freebsd-nq/sys/dev/usb2/wlan/if_ural2.c
Alfred Perlstein eabe30fc9c Bring in USB4BSD, Hans Petter Selasky rework of the USB stack
that includes significant features and SMP safety.

This commit includes a more or less complete rewrite of the *BSD USB
stack, including Host Controller and Device Controller drivers and
updating all existing USB drivers to use the new USB API:

1) A brief feature list:

  - A new and mutex enabled USB API.

  - Many USB drivers are now running Giant free.

  - Linux USB kernel compatibility layer.

  - New UGEN backend and libusb library, finally solves the "driver
    unloading" problem. The new BSD licensed libusb20 library is fully
    compatible with libusb-0.1.12 from sourceforge.

  - New "usbconfig" utility, for easy configuration of USB.

  - Full support for Split transactions, which means you can use your
    full speed USB audio device on a high speed USB HUB.

  - Full support for HS ISOC transactions, which makes writing drivers
    for various HS webcams possible, for example.

  - Full support for USB on embedded platforms, mostly cache flushing
    and buffer invalidating stuff.

  - Safer parsing of USB descriptors.

  - Autodetect of annoying USB install disks.

  - Support for USB device side mode, also called USB gadget mode,
    using the same API like the USB host side. In other words the new
    USB stack is symmetric with regard to host and device side.

  - Support for USB transfers like I/O vectors, means more throughput
    and less interrupts.

  - ... see the FreeBSD quarterly status reports under "USB project"

2) To enable the driver in the default kernel build:

2.a) Remove all existing USB device options from your kernel config
file.

2.b) Add the following USB device options to your kernel configuration
file:

# USB core support
device          usb2_core

# USB controller support
device		usb2_controller
device		usb2_controller_ehci
device		usb2_controller_ohci
device		usb2_controller_uhci

# USB mass storage support
device		usb2_storage
device		usb2_storage_mass

# USB ethernet support, requires miibus
device		usb2_ethernet
device		usb2_ethernet_aue
device		usb2_ethernet_axe
device		usb2_ethernet_cdce
device		usb2_ethernet_cue
device		usb2_ethernet_kue
device		usb2_ethernet_rue
device		usb2_ethernet_dav

# USB wireless LAN support
device		usb2_wlan
device		usb2_wlan_rum
device		usb2_wlan_ral
device		usb2_wlan_zyd

# USB serial device support
device		usb2_serial
device		usb2_serial_ark
device		usb2_serial_bsa
device		usb2_serial_bser
device		usb2_serial_chcom
device		usb2_serial_cycom
device		usb2_serial_foma
device		usb2_serial_ftdi
device		usb2_serial_gensa
device		usb2_serial_ipaq
device		usb2_serial_lpt
device		usb2_serial_mct
device		usb2_serial_modem
device		usb2_serial_moscom
device		usb2_serial_plcom
device		usb2_serial_visor
device		usb2_serial_vscom

# USB bluetooth support
device		usb2_bluetooth
device		usb2_bluetooth_ng

# USB input device support
device		usb2_input
device		usb2_input_hid
device		usb2_input_kbd
device		usb2_input_ms

# USB sound and MIDI device support
device		usb2_sound

2) To enable the driver at runtime:

2.a) Unload all existing USB modules. If USB is compiled into the
kernel then you might have to build a new kernel.

2.b) Load the "usb2_xxx.ko" modules under /boot/kernel having the same
base name like the kernel device option.

Submitted by: Hans Petter Selasky hselasky at c2i dot net
Reviewed by: imp, alfred
2008-11-04 02:31:03 +00:00

2789 lines
68 KiB
C

/* $FreeBSD$ */
/*-
* Copyright (c) 2005, 2006
* Damien Bergamini <damien.bergamini@free.fr>
*
* Copyright (c) 2006, 2008
* Hans Petter Selasky <hselasky@freebsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
/*
*
* NOTE: all function names beginning like "ural_cfg_" can only
* be called from within the config thread function !
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*-
* Ralink Technology RT2500USB chipset driver
* http://www.ralinktech.com/
*/
#include <dev/usb2/include/usb2_devid.h>
#include <dev/usb2/include/usb2_standard.h>
#include <dev/usb2/include/usb2_mfunc.h>
#include <dev/usb2/include/usb2_error.h>
#define usb2_config_td_cc ural_config_copy
#define usb2_config_td_softc ural_softc
#define USB_DEBUG_VAR ural_debug
#include <dev/usb2/core/usb2_core.h>
#include <dev/usb2/core/usb2_lookup.h>
#include <dev/usb2/core/usb2_process.h>
#include <dev/usb2/core/usb2_config_td.h>
#include <dev/usb2/core/usb2_debug.h>
#include <dev/usb2/core/usb2_request.h>
#include <dev/usb2/core/usb2_busdma.h>
#include <dev/usb2/core/usb2_util.h>
#include <dev/usb2/wlan/usb2_wlan.h>
#include <dev/usb2/wlan/if_ural2_reg.h>
#include <dev/usb2/wlan/if_ural2_var.h>
#if USB_DEBUG
static int ural_debug = 0;
SYSCTL_NODE(_hw_usb2, OID_AUTO, ural, CTLFLAG_RW, 0, "USB ural");
SYSCTL_INT(_hw_usb2_ural, OID_AUTO, debug, CTLFLAG_RW, &ural_debug, 0,
"Debug level");
#endif
#define URAL_RSSI(rssi) \
((rssi) > (RAL_NOISE_FLOOR + RAL_RSSI_CORR) ? \
((rssi) - (RAL_NOISE_FLOOR + RAL_RSSI_CORR)) : 0)
/* prototypes */
static device_probe_t ural_probe;
static device_attach_t ural_attach;
static device_detach_t ural_detach;
static usb2_callback_t ural_bulk_read_callback;
static usb2_callback_t ural_bulk_read_clear_stall_callback;
static usb2_callback_t ural_bulk_write_callback;
static usb2_callback_t ural_bulk_write_clear_stall_callback;
static usb2_config_td_command_t ural_cfg_first_time_setup;
static usb2_config_td_command_t ural_config_copy;
static usb2_config_td_command_t ural_cfg_scan_start;
static usb2_config_td_command_t ural_cfg_scan_end;
static usb2_config_td_command_t ural_cfg_set_chan;
static usb2_config_td_command_t ural_cfg_enable_tsf_sync;
static usb2_config_td_command_t ural_cfg_update_slot;
static usb2_config_td_command_t ural_cfg_set_txpreamble;
static usb2_config_td_command_t ural_cfg_update_promisc;
static usb2_config_td_command_t ural_cfg_pre_init;
static usb2_config_td_command_t ural_cfg_init;
static usb2_config_td_command_t ural_cfg_pre_stop;
static usb2_config_td_command_t ural_cfg_stop;
static usb2_config_td_command_t ural_cfg_amrr_timeout;
static usb2_config_td_command_t ural_cfg_newstate;
static void ural_cfg_do_request(struct ural_softc *sc, struct usb2_device_request *req, void *data);
static void ural_cfg_set_testmode(struct ural_softc *sc);
static void ural_cfg_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, uint16_t len);
static uint16_t ural_cfg_read(struct ural_softc *sc, uint16_t reg);
static void ural_cfg_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, uint16_t len);
static void ural_cfg_write(struct ural_softc *sc, uint16_t reg, uint16_t val);
static void ural_cfg_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, uint16_t len);
static void ural_cfg_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val);
static uint8_t ural_cfg_bbp_read(struct ural_softc *sc, uint8_t reg);
static void ural_cfg_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val);
static void ural_end_of_commands(struct ural_softc *sc);
static const char *ural_get_rf(int rev);
static void ural_watchdog(void *arg);
static void ural_init_cb(void *arg);
static int ural_ioctl_cb(struct ifnet *ifp, u_long cmd, caddr_t data);
static void ural_start_cb(struct ifnet *ifp);
static int ural_newstate_cb(struct ieee80211vap *ic, enum ieee80211_state nstate, int arg);
static void ural_std_command(struct ieee80211com *ic, usb2_config_td_command_t *func);
static void ural_scan_start_cb(struct ieee80211com *);
static void ural_scan_end_cb(struct ieee80211com *);
static void ural_set_channel_cb(struct ieee80211com *);
static void ural_cfg_disable_rf_tune(struct ural_softc *sc);
static void ural_cfg_set_bssid(struct ural_softc *sc, uint8_t *bssid);
static void ural_cfg_set_macaddr(struct ural_softc *sc, uint8_t *addr);
static void ural_cfg_set_txantenna(struct ural_softc *sc, uint8_t antenna);
static void ural_cfg_set_rxantenna(struct ural_softc *sc, uint8_t antenna);
static void ural_cfg_read_eeprom(struct ural_softc *sc);
static uint8_t ural_cfg_bbp_init(struct ural_softc *sc);
static void ural_cfg_amrr_start(struct ural_softc *sc);
static struct ieee80211vap *ural_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, int opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]);
static void ural_vap_delete(struct ieee80211vap *);
static struct ieee80211_node *ural_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]);
static void ural_newassoc(struct ieee80211_node *, int);
static void ural_cfg_disable_tsf_sync(struct ural_softc *sc);
static void ural_cfg_set_run(struct ural_softc *sc, struct usb2_config_td_cc *cc);
static void ural_fill_write_queue(struct ural_softc *sc);
static void ural_tx_clean_queue(struct ural_softc *sc);
static void ural_tx_freem(struct mbuf *m);
static void ural_tx_mgt(struct ural_softc *sc, struct mbuf *m, struct ieee80211_node *ni);
static struct ieee80211vap *ural_get_vap(struct ural_softc *sc);
static void ural_tx_bcn(struct ural_softc *sc);
static void ural_tx_data(struct ural_softc *sc, struct mbuf *m, struct ieee80211_node *ni);
static void ural_tx_prot(struct ural_softc *sc, const struct mbuf *m, struct ieee80211_node *ni, uint8_t prot, uint16_t rate);
static void ural_tx_raw(struct ural_softc *sc, struct mbuf *m, struct ieee80211_node *ni, const struct ieee80211_bpf_params *params);
static int ural_raw_xmit_cb(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params);
static void ural_setup_desc_and_tx(struct ural_softc *sc, struct mbuf *m, uint32_t flags, uint16_t rate);
static void ural_update_mcast_cb(struct ifnet *ifp);
static void ural_update_promisc_cb(struct ifnet *ifp);
/* various supported device vendors/products */
static const struct usb2_device_id ural_devs[] = {
{USB_VPI(USB_VENDOR_ASUS, USB_PRODUCT_ASUS_WL167G, 0)},
{USB_VPI(USB_VENDOR_ASUS, USB_PRODUCT_RALINK_RT2570, 0)},
{USB_VPI(USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050, 0)},
{USB_VPI(USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7051, 0)},
{USB_VPI(USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_HU200TS, 0)},
{USB_VPI(USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54G, 0)},
{USB_VPI(USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GP, 0)},
{USB_VPI(USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_C54RU, 0)},
{USB_VPI(USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122, 0)},
{USB_VPI(USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GN54G, 0)},
{USB_VPI(USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWBKG, 0)},
{USB_VPI(USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254, 0)},
{USB_VPI(USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54, 0)},
{USB_VPI(USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54AI, 0)},
{USB_VPI(USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54YB, 0)},
{USB_VPI(USB_VENDOR_MELCO, USB_PRODUCT_MELCO_NINWIFI, 0)},
{USB_VPI(USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2570, 0)},
{USB_VPI(USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2570_2, 0)},
{USB_VPI(USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2570_3, 0)},
{USB_VPI(USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_NV902, 0)},
{USB_VPI(USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570, 0)},
{USB_VPI(USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_2, 0)},
{USB_VPI(USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_3, 0)},
{USB_VPI(USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573, 0)},
{USB_VPI(USB_VENDOR_SIEMENS2, USB_PRODUCT_SIEMENS2_WL54G, 0)},
{USB_VPI(USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG, 0)},
{USB_VPI(USB_VENDOR_SPHAIRON, USB_PRODUCT_SPHAIRON_UB801R, 0)},
{USB_VPI(USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2570, 0)},
{USB_VPI(USB_VENDOR_VTECH, USB_PRODUCT_VTECH_RT2570, 0)},
{USB_VPI(USB_VENDOR_ZINWELL, USB_PRODUCT_ZINWELL_RT2570, 0)},
};
/*
* Default values for MAC registers; values taken from
* the reference driver:
*/
struct ural_def_mac {
uint16_t reg;
uint16_t val;
};
static const struct ural_def_mac ural_def_mac[] = {
{RAL_TXRX_CSR5, 0x8c8d},
{RAL_TXRX_CSR6, 0x8b8a},
{RAL_TXRX_CSR7, 0x8687},
{RAL_TXRX_CSR8, 0x0085},
{RAL_MAC_CSR13, 0x1111},
{RAL_MAC_CSR14, 0x1e11},
{RAL_TXRX_CSR21, 0xe78f},
{RAL_MAC_CSR9, 0xff1d},
{RAL_MAC_CSR11, 0x0002},
{RAL_MAC_CSR22, 0x0053},
{RAL_MAC_CSR15, 0x0000},
{RAL_MAC_CSR8, RAL_FRAME_SIZE},
{RAL_TXRX_CSR19, 0x0000},
{RAL_TXRX_CSR18, 0x005a},
{RAL_PHY_CSR2, 0x0000},
{RAL_TXRX_CSR0, 0x1ec0},
{RAL_PHY_CSR4, 0x000f}
};
/*
* Default values for BBP registers; values taken from the reference driver.
*/
struct ural_def_bbp {
uint8_t reg;
uint8_t val;
};
static const struct ural_def_bbp ural_def_bbp[] = {
{3, 0x02},
{4, 0x19},
{14, 0x1c},
{15, 0x30},
{16, 0xac},
{17, 0x48},
{18, 0x18},
{19, 0xff},
{20, 0x1e},
{21, 0x08},
{22, 0x08},
{23, 0x08},
{24, 0x80},
{25, 0x50},
{26, 0x08},
{27, 0x23},
{30, 0x10},
{31, 0x2b},
{32, 0xb9},
{34, 0x12},
{35, 0x50},
{39, 0xc4},
{40, 0x02},
{41, 0x60},
{53, 0x10},
{54, 0x18},
{56, 0x08},
{57, 0x10},
{58, 0x08},
{61, 0x60},
{62, 0x10},
{75, 0xff}
};
/*
* Default values for RF register R2 indexed by channel numbers.
*/
static const uint32_t ural_rf2522_r2[] = {
0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
};
static const uint32_t ural_rf2523_r2[] = {
0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
};
static const uint32_t ural_rf2524_r2[] = {
0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
};
static const uint32_t ural_rf2525_r2[] = {
0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
};
static const uint32_t ural_rf2525_hi_r2[] = {
0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
};
static const uint32_t ural_rf2525e_r2[] = {
0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
};
static const uint32_t ural_rf2526_hi_r2[] = {
0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
};
static const uint32_t ural_rf2526_r2[] = {
0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
};
/*
* For dual-band RF, RF registers R1 and R4 also depend on channel number;
* values taken from the reference driver.
*/
struct ural_rf5222 {
uint8_t chan;
uint32_t r1;
uint32_t r2;
uint32_t r4;
};
static const struct ural_rf5222 ural_rf5222[] = {
{1, 0x08808, 0x0044d, 0x00282},
{2, 0x08808, 0x0044e, 0x00282},
{3, 0x08808, 0x0044f, 0x00282},
{4, 0x08808, 0x00460, 0x00282},
{5, 0x08808, 0x00461, 0x00282},
{6, 0x08808, 0x00462, 0x00282},
{7, 0x08808, 0x00463, 0x00282},
{8, 0x08808, 0x00464, 0x00282},
{9, 0x08808, 0x00465, 0x00282},
{10, 0x08808, 0x00466, 0x00282},
{11, 0x08808, 0x00467, 0x00282},
{12, 0x08808, 0x00468, 0x00282},
{13, 0x08808, 0x00469, 0x00282},
{14, 0x08808, 0x0046b, 0x00286},
{36, 0x08804, 0x06225, 0x00287},
{40, 0x08804, 0x06226, 0x00287},
{44, 0x08804, 0x06227, 0x00287},
{48, 0x08804, 0x06228, 0x00287},
{52, 0x08804, 0x06229, 0x00287},
{56, 0x08804, 0x0622a, 0x00287},
{60, 0x08804, 0x0622b, 0x00287},
{64, 0x08804, 0x0622c, 0x00287},
{100, 0x08804, 0x02200, 0x00283},
{104, 0x08804, 0x02201, 0x00283},
{108, 0x08804, 0x02202, 0x00283},
{112, 0x08804, 0x02203, 0x00283},
{116, 0x08804, 0x02204, 0x00283},
{120, 0x08804, 0x02205, 0x00283},
{124, 0x08804, 0x02206, 0x00283},
{128, 0x08804, 0x02207, 0x00283},
{132, 0x08804, 0x02208, 0x00283},
{136, 0x08804, 0x02209, 0x00283},
{140, 0x08804, 0x0220a, 0x00283},
{149, 0x08808, 0x02429, 0x00281},
{153, 0x08808, 0x0242b, 0x00281},
{157, 0x08808, 0x0242d, 0x00281},
{161, 0x08808, 0x0242f, 0x00281}
};
static const struct usb2_config ural_config[URAL_N_TRANSFER] = {
[0] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_OUT,
.mh.bufsize = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE + 4),
.mh.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
.mh.callback = &ural_bulk_write_callback,
.mh.timeout = 5000, /* ms */
},
[1] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_IN,
.mh.bufsize = (RAL_FRAME_SIZE + RAL_RX_DESC_SIZE),
.mh.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
.mh.callback = &ural_bulk_read_callback,
},
[2] = {
.type = UE_CONTROL,
.endpoint = 0x00, /* Control pipe */
.direction = UE_DIR_ANY,
.mh.bufsize = sizeof(struct usb2_device_request),
.mh.callback = &ural_bulk_write_clear_stall_callback,
.mh.timeout = 1000, /* 1 second */
.mh.interval = 50, /* 50ms */
},
[3] = {
.type = UE_CONTROL,
.endpoint = 0x00, /* Control pipe */
.direction = UE_DIR_ANY,
.mh.bufsize = sizeof(struct usb2_device_request),
.mh.callback = &ural_bulk_read_clear_stall_callback,
.mh.timeout = 1000, /* 1 second */
.mh.interval = 50, /* 50ms */
},
};
static devclass_t ural_devclass;
static device_method_t ural_methods[] = {
DEVMETHOD(device_probe, ural_probe),
DEVMETHOD(device_attach, ural_attach),
DEVMETHOD(device_detach, ural_detach),
{0, 0}
};
static driver_t ural_driver = {
.name = "ural",
.methods = ural_methods,
.size = sizeof(struct ural_softc),
};
DRIVER_MODULE(ural, ushub, ural_driver, ural_devclass, NULL, 0);
MODULE_DEPEND(ural, usb2_wlan, 1, 1, 1);
MODULE_DEPEND(ural, usb2_core, 1, 1, 1);
MODULE_DEPEND(ural, wlan, 1, 1, 1);
MODULE_DEPEND(ural, wlan_amrr, 1, 1, 1);
static int
ural_probe(device_t dev)
{
struct usb2_attach_arg *uaa = device_get_ivars(dev);
if (uaa->usb2_mode != USB_MODE_HOST) {
return (ENXIO);
}
if (uaa->info.bConfigIndex != 0) {
return (ENXIO);
}
if (uaa->info.bIfaceIndex != RAL_IFACE_INDEX) {
return (ENXIO);
}
return (usb2_lookup_id_by_uaa(ural_devs, sizeof(ural_devs), uaa));
}
static int
ural_attach(device_t dev)
{
struct usb2_attach_arg *uaa = device_get_ivars(dev);
struct ural_softc *sc = device_get_softc(dev);
int error;
uint8_t iface_index;
if (sc == NULL) {
return (ENOMEM);
}
device_set_usb2_desc(dev);
mtx_init(&sc->sc_mtx, "ural lock", MTX_NETWORK_LOCK,
MTX_DEF | MTX_RECURSE);
snprintf(sc->sc_name, sizeof(sc->sc_name), "%s",
device_get_nameunit(dev));
sc->sc_udev = uaa->device;
sc->sc_unit = device_get_unit(dev);
usb2_callout_init_mtx(&sc->sc_watchdog,
&sc->sc_mtx, CALLOUT_RETURNUNLOCKED);
iface_index = RAL_IFACE_INDEX;
error = usb2_transfer_setup(uaa->device,
&iface_index, sc->sc_xfer, ural_config,
URAL_N_TRANSFER, sc, &sc->sc_mtx);
if (error) {
device_printf(dev, "could not allocate USB transfers, "
"err=%s\n", usb2_errstr(error));
goto detach;
}
error = usb2_config_td_setup(&sc->sc_config_td, sc, &sc->sc_mtx,
&ural_end_of_commands,
sizeof(struct usb2_config_td_cc), 24);
if (error) {
device_printf(dev, "could not setup config "
"thread!\n");
goto detach;
}
mtx_lock(&sc->sc_mtx);
/* start setup */
usb2_config_td_queue_command
(&sc->sc_config_td, NULL, &ural_cfg_first_time_setup, 0, 0);
/* start watchdog (will exit mutex) */
ural_watchdog(sc);
return (0); /* success */
detach:
ural_detach(dev);
return (ENXIO); /* failure */
}
static int
ural_detach(device_t dev)
{
struct ural_softc *sc = device_get_softc(dev);
struct ieee80211com *ic;
struct ifnet *ifp;
usb2_config_td_drain(&sc->sc_config_td);
mtx_lock(&sc->sc_mtx);
usb2_callout_stop(&sc->sc_watchdog);
ural_cfg_pre_stop(sc, NULL, 0);
ifp = sc->sc_ifp;
ic = ifp->if_l2com;
mtx_unlock(&sc->sc_mtx);
/* stop all USB transfers first */
usb2_transfer_unsetup(sc->sc_xfer, URAL_N_TRANSFER);
/* get rid of any late children */
bus_generic_detach(dev);
if (ifp) {
bpfdetach(ifp);
ieee80211_ifdetach(ic);
if_free(ifp);
}
usb2_config_td_unsetup(&sc->sc_config_td);
usb2_callout_drain(&sc->sc_watchdog);
mtx_destroy(&sc->sc_mtx);
return (0);
}
/*========================================================================*
* REGISTER READ / WRITE WRAPPER ROUTINES
*========================================================================*/
static void
ural_cfg_do_request(struct ural_softc *sc, struct usb2_device_request *req,
void *data)
{
uint16_t length;
usb2_error_t err;
repeat:
if (usb2_config_td_is_gone(&sc->sc_config_td)) {
goto error;
}
err = usb2_do_request_flags
(sc->sc_udev, &sc->sc_mtx, req, data, 0, NULL, 1000);
if (err) {
DPRINTF("device request failed, err=%s "
"(ignored)\n", usb2_errstr(err));
/* wait a little before next try */
if (usb2_config_td_sleep(&sc->sc_config_td, hz / 4)) {
goto error;
}
/* try until we are detached */
goto repeat;
error:
/* the device has been detached */
length = UGETW(req->wLength);
if ((req->bmRequestType & UT_READ) && length) {
bzero(data, length);
}
}
return;
}
static void
ural_cfg_set_testmode(struct ural_softc *sc)
{
struct usb2_device_request req;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = RAL_VENDOR_REQUEST;
USETW(req.wValue, 4);
USETW(req.wIndex, 1);
USETW(req.wLength, 0);
ural_cfg_do_request(sc, &req, NULL);
return;
}
static void
ural_cfg_eeprom_read(struct ural_softc *sc, uint16_t addr,
void *buf, uint16_t len)
{
struct usb2_device_request req;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = RAL_READ_EEPROM;
USETW(req.wValue, 0);
USETW(req.wIndex, addr);
USETW(req.wLength, len);
ural_cfg_do_request(sc, &req, buf);
return;
}
static uint16_t
ural_cfg_read(struct ural_softc *sc, uint16_t reg)
{
struct usb2_device_request req;
uint16_t val;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = RAL_READ_MAC;
USETW(req.wValue, 0);
USETW(req.wIndex, reg);
USETW(req.wLength, sizeof(val));
ural_cfg_do_request(sc, &req, &val);
return (le16toh(val));
}
static void
ural_cfg_read_multi(struct ural_softc *sc, uint16_t reg,
void *buf, uint16_t len)
{
struct usb2_device_request req;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = RAL_READ_MULTI_MAC;
USETW(req.wValue, 0);
USETW(req.wIndex, reg);
USETW(req.wLength, len);
ural_cfg_do_request(sc, &req, buf);
return;
}
static void
ural_cfg_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
{
struct usb2_device_request req;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = RAL_WRITE_MAC;
USETW(req.wValue, val);
USETW(req.wIndex, reg);
USETW(req.wLength, 0);
ural_cfg_do_request(sc, &req, NULL);
return;
}
static void
ural_cfg_write_multi(struct ural_softc *sc, uint16_t reg,
void *buf, uint16_t len)
{
struct usb2_device_request req;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = RAL_WRITE_MULTI_MAC;
USETW(req.wValue, 0);
USETW(req.wIndex, reg);
USETW(req.wLength, len);
ural_cfg_do_request(sc, &req, buf);
return;
}
static uint8_t
ural_cfg_bbp_disbusy(struct ural_softc *sc)
{
uint16_t tmp;
uint8_t to;
for (to = 0;; to++) {
if (to < 100) {
tmp = ural_cfg_read(sc, RAL_PHY_CSR8);
tmp &= RAL_BBP_BUSY;
if (tmp == 0) {
return (0);
}
if (usb2_config_td_sleep(&sc->sc_config_td, hz / 100)) {
break;
}
} else {
break;
}
}
DPRINTF("could not disbusy BBP\n");
return (1); /* failure */
}
static void
ural_cfg_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
{
uint16_t tmp;
if (ural_cfg_bbp_disbusy(sc)) {
return;
}
tmp = (reg << 8) | val;
ural_cfg_write(sc, RAL_PHY_CSR7, tmp);
return;
}
static uint8_t
ural_cfg_bbp_read(struct ural_softc *sc, uint8_t reg)
{
uint16_t val;
if (ural_cfg_bbp_disbusy(sc)) {
return (0);
}
val = RAL_BBP_WRITE | (reg << 8);
ural_cfg_write(sc, RAL_PHY_CSR7, val);
if (ural_cfg_bbp_disbusy(sc)) {
return (0);
}
return (ural_cfg_read(sc, RAL_PHY_CSR7) & 0xff);
}
static void
ural_cfg_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
{
uint32_t tmp;
uint8_t to;
reg &= 3;
/* remember last written value */
sc->sc_rf_regs[reg] = val;
for (to = 0;; to++) {
if (to < 100) {
tmp = ural_cfg_read(sc, RAL_PHY_CSR10);
if (!(tmp & RAL_RF_LOBUSY)) {
break;
}
if (usb2_config_td_sleep(&sc->sc_config_td, hz / 100)) {
return;
}
} else {
DPRINTF("could not write to RF\n");
return;
}
}
tmp = RAL_RF_BUSY | RAL_RF_20BIT | ((val & 0xfffff) << 2) | reg;
ural_cfg_write(sc, RAL_PHY_CSR9, tmp & 0xffff);
ural_cfg_write(sc, RAL_PHY_CSR10, tmp >> 16);
DPRINTFN(16, "RF R[%u] <- 0x%05x\n", reg, val & 0xfffff);
return;
}
static void
ural_cfg_first_time_setup(struct ural_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
struct ieee80211com *ic;
struct ifnet *ifp;
uint8_t bands;
/* setup RX tap header */
sc->sc_rxtap_len = sizeof(sc->sc_rxtap);
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
/* setup TX tap header */
sc->sc_txtap_len = sizeof(sc->sc_txtap);
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
/* retrieve RT2570 rev. no */
sc->sc_asic_rev = ural_cfg_read(sc, RAL_MAC_CSR0);
/* retrieve MAC address and various other things from EEPROM */
ural_cfg_read_eeprom(sc);
printf("%s: MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
sc->sc_name, sc->sc_asic_rev, ural_get_rf(sc->sc_rf_rev));
mtx_unlock(&sc->sc_mtx);
ifp = if_alloc(IFT_IEEE80211);
mtx_lock(&sc->sc_mtx);
if (ifp == NULL) {
DPRINTFN(0, "could not if_alloc()!\n");
goto done;
}
sc->sc_evilhack = ifp;
sc->sc_ifp = ifp;
ic = ifp->if_l2com;
ifp->if_softc = sc;
if_initname(ifp, "ural", sc->sc_unit);
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = &ural_init_cb;
ifp->if_ioctl = &ural_ioctl_cb;
ifp->if_start = &ural_start_cb;
ifp->if_watchdog = NULL;
IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
IFQ_SET_READY(&ifp->if_snd);
bcopy(sc->sc_myaddr, ic->ic_myaddr, sizeof(ic->ic_myaddr));
ic->ic_ifp = ifp;
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA;
/* set device capabilities */
ic->ic_caps =
IEEE80211_C_STA /* station mode supported */
| IEEE80211_C_IBSS /* IBSS mode supported */
| IEEE80211_C_MONITOR /* monitor mode supported */
| IEEE80211_C_HOSTAP /* HostAp mode supported */
| IEEE80211_C_TXPMGT /* tx power management */
| IEEE80211_C_SHPREAMBLE /* short preamble supported */
| IEEE80211_C_SHSLOT /* short slot time supported */
| IEEE80211_C_BGSCAN /* bg scanning supported */
| IEEE80211_C_WPA /* 802.11i */
;
bands = 0;
setbit(&bands, IEEE80211_MODE_11B);
setbit(&bands, IEEE80211_MODE_11G);
if (sc->sc_rf_rev == RAL_RF_5222) {
setbit(&bands, IEEE80211_MODE_11A);
}
ieee80211_init_channels(ic, NULL, &bands);
mtx_unlock(&sc->sc_mtx);
ieee80211_ifattach(ic);
mtx_lock(&sc->sc_mtx);
ic->ic_newassoc = &ural_newassoc;
ic->ic_raw_xmit = &ural_raw_xmit_cb;
ic->ic_node_alloc = &ural_node_alloc;
ic->ic_update_mcast = &ural_update_mcast_cb;
ic->ic_update_promisc = &ural_update_promisc_cb;
ic->ic_scan_start = &ural_scan_start_cb;
ic->ic_scan_end = &ural_scan_end_cb;
ic->ic_set_channel = &ural_set_channel_cb;
ic->ic_vap_create = &ural_vap_create;
ic->ic_vap_delete = &ural_vap_delete;
sc->sc_rates = ieee80211_get_ratetable(ic->ic_curchan);
mtx_unlock(&sc->sc_mtx);
bpfattach(ifp, DLT_IEEE802_11_RADIO,
sizeof(struct ieee80211_frame) + sizeof(sc->sc_txtap));
if (bootverbose) {
ieee80211_announce(ic);
}
mtx_lock(&sc->sc_mtx);
done:
return;
}
static void
ural_end_of_commands(struct ural_softc *sc)
{
sc->sc_flags &= ~URAL_FLAG_WAIT_COMMAND;
/* start write transfer, if not started */
usb2_transfer_start(sc->sc_xfer[0]);
return;
}
static void
ural_config_copy_chan(struct ural_config_copy_chan *cc,
struct ieee80211com *ic, struct ieee80211_channel *c)
{
if (!c)
return;
cc->chan_to_ieee =
ieee80211_chan2ieee(ic, c);
if (c != IEEE80211_CHAN_ANYC) {
cc->chan_to_mode =
ieee80211_chan2mode(c);
if (IEEE80211_IS_CHAN_B(c))
cc->chan_is_b = 1;
if (IEEE80211_IS_CHAN_A(c))
cc->chan_is_a = 1;
if (IEEE80211_IS_CHAN_2GHZ(c))
cc->chan_is_2ghz = 1;
if (IEEE80211_IS_CHAN_5GHZ(c))
cc->chan_is_5ghz = 1;
if (IEEE80211_IS_CHAN_ANYG(c))
cc->chan_is_g = 1;
}
return;
}
static void
ural_config_copy(struct ural_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
struct ifnet *ifp;
struct ieee80211com *ic;
struct ieee80211_node *ni;
struct ieee80211vap *vap;
const struct ieee80211_txparam *tp;
bzero(cc, sizeof(*cc));
ifp = sc->sc_ifp;
if (ifp) {
cc->if_flags = ifp->if_flags;
bcopy(ifp->if_broadcastaddr, cc->if_broadcastaddr,
sizeof(cc->if_broadcastaddr));
ic = ifp->if_l2com;
if (ic) {
ural_config_copy_chan(&cc->ic_curchan, ic, ic->ic_curchan);
ural_config_copy_chan(&cc->ic_bsschan, ic, ic->ic_bsschan);
vap = TAILQ_FIRST(&ic->ic_vaps);
if (vap) {
ni = vap->iv_bss;
if (ni) {
cc->iv_bss.ni_intval = ni->ni_intval;
bcopy(ni->ni_bssid, cc->iv_bss.ni_bssid,
sizeof(cc->iv_bss.ni_bssid));
}
tp = vap->iv_txparms + cc->ic_bsschan.chan_to_mode;
if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) {
cc->iv_bss.fixed_rate_none = 1;
}
}
cc->ic_opmode = ic->ic_opmode;
cc->ic_flags = ic->ic_flags;
cc->ic_txpowlimit = ic->ic_txpowlimit;
cc->ic_curmode = ic->ic_curmode;
bcopy(ic->ic_myaddr, cc->ic_myaddr,
sizeof(cc->ic_myaddr));
}
}
sc->sc_flags |= URAL_FLAG_WAIT_COMMAND;
return;
}
static const char *
ural_get_rf(int rev)
{
switch (rev) {
case RAL_RF_2522:return "RT2522";
case RAL_RF_2523:
return "RT2523";
case RAL_RF_2524:
return "RT2524";
case RAL_RF_2525:
return "RT2525";
case RAL_RF_2525E:
return "RT2525e";
case RAL_RF_2526:
return "RT2526";
case RAL_RF_5222:
return "RT5222";
default:
return "unknown";
}
}
/*------------------------------------------------------------------------*
* ural_bulk_read_callback - data read "thread"
*------------------------------------------------------------------------*/
static void
ural_bulk_read_callback(struct usb2_xfer *xfer)
{
struct ural_softc *sc = xfer->priv_sc;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211_node *ni;
struct mbuf *m = NULL;
uint32_t flags;
uint32_t max_len;
uint32_t real_len;
uint8_t rssi = 0;
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
DPRINTFN(15, "rx done, actlen=%d\n", xfer->actlen);
if (xfer->actlen < RAL_RX_DESC_SIZE) {
DPRINTF("too short transfer, "
"%d bytes\n", xfer->actlen);
ifp->if_ierrors++;
goto tr_setup;
}
max_len = (xfer->actlen - RAL_RX_DESC_SIZE);
usb2_copy_out(xfer->frbuffers, max_len,
&sc->sc_rx_desc, RAL_RX_DESC_SIZE);
flags = le32toh(sc->sc_rx_desc.flags);
if (flags & (RAL_RX_PHY_ERROR | RAL_RX_CRC_ERROR)) {
/*
* This should not happen since we did not
* request to receive those frames when we
* filled RAL_TXRX_CSR2:
*/
DPRINTFN(6, "PHY or CRC error\n");
ifp->if_ierrors++;
goto tr_setup;
}
if (max_len > MCLBYTES) {
max_len = MCLBYTES;
}
real_len = (flags >> 16) & 0xfff;
if (real_len > max_len) {
DPRINTF("invalid length in RX "
"descriptor, %u bytes, received %u bytes\n",
real_len, max_len);
ifp->if_ierrors++;
goto tr_setup;
}
/* ieee80211_input() will check if the mbuf is too short */
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (m == NULL) {
DPRINTF("could not allocate mbuf\n");
ifp->if_ierrors++;
goto tr_setup;
}
usb2_copy_out(xfer->frbuffers, 0, m->m_data, max_len);
/* finalize mbuf */
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = real_len;
DPRINTF("real length=%d bytes\n", real_len);
rssi = URAL_RSSI(sc->sc_rx_desc.rssi);
if (bpf_peers_present(ifp->if_bpf)) {
struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate,
(sc->sc_rx_desc.flags & htole32(RAL_RX_OFDM)) ?
IEEE80211_T_OFDM : IEEE80211_T_CCK);
tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
tap->wr_antenna = sc->sc_rx_ant;
tap->wr_antsignal = rssi;
bpf_mtap2(ifp->if_bpf, tap, sc->sc_rxtap_len, m);
}
/* Strip trailing 802.11 MAC FCS. */
m_adj(m, -IEEE80211_CRC_LEN);
case USB_ST_SETUP:
tr_setup:
if (sc->sc_flags & URAL_FLAG_READ_STALL) {
usb2_transfer_start(sc->sc_xfer[3]);
} else {
xfer->frlengths[0] = xfer->max_data_length;
usb2_start_hardware(xfer);
}
/*
* At the end of a USB callback it is always safe to unlock
* the private mutex of a device! That is why we do the
* "ieee80211_input" here, and not some lines up!
*/
if (m) {
mtx_unlock(&sc->sc_mtx);
ni = ieee80211_find_rxnode(ic, (void *)(m->m_data));
if (ni) {
/* send the frame to the 802.11 layer */
if (ieee80211_input(ni, m, rssi, RAL_NOISE_FLOOR, 0)) {
/* ignore */
}
/* node is no longer needed */
ieee80211_free_node(ni);
} else {
/* broadcast */
if (ieee80211_input_all(ic, m, rssi, RAL_NOISE_FLOOR, 0)) {
/* ignore */
}
}
mtx_lock(&sc->sc_mtx);
}
return;
default: /* Error */
if (xfer->error != USB_ERR_CANCELLED) {
/* try to clear stall first */
sc->sc_flags |= URAL_FLAG_READ_STALL;
usb2_transfer_start(sc->sc_xfer[3]);
}
return;
}
}
static void
ural_bulk_read_clear_stall_callback(struct usb2_xfer *xfer)
{
struct ural_softc *sc = xfer->priv_sc;
struct usb2_xfer *xfer_other = sc->sc_xfer[1];
if (usb2_clear_stall_callback(xfer, xfer_other)) {
DPRINTF("stall cleared\n");
sc->sc_flags &= ~URAL_FLAG_READ_STALL;
usb2_transfer_start(xfer_other);
}
return;
}
static uint8_t
ural_plcp_signal(uint16_t rate)
{
; /* indent fix */
switch (rate) {
/* CCK rates (NB: not IEEE std, device-specific) */
case 2:
return (0x0);
case 4:
return (0x1);
case 11:
return (0x2);
case 22:
return (0x3);
/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
case 12:
return (0xb);
case 18:
return (0xf);
case 24:
return (0xa);
case 36:
return (0xe);
case 48:
return (0x9);
case 72:
return (0xd);
case 96:
return (0x8);
case 108:
return (0xc);
/* XXX unsupported/unknown rate */
default:
return (0xff);
}
}
/*
* We assume that "m->m_pkthdr.rcvif" is pointing to the "ni" that
* should be freed, when "ural_setup_desc_and_tx" is called.
*/
static void
ural_setup_desc_and_tx(struct ural_softc *sc, struct mbuf *m,
uint32_t flags, uint16_t rate)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct mbuf *mm;
enum ieee80211_phytype phytype;
uint16_t plcp_length;
uint16_t len;
uint8_t remainder;
DPRINTF("in\n");
if (sc->sc_tx_queue.ifq_len >= IFQ_MAXLEN) {
/* free packet */
ural_tx_freem(m);
ifp->if_oerrors++;
return;
}
if (!((sc->sc_flags & URAL_FLAG_LL_READY) &&
(sc->sc_flags & URAL_FLAG_HL_READY))) {
/* free packet */
ural_tx_freem(m);
ifp->if_oerrors++;
return;
}
if (rate < 2) {
DPRINTF("rate < 2!\n");
/* avoid division by zero */
rate = 2;
}
ic->ic_lastdata = ticks;
if (bpf_peers_present(ifp->if_bpf)) {
struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = rate;
tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
tap->wt_antenna = sc->sc_tx_ant;
bpf_mtap2(ifp->if_bpf, tap, sc->sc_txtap_len, m);
}
len = m->m_pkthdr.len;
sc->sc_tx_desc.flags = htole32(flags);
sc->sc_tx_desc.flags |= htole32(RAL_TX_NEWSEQ);
sc->sc_tx_desc.flags |= htole32(len << 16);
sc->sc_tx_desc.wme = htole16(RAL_AIFSN(2) |
RAL_LOGCWMIN(3) |
RAL_LOGCWMAX(5) |
RAL_IVOFFSET(sizeof(struct ieee80211_frame)));
/* setup PLCP fields */
sc->sc_tx_desc.plcp_signal = ural_plcp_signal(rate);
sc->sc_tx_desc.plcp_service = 4;
len += IEEE80211_CRC_LEN;
phytype = ieee80211_rate2phytype(sc->sc_rates, rate);
if (phytype == IEEE80211_T_OFDM) {
sc->sc_tx_desc.flags |= htole32(RAL_TX_OFDM);
plcp_length = len & 0xfff;
sc->sc_tx_desc.plcp_length_hi = plcp_length >> 6;
sc->sc_tx_desc.plcp_length_lo = plcp_length & 0x3f;
} else {
plcp_length = ((16 * len) + rate - 1) / rate;
if (rate == 22) {
remainder = (16 * len) % 22;
if ((remainder != 0) && (remainder < 7)) {
sc->sc_tx_desc.plcp_service |=
RAL_PLCP_LENGEXT;
}
}
sc->sc_tx_desc.plcp_length_hi = plcp_length >> 8;
sc->sc_tx_desc.plcp_length_lo = plcp_length & 0xff;
if ((rate != 2) && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) {
sc->sc_tx_desc.plcp_signal |= 0x08;
}
}
sc->sc_tx_desc.iv = 0;
sc->sc_tx_desc.eiv = 0;
if (sizeof(sc->sc_tx_desc) > MHLEN) {
DPRINTF("No room for header structure!\n");
ural_tx_freem(m);
return;
}
mm = m_gethdr(M_NOWAIT, MT_DATA);
if (mm == NULL) {
DPRINTF("Could not allocate header mbuf!\n");
ural_tx_freem(m);
return;
}
DPRINTF(" %zu %u (out)\n", sizeof(sc->sc_tx_desc), m->m_pkthdr.len);
bcopy(&sc->sc_tx_desc, mm->m_data, sizeof(sc->sc_tx_desc));
mm->m_len = sizeof(sc->sc_tx_desc);
mm->m_next = m;
mm->m_pkthdr.len = mm->m_len + m->m_pkthdr.len;
mm->m_pkthdr.rcvif = NULL;
/* start write transfer, if not started */
_IF_ENQUEUE(&sc->sc_tx_queue, mm);
usb2_transfer_start(sc->sc_xfer[0]);
return;
}
static void
ural_bulk_write_callback(struct usb2_xfer *xfer)
{
struct ural_softc *sc = xfer->priv_sc;
struct ifnet *ifp = sc->sc_ifp;
struct mbuf *m;
uint16_t temp_len;
uint8_t align;
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
DPRINTFN(11, "transfer complete, %d bytes\n", xfer->actlen);
ifp->if_opackets++;
case USB_ST_SETUP:
if (sc->sc_flags & URAL_FLAG_WRITE_STALL) {
usb2_transfer_start(sc->sc_xfer[2]);
break;
}
if (sc->sc_flags & URAL_FLAG_WAIT_COMMAND) {
/*
* don't send anything while a command is pending !
*/
break;
}
ural_fill_write_queue(sc);
_IF_DEQUEUE(&sc->sc_tx_queue, m);
if (m) {
if (m->m_pkthdr.len > (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE)) {
DPRINTFN(0, "data overflow, %u bytes\n",
m->m_pkthdr.len);
m->m_pkthdr.len = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE);
}
usb2_m_copy_in(xfer->frbuffers, 0,
m, 0, m->m_pkthdr.len);
/* compute transfer length */
temp_len = m->m_pkthdr.len;
/* make transfer length 16-bit aligned */
align = (temp_len & 1);
/* check if we need to add two extra bytes */
if (((temp_len + align) % 64) == 0) {
align += 2;
}
/* check if we need to align length */
if (align != 0) {
/* zero the extra bytes */
usb2_bzero(xfer->frbuffers, temp_len, align);
temp_len += align;
}
DPRINTFN(11, "sending frame len=%u xferlen=%u\n",
m->m_pkthdr.len, temp_len);
xfer->frlengths[0] = temp_len;
usb2_start_hardware(xfer);
/* free mbuf and node */
ural_tx_freem(m);
}
break;
default: /* Error */
DPRINTFN(11, "transfer error, %s\n",
usb2_errstr(xfer->error));
if (xfer->error != USB_ERR_CANCELLED) {
/* try to clear stall first */
sc->sc_flags |= URAL_FLAG_WRITE_STALL;
usb2_transfer_start(sc->sc_xfer[2]);
}
ifp->if_oerrors++;
break;
}
return;
}
static void
ural_bulk_write_clear_stall_callback(struct usb2_xfer *xfer)
{
struct ural_softc *sc = xfer->priv_sc;
struct usb2_xfer *xfer_other = sc->sc_xfer[0];
if (usb2_clear_stall_callback(xfer, xfer_other)) {
DPRINTF("stall cleared\n");
sc->sc_flags &= ~URAL_FLAG_WRITE_STALL;
usb2_transfer_start(xfer_other);
}
return;
}
static void
ural_watchdog(void *arg)
{
struct ural_softc *sc = arg;
mtx_assert(&sc->sc_mtx, MA_OWNED);
if (sc->sc_amrr_timer) {
usb2_config_td_queue_command
(&sc->sc_config_td, NULL,
&ural_cfg_amrr_timeout, 0, 0);
}
usb2_callout_reset(&sc->sc_watchdog,
hz, &ural_watchdog, sc);
mtx_unlock(&sc->sc_mtx);
return;
}
/*========================================================================*
* IF-net callbacks
*========================================================================*/
static void
ural_init_cb(void *arg)
{
struct ural_softc *sc = arg;
mtx_lock(&sc->sc_mtx);
usb2_config_td_queue_command
(&sc->sc_config_td, &ural_cfg_pre_init,
&ural_cfg_init, 0, 0);
mtx_unlock(&sc->sc_mtx);
return;
}
static int
ural_ioctl_cb(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct ural_softc *sc = ifp->if_softc;
struct ieee80211com *ic = ifp->if_l2com;
int error;
switch (cmd) {
case SIOCSIFFLAGS:
mtx_lock(&sc->sc_mtx);
if (ifp->if_flags & IFF_UP) {
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
usb2_config_td_queue_command
(&sc->sc_config_td, &ural_cfg_pre_init,
&ural_cfg_init, 0, 0);
}
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
usb2_config_td_queue_command
(&sc->sc_config_td, &ural_cfg_pre_stop,
&ural_cfg_stop, 0, 0);
}
}
mtx_unlock(&sc->sc_mtx);
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
error = ifmedia_ioctl(ifp, (void *)data, &ic->ic_media, cmd);
break;
default:
error = ether_ioctl(ifp, cmd, data);
}
return (error);
}
static void
ural_start_cb(struct ifnet *ifp)
{
struct ural_softc *sc = ifp->if_softc;
mtx_lock(&sc->sc_mtx);
/* start write transfer, if not started */
usb2_transfer_start(sc->sc_xfer[0]);
mtx_unlock(&sc->sc_mtx);
return;
}
static void
ural_cfg_newstate(struct ural_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
struct ural_vap *uvp = URAL_VAP(vap);
enum ieee80211_state ostate;
enum ieee80211_state nstate;
int arg;
ostate = vap->iv_state;
nstate = sc->sc_ns_state;
arg = sc->sc_ns_arg;
if (ostate == IEEE80211_S_INIT) {
/* We are leaving INIT. TSF sync should be off. */
ural_cfg_disable_tsf_sync(sc);
}
switch (nstate) {
case IEEE80211_S_INIT:
break;
case IEEE80211_S_RUN:
ural_cfg_set_run(sc, cc);
break;
default:
break;
}
mtx_unlock(&sc->sc_mtx);
IEEE80211_LOCK(ic);
uvp->newstate(vap, nstate, arg);
if (vap->iv_newstate_cb != NULL)
vap->iv_newstate_cb(vap, nstate, arg);
IEEE80211_UNLOCK(ic);
mtx_lock(&sc->sc_mtx);
return;
}
static int
ural_newstate_cb(struct ieee80211vap *vap,
enum ieee80211_state nstate, int arg)
{
struct ural_vap *uvp = URAL_VAP(vap);
struct ieee80211com *ic = vap->iv_ic;
struct ural_softc *sc = ic->ic_ifp->if_softc;
DPRINTF("setting new state: %d\n", nstate);
/* Special case - cannot defer this call and cannot block ! */
if (nstate == IEEE80211_S_INIT) {
/* stop timers */
mtx_lock(&sc->sc_mtx);
sc->sc_amrr_timer = 0;
mtx_unlock(&sc->sc_mtx);
return (uvp->newstate(vap, nstate, arg));
}
mtx_lock(&sc->sc_mtx);
if (usb2_config_td_is_gone(&sc->sc_config_td)) {
mtx_unlock(&sc->sc_mtx);
return (0); /* nothing to do */
}
/* store next state */
sc->sc_ns_state = nstate;
sc->sc_ns_arg = arg;
/* stop timers */
sc->sc_amrr_timer = 0;
/*
* USB configuration can only be done from the USB configuration
* thread:
*/
usb2_config_td_queue_command
(&sc->sc_config_td, &ural_config_copy,
&ural_cfg_newstate, 0, 0);
mtx_unlock(&sc->sc_mtx);
return (EINPROGRESS);
}
static void
ural_std_command(struct ieee80211com *ic, usb2_config_td_command_t *func)
{
struct ural_softc *sc = ic->ic_ifp->if_softc;
mtx_lock(&sc->sc_mtx);
sc->sc_rates = ieee80211_get_ratetable(ic->ic_curchan);
usb2_config_td_queue_command
(&sc->sc_config_td, &ural_config_copy, func, 0, 0);
mtx_unlock(&sc->sc_mtx);
return;
}
static void
ural_scan_start_cb(struct ieee80211com *ic)
{
ural_std_command(ic, &ural_cfg_scan_start);
return;
}
static void
ural_scan_end_cb(struct ieee80211com *ic)
{
ural_std_command(ic, &ural_cfg_scan_end);
return;
}
static void
ural_set_channel_cb(struct ieee80211com *ic)
{
ural_std_command(ic, &ural_cfg_set_chan);
return;
}
/*========================================================================*
* configure sub-routines, ural_cfg_xxx
*========================================================================*/
static void
ural_cfg_scan_start(struct ural_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
/* abort TSF synchronization */
ural_cfg_disable_tsf_sync(sc);
ural_cfg_set_bssid(sc, cc->if_broadcastaddr);
return;
}
static void
ural_cfg_scan_end(struct ural_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
/* enable TSF synchronization */
ural_cfg_enable_tsf_sync(sc, cc, 0);
ural_cfg_set_bssid(sc, cc->iv_bss.ni_bssid);
return;
}
static void
ural_cfg_set_chan(struct ural_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
enum {
N_RF5222 = (sizeof(ural_rf5222) / sizeof(ural_rf5222[0])),
};
uint32_t i;
uint32_t chan;
uint8_t power;
uint8_t tmp;
chan = cc->ic_curchan.chan_to_ieee;
if ((chan == 0) ||
(chan == IEEE80211_CHAN_ANY)) {
/* nothing to do */
return;
}
if (cc->ic_curchan.chan_is_2ghz)
power = min(sc->sc_txpow[chan - 1], 31);
else
power = 31;
/* adjust txpower using ifconfig settings */
power -= (100 - cc->ic_txpowlimit) / 8;
DPRINTFN(3, "setting channel to %u, "
"tx-power to %u\n", chan, power);
switch (sc->sc_rf_rev) {
case RAL_RF_2522:
ural_cfg_rf_write(sc, RAL_RF1, 0x00814);
ural_cfg_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
ural_cfg_rf_write(sc, RAL_RF3, (power << 7) | 0x00040);
break;
case RAL_RF_2523:
ural_cfg_rf_write(sc, RAL_RF1, 0x08804);
ural_cfg_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
ural_cfg_rf_write(sc, RAL_RF3, (power << 7) | 0x38044);
ural_cfg_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
break;
case RAL_RF_2524:
ural_cfg_rf_write(sc, RAL_RF1, 0x0c808);
ural_cfg_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
ural_cfg_rf_write(sc, RAL_RF3, (power << 7) | 0x00040);
ural_cfg_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
break;
case RAL_RF_2525:
ural_cfg_rf_write(sc, RAL_RF1, 0x08808);
ural_cfg_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
ural_cfg_rf_write(sc, RAL_RF3, (power << 7) | 0x18044);
ural_cfg_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
ural_cfg_rf_write(sc, RAL_RF1, 0x08808);
ural_cfg_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
ural_cfg_rf_write(sc, RAL_RF3, (power << 7) | 0x18044);
ural_cfg_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
break;
case RAL_RF_2525E:
ural_cfg_rf_write(sc, RAL_RF1, 0x08808);
ural_cfg_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
ural_cfg_rf_write(sc, RAL_RF3, (power << 7) | 0x18044);
ural_cfg_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
break;
case RAL_RF_2526:
ural_cfg_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
ural_cfg_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
ural_cfg_rf_write(sc, RAL_RF1, 0x08804);
ural_cfg_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
ural_cfg_rf_write(sc, RAL_RF3, (power << 7) | 0x18044);
ural_cfg_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
break;
/* dual-band RF */
case RAL_RF_5222:
for (i = 0; i < N_RF5222; i++) {
if (ural_rf5222[i].chan == chan) {
ural_cfg_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
ural_cfg_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
ural_cfg_rf_write(sc, RAL_RF3, (power << 7) | 0x00040);
ural_cfg_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
break;
}
}
break;
}
if ((cc->ic_opmode != IEEE80211_M_MONITOR) &&
(!(cc->ic_flags & IEEE80211_F_SCAN))) {
/* set Japan filter bit for channel 14 */
tmp = ural_cfg_bbp_read(sc, 70);
if (chan == 14) {
tmp |= RAL_JAPAN_FILTER;
} else {
tmp &= ~RAL_JAPAN_FILTER;
}
ural_cfg_bbp_write(sc, 70, tmp);
/* clear CRC errors */
ural_cfg_read(sc, RAL_STA_CSR0);
ural_cfg_disable_rf_tune(sc);
}
/* update basic rate set */
if (cc->ic_curchan.chan_is_b) {
/* 11b basic rates: 1, 2Mbps */
ural_cfg_write(sc, RAL_TXRX_CSR11, 0x3);
} else if (cc->ic_curchan.chan_is_a) {
/* 11a basic rates: 6, 12, 24Mbps */
ural_cfg_write(sc, RAL_TXRX_CSR11, 0x150);
} else {
/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
ural_cfg_write(sc, RAL_TXRX_CSR11, 0x15f);
}
/* wait a little */
if (usb2_config_td_sleep(&sc->sc_config_td, hz / 100)) {
return;
}
return;
}
static void
ural_cfg_set_run(struct ural_softc *sc,
struct usb2_config_td_cc *cc)
{
if (cc->ic_opmode != IEEE80211_M_MONITOR) {
ural_cfg_update_slot(sc, cc, 0);
ural_cfg_set_txpreamble(sc, cc, 0);
/* update basic rate set */
if (cc->ic_bsschan.chan_is_5ghz) {
/* 11a basic rates: 6, 12, 24Mbps */
ural_cfg_write(sc, RAL_TXRX_CSR11, 0x150);
} else if (cc->ic_bsschan.chan_is_g) {
/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
ural_cfg_write(sc, RAL_TXRX_CSR11, 0x15f);
} else {
/* 11b basic rates: 1, 2Mbps */
ural_cfg_write(sc, RAL_TXRX_CSR11, 0x3);
}
ural_cfg_set_bssid(sc, cc->iv_bss.ni_bssid);
}
if ((cc->ic_opmode == IEEE80211_M_HOSTAP) ||
(cc->ic_opmode == IEEE80211_M_IBSS)) {
ural_tx_bcn(sc);
}
/* make tx led blink on tx (controlled by ASIC) */
ural_cfg_write(sc, RAL_MAC_CSR20, 1);
if (cc->ic_opmode != IEEE80211_M_MONITOR) {
ural_cfg_enable_tsf_sync(sc, cc, 0);
}
/* clear statistic registers (STA_CSR0 to STA_CSR10) */
ural_cfg_read_multi(sc, RAL_STA_CSR0, sc->sc_sta, sizeof(sc->sc_sta));
if (cc->iv_bss.fixed_rate_none) {
/* enable automatic rate adaptation */
ural_cfg_amrr_start(sc);
}
return;
}
/*------------------------------------------------------------------------*
* ural_cfg_disable_rf_tune - disable RF auto-tuning
*------------------------------------------------------------------------*/
static void
ural_cfg_disable_rf_tune(struct ural_softc *sc)
{
uint32_t tmp;
if (sc->sc_rf_rev != RAL_RF_2523) {
tmp = sc->sc_rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
ural_cfg_rf_write(sc, RAL_RF1, tmp);
}
tmp = sc->sc_rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
ural_cfg_rf_write(sc, RAL_RF3, tmp);
DPRINTFN(3, "disabling RF autotune\n");
return;
}
/*------------------------------------------------------------------------*
* ural_cfg_enable_tsf_sync - refer to IEEE Std 802.11-1999 pp. 123
* for more information on TSF synchronization
*------------------------------------------------------------------------*/
static void
ural_cfg_enable_tsf_sync(struct ural_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
uint16_t logcwmin;
uint16_t preload;
uint16_t tmp;
/* first, disable TSF synchronization */
ural_cfg_write(sc, RAL_TXRX_CSR19, 0);
tmp = (16 * cc->iv_bss.ni_intval) << 4;
ural_cfg_write(sc, RAL_TXRX_CSR18, tmp);
logcwmin = (cc->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
preload = (cc->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
tmp = (logcwmin << 12) | preload;
ural_cfg_write(sc, RAL_TXRX_CSR20, tmp);
/* finally, enable TSF synchronization */
tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
if (cc->ic_opmode == IEEE80211_M_STA)
tmp |= RAL_ENABLE_TSF_SYNC(1);
else
tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
ural_cfg_write(sc, RAL_TXRX_CSR19, tmp);
DPRINTF("enabling TSF synchronization\n");
return;
}
static void
ural_cfg_disable_tsf_sync(struct ural_softc *sc)
{
/* abort TSF synchronization */
ural_cfg_write(sc, RAL_TXRX_CSR19, 0);
/* force tx led to stop blinking */
ural_cfg_write(sc, RAL_MAC_CSR20, 0);
return;
}
#define RAL_RXTX_TURNAROUND 5 /* us */
static void
ural_cfg_update_slot(struct ural_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
uint16_t slottime;
uint16_t sifs;
uint16_t eifs;
slottime = (cc->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
/*
* These settings may sound a bit inconsistent but this is what the
* reference driver does.
*/
if (cc->ic_curmode == IEEE80211_MODE_11B) {
sifs = 16 - RAL_RXTX_TURNAROUND;
eifs = 364;
} else {
sifs = 10 - RAL_RXTX_TURNAROUND;
eifs = 64;
}
ural_cfg_write(sc, RAL_MAC_CSR10, slottime);
ural_cfg_write(sc, RAL_MAC_CSR11, sifs);
ural_cfg_write(sc, RAL_MAC_CSR12, eifs);
return;
}
static void
ural_cfg_set_txpreamble(struct ural_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
uint16_t tmp;
tmp = ural_cfg_read(sc, RAL_TXRX_CSR10);
if (cc->ic_flags & IEEE80211_F_SHPREAMBLE) {
tmp |= RAL_SHORT_PREAMBLE;
} else {
tmp &= ~RAL_SHORT_PREAMBLE;
}
ural_cfg_write(sc, RAL_TXRX_CSR10, tmp);
return;
}
static void
ural_cfg_set_bssid(struct ural_softc *sc, uint8_t *bssid)
{
ural_cfg_write_multi(sc, RAL_MAC_CSR5, bssid, IEEE80211_ADDR_LEN);
DPRINTF("setting BSSID to 0x%02x%02x%02x%02x%02x%02x\n",
bssid[5], bssid[4], bssid[3],
bssid[2], bssid[1], bssid[0]);
return;
}
static void
ural_cfg_set_macaddr(struct ural_softc *sc, uint8_t *addr)
{
ural_cfg_write_multi(sc, RAL_MAC_CSR2, addr, IEEE80211_ADDR_LEN);
DPRINTF("setting MAC to 0x%02x%02x%02x%02x%02x%02x\n",
addr[5], addr[4], addr[3],
addr[2], addr[1], addr[0]);
return;
}
static void
ural_cfg_update_promisc(struct ural_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
uint16_t tmp;
tmp = ural_cfg_read(sc, RAL_TXRX_CSR2);
if (cc->if_flags & IFF_PROMISC) {
tmp &= ~RAL_DROP_NOT_TO_ME;
} else {
tmp |= RAL_DROP_NOT_TO_ME;
}
ural_cfg_write(sc, RAL_TXRX_CSR2, tmp);
DPRINTF("%s promiscuous mode\n",
(cc->if_flags & IFF_PROMISC) ?
"entering" : "leaving");
return;
}
static void
ural_cfg_set_txantenna(struct ural_softc *sc, uint8_t antenna)
{
uint16_t tmp;
uint8_t tx;
tx = ural_cfg_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
if (antenna == 1)
tx |= RAL_BBP_ANTA;
else if (antenna == 2)
tx |= RAL_BBP_ANTB;
else
tx |= RAL_BBP_DIVERSITY;
/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
if ((sc->sc_rf_rev == RAL_RF_2525E) ||
(sc->sc_rf_rev == RAL_RF_2526) ||
(sc->sc_rf_rev == RAL_RF_5222)) {
tx |= RAL_BBP_FLIPIQ;
}
ural_cfg_bbp_write(sc, RAL_BBP_TX, tx);
/* update values in PHY_CSR5 and PHY_CSR6 */
tmp = ural_cfg_read(sc, RAL_PHY_CSR5) & ~0x7;
ural_cfg_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
tmp = ural_cfg_read(sc, RAL_PHY_CSR6) & ~0x7;
ural_cfg_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
return;
}
static void
ural_cfg_set_rxantenna(struct ural_softc *sc, uint8_t antenna)
{
uint8_t rx;
rx = ural_cfg_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
if (antenna == 1)
rx |= RAL_BBP_ANTA;
else if (antenna == 2)
rx |= RAL_BBP_ANTB;
else
rx |= RAL_BBP_DIVERSITY;
/* need to force no I/Q flip for RF 2525e and 2526 */
if ((sc->sc_rf_rev == RAL_RF_2525E) ||
(sc->sc_rf_rev == RAL_RF_2526)) {
rx &= ~RAL_BBP_FLIPIQ;
}
ural_cfg_bbp_write(sc, RAL_BBP_RX, rx);
return;
}
static void
ural_cfg_read_eeprom(struct ural_softc *sc)
{
uint16_t val;
ural_cfg_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
val = le16toh(val);
sc->sc_rf_rev = (val >> 11) & 0x7;
sc->sc_hw_radio = (val >> 10) & 0x1;
sc->sc_led_mode = (val >> 6) & 0x7;
sc->sc_rx_ant = (val >> 4) & 0x3;
sc->sc_tx_ant = (val >> 2) & 0x3;
sc->sc_nb_ant = (val & 0x3);
DPRINTF("val = 0x%04x\n", val);
/* read MAC address */
ural_cfg_eeprom_read(sc, RAL_EEPROM_ADDRESS, sc->sc_myaddr,
sizeof(sc->sc_myaddr));
/* read default values for BBP registers */
ural_cfg_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->sc_bbp_prom,
sizeof(sc->sc_bbp_prom));
/* read Tx power for all b/g channels */
ural_cfg_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->sc_txpow,
sizeof(sc->sc_txpow));
return;
}
static uint8_t
ural_cfg_bbp_init(struct ural_softc *sc)
{
enum {
N_DEF_BBP = (sizeof(ural_def_bbp) / sizeof(ural_def_bbp[0])),
};
uint16_t i;
uint8_t to;
/* wait for BBP to become ready */
for (to = 0;; to++) {
if (to < 100) {
if (ural_cfg_bbp_read(sc, RAL_BBP_VERSION) != 0) {
break;
}
if (usb2_config_td_sleep(&sc->sc_config_td, hz / 100)) {
return (1); /* failure */
}
} else {
DPRINTF("timeout waiting for BBP\n");
return (1); /* failure */
}
}
/* initialize BBP registers to default values */
for (i = 0; i < N_DEF_BBP; i++) {
ural_cfg_bbp_write(sc, ural_def_bbp[i].reg,
ural_def_bbp[i].val);
}
#if 0
/* initialize BBP registers to values stored in EEPROM */
for (i = 0; i < 16; i++) {
if (sc->sc_bbp_prom[i].reg == 0xff) {
continue;
}
ural_cfg_bbp_write(sc, sc->sc_bbp_prom[i].reg,
sc->sc_bbp_prom[i].val);
}
#endif
return (0); /* success */
}
static void
ural_cfg_pre_init(struct ural_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
/* immediate configuration */
ural_cfg_pre_stop(sc, cc, 0);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
sc->sc_flags |= URAL_FLAG_HL_READY;
IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
return;
}
static void
ural_cfg_init(struct ural_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
enum {
N_DEF_MAC = (sizeof(ural_def_mac) / sizeof(ural_def_mac[0])),
};
uint16_t tmp;
uint16_t i;
uint8_t to;
/* delayed configuration */
ural_cfg_set_testmode(sc);
ural_cfg_write(sc, 0x308, 0x00f0); /* XXX magic */
ural_cfg_stop(sc, cc, 0);
/* initialize MAC registers to default values */
for (i = 0; i < N_DEF_MAC; i++) {
ural_cfg_write(sc, ural_def_mac[i].reg,
ural_def_mac[i].val);
}
/* wait for BBP and RF to wake up (this can take a long time!) */
for (to = 0;; to++) {
if (to < 100) {
tmp = ural_cfg_read(sc, RAL_MAC_CSR17);
if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
(RAL_BBP_AWAKE | RAL_RF_AWAKE)) {
break;
}
if (usb2_config_td_sleep(&sc->sc_config_td, hz / 100)) {
goto fail;
}
} else {
DPRINTF("timeout waiting for "
"BBP/RF to wakeup\n");
goto fail;
}
}
/* we're ready! */
ural_cfg_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
/* set basic rate set (will be updated later) */
ural_cfg_write(sc, RAL_TXRX_CSR11, 0x15f);
if (ural_cfg_bbp_init(sc)) {
goto fail;
}
/* set default BSS channel */
ural_cfg_set_chan(sc, cc, 0);
/* clear statistic registers (STA_CSR0 to STA_CSR10) */
ural_cfg_read_multi(sc, RAL_STA_CSR0, sc->sc_sta,
sizeof(sc->sc_sta));
DPRINTF("rx_ant=%d, tx_ant=%d\n",
sc->sc_rx_ant, sc->sc_tx_ant);
ural_cfg_set_txantenna(sc, sc->sc_tx_ant);
ural_cfg_set_rxantenna(sc, sc->sc_rx_ant);
ural_cfg_set_macaddr(sc, cc->ic_myaddr);
/*
* make sure that the first transaction
* clears the stall:
*/
sc->sc_flags |= (URAL_FLAG_READ_STALL |
URAL_FLAG_WRITE_STALL |
URAL_FLAG_LL_READY);
if ((sc->sc_flags & URAL_FLAG_LL_READY) &&
(sc->sc_flags & URAL_FLAG_HL_READY)) {
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
/*
* start the USB transfers, if not already started:
*/
usb2_transfer_start(sc->sc_xfer[1]);
usb2_transfer_start(sc->sc_xfer[0]);
/*
* start IEEE802.11 layer
*/
mtx_unlock(&sc->sc_mtx);
ieee80211_start_all(ic);
mtx_lock(&sc->sc_mtx);
}
/*
* start Rx
*/
tmp = RAL_DROP_PHY | RAL_DROP_CRC;
if (cc->ic_opmode != IEEE80211_M_MONITOR) {
tmp |= (RAL_DROP_CTL | RAL_DROP_BAD_VERSION);
if (cc->ic_opmode != IEEE80211_M_HOSTAP) {
tmp |= RAL_DROP_TODS;
}
if (!(cc->if_flags & IFF_PROMISC)) {
tmp |= RAL_DROP_NOT_TO_ME;
}
}
ural_cfg_write(sc, RAL_TXRX_CSR2, tmp);
return;
fail:
ural_cfg_pre_stop(sc, NULL, 0);
if (cc) {
ural_cfg_stop(sc, cc, 0);
}
return;
}
static void
ural_cfg_pre_stop(struct ural_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
struct ifnet *ifp = sc->sc_ifp;
if (cc) {
/* copy the needed configuration */
ural_config_copy(sc, cc, refcount);
}
/* immediate configuration */
if (ifp) {
/* clear flags */
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
}
sc->sc_flags &= ~(URAL_FLAG_HL_READY |
URAL_FLAG_LL_READY);
/*
* stop all the transfers, if not already stopped:
*/
usb2_transfer_stop(sc->sc_xfer[0]);
usb2_transfer_stop(sc->sc_xfer[1]);
usb2_transfer_stop(sc->sc_xfer[2]);
usb2_transfer_stop(sc->sc_xfer[3]);
/* clean up transmission */
ural_tx_clean_queue(sc);
return;
}
static void
ural_cfg_stop(struct ural_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
/* disable Rx */
ural_cfg_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
/* reset ASIC and BBP (but won't reset MAC registers!) */
ural_cfg_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
/* wait a little */
usb2_config_td_sleep(&sc->sc_config_td, hz / 10);
/* clear reset */
ural_cfg_write(sc, RAL_MAC_CSR1, 0);
/* wait a little */
usb2_config_td_sleep(&sc->sc_config_td, hz / 10);
return;
}
static void
ural_cfg_amrr_start(struct ural_softc *sc)
{
struct ieee80211vap *vap;
struct ieee80211_node *ni;
vap = ural_get_vap(sc);
if (vap == NULL) {
return;
}
ni = vap->iv_bss;
if (ni == NULL) {
return;
}
/* init AMRR */
ieee80211_amrr_node_init(&URAL_VAP(vap)->amrr, &URAL_NODE(ni)->amn, ni);
/* enable AMRR timer */
sc->sc_amrr_timer = 1;
return;
}
static void
ural_cfg_amrr_timeout(struct ural_softc *sc,
struct usb2_config_td_cc *cc, uint16_t refcount)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211vap *vap;
struct ieee80211_node *ni;
uint32_t ok;
uint32_t fail;
/* read and clear statistic registers (STA_CSR0 to STA_CSR10) */
ural_cfg_read_multi(sc, RAL_STA_CSR0, sc->sc_sta, sizeof(sc->sc_sta));
vap = ural_get_vap(sc);
if (vap == NULL) {
return;
}
ni = vap->iv_bss;
if (ni == NULL) {
return;
}
if ((sc->sc_flags & URAL_FLAG_LL_READY) &&
(sc->sc_flags & URAL_FLAG_HL_READY)) {
ok = sc->sc_sta[7] + /* TX ok w/o retry */
sc->sc_sta[8]; /* TX ok w/ retry */
fail = sc->sc_sta[9]; /* TX retry-fail count */
if (sc->sc_amrr_timer) {
ieee80211_amrr_tx_update(&URAL_NODE(ni)->amn,
ok + fail, ok, sc->sc_sta[8] + fail);
if (ieee80211_amrr_choose(ni, &URAL_NODE(ni)->amn)) {
/* ignore */
}
}
ifp->if_oerrors += fail;
}
return;
}
static struct ieee80211vap *
ural_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
int opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
const uint8_t mac[IEEE80211_ADDR_LEN])
{
struct ural_vap *uvp;
struct ieee80211vap *vap;
struct ural_softc *sc = ic->ic_ifp->if_softc;
/* Need to sync with config thread: */
mtx_lock(&sc->sc_mtx);
if (usb2_config_td_sync(&sc->sc_config_td)) {
mtx_unlock(&sc->sc_mtx);
/* config thread is gone */
return (NULL);
}
mtx_unlock(&sc->sc_mtx);
if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */
return NULL;
uvp = (struct ural_vap *)malloc(sizeof(struct ural_vap),
M_80211_VAP, M_NOWAIT | M_ZERO);
if (uvp == NULL)
return NULL;
vap = &uvp->vap;
/* enable s/w bmiss handling for sta mode */
ieee80211_vap_setup(ic, vap, name, unit, opmode,
flags | IEEE80211_CLONE_NOBEACONS, bssid, mac);
/* override state transition machine */
uvp->newstate = vap->iv_newstate;
vap->iv_newstate = &ural_newstate_cb;
ieee80211_amrr_init(&uvp->amrr, vap,
IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD,
1000 /* 1 sec */ );
/* complete setup */
ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
/* store current operation mode */
ic->ic_opmode = opmode;
return (vap);
}
static void
ural_vap_delete(struct ieee80211vap *vap)
{
struct ural_vap *uvp = URAL_VAP(vap);
struct ural_softc *sc = vap->iv_ic->ic_ifp->if_softc;
/* Need to sync with config thread: */
mtx_lock(&sc->sc_mtx);
if (usb2_config_td_sync(&sc->sc_config_td)) {
/* ignore */
}
mtx_unlock(&sc->sc_mtx);
ieee80211_amrr_cleanup(&uvp->amrr);
ieee80211_vap_detach(vap);
free(uvp, M_80211_VAP);
return;
}
/* ARGUSED */
static struct ieee80211_node *
ural_node_alloc(struct ieee80211vap *vap __unused,
const uint8_t mac[IEEE80211_ADDR_LEN] __unused)
{
struct ural_node *un;
un = malloc(sizeof(struct ural_node), M_80211_NODE, M_NOWAIT | M_ZERO);
return ((un != NULL) ? &un->ni : NULL);
}
static void
ural_newassoc(struct ieee80211_node *ni, int isnew)
{
struct ieee80211vap *vap = ni->ni_vap;
ieee80211_amrr_node_init(&URAL_VAP(vap)->amrr, &URAL_NODE(ni)->amn, ni);
return;
}
static void
ural_fill_write_queue(struct ural_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211_node *ni;
struct mbuf *m;
/*
* We only fill up half of the queue with data frames. The rest is
* reserved for other kinds of frames.
*/
while (sc->sc_tx_queue.ifq_len < (IFQ_MAXLEN / 2)) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
ni = (void *)(m->m_pkthdr.rcvif);
m = ieee80211_encap(ni, m);
if (m == NULL) {
ieee80211_free_node(ni);
continue;
}
ural_tx_data(sc, m, ni);
}
return;
}
static void
ural_tx_clean_queue(struct ural_softc *sc)
{
struct mbuf *m;
for (;;) {
_IF_DEQUEUE(&sc->sc_tx_queue, m);
if (!m) {
break;
}
ural_tx_freem(m);
}
return;
}
static void
ural_tx_freem(struct mbuf *m)
{
struct ieee80211_node *ni;
while (m) {
ni = (void *)(m->m_pkthdr.rcvif);
if (!ni) {
m = m_free(m);
continue;
}
if (m->m_flags & M_TXCB) {
ieee80211_process_callback(ni, m, 0);
}
m_freem(m);
ieee80211_free_node(ni);
break;
}
return;
}
static void
ural_tx_mgt(struct ural_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
const struct ieee80211_txparam *tp;
struct ieee80211_frame *wh;
struct ieee80211_key *k;
uint32_t flags;
uint16_t dur;
tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
wh = mtod(m, struct ieee80211_frame *);
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ni, m);
if (k == NULL) {
m_freem(m);
ieee80211_free_node(ni);
return;
}
wh = mtod(m, struct ieee80211_frame *);
}
flags = 0;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
flags |= RAL_TX_ACK;
dur = ieee80211_ack_duration(sc->sc_rates, tp->mgmtrate,
ic->ic_flags & IEEE80211_F_SHPREAMBLE);
USETW(wh->i_dur, dur);
/* tell hardware to add timestamp for probe responses */
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
IEEE80211_FC0_TYPE_MGT &&
(wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
IEEE80211_FC0_SUBTYPE_PROBE_RESP)
flags |= RAL_TX_TIMESTAMP;
}
m->m_pkthdr.rcvif = (void *)ni;
ural_setup_desc_and_tx(sc, m, flags, tp->mgmtrate);
return;
}
static struct ieee80211vap *
ural_get_vap(struct ural_softc *sc)
{
struct ifnet *ifp;
struct ieee80211com *ic;
if (sc == NULL) {
return NULL;
}
ifp = sc->sc_ifp;
if (ifp == NULL) {
return NULL;
}
ic = ifp->if_l2com;
if (ic == NULL) {
return NULL;
}
return TAILQ_FIRST(&ic->ic_vaps);
}
static void
ural_tx_bcn(struct ural_softc *sc)
{
struct ieee80211_node *ni;
struct ieee80211vap *vap;
struct ieee80211com *ic;
const struct ieee80211_txparam *tp;
struct mbuf *m;
vap = ural_get_vap(sc);
if (vap == NULL) {
return;
}
ni = vap->iv_bss;
if (ni == NULL) {
return;
}
ic = vap->iv_ic;
if (ic == NULL) {
return;
}
DPRINTFN(11, "Sending beacon frame.\n");
m = ieee80211_beacon_alloc(ni, &URAL_VAP(vap)->bo);
if (m == NULL) {
DPRINTFN(0, "could not allocate beacon\n");
return;
}
tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)];
m->m_pkthdr.rcvif = (void *)ieee80211_ref_node(ni);
ural_setup_desc_and_tx(sc, m, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
tp->mgmtrate);
return;
}
static void
ural_tx_data(struct ural_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
const struct ieee80211_txparam *tp;
struct ieee80211_frame *wh;
struct ieee80211_key *k;
uint32_t flags = 0;
uint16_t dur;
uint16_t rate;
DPRINTFN(11, "Sending data.\n");
wh = mtod(m, struct ieee80211_frame *);
tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
if (IEEE80211_IS_MULTICAST(wh->i_addr1))
rate = tp->mcastrate;
else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
rate = tp->ucastrate;
else
rate = ni->ni_txrate;
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ni, m);
if (k == NULL) {
m_freem(m);
ieee80211_free_node(ni);
return;
}
/* packet header may have moved, reset our local pointer */
wh = mtod(m, struct ieee80211_frame *);
}
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
uint8_t prot = IEEE80211_PROT_NONE;
if (m->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
prot = IEEE80211_PROT_RTSCTS;
else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM)
prot = ic->ic_protmode;
if (prot != IEEE80211_PROT_NONE) {
ural_tx_prot(sc, m, ni, prot, rate);
flags |= RAL_TX_IFS_SIFS;
}
flags |= RAL_TX_ACK;
flags |= RAL_TX_RETRY(7);
dur = ieee80211_ack_duration(sc->sc_rates, rate,
ic->ic_flags & IEEE80211_F_SHPREAMBLE);
USETW(wh->i_dur, dur);
}
m->m_pkthdr.rcvif = (void *)ni;
ural_setup_desc_and_tx(sc, m, flags, rate);
return;
}
static void
ural_tx_prot(struct ural_softc *sc,
const struct mbuf *m, struct ieee80211_node *ni,
uint8_t prot, uint16_t rate)
{
struct ieee80211com *ic = ni->ni_ic;
const struct ieee80211_frame *wh;
struct mbuf *mprot;
uint32_t flags;
uint16_t protrate;
uint16_t ackrate;
uint16_t pktlen;
uint16_t dur;
uint8_t isshort;
KASSERT((prot == IEEE80211_PROT_RTSCTS) ||
(prot == IEEE80211_PROT_CTSONLY),
("protection %u", prot));
DPRINTFN(16, "Sending protection frame.\n");
wh = mtod(m, const struct ieee80211_frame *);
pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
protrate = ieee80211_ctl_rate(sc->sc_rates, rate);
ackrate = ieee80211_ack_rate(sc->sc_rates, rate);
isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
dur = ieee80211_compute_duration(sc->sc_rates, pktlen, rate, isshort);
+ieee80211_ack_duration(sc->sc_rates, rate, isshort);
flags = RAL_TX_RETRY(7);
if (prot == IEEE80211_PROT_RTSCTS) {
/* NB: CTS is the same size as an ACK */
dur += ieee80211_ack_duration(sc->sc_rates, rate, isshort);
flags |= RAL_TX_ACK;
mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
} else {
mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
}
if (mprot == NULL) {
return;
}
mprot->m_pkthdr.rcvif = (void *)ieee80211_ref_node(ni);
ural_setup_desc_and_tx(sc, mprot, flags, protrate);
return;
}
static void
ural_tx_raw(struct ural_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
const struct ieee80211_bpf_params *params)
{
uint32_t flags;
uint16_t rate;
DPRINTFN(11, "Sending raw frame.\n");
rate = params->ibp_rate0 & IEEE80211_RATE_VAL;
/* XXX validate */
if (rate == 0) {
m_freem(m);
ieee80211_free_node(ni);
return;
}
flags = 0;
if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
flags |= RAL_TX_ACK;
if (params->ibp_flags & (IEEE80211_BPF_RTS | IEEE80211_BPF_CTS)) {
ural_tx_prot(sc, m, ni,
(params->ibp_flags & IEEE80211_BPF_RTS) ?
IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
rate);
flags |= RAL_TX_IFS_SIFS;
}
m->m_pkthdr.rcvif = (void *)ni;
ural_setup_desc_and_tx(sc, m, flags, rate);
return;
}
static int
ural_raw_xmit_cb(struct ieee80211_node *ni, struct mbuf *m,
const struct ieee80211_bpf_params *params)
{
struct ieee80211com *ic = ni->ni_ic;
struct ifnet *ifp = ic->ic_ifp;
struct ural_softc *sc = ifp->if_softc;
mtx_lock(&sc->sc_mtx);
if (params == NULL) {
/*
* Legacy path; interpret frame contents to decide
* precisely how to send the frame.
*/
ural_tx_mgt(sc, m, ni);
} else {
/*
* Caller supplied explicit parameters to use in
* sending the frame.
*/
ural_tx_raw(sc, m, ni, params);
}
mtx_unlock(&sc->sc_mtx);
return (0);
}
static void
ural_update_mcast_cb(struct ifnet *ifp)
{
/* not supported */
return;
}
static void
ural_update_promisc_cb(struct ifnet *ifp)
{
struct ural_softc *sc = ifp->if_softc;
mtx_lock(&sc->sc_mtx);
usb2_config_td_queue_command
(&sc->sc_config_td, &ural_config_copy,
&ural_cfg_update_promisc, 0, 0);
mtx_unlock(&sc->sc_mtx);
return;
}