freebsd-nq/sys/contrib/octeon-sdk/cvmx-flash.c
Juli Mallett dc4ee6ca91 Merge the Cavium Octeon SDK 2.3.0 Simple Executive code and update FreeBSD to
make use of it where possible.

This primarily brings in support for newer hardware, and FreeBSD is not yet
able to support the abundance of IRQs on new hardware and many features in the
Ethernet driver.

Because of the changes to IRQs in the Simple Executive, we have to maintain our
own list of Octeon IRQs now, which probably can be pared-down and be specific
to the CIU interrupt unit soon, and when other interrupt mechanisms are added
they can maintain their own definitions.

Remove unmasking of interrupts from within the UART device now that the
function used is no longer present in the Simple Executive.  The unmasking
seems to have been gratuitous as this is more properly handled by the buses
above the UART device, and seems to work on that basis.
2012-03-11 06:17:49 +00:00

675 lines
22 KiB
C

/***********************license start***************
* Copyright (c) 2003-2010 Cavium Inc. (support@cavium.com). All rights
* reserved.
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Cavium Inc. nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
* This Software, including technical data, may be subject to U.S. export control
* laws, including the U.S. Export Administration Act and its associated
* regulations, and may be subject to export or import regulations in other
* countries.
* TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
* AND WITH ALL FAULTS AND CAVIUM INC. MAKES NO PROMISES, REPRESENTATIONS OR
* WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
* THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR
* DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
* SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
* MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
* VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
* CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
* PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
***********************license end**************************************/
/**
* @file
*
* This file provides bootbus flash operations
*
* <hr>$Revision: 70030 $<hr>
*
*
*/
#include "cvmx-config.h"
#include "cvmx.h"
#include "cvmx-sysinfo.h"
#include "cvmx-spinlock.h"
#include "cvmx-flash.h"
#define MAX_NUM_FLASH_CHIPS 8 /* Maximum number of flash chips */
#define MAX_NUM_REGIONS 8 /* Maximum number of block regions per chip */
#define DEBUG 1
#define CFI_CMDSET_NONE 0
#define CFI_CMDSET_INTEL_EXTENDED 1
#define CFI_CMDSET_AMD_STANDARD 2
#define CFI_CMDSET_INTEL_STANDARD 3
#define CFI_CMDSET_AMD_EXTENDED 4
#define CFI_CMDSET_MITSU_STANDARD 256
#define CFI_CMDSET_MITSU_EXTENDED 257
#define CFI_CMDSET_SST 258
typedef struct
{
void * base_ptr; /**< Memory pointer to start of flash */
int is_16bit; /**< Chip is 16bits wide in 8bit mode */
uint16_t vendor; /**< Vendor ID of Chip */
int size; /**< Size of the chip in bytes */
uint64_t erase_timeout; /**< Erase timeout in cycles */
uint64_t write_timeout; /**< Write timeout in cycles */
int num_regions; /**< Number of block regions */
cvmx_flash_region_t region[MAX_NUM_REGIONS];
} cvmx_flash_t;
static CVMX_SHARED cvmx_flash_t flash_info[MAX_NUM_FLASH_CHIPS];
static CVMX_SHARED cvmx_spinlock_t flash_lock = CVMX_SPINLOCK_UNLOCKED_INITIALIZER;
/**
* @INTERNAL
* Read a byte from flash
*
* @param chip_id Chip to read from
* @param offset Offset into the chip
* @return Value read
*/
static uint8_t __cvmx_flash_read8(int chip_id, int offset)
{
return *(volatile uint8_t *)(flash_info[chip_id].base_ptr + offset);
}
/**
* @INTERNAL
* Read a byte from flash (for commands)
*
* @param chip_id Chip to read from
* @param offset Offset into the chip
* @return Value read
*/
static uint8_t __cvmx_flash_read_cmd(int chip_id, int offset)
{
if (flash_info[chip_id].is_16bit)
offset<<=1;
return __cvmx_flash_read8(chip_id, offset);
}
/**
* @INTERNAL
* Read 16bits from flash (for commands)
*
* @param chip_id Chip to read from
* @param offset Offset into the chip
* @return Value read
*/
static uint16_t __cvmx_flash_read_cmd16(int chip_id, int offset)
{
uint16_t v = __cvmx_flash_read_cmd(chip_id, offset);
v |= __cvmx_flash_read_cmd(chip_id, offset + 1)<<8;
return v;
}
/**
* @INTERNAL
* Write a byte to flash
*
* @param chip_id Chip to write to
* @param offset Offset into the chip
* @param data Value to write
*/
static void __cvmx_flash_write8(int chip_id, int offset, uint8_t data)
{
volatile uint8_t *flash_ptr = (volatile uint8_t *)flash_info[chip_id].base_ptr;
flash_ptr[offset] = data;
}
/**
* @INTERNAL
* Write a byte to flash (for commands)
*
* @param chip_id Chip to write to
* @param offset Offset into the chip
* @param data Value to write
*/
static void __cvmx_flash_write_cmd(int chip_id, int offset, uint8_t data)
{
volatile uint8_t *flash_ptr = (volatile uint8_t *)flash_info[chip_id].base_ptr;
flash_ptr[offset<<flash_info[chip_id].is_16bit] = data;
}
/**
* @INTERNAL
* Query a address and see if a CFI flash chip is there.
*
* @param chip_id Chip ID data to fill in if the chip is there
* @param base_ptr Memory pointer to the start address to query
* @return Zero on success, Negative on failure
*/
static int __cvmx_flash_queury_cfi(int chip_id, void *base_ptr)
{
int region;
cvmx_flash_t *flash = flash_info + chip_id;
/* Set the minimum needed for the read and write primitives to work */
flash->base_ptr = base_ptr;
flash->is_16bit = 1; /* FIXME: Currently assumes the chip is 16bits */
/* Put flash in CFI query mode */
__cvmx_flash_write_cmd(chip_id, 0x00, 0xf0); /* Reset the flash chip */
__cvmx_flash_write_cmd(chip_id, 0x55, 0x98);
/* Make sure we get the QRY response we should */
if ((__cvmx_flash_read_cmd(chip_id, 0x10) != 'Q') ||
(__cvmx_flash_read_cmd(chip_id, 0x11) != 'R') ||
(__cvmx_flash_read_cmd(chip_id, 0x12) != 'Y'))
{
flash->base_ptr = NULL;
return -1;
}
/* Read the 16bit vendor ID */
flash->vendor = __cvmx_flash_read_cmd16(chip_id, 0x13);
/* Read the write timeout. The timeout is microseconds(us) is 2^0x1f
typically. The worst case is this value time 2^0x23 */
flash->write_timeout = 1ull << (__cvmx_flash_read_cmd(chip_id, 0x1f) +
__cvmx_flash_read_cmd(chip_id, 0x23));
/* Read the erase timeout. The timeout is milliseconds(ms) is 2^0x21
typically. The worst case is this value time 2^0x25 */
flash->erase_timeout = 1ull << (__cvmx_flash_read_cmd(chip_id, 0x21) +
__cvmx_flash_read_cmd(chip_id, 0x25));
/* Get the flash size. This is 2^0x27 */
flash->size = 1<<__cvmx_flash_read_cmd(chip_id, 0x27);
/* Get the number of different sized block regions from 0x2c */
flash->num_regions = __cvmx_flash_read_cmd(chip_id, 0x2c);
int start_offset = 0;
/* Loop through all regions get information about each */
for (region=0; region<flash->num_regions; region++)
{
cvmx_flash_region_t *rgn_ptr = flash->region + region;
rgn_ptr->start_offset = start_offset;
/* The number of blocks in each region is a 16 bit little endian
endian field. It is encoded at 0x2d + region*4 as (blocks-1) */
uint16_t blocks = __cvmx_flash_read_cmd16(chip_id, 0x2d + region*4);
rgn_ptr->num_blocks = 1u + blocks;
/* The size of each block is a 16 bit little endian endian field. It
is encoded at 0x2d + region*4 + 2 as (size/256). Zero is a special
case representing 128 */
uint16_t size = __cvmx_flash_read_cmd16(chip_id, 0x2d + region*4 + 2);
if (size == 0)
rgn_ptr->block_size = 128;
else
rgn_ptr->block_size = 256u * size;
start_offset += rgn_ptr->block_size * rgn_ptr->num_blocks;
}
/* Take the chip out of CFI query mode */
switch (flash_info[chip_id].vendor)
{
case CFI_CMDSET_AMD_STANDARD:
__cvmx_flash_write_cmd(chip_id, 0x00, 0xf0);
case CFI_CMDSET_INTEL_STANDARD:
case CFI_CMDSET_INTEL_EXTENDED:
__cvmx_flash_write_cmd(chip_id, 0x00, 0xff);
break;
}
/* Convert the timeouts to cycles */
flash->write_timeout *= cvmx_clock_get_rate(CVMX_CLOCK_CORE) / 1000000;
flash->erase_timeout *= cvmx_clock_get_rate(CVMX_CLOCK_CORE) / 1000;
#if DEBUG
/* Print the information about the chip */
cvmx_dprintf("cvmx-flash: Base pointer: %p\n"
" Vendor: 0x%04x\n"
" Size: %d bytes\n"
" Num regions: %d\n"
" Erase timeout: %llu cycles\n"
" Write timeout: %llu cycles\n",
flash->base_ptr,
(unsigned int)flash->vendor,
flash->size,
flash->num_regions,
(unsigned long long)flash->erase_timeout,
(unsigned long long)flash->write_timeout);
for (region=0; region<flash->num_regions; region++)
{
cvmx_dprintf(" Region %d: offset 0x%x, %d blocks, %d bytes/block\n",
region,
flash->region[region].start_offset,
flash->region[region].num_blocks,
flash->region[region].block_size);
}
#endif
return 0;
}
/**
* Initialize the flash access library
*/
void cvmx_flash_initialize(void)
{
int boot_region;
int chip_id = 0;
memset(flash_info, 0, sizeof(flash_info));
/* Loop through each boot bus chip select region */
for (boot_region=0; boot_region<MAX_NUM_FLASH_CHIPS; boot_region++)
{
cvmx_mio_boot_reg_cfgx_t region_cfg;
region_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFG0 + boot_region*8);
/* Only try chip select regions that are enabled. This assumes the
bootloader already setup the flash */
if (region_cfg.s.en)
{
/* Convert the hardware address to a pointer. Note that the bootbus,
unlike memory, isn't 1:1 mapped in the simple exec */
void *base_ptr = cvmx_phys_to_ptr((region_cfg.s.base<<16) | 0xffffffff80000000ull);
if (__cvmx_flash_queury_cfi(chip_id, base_ptr) == 0)
{
/* Valid CFI flash chip found */
chip_id++;
}
}
}
if (chip_id == 0)
cvmx_dprintf("cvmx-flash: No CFI chips found\n");
}
/**
* Return a pointer to the flash chip
*
* @param chip_id Chip ID to return
* @return NULL if the chip doesn't exist
*/
void *cvmx_flash_get_base(int chip_id)
{
return flash_info[chip_id].base_ptr;
}
/**
* Return the number of erasable regions on the chip
*
* @param chip_id Chip to return info for
* @return Number of regions
*/
int cvmx_flash_get_num_regions(int chip_id)
{
return flash_info[chip_id].num_regions;
}
/**
* Return information about a flash chips region
*
* @param chip_id Chip to get info for
* @param region Region to get info for
* @return Region information
*/
const cvmx_flash_region_t *cvmx_flash_get_region_info(int chip_id, int region)
{
return flash_info[chip_id].region + region;
}
/**
* Erase a block on the flash chip
*
* @param chip_id Chip to erase a block on
* @param region Region to erase a block in
* @param block Block number to erase
* @return Zero on success. Negative on failure
*/
int cvmx_flash_erase_block(int chip_id, int region, int block)
{
cvmx_spinlock_lock(&flash_lock);
#if DEBUG
cvmx_dprintf("cvmx-flash: Erasing chip %d, region %d, block %d\n",
chip_id, region, block);
#endif
int offset = flash_info[chip_id].region[region].start_offset +
block * flash_info[chip_id].region[region].block_size;
switch (flash_info[chip_id].vendor)
{
case CFI_CMDSET_AMD_STANDARD:
{
/* Send the erase sector command sequence */
__cvmx_flash_write_cmd(chip_id, 0x00, 0xf0); /* Reset the flash chip */
__cvmx_flash_write_cmd(chip_id, 0x555, 0xaa);
__cvmx_flash_write_cmd(chip_id, 0x2aa, 0x55);
__cvmx_flash_write_cmd(chip_id, 0x555, 0x80);
__cvmx_flash_write_cmd(chip_id, 0x555, 0xaa);
__cvmx_flash_write_cmd(chip_id, 0x2aa, 0x55);
__cvmx_flash_write8(chip_id, offset, 0x30);
/* Loop checking status */
uint8_t status = __cvmx_flash_read8(chip_id, offset);
uint64_t start_cycle = cvmx_get_cycle();
while (1)
{
/* Read the status and xor it with the old status so we can
find toggling bits */
uint8_t old_status = status;
status = __cvmx_flash_read8(chip_id, offset);
uint8_t toggle = status ^ old_status;
/* Check if the erase in progress bit is toggling */
if (toggle & (1<<6))
{
/* Check hardware timeout */
if (status & (1<<5))
{
/* Chip has signalled a timeout. Reread the status */
old_status = __cvmx_flash_read8(chip_id, offset);
status = __cvmx_flash_read8(chip_id, offset);
toggle = status ^ old_status;
/* Check if the erase in progress bit is toggling */
if (toggle & (1<<6))
{
cvmx_dprintf("cvmx-flash: Hardware timeout erasing block\n");
cvmx_spinlock_unlock(&flash_lock);
return -1;
}
else
break; /* Not toggling, erase complete */
}
}
else
break; /* Not toggling, erase complete */
if (cvmx_get_cycle() > start_cycle + flash_info[chip_id].erase_timeout)
{
cvmx_dprintf("cvmx-flash: Timeout erasing block\n");
cvmx_spinlock_unlock(&flash_lock);
return -1;
}
}
__cvmx_flash_write_cmd(chip_id, 0x00, 0xf0); /* Reset the flash chip */
cvmx_spinlock_unlock(&flash_lock);
return 0;
}
case CFI_CMDSET_INTEL_STANDARD:
case CFI_CMDSET_INTEL_EXTENDED:
{
/* Send the erase sector command sequence */
__cvmx_flash_write_cmd(chip_id, 0x00, 0xff); /* Reset the flash chip */
__cvmx_flash_write8(chip_id, offset, 0x20);
__cvmx_flash_write8(chip_id, offset, 0xd0);
/* Loop checking status */
uint8_t status = __cvmx_flash_read8(chip_id, offset);
uint64_t start_cycle = cvmx_get_cycle();
while ((status & 0x80) == 0)
{
if (cvmx_get_cycle() > start_cycle + flash_info[chip_id].erase_timeout)
{
cvmx_dprintf("cvmx-flash: Timeout erasing block\n");
cvmx_spinlock_unlock(&flash_lock);
return -1;
}
status = __cvmx_flash_read8(chip_id, offset);
}
/* Check the final status */
if (status & 0x7f)
{
cvmx_dprintf("cvmx-flash: Hardware failure erasing block\n");
cvmx_spinlock_unlock(&flash_lock);
return -1;
}
__cvmx_flash_write_cmd(chip_id, 0x00, 0xff); /* Reset the flash chip */
cvmx_spinlock_unlock(&flash_lock);
return 0;
}
}
cvmx_dprintf("cvmx-flash: Unsupported flash vendor\n");
cvmx_spinlock_unlock(&flash_lock);
return -1;
}
/**
* Write a block on the flash chip
*
* @param chip_id Chip to write a block on
* @param region Region to write a block in
* @param block Block number to write
* @param data Data to write
* @return Zero on success. Negative on failure
*/
int cvmx_flash_write_block(int chip_id, int region, int block, const void *data)
{
cvmx_spinlock_lock(&flash_lock);
#if DEBUG
cvmx_dprintf("cvmx-flash: Writing chip %d, region %d, block %d\n",
chip_id, region, block);
#endif
int offset = flash_info[chip_id].region[region].start_offset +
block * flash_info[chip_id].region[region].block_size;
int len = flash_info[chip_id].region[region].block_size;
const uint8_t *ptr = (const uint8_t *)data;
switch (flash_info[chip_id].vendor)
{
case CFI_CMDSET_AMD_STANDARD:
{
/* Loop through one byte at a time */
while (len--)
{
/* Send the program sequence */
__cvmx_flash_write_cmd(chip_id, 0x00, 0xf0); /* Reset the flash chip */
__cvmx_flash_write_cmd(chip_id, 0x555, 0xaa);
__cvmx_flash_write_cmd(chip_id, 0x2aa, 0x55);
__cvmx_flash_write_cmd(chip_id, 0x555, 0xa0);
__cvmx_flash_write8(chip_id, offset, *ptr);
/* Loop polling for status */
uint64_t start_cycle = cvmx_get_cycle();
while (1)
{
uint8_t status = __cvmx_flash_read8(chip_id, offset);
if (((status ^ *ptr) & (1<<7)) == 0)
break; /* Data matches, this byte is done */
else if (status & (1<<5))
{
/* Hardware timeout, recheck status */
status = __cvmx_flash_read8(chip_id, offset);
if (((status ^ *ptr) & (1<<7)) == 0)
break; /* Data matches, this byte is done */
else
{
cvmx_dprintf("cvmx-flash: Hardware write timeout\n");
cvmx_spinlock_unlock(&flash_lock);
return -1;
}
}
if (cvmx_get_cycle() > start_cycle + flash_info[chip_id].write_timeout)
{
cvmx_dprintf("cvmx-flash: Timeout writing block\n");
cvmx_spinlock_unlock(&flash_lock);
return -1;
}
}
/* Increment to the next byte */
ptr++;
offset++;
}
__cvmx_flash_write_cmd(chip_id, 0x00, 0xf0); /* Reset the flash chip */
cvmx_spinlock_unlock(&flash_lock);
return 0;
}
case CFI_CMDSET_INTEL_STANDARD:
case CFI_CMDSET_INTEL_EXTENDED:
{
cvmx_dprintf("%s:%d len=%d\n", __FUNCTION__, __LINE__, len);
/* Loop through one byte at a time */
while (len--)
{
/* Send the program sequence */
__cvmx_flash_write_cmd(chip_id, 0x00, 0xff); /* Reset the flash chip */
__cvmx_flash_write8(chip_id, offset, 0x40);
__cvmx_flash_write8(chip_id, offset, *ptr);
/* Loop polling for status */
uint8_t status = __cvmx_flash_read8(chip_id, offset);
uint64_t start_cycle = cvmx_get_cycle();
while ((status & 0x80) == 0)
{
if (cvmx_get_cycle() > start_cycle + flash_info[chip_id].write_timeout)
{
cvmx_dprintf("cvmx-flash: Timeout writing block\n");
cvmx_spinlock_unlock(&flash_lock);
return -1;
}
status = __cvmx_flash_read8(chip_id, offset);
}
/* Check the final status */
if (status & 0x7f)
{
cvmx_dprintf("cvmx-flash: Hardware failure erasing block\n");
cvmx_spinlock_unlock(&flash_lock);
return -1;
}
/* Increment to the next byte */
ptr++;
offset++;
}
cvmx_dprintf("%s:%d\n", __FUNCTION__, __LINE__);
__cvmx_flash_write_cmd(chip_id, 0x00, 0xff); /* Reset the flash chip */
cvmx_spinlock_unlock(&flash_lock);
return 0;
}
}
cvmx_dprintf("cvmx-flash: Unsupported flash vendor\n");
cvmx_spinlock_unlock(&flash_lock);
return -1;
}
/**
* Erase and write data to a flash
*
* @param address Memory address to write to
* @param data Data to write
* @param len Length of the data
* @return Zero on success. Negative on failure
*/
int cvmx_flash_write(void *address, const void *data, int len)
{
int chip_id;
/* Find which chip controls this address. Don't allow the write to span
multiple chips */
for (chip_id=0; chip_id<MAX_NUM_FLASH_CHIPS; chip_id++)
{
if ((flash_info[chip_id].base_ptr <= address) &&
(flash_info[chip_id].base_ptr + flash_info[chip_id].size >= address + len))
break;
}
if (chip_id == MAX_NUM_FLASH_CHIPS)
{
cvmx_dprintf("cvmx-flash: Unable to find chip that contains address %p\n", address);
return -1;
}
cvmx_flash_t *flash = flash_info + chip_id;
/* Determine which block region we need to start writing to */
void *region_base = flash->base_ptr;
int region = 0;
while (region_base + flash->region[region].num_blocks * flash->region[region].block_size <= address)
{
region++;
region_base = flash->base_ptr + flash->region[region].start_offset;
}
/* Determine which block in the region to start at */
int block = (address - region_base) / flash->region[region].block_size;
/* Require all writes to start on block boundries */
if (address != region_base + block*flash->region[region].block_size)
{
cvmx_dprintf("cvmx-flash: Write address not aligned on a block boundry\n");
return -1;
}
/* Loop until we're out of data */
while (len > 0)
{
/* Erase the current block */
if (cvmx_flash_erase_block(chip_id, region, block))
return -1;
/* Write the new data */
if (cvmx_flash_write_block(chip_id, region, block, data))
return -1;
/* Increment to the next block */
data += flash->region[region].block_size;
len -= flash->region[region].block_size;
block++;
if (block >= flash->region[region].num_blocks)
{
block = 0;
region++;
}
}
return 0;
}