freebsd-nq/sys/kern/subr_gtaskqueue.c
Sean Bruno 026204b4c6 Resolve whitespace diff to NextBSD.
Check to see that the taskqueue thread count requires us to acutally
iterate over the thread count to bind to cpus.

Submitted by:	mmacy@nextbsd.org
2016-10-19 21:01:24 +00:00

923 lines
22 KiB
C

/*-
* Copyright (c) 2000 Doug Rabson
* Copyright (c) 2014 Jeff Roberson
* Copyright (c) 2016 Matthew Macy
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/cpuset.h>
#include <sys/interrupt.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/libkern.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/gtaskqueue.h>
#include <sys/unistd.h>
#include <machine/stdarg.h>
static MALLOC_DEFINE(M_GTASKQUEUE, "taskqueue", "Task Queues");
static void gtaskqueue_thread_enqueue(void *);
static void gtaskqueue_thread_loop(void *arg);
struct gtaskqueue_busy {
struct gtask *tb_running;
TAILQ_ENTRY(gtaskqueue_busy) tb_link;
};
static struct gtask * const TB_DRAIN_WAITER = (struct gtask *)0x1;
struct gtaskqueue {
STAILQ_HEAD(, gtask) tq_queue;
gtaskqueue_enqueue_fn tq_enqueue;
void *tq_context;
char *tq_name;
TAILQ_HEAD(, gtaskqueue_busy) tq_active;
struct mtx tq_mutex;
struct thread **tq_threads;
int tq_tcount;
int tq_spin;
int tq_flags;
int tq_callouts;
taskqueue_callback_fn tq_callbacks[TASKQUEUE_NUM_CALLBACKS];
void *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS];
};
#define TQ_FLAGS_ACTIVE (1 << 0)
#define TQ_FLAGS_BLOCKED (1 << 1)
#define TQ_FLAGS_UNLOCKED_ENQUEUE (1 << 2)
#define DT_CALLOUT_ARMED (1 << 0)
#define TQ_LOCK(tq) \
do { \
if ((tq)->tq_spin) \
mtx_lock_spin(&(tq)->tq_mutex); \
else \
mtx_lock(&(tq)->tq_mutex); \
} while (0)
#define TQ_ASSERT_LOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_OWNED)
#define TQ_UNLOCK(tq) \
do { \
if ((tq)->tq_spin) \
mtx_unlock_spin(&(tq)->tq_mutex); \
else \
mtx_unlock(&(tq)->tq_mutex); \
} while (0)
#define TQ_ASSERT_UNLOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED)
static __inline int
TQ_SLEEP(struct gtaskqueue *tq, void *p, struct mtx *m, int pri, const char *wm,
int t)
{
if (tq->tq_spin)
return (msleep_spin(p, m, wm, t));
return (msleep(p, m, pri, wm, t));
}
static struct gtaskqueue *
_gtaskqueue_create(const char *name, int mflags,
taskqueue_enqueue_fn enqueue, void *context,
int mtxflags, const char *mtxname __unused)
{
struct gtaskqueue *queue;
char *tq_name;
tq_name = malloc(TASKQUEUE_NAMELEN, M_GTASKQUEUE, mflags | M_ZERO);
if (!tq_name)
return (NULL);
snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue");
queue = malloc(sizeof(struct gtaskqueue), M_GTASKQUEUE, mflags | M_ZERO);
if (!queue)
return (NULL);
STAILQ_INIT(&queue->tq_queue);
TAILQ_INIT(&queue->tq_active);
queue->tq_enqueue = enqueue;
queue->tq_context = context;
queue->tq_name = tq_name;
queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
queue->tq_flags |= TQ_FLAGS_ACTIVE;
if (enqueue == gtaskqueue_thread_enqueue)
queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE;
mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags);
return (queue);
}
/*
* Signal a taskqueue thread to terminate.
*/
static void
gtaskqueue_terminate(struct thread **pp, struct gtaskqueue *tq)
{
while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
wakeup(tq);
TQ_SLEEP(tq, pp, &tq->tq_mutex, PWAIT, "taskqueue_destroy", 0);
}
}
static void
gtaskqueue_free(struct gtaskqueue *queue)
{
TQ_LOCK(queue);
queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
gtaskqueue_terminate(queue->tq_threads, queue);
KASSERT(TAILQ_EMPTY(&queue->tq_active), ("Tasks still running?"));
KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
mtx_destroy(&queue->tq_mutex);
free(queue->tq_threads, M_GTASKQUEUE);
free(queue->tq_name, M_GTASKQUEUE);
free(queue, M_GTASKQUEUE);
}
int
grouptaskqueue_enqueue(struct gtaskqueue *queue, struct gtask *gtask)
{
TQ_LOCK(queue);
if (gtask->ta_flags & TASK_ENQUEUED) {
TQ_UNLOCK(queue);
return (0);
}
STAILQ_INSERT_TAIL(&queue->tq_queue, gtask, ta_link);
gtask->ta_flags |= TASK_ENQUEUED;
TQ_UNLOCK(queue);
if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
queue->tq_enqueue(queue->tq_context);
return (0);
}
static void
gtaskqueue_task_nop_fn(void *context)
{
}
/*
* Block until all currently queued tasks in this taskqueue
* have begun execution. Tasks queued during execution of
* this function are ignored.
*/
static void
gtaskqueue_drain_tq_queue(struct gtaskqueue *queue)
{
struct gtask t_barrier;
if (STAILQ_EMPTY(&queue->tq_queue))
return;
/*
* Enqueue our barrier after all current tasks, but with
* the highest priority so that newly queued tasks cannot
* pass it. Because of the high priority, we can not use
* taskqueue_enqueue_locked directly (which drops the lock
* anyway) so just insert it at tail while we have the
* queue lock.
*/
GTASK_INIT(&t_barrier, 0, USHRT_MAX, gtaskqueue_task_nop_fn, &t_barrier);
STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link);
t_barrier.ta_flags |= TASK_ENQUEUED;
/*
* Once the barrier has executed, all previously queued tasks
* have completed or are currently executing.
*/
while (t_barrier.ta_flags & TASK_ENQUEUED)
TQ_SLEEP(queue, &t_barrier, &queue->tq_mutex, PWAIT, "-", 0);
}
/*
* Block until all currently executing tasks for this taskqueue
* complete. Tasks that begin execution during the execution
* of this function are ignored.
*/
static void
gtaskqueue_drain_tq_active(struct gtaskqueue *queue)
{
struct gtaskqueue_busy tb_marker, *tb_first;
if (TAILQ_EMPTY(&queue->tq_active))
return;
/* Block taskq_terminate().*/
queue->tq_callouts++;
/*
* Wait for all currently executing taskqueue threads
* to go idle.
*/
tb_marker.tb_running = TB_DRAIN_WAITER;
TAILQ_INSERT_TAIL(&queue->tq_active, &tb_marker, tb_link);
while (TAILQ_FIRST(&queue->tq_active) != &tb_marker)
TQ_SLEEP(queue, &tb_marker, &queue->tq_mutex, PWAIT, "-", 0);
TAILQ_REMOVE(&queue->tq_active, &tb_marker, tb_link);
/*
* Wakeup any other drain waiter that happened to queue up
* without any intervening active thread.
*/
tb_first = TAILQ_FIRST(&queue->tq_active);
if (tb_first != NULL && tb_first->tb_running == TB_DRAIN_WAITER)
wakeup(tb_first);
/* Release taskqueue_terminate(). */
queue->tq_callouts--;
if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0)
wakeup_one(queue->tq_threads);
}
void
gtaskqueue_block(struct gtaskqueue *queue)
{
TQ_LOCK(queue);
queue->tq_flags |= TQ_FLAGS_BLOCKED;
TQ_UNLOCK(queue);
}
void
gtaskqueue_unblock(struct gtaskqueue *queue)
{
TQ_LOCK(queue);
queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
if (!STAILQ_EMPTY(&queue->tq_queue))
queue->tq_enqueue(queue->tq_context);
TQ_UNLOCK(queue);
}
static void
gtaskqueue_run_locked(struct gtaskqueue *queue)
{
struct gtaskqueue_busy tb;
struct gtaskqueue_busy *tb_first;
struct gtask *gtask;
KASSERT(queue != NULL, ("tq is NULL"));
TQ_ASSERT_LOCKED(queue);
tb.tb_running = NULL;
while (STAILQ_FIRST(&queue->tq_queue)) {
TAILQ_INSERT_TAIL(&queue->tq_active, &tb, tb_link);
/*
* Carefully remove the first task from the queue and
* clear its TASK_ENQUEUED flag
*/
gtask = STAILQ_FIRST(&queue->tq_queue);
KASSERT(gtask != NULL, ("task is NULL"));
STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
gtask->ta_flags &= ~TASK_ENQUEUED;
tb.tb_running = gtask;
TQ_UNLOCK(queue);
KASSERT(gtask->ta_func != NULL, ("task->ta_func is NULL"));
gtask->ta_func(gtask->ta_context);
TQ_LOCK(queue);
tb.tb_running = NULL;
wakeup(gtask);
TAILQ_REMOVE(&queue->tq_active, &tb, tb_link);
tb_first = TAILQ_FIRST(&queue->tq_active);
if (tb_first != NULL &&
tb_first->tb_running == TB_DRAIN_WAITER)
wakeup(tb_first);
}
}
static int
task_is_running(struct gtaskqueue *queue, struct gtask *gtask)
{
struct gtaskqueue_busy *tb;
TQ_ASSERT_LOCKED(queue);
TAILQ_FOREACH(tb, &queue->tq_active, tb_link) {
if (tb->tb_running == gtask)
return (1);
}
return (0);
}
static int
gtaskqueue_cancel_locked(struct gtaskqueue *queue, struct gtask *gtask)
{
if (gtask->ta_flags & TASK_ENQUEUED)
STAILQ_REMOVE(&queue->tq_queue, gtask, gtask, ta_link);
gtask->ta_flags &= ~TASK_ENQUEUED;
return (task_is_running(queue, gtask) ? EBUSY : 0);
}
int
gtaskqueue_cancel(struct gtaskqueue *queue, struct gtask *gtask)
{
int error;
TQ_LOCK(queue);
error = gtaskqueue_cancel_locked(queue, gtask);
TQ_UNLOCK(queue);
return (error);
}
void
gtaskqueue_drain(struct gtaskqueue *queue, struct gtask *gtask)
{
if (!queue->tq_spin)
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
TQ_LOCK(queue);
while ((gtask->ta_flags & TASK_ENQUEUED) || task_is_running(queue, gtask))
TQ_SLEEP(queue, gtask, &queue->tq_mutex, PWAIT, "-", 0);
TQ_UNLOCK(queue);
}
void
gtaskqueue_drain_all(struct gtaskqueue *queue)
{
if (!queue->tq_spin)
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
TQ_LOCK(queue);
gtaskqueue_drain_tq_queue(queue);
gtaskqueue_drain_tq_active(queue);
TQ_UNLOCK(queue);
}
static int
_gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri,
cpuset_t *mask, const char *name, va_list ap)
{
char ktname[MAXCOMLEN + 1];
struct thread *td;
struct gtaskqueue *tq;
int i, error;
if (count <= 0)
return (EINVAL);
vsnprintf(ktname, sizeof(ktname), name, ap);
tq = *tqp;
tq->tq_threads = malloc(sizeof(struct thread *) * count, M_GTASKQUEUE,
M_NOWAIT | M_ZERO);
if (tq->tq_threads == NULL) {
printf("%s: no memory for %s threads\n", __func__, ktname);
return (ENOMEM);
}
for (i = 0; i < count; i++) {
if (count == 1)
error = kthread_add(gtaskqueue_thread_loop, tqp, NULL,
&tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
else
error = kthread_add(gtaskqueue_thread_loop, tqp, NULL,
&tq->tq_threads[i], RFSTOPPED, 0,
"%s_%d", ktname, i);
if (error) {
/* should be ok to continue, taskqueue_free will dtrt */
printf("%s: kthread_add(%s): error %d", __func__,
ktname, error);
tq->tq_threads[i] = NULL; /* paranoid */
} else
tq->tq_tcount++;
}
for (i = 0; i < count; i++) {
if (tq->tq_threads[i] == NULL)
continue;
td = tq->tq_threads[i];
if (mask) {
error = cpuset_setthread(td->td_tid, mask);
/*
* Failing to pin is rarely an actual fatal error;
* it'll just affect performance.
*/
if (error)
printf("%s: curthread=%llu: can't pin; "
"error=%d\n",
__func__,
(unsigned long long) td->td_tid,
error);
}
thread_lock(td);
sched_prio(td, pri);
sched_add(td, SRQ_BORING);
thread_unlock(td);
}
return (0);
}
static int
gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri,
const char *name, ...)
{
va_list ap;
int error;
va_start(ap, name);
error = _gtaskqueue_start_threads(tqp, count, pri, NULL, name, ap);
va_end(ap);
return (error);
}
static inline void
gtaskqueue_run_callback(struct gtaskqueue *tq,
enum taskqueue_callback_type cb_type)
{
taskqueue_callback_fn tq_callback;
TQ_ASSERT_UNLOCKED(tq);
tq_callback = tq->tq_callbacks[cb_type];
if (tq_callback != NULL)
tq_callback(tq->tq_cb_contexts[cb_type]);
}
static void
gtaskqueue_thread_loop(void *arg)
{
struct gtaskqueue **tqp, *tq;
tqp = arg;
tq = *tqp;
gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT);
TQ_LOCK(tq);
while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
/* XXX ? */
gtaskqueue_run_locked(tq);
/*
* Because taskqueue_run() can drop tq_mutex, we need to
* check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
* meantime, which means we missed a wakeup.
*/
if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
break;
TQ_SLEEP(tq, tq, &tq->tq_mutex, 0, "-", 0);
}
gtaskqueue_run_locked(tq);
/*
* This thread is on its way out, so just drop the lock temporarily
* in order to call the shutdown callback. This allows the callback
* to look at the taskqueue, even just before it dies.
*/
TQ_UNLOCK(tq);
gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN);
TQ_LOCK(tq);
/* rendezvous with thread that asked us to terminate */
tq->tq_tcount--;
wakeup_one(tq->tq_threads);
TQ_UNLOCK(tq);
kthread_exit();
}
static void
gtaskqueue_thread_enqueue(void *context)
{
struct gtaskqueue **tqp, *tq;
tqp = context;
tq = *tqp;
wakeup_one(tq);
}
static struct gtaskqueue *
gtaskqueue_create_fast(const char *name, int mflags,
taskqueue_enqueue_fn enqueue, void *context)
{
return _gtaskqueue_create(name, mflags, enqueue, context,
MTX_SPIN, "fast_taskqueue");
}
struct taskqgroup_cpu {
LIST_HEAD(, grouptask) tgc_tasks;
struct gtaskqueue *tgc_taskq;
int tgc_cnt;
int tgc_cpu;
};
struct taskqgroup {
struct taskqgroup_cpu tqg_queue[MAXCPU];
struct mtx tqg_lock;
char * tqg_name;
int tqg_adjusting;
int tqg_stride;
int tqg_cnt;
};
struct taskq_bind_task {
struct gtask bt_task;
int bt_cpuid;
};
static void
taskqgroup_cpu_create(struct taskqgroup *qgroup, int idx, int cpu)
{
struct taskqgroup_cpu *qcpu;
qcpu = &qgroup->tqg_queue[idx];
LIST_INIT(&qcpu->tgc_tasks);
qcpu->tgc_taskq = gtaskqueue_create_fast(NULL, M_WAITOK,
taskqueue_thread_enqueue, &qcpu->tgc_taskq);
gtaskqueue_start_threads(&qcpu->tgc_taskq, 1, PI_SOFT,
"%s_%d", qgroup->tqg_name, idx);
qcpu->tgc_cpu = cpu;
}
static void
taskqgroup_cpu_remove(struct taskqgroup *qgroup, int idx)
{
gtaskqueue_free(qgroup->tqg_queue[idx].tgc_taskq);
}
/*
* Find the taskq with least # of tasks that doesn't currently have any
* other queues from the uniq identifier.
*/
static int
taskqgroup_find(struct taskqgroup *qgroup, void *uniq)
{
struct grouptask *n;
int i, idx, mincnt;
int strict;
mtx_assert(&qgroup->tqg_lock, MA_OWNED);
if (qgroup->tqg_cnt == 0)
return (0);
idx = -1;
mincnt = INT_MAX;
/*
* Two passes; First scan for a queue with the least tasks that
* does not already service this uniq id. If that fails simply find
* the queue with the least total tasks;
*/
for (strict = 1; mincnt == INT_MAX; strict = 0) {
for (i = 0; i < qgroup->tqg_cnt; i++) {
if (qgroup->tqg_queue[i].tgc_cnt > mincnt)
continue;
if (strict) {
LIST_FOREACH(n,
&qgroup->tqg_queue[i].tgc_tasks, gt_list)
if (n->gt_uniq == uniq)
break;
if (n != NULL)
continue;
}
mincnt = qgroup->tqg_queue[i].tgc_cnt;
idx = i;
}
}
if (idx == -1)
panic("taskqgroup_find: Failed to pick a qid.");
return (idx);
}
void
taskqgroup_attach(struct taskqgroup *qgroup, struct grouptask *gtask,
void *uniq, int irq, char *name)
{
cpuset_t mask;
int qid;
gtask->gt_uniq = uniq;
gtask->gt_name = name;
gtask->gt_irq = irq;
gtask->gt_cpu = -1;
mtx_lock(&qgroup->tqg_lock);
qid = taskqgroup_find(qgroup, uniq);
qgroup->tqg_queue[qid].tgc_cnt++;
LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
if (irq != -1 && smp_started) {
gtask->gt_cpu = qgroup->tqg_queue[qid].tgc_cpu;
CPU_ZERO(&mask);
CPU_SET(qgroup->tqg_queue[qid].tgc_cpu, &mask);
mtx_unlock(&qgroup->tqg_lock);
intr_setaffinity(irq, &mask);
} else
mtx_unlock(&qgroup->tqg_lock);
}
static void
taskqgroup_attach_deferred(struct taskqgroup *qgroup, struct grouptask *gtask)
{
cpuset_t mask;
int qid, cpu;
mtx_lock(&qgroup->tqg_lock);
qid = taskqgroup_find(qgroup, gtask->gt_uniq);
cpu = qgroup->tqg_queue[qid].tgc_cpu;
if (gtask->gt_irq != -1) {
mtx_unlock(&qgroup->tqg_lock);
CPU_ZERO(&mask);
CPU_SET(cpu, &mask);
intr_setaffinity(gtask->gt_irq, &mask);
mtx_lock(&qgroup->tqg_lock);
}
qgroup->tqg_queue[qid].tgc_cnt++;
LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask,
gt_list);
MPASS(qgroup->tqg_queue[qid].tgc_taskq != NULL);
gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
mtx_unlock(&qgroup->tqg_lock);
}
int
taskqgroup_attach_cpu(struct taskqgroup *qgroup, struct grouptask *gtask,
void *uniq, int cpu, int irq, char *name)
{
cpuset_t mask;
int i, qid;
qid = -1;
gtask->gt_uniq = uniq;
gtask->gt_name = name;
gtask->gt_irq = irq;
gtask->gt_cpu = cpu;
mtx_lock(&qgroup->tqg_lock);
if (smp_started) {
for (i = 0; i < qgroup->tqg_cnt; i++)
if (qgroup->tqg_queue[i].tgc_cpu == cpu) {
qid = i;
break;
}
if (qid == -1) {
mtx_unlock(&qgroup->tqg_lock);
return (EINVAL);
}
} else
qid = 0;
qgroup->tqg_queue[qid].tgc_cnt++;
LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
cpu = qgroup->tqg_queue[qid].tgc_cpu;
mtx_unlock(&qgroup->tqg_lock);
CPU_ZERO(&mask);
CPU_SET(cpu, &mask);
if (irq != -1 && smp_started)
intr_setaffinity(irq, &mask);
return (0);
}
static int
taskqgroup_attach_cpu_deferred(struct taskqgroup *qgroup, struct grouptask *gtask)
{
cpuset_t mask;
int i, qid, irq, cpu;
qid = -1;
irq = gtask->gt_irq;
cpu = gtask->gt_cpu;
MPASS(smp_started);
mtx_lock(&qgroup->tqg_lock);
for (i = 0; i < qgroup->tqg_cnt; i++)
if (qgroup->tqg_queue[i].tgc_cpu == cpu) {
qid = i;
break;
}
if (qid == -1) {
mtx_unlock(&qgroup->tqg_lock);
return (EINVAL);
}
qgroup->tqg_queue[qid].tgc_cnt++;
LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
MPASS(qgroup->tqg_queue[qid].tgc_taskq != NULL);
gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
mtx_unlock(&qgroup->tqg_lock);
CPU_ZERO(&mask);
CPU_SET(cpu, &mask);
if (irq != -1)
intr_setaffinity(irq, &mask);
return (0);
}
void
taskqgroup_detach(struct taskqgroup *qgroup, struct grouptask *gtask)
{
int i;
mtx_lock(&qgroup->tqg_lock);
for (i = 0; i < qgroup->tqg_cnt; i++)
if (qgroup->tqg_queue[i].tgc_taskq == gtask->gt_taskqueue)
break;
if (i == qgroup->tqg_cnt)
panic("taskqgroup_detach: task not in group\n");
qgroup->tqg_queue[i].tgc_cnt--;
LIST_REMOVE(gtask, gt_list);
mtx_unlock(&qgroup->tqg_lock);
gtask->gt_taskqueue = NULL;
}
static void
taskqgroup_binder(void *ctx)
{
struct taskq_bind_task *gtask = (struct taskq_bind_task *)ctx;
cpuset_t mask;
int error;
CPU_ZERO(&mask);
CPU_SET(gtask->bt_cpuid, &mask);
error = cpuset_setthread(curthread->td_tid, &mask);
thread_lock(curthread);
sched_bind(curthread, gtask->bt_cpuid);
thread_unlock(curthread);
if (error)
printf("taskqgroup_binder: setaffinity failed: %d\n",
error);
free(gtask, M_DEVBUF);
}
static void
taskqgroup_bind(struct taskqgroup *qgroup)
{
struct taskq_bind_task *gtask;
int i;
/*
* Bind taskqueue threads to specific CPUs, if they have been assigned
* one.
*/
if (qgroup->tqg_cnt == 1)
return;
for (i = 0; i < qgroup->tqg_cnt; i++) {
gtask = malloc(sizeof (*gtask), M_DEVBUF, M_WAITOK);
GTASK_INIT(&gtask->bt_task, 0, 0, taskqgroup_binder, gtask);
gtask->bt_cpuid = qgroup->tqg_queue[i].tgc_cpu;
grouptaskqueue_enqueue(qgroup->tqg_queue[i].tgc_taskq,
&gtask->bt_task);
}
}
static int
_taskqgroup_adjust(struct taskqgroup *qgroup, int cnt, int stride)
{
LIST_HEAD(, grouptask) gtask_head = LIST_HEAD_INITIALIZER(NULL);
struct grouptask *gtask;
int i, k, old_cnt, old_cpu, cpu;
mtx_assert(&qgroup->tqg_lock, MA_OWNED);
if (cnt < 1 || cnt * stride > mp_ncpus || !smp_started) {
printf("taskqgroup_adjust failed cnt: %d stride: %d mp_ncpus: %d smp_started: %d\n",
cnt, stride, mp_ncpus, smp_started);
return (EINVAL);
}
if (qgroup->tqg_adjusting) {
printf("taskqgroup_adjust failed: adjusting\n");
return (EBUSY);
}
qgroup->tqg_adjusting = 1;
old_cnt = qgroup->tqg_cnt;
old_cpu = 0;
if (old_cnt < cnt)
old_cpu = qgroup->tqg_queue[old_cnt].tgc_cpu;
mtx_unlock(&qgroup->tqg_lock);
/*
* Set up queue for tasks added before boot.
*/
if (old_cnt == 0) {
LIST_SWAP(&gtask_head, &qgroup->tqg_queue[0].tgc_tasks,
grouptask, gt_list);
qgroup->tqg_queue[0].tgc_cnt = 0;
}
/*
* If new taskq threads have been added.
*/
cpu = old_cpu;
for (i = old_cnt; i < cnt; i++) {
taskqgroup_cpu_create(qgroup, i, cpu);
for (k = 0; k < stride; k++)
cpu = CPU_NEXT(cpu);
}
mtx_lock(&qgroup->tqg_lock);
qgroup->tqg_cnt = cnt;
qgroup->tqg_stride = stride;
/*
* Adjust drivers to use new taskqs.
*/
for (i = 0; i < old_cnt; i++) {
while ((gtask = LIST_FIRST(&qgroup->tqg_queue[i].tgc_tasks))) {
LIST_REMOVE(gtask, gt_list);
qgroup->tqg_queue[i].tgc_cnt--;
LIST_INSERT_HEAD(&gtask_head, gtask, gt_list);
}
}
mtx_unlock(&qgroup->tqg_lock);
while ((gtask = LIST_FIRST(&gtask_head))) {
LIST_REMOVE(gtask, gt_list);
if (gtask->gt_cpu == -1)
taskqgroup_attach_deferred(qgroup, gtask);
else if (taskqgroup_attach_cpu_deferred(qgroup, gtask))
taskqgroup_attach_deferred(qgroup, gtask);
}
#ifdef INVARIANTS
mtx_lock(&qgroup->tqg_lock);
for (i = 0; i < qgroup->tqg_cnt; i++) {
MPASS(qgroup->tqg_queue[i].tgc_taskq != NULL);
LIST_FOREACH(gtask, &qgroup->tqg_queue[i].tgc_tasks, gt_list)
MPASS(gtask->gt_taskqueue != NULL);
}
mtx_unlock(&qgroup->tqg_lock);
#endif
/*
* If taskq thread count has been reduced.
*/
for (i = cnt; i < old_cnt; i++)
taskqgroup_cpu_remove(qgroup, i);
taskqgroup_bind(qgroup);
mtx_lock(&qgroup->tqg_lock);
qgroup->tqg_adjusting = 0;
return (0);
}
int
taskqgroup_adjust(struct taskqgroup *qgroup, int cnt, int stride)
{
int error;
mtx_lock(&qgroup->tqg_lock);
error = _taskqgroup_adjust(qgroup, cnt, stride);
mtx_unlock(&qgroup->tqg_lock);
return (error);
}
struct taskqgroup *
taskqgroup_create(char *name)
{
struct taskqgroup *qgroup;
qgroup = malloc(sizeof(*qgroup), M_GTASKQUEUE, M_WAITOK | M_ZERO);
mtx_init(&qgroup->tqg_lock, "taskqgroup", NULL, MTX_DEF);
qgroup->tqg_name = name;
LIST_INIT(&qgroup->tqg_queue[0].tgc_tasks);
return (qgroup);
}
void
taskqgroup_destroy(struct taskqgroup *qgroup)
{
}