OK:
ccb->ccb_h.status |= CAM_REQ_CMP;
break;
}
break;
case QHSTA_M_SEL_TIMEOUT:
ccb->ccb_h.status = CAM_SEL_TIMEOUT;
break;
case QHSTA_M_DATA_OVER_RUN:
ccb->ccb_h.status = CAM_DATA_RUN_ERR;
break;
case QHSTA_M_UNEXPECTED_BUS_FREE:
ccb->ccb_h.status = CAM_UNEXP_BUSFREE;
break;
case QHSTA_M_BAD_BUS_PHASE_SEQ:
ccb->ccb_h.status = CAM_SEQUENCE_FAIL;
break;
case QHSTA_M_BAD_CMPL_STATUS_IN:
/* No command complete after a status message */
ccb->ccb_h.status = CAM_SEQUENCE_FAIL;
break;
case QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT:
case QHSTA_M_WTM_TIMEOUT:
case QHSTA_M_HUNG_REQ_SCSI_BUS_RESET:
/* The SCSI bus hung in a phase */
ccb->ccb_h.status = CAM_SEQUENCE_FAIL;
adv_reset_bus(adv, /*initiate_reset*/TRUE);
break;
case QHSTA_M_AUTO_REQ_SENSE_FAIL:
ccb->ccb_h.status = CAM_AUTOSENSE_FAIL;
break;
case QHSTA_D_QDONE_SG_LIST_CORRUPTED:
case QHSTA_D_ASC_DVC_ERROR_CODE_SET:
case QHSTA_D_HOST_ABORT_FAILED:
case QHSTA_D_EXE_SCSI_Q_FAILED:
case QHSTA_D_ASPI_NO_BUF_POOL:
case QHSTA_M_BAD_TAG_CODE:
case QHSTA_D_LRAM_CMP_ERROR:
case QHSTA_M_MICRO_CODE_ERROR_HALT:
default:
panic("%s: Unhandled Host status error %x",
adv_name(adv), host_stat);
/* NOTREACHED */
}
break;
case QD_ABORTED_BY_HOST:
/* Don't clobber any, more explicit, error codes we've set */
if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG)
ccb->ccb_h.status = CAM_REQ_ABORTED;
break;
default:
xpt_print_path(ccb->ccb_h.path);
printf("adv_done - queue done with unknown status %x:%x\n",
done_stat, host_stat);
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
break;
}
adv_clear_state(adv, ccb);
if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP
&& (ccb->ccb_h.status & CAM_DEV_QFRZN) == 0) {
xpt_freeze_devq(ccb->ccb_h.path, /*count*/1);
ccb->ccb_h.status |= CAM_DEV_QFRZN;
}
adv_free_ccb_info(adv, cinfo);
/*
* Null this out so that we catch driver bugs that cause a
* ccb to be completed twice.
*/
ccb->ccb_h.ccb_cinfo_ptr = NULL;
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
xpt_done(ccb);
}
/*
* Function to poll for command completion when
* interrupts are disabled (crash dumps)
*/
static void
adv_poll(struct cam_sim *sim)
{
adv_intr(cam_sim_softc(sim));
}
/*
* Attach all the sub-devices we can find
*/
int
adv_attach(adv)
struct adv_softc *adv;
{
struct ccb_setasync csa;
struct cam_devq *devq;
int max_sg;
/*
* Allocate an array of ccb mapping structures. We put the
* index of the ccb_info structure into the queue representing
* a transaction and use it for mapping the queue to the
* upper level SCSI transaction it represents.
*/
adv->ccb_infos = malloc(sizeof(*adv->ccb_infos) * adv->max_openings,
M_DEVBUF, M_NOWAIT);
if (adv->ccb_infos == NULL)
return (ENOMEM);
adv->init_level++;
/*
* Create our DMA tags. These tags define the kinds of device
* accessible memory allocations and memory mappings we will
* need to perform during normal operation.
*
* Unless we need to further restrict the allocation, we rely
* on the restrictions of the parent dmat, hence the common
* use of MAXADDR and MAXSIZE.
*
* The ASC boards use chains of "queues" (the transactional
* resources on the board) to represent long S/G lists.
* The first queue represents the command and holds a
* single address and data pair. The queues that follow
* can each hold ADV_SG_LIST_PER_Q entries. Given the
* total number of queues, we can express the largest
* transaction we can map. We reserve a few queues for
* error recovery. Take those into account as well.
*
* There is a way to take an interrupt to download the
* next batch of S/G entries if there are more than 255
* of them (the counter in the queue structure is a u_int8_t).
* We don't use this feature, so limit the S/G list size
* accordingly.
*/
max_sg = (adv->max_openings - ADV_MIN_FREE_Q - 1) * ADV_SG_LIST_PER_Q;
if (max_sg > 255)
max_sg = 255;
/* DMA tag for mapping buffers into device visible space. */
if (bus_dma_tag_create(
/* parent */ adv->parent_dmat,
/* alignment */ 1,
/* boundary */ 0,
/* lowaddr */ BUS_SPACE_MAXADDR,
/* highaddr */ BUS_SPACE_MAXADDR,
/* filter */ NULL,
/* filterarg */ NULL,
/* maxsize */ MAXPHYS,
/* nsegments */ max_sg,
/* maxsegsz */ BUS_SPACE_MAXSIZE_32BIT,
/* flags */ BUS_DMA_ALLOCNOW,
/* lockfunc */ busdma_lock_mutex,
/* lockarg */ &Giant,
&adv->buffer_dmat) != 0) {
return (ENXIO);
}
adv->init_level++;
/* DMA tag for our sense buffers */
if (bus_dma_tag_create(
/* parent */ adv->parent_dmat,
/* alignment */ 1,
/* boundary */ 0,
/* lowaddr */ BUS_SPACE_MAXADDR,
/* highaddr */ BUS_SPACE_MAXADDR,
/* filter */ NULL,
/* filterarg */ NULL,
/* maxsize */ sizeof(struct scsi_sense_data) *
adv->max_openings,
/* nsegments */ 1,
/* maxsegsz */ BUS_SPACE_MAXSIZE_32BIT,
/* flags */ 0,
/* lockfunc */ busdma_lock_mutex,
/* lockarg */ &Giant,
&adv->sense_dmat) != 0) {
return (ENXIO);
}
adv->init_level++;
/* Allocation for our sense buffers */
if (bus_dmamem_alloc(adv->sense_dmat, (void **)&adv->sense_buffers,
BUS_DMA_NOWAIT, &adv->sense_dmamap) != 0) {
return (ENOMEM);
}
adv->init_level++;
/* And permanently map them */
bus_dmamap_load(adv->sense_dmat, adv->sense_dmamap,
adv->sense_buffers,
sizeof(struct scsi_sense_data)*adv->max_openings,
adv_map, &adv->sense_physbase, /*flags*/0);
adv->init_level++;
/*
* Fire up the chip
*/
if (adv_start_chip(adv) != 1) {
printf("adv%d: Unable to start on board processor. Aborting.\n",
adv->unit);
return (ENXIO);
}
/*
* Create the device queue for our SIM.
*/
devq = cam_simq_alloc(adv->max_openings);
if (devq == NULL)
return (ENOMEM);
/*
* Construct our SIM entry.
*/
adv->sim = cam_sim_alloc(adv_action, adv_poll, "adv", adv, adv->unit,
&Giant, 1, adv->max_openings, devq);
if (adv->sim == NULL)
return (ENOMEM);
/*
* Register the bus.
*
* XXX Twin Channel EISA Cards???
*/
if (xpt_bus_register(adv->sim, 0) != CAM_SUCCESS) {
cam_sim_free(adv->sim, /*free devq*/TRUE);
return (ENXIO);
}
if (xpt_create_path(&adv->path, /*periph*/NULL, cam_sim_path(adv->sim),
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD)
!= CAM_REQ_CMP) {
xpt_bus_deregister(cam_sim_path(adv->sim));
cam_sim_free(adv->sim, /*free devq*/TRUE);
return (ENXIO);
}
xpt_setup_ccb(&csa.ccb_h, adv->path, /*priority*/5);
csa.ccb_h.func_code = XPT_SASYNC_CB;
csa.event_enable = AC_FOUND_DEVICE|AC_LOST_DEVICE;
csa.callback = advasync;
csa.callback_arg = adv;
xpt_action((union ccb *)&csa);
return (0);
}
MODULE_DEPEND(adv, cam, 1, 1, 1);