freebsd-nq/sys/dev/ti/if_ti.c
Marius Strobl c2175ff5ca Change the remainder of the drivers for DMA'ing devices enabled in the
sparc64 GENERIC and the sound device drivers known working on sparc64
to use bus_get_dma_tag() to obtain the parent DMA tag so we can get rid
of the sparc64_root_dma_tag kludge eventually. Except for ath(4), sk(4),
stge(4) and ti(4) these changes are runtime tested (unless I booted up
the wrong kernels again...).
2007-01-21 19:32:51 +00:00

3888 lines
98 KiB
C

/*-
* Copyright (c) 1997, 1998, 1999
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
* Manuals, sample driver and firmware source kits are available
* from http://www.alteon.com/support/openkits.
*
* Written by Bill Paul <wpaul@ctr.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The Alteon Networks Tigon chip contains an embedded R4000 CPU,
* gigabit MAC, dual DMA channels and a PCI interface unit. NICs
* using the Tigon may have anywhere from 512K to 2MB of SRAM. The
* Tigon supports hardware IP, TCP and UCP checksumming, multicast
* filtering and jumbo (9014 byte) frames. The hardware is largely
* controlled by firmware, which must be loaded into the NIC during
* initialization.
*
* The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
* revision, which supports new features such as extended commands,
* extended jumbo receive ring desciptors and a mini receive ring.
*
* Alteon Networks is to be commended for releasing such a vast amount
* of development material for the Tigon NIC without requiring an NDA
* (although they really should have done it a long time ago). With
* any luck, the other vendors will finally wise up and follow Alteon's
* stellar example.
*
* The firmware for the Tigon 1 and 2 NICs is compiled directly into
* this driver by #including it as a C header file. This bloats the
* driver somewhat, but it's the easiest method considering that the
* driver code and firmware code need to be kept in sync. The source
* for the firmware is not provided with the FreeBSD distribution since
* compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
*
* The following people deserve special thanks:
* - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
* for testing
* - Raymond Lee of Netgear, for providing a pair of Netgear
* GA620 Tigon 2 boards for testing
* - Ulf Zimmermann, for bringing the GA260 to my attention and
* convincing me to write this driver.
* - Andrew Gallatin for providing FreeBSD/Alpha support.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ti.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <sys/queue.h>
#include <sys/conf.h>
#include <sys/sf_buf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <net/bpf.h>
#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
/* #define TI_PRIVATE_JUMBOS */
#ifndef TI_PRIVATE_JUMBOS
#include <vm/vm.h>
#include <vm/vm_page.h>
#endif
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <sys/tiio.h>
#include <dev/ti/if_tireg.h>
#include <dev/ti/ti_fw.h>
#include <dev/ti/ti_fw2.h>
#define TI_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
/*
* We can only turn on header splitting if we're using extended receive
* BDs.
*/
#if defined(TI_JUMBO_HDRSPLIT) && defined(TI_PRIVATE_JUMBOS)
#error "options TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS are mutually exclusive"
#endif /* TI_JUMBO_HDRSPLIT && TI_JUMBO_HDRSPLIT */
typedef enum {
TI_SWAP_HTON,
TI_SWAP_NTOH
} ti_swap_type;
/*
* Various supported device vendors/types and their names.
*/
static struct ti_type ti_devs[] = {
{ ALT_VENDORID, ALT_DEVICEID_ACENIC,
"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
{ ALT_VENDORID, ALT_DEVICEID_ACENIC_COPPER,
"Alteon AceNIC 1000baseT Gigabit Ethernet" },
{ TC_VENDORID, TC_DEVICEID_3C985,
"3Com 3c985-SX Gigabit Ethernet" },
{ NG_VENDORID, NG_DEVICEID_GA620,
"Netgear GA620 1000baseSX Gigabit Ethernet" },
{ NG_VENDORID, NG_DEVICEID_GA620T,
"Netgear GA620 1000baseT Gigabit Ethernet" },
{ SGI_VENDORID, SGI_DEVICEID_TIGON,
"Silicon Graphics Gigabit Ethernet" },
{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
"Farallon PN9000SX Gigabit Ethernet" },
{ 0, 0, NULL }
};
static d_open_t ti_open;
static d_close_t ti_close;
static d_ioctl_t ti_ioctl2;
static struct cdevsw ti_cdevsw = {
.d_version = D_VERSION,
.d_flags = 0,
.d_open = ti_open,
.d_close = ti_close,
.d_ioctl = ti_ioctl2,
.d_name = "ti",
};
static int ti_probe(device_t);
static int ti_attach(device_t);
static int ti_detach(device_t);
static void ti_txeof(struct ti_softc *);
static void ti_rxeof(struct ti_softc *);
static void ti_stats_update(struct ti_softc *);
static int ti_encap(struct ti_softc *, struct mbuf **);
static void ti_intr(void *);
static void ti_start(struct ifnet *);
static void ti_start_locked(struct ifnet *);
static int ti_ioctl(struct ifnet *, u_long, caddr_t);
static void ti_init(void *);
static void ti_init_locked(void *);
static void ti_init2(struct ti_softc *);
static void ti_stop(struct ti_softc *);
static void ti_watchdog(struct ifnet *);
static void ti_shutdown(device_t);
static int ti_ifmedia_upd(struct ifnet *);
static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static u_int32_t ti_eeprom_putbyte(struct ti_softc *, int);
static u_int8_t ti_eeprom_getbyte(struct ti_softc *, int, u_int8_t *);
static int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
static void ti_setmulti(struct ti_softc *);
static void ti_mem_read(struct ti_softc *, u_int32_t, u_int32_t, void *);
static void ti_mem_write(struct ti_softc *, u_int32_t, u_int32_t, void *);
static void ti_mem_zero(struct ti_softc *, u_int32_t, u_int32_t);
static int ti_copy_mem(struct ti_softc *, u_int32_t, u_int32_t, caddr_t, int, int);
static int ti_copy_scratch(struct ti_softc *, u_int32_t, u_int32_t, caddr_t,
int, int, int);
static int ti_bcopy_swap(const void *, void *, size_t, ti_swap_type);
static void ti_loadfw(struct ti_softc *);
static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, caddr_t, int);
static void ti_handle_events(struct ti_softc *);
static int ti_alloc_dmamaps(struct ti_softc *);
static void ti_free_dmamaps(struct ti_softc *);
static int ti_alloc_jumbo_mem(struct ti_softc *);
#ifdef TI_PRIVATE_JUMBOS
static void *ti_jalloc(struct ti_softc *);
static void ti_jfree(void *, void *);
#endif /* TI_PRIVATE_JUMBOS */
static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *);
static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *);
static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
static int ti_init_rx_ring_std(struct ti_softc *);
static void ti_free_rx_ring_std(struct ti_softc *);
static int ti_init_rx_ring_jumbo(struct ti_softc *);
static void ti_free_rx_ring_jumbo(struct ti_softc *);
static int ti_init_rx_ring_mini(struct ti_softc *);
static void ti_free_rx_ring_mini(struct ti_softc *);
static void ti_free_tx_ring(struct ti_softc *);
static int ti_init_tx_ring(struct ti_softc *);
static int ti_64bitslot_war(struct ti_softc *);
static int ti_chipinit(struct ti_softc *);
static int ti_gibinit(struct ti_softc *);
#ifdef TI_JUMBO_HDRSPLIT
static __inline void ti_hdr_split (struct mbuf *top, int hdr_len,
int pkt_len, int idx);
#endif /* TI_JUMBO_HDRSPLIT */
static device_method_t ti_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, ti_probe),
DEVMETHOD(device_attach, ti_attach),
DEVMETHOD(device_detach, ti_detach),
DEVMETHOD(device_shutdown, ti_shutdown),
{ 0, 0 }
};
static driver_t ti_driver = {
"ti",
ti_methods,
sizeof(struct ti_softc)
};
static devclass_t ti_devclass;
DRIVER_MODULE(ti, pci, ti_driver, ti_devclass, 0, 0);
MODULE_DEPEND(ti, pci, 1, 1, 1);
MODULE_DEPEND(ti, ether, 1, 1, 1);
/*
* Send an instruction or address to the EEPROM, check for ACK.
*/
static u_int32_t ti_eeprom_putbyte(sc, byte)
struct ti_softc *sc;
int byte;
{
int i, ack = 0;
/*
* Make sure we're in TX mode.
*/
TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
/*
* Feed in each bit and stobe the clock.
*/
for (i = 0x80; i; i >>= 1) {
if (byte & i) {
TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
} else {
TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
}
DELAY(1);
TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
DELAY(1);
TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
}
/*
* Turn off TX mode.
*/
TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
/*
* Check for ack.
*/
TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
return (ack);
}
/*
* Read a byte of data stored in the EEPROM at address 'addr.'
* We have to send two address bytes since the EEPROM can hold
* more than 256 bytes of data.
*/
static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
struct ti_softc *sc;
int addr;
u_int8_t *dest;
{
int i;
u_int8_t byte = 0;
EEPROM_START;
/*
* Send write control code to EEPROM.
*/
if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
device_printf(sc->ti_dev,
"failed to send write command, status: %x\n",
CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
return (1);
}
/*
* Send first byte of address of byte we want to read.
*/
if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
device_printf(sc->ti_dev, "failed to send address, status: %x\n",
CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
return (1);
}
/*
* Send second byte address of byte we want to read.
*/
if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
device_printf(sc->ti_dev, "failed to send address, status: %x\n",
CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
return (1);
}
EEPROM_STOP;
EEPROM_START;
/*
* Send read control code to EEPROM.
*/
if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
device_printf(sc->ti_dev,
"failed to send read command, status: %x\n",
CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
return (1);
}
/*
* Start reading bits from EEPROM.
*/
TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
for (i = 0x80; i; i >>= 1) {
TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
DELAY(1);
if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
byte |= i;
TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
DELAY(1);
}
EEPROM_STOP;
/*
* No ACK generated for read, so just return byte.
*/
*dest = byte;
return (0);
}
/*
* Read a sequence of bytes from the EEPROM.
*/
static int
ti_read_eeprom(sc, dest, off, cnt)
struct ti_softc *sc;
caddr_t dest;
int off;
int cnt;
{
int err = 0, i;
u_int8_t byte = 0;
for (i = 0; i < cnt; i++) {
err = ti_eeprom_getbyte(sc, off + i, &byte);
if (err)
break;
*(dest + i) = byte;
}
return (err ? 1 : 0);
}
/*
* NIC memory read function.
* Can be used to copy data from NIC local memory.
*/
static void
ti_mem_read(sc, addr, len, buf)
struct ti_softc *sc;
u_int32_t addr, len;
void *buf;
{
int segptr, segsize, cnt;
char *ptr;
segptr = addr;
cnt = len;
ptr = buf;
while (cnt) {
if (cnt < TI_WINLEN)
segsize = cnt;
else
segsize = TI_WINLEN - (segptr % TI_WINLEN);
CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
TI_WINDOW + (segptr & (TI_WINLEN - 1)), (u_int32_t *)ptr,
segsize / 4);
ptr += segsize;
segptr += segsize;
cnt -= segsize;
}
}
/*
* NIC memory write function.
* Can be used to copy data into NIC local memory.
*/
static void
ti_mem_write(sc, addr, len, buf)
struct ti_softc *sc;
u_int32_t addr, len;
void *buf;
{
int segptr, segsize, cnt;
char *ptr;
segptr = addr;
cnt = len;
ptr = buf;
while (cnt) {
if (cnt < TI_WINLEN)
segsize = cnt;
else
segsize = TI_WINLEN - (segptr % TI_WINLEN);
CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
TI_WINDOW + (segptr & (TI_WINLEN - 1)), (u_int32_t *)ptr,
segsize / 4);
ptr += segsize;
segptr += segsize;
cnt -= segsize;
}
}
/*
* NIC memory read function.
* Can be used to clear a section of NIC local memory.
*/
static void
ti_mem_zero(sc, addr, len)
struct ti_softc *sc;
u_int32_t addr, len;
{
int segptr, segsize, cnt;
segptr = addr;
cnt = len;
while (cnt) {
if (cnt < TI_WINLEN)
segsize = cnt;
else
segsize = TI_WINLEN - (segptr % TI_WINLEN);
CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0, segsize / 4);
segptr += segsize;
cnt -= segsize;
}
}
static int
ti_copy_mem(sc, tigon_addr, len, buf, useraddr, readdata)
struct ti_softc *sc;
u_int32_t tigon_addr, len;
caddr_t buf;
int useraddr, readdata;
{
int segptr, segsize, cnt;
caddr_t ptr;
u_int32_t origwin;
u_int8_t tmparray[TI_WINLEN], tmparray2[TI_WINLEN];
int resid, segresid;
int first_pass;
TI_LOCK_ASSERT(sc);
/*
* At the moment, we don't handle non-aligned cases, we just bail.
* If this proves to be a problem, it will be fixed.
*/
if ((readdata == 0)
&& (tigon_addr & 0x3)) {
device_printf(sc->ti_dev, "%s: tigon address %#x isn't "
"word-aligned\n", __func__, tigon_addr);
device_printf(sc->ti_dev, "%s: unaligned writes aren't "
"yet supported\n", __func__);
return (EINVAL);
}
segptr = tigon_addr & ~0x3;
segresid = tigon_addr - segptr;
/*
* This is the non-aligned amount left over that we'll need to
* copy.
*/
resid = len & 0x3;
/* Add in the left over amount at the front of the buffer */
resid += segresid;
cnt = len & ~0x3;
/*
* If resid + segresid is >= 4, add multiples of 4 to the count and
* decrease the residual by that much.
*/
cnt += resid & ~0x3;
resid -= resid & ~0x3;
ptr = buf;
first_pass = 1;
/*
* Save the old window base value.
*/
origwin = CSR_READ_4(sc, TI_WINBASE);
while (cnt) {
bus_size_t ti_offset;
if (cnt < TI_WINLEN)
segsize = cnt;
else
segsize = TI_WINLEN - (segptr % TI_WINLEN);
CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
if (readdata) {
bus_space_read_region_4(sc->ti_btag,
sc->ti_bhandle, ti_offset,
(u_int32_t *)tmparray,
segsize >> 2);
if (useraddr) {
/*
* Yeah, this is a little on the kludgy
* side, but at least this code is only
* used for debugging.
*/
ti_bcopy_swap(tmparray, tmparray2, segsize,
TI_SWAP_NTOH);
TI_UNLOCK(sc);
if (first_pass) {
copyout(&tmparray2[segresid], ptr,
segsize - segresid);
first_pass = 0;
} else
copyout(tmparray2, ptr, segsize);
TI_LOCK(sc);
} else {
if (first_pass) {
ti_bcopy_swap(tmparray, tmparray2,
segsize, TI_SWAP_NTOH);
TI_UNLOCK(sc);
bcopy(&tmparray2[segresid], ptr,
segsize - segresid);
TI_LOCK(sc);
first_pass = 0;
} else
ti_bcopy_swap(tmparray, ptr, segsize,
TI_SWAP_NTOH);
}
} else {
if (useraddr) {
TI_UNLOCK(sc);
copyin(ptr, tmparray2, segsize);
TI_LOCK(sc);
ti_bcopy_swap(tmparray2, tmparray, segsize,
TI_SWAP_HTON);
} else
ti_bcopy_swap(ptr, tmparray, segsize,
TI_SWAP_HTON);
bus_space_write_region_4(sc->ti_btag,
sc->ti_bhandle, ti_offset,
(u_int32_t *)tmparray,
segsize >> 2);
}
segptr += segsize;
ptr += segsize;
cnt -= segsize;
}
/*
* Handle leftover, non-word-aligned bytes.
*/
if (resid != 0) {
u_int32_t tmpval, tmpval2;
bus_size_t ti_offset;
/*
* Set the segment pointer.
*/
CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
/*
* First, grab whatever is in our source/destination.
* We'll obviously need this for reads, but also for
* writes, since we'll be doing read/modify/write.
*/
bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
ti_offset, &tmpval, 1);
/*
* Next, translate this from little-endian to big-endian
* (at least on i386 boxes).
*/
tmpval2 = ntohl(tmpval);
if (readdata) {
/*
* If we're reading, just copy the leftover number
* of bytes from the host byte order buffer to
* the user's buffer.
*/
if (useraddr) {
TI_UNLOCK(sc);
copyout(&tmpval2, ptr, resid);
TI_LOCK(sc);
} else
bcopy(&tmpval2, ptr, resid);
} else {
/*
* If we're writing, first copy the bytes to be
* written into the network byte order buffer,
* leaving the rest of the buffer with whatever was
* originally in there. Then, swap the bytes
* around into host order and write them out.
*
* XXX KDM the read side of this has been verified
* to work, but the write side of it has not been
* verified. So user beware.
*/
if (useraddr) {
TI_UNLOCK(sc);
copyin(ptr, &tmpval2, resid);
TI_LOCK(sc);
} else
bcopy(ptr, &tmpval2, resid);
tmpval = htonl(tmpval2);
bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
ti_offset, &tmpval, 1);
}
}
CSR_WRITE_4(sc, TI_WINBASE, origwin);
return (0);
}
static int
ti_copy_scratch(sc, tigon_addr, len, buf, useraddr, readdata, cpu)
struct ti_softc *sc;
u_int32_t tigon_addr, len;
caddr_t buf;
int useraddr, readdata;
int cpu;
{
u_int32_t segptr;
int cnt;
u_int32_t tmpval, tmpval2;
caddr_t ptr;
TI_LOCK_ASSERT(sc);
/*
* At the moment, we don't handle non-aligned cases, we just bail.
* If this proves to be a problem, it will be fixed.
*/
if (tigon_addr & 0x3) {
device_printf(sc->ti_dev, "%s: tigon address %#x "
"isn't word-aligned\n", __func__, tigon_addr);
return (EINVAL);
}
if (len & 0x3) {
device_printf(sc->ti_dev, "%s: transfer length %d "
"isn't word-aligned\n", __func__, len);
return (EINVAL);
}
segptr = tigon_addr;
cnt = len;
ptr = buf;
while (cnt) {
CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
if (readdata) {
tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
tmpval = ntohl(tmpval2);
/*
* Note: I've used this debugging interface
* extensively with Alteon's 12.3.15 firmware,
* compiled with GCC 2.7.2.1 and binutils 2.9.1.
*
* When you compile the firmware without
* optimization, which is necessary sometimes in
* order to properly step through it, you sometimes
* read out a bogus value of 0xc0017c instead of
* whatever was supposed to be in that scratchpad
* location. That value is on the stack somewhere,
* but I've never been able to figure out what was
* causing the problem.
*
* The address seems to pop up in random places,
* often not in the same place on two subsequent
* reads.
*
* In any case, the underlying data doesn't seem
* to be affected, just the value read out.
*
* KDM, 3/7/2000
*/
if (tmpval2 == 0xc0017c)
device_printf(sc->ti_dev, "found 0xc0017c at "
"%#x (tmpval2)\n", segptr);
if (tmpval == 0xc0017c)
device_printf(sc->ti_dev, "found 0xc0017c at "
"%#x (tmpval)\n", segptr);
if (useraddr)
copyout(&tmpval, ptr, 4);
else
bcopy(&tmpval, ptr, 4);
} else {
if (useraddr)
copyin(ptr, &tmpval2, 4);
else
bcopy(ptr, &tmpval2, 4);
tmpval = htonl(tmpval2);
CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval);
}
cnt -= 4;
segptr += 4;
ptr += 4;
}
return (0);
}
static int
ti_bcopy_swap(src, dst, len, swap_type)
const void *src;
void *dst;
size_t len;
ti_swap_type swap_type;
{
const u_int8_t *tmpsrc;
u_int8_t *tmpdst;
size_t tmplen;
if (len & 0x3) {
printf("ti_bcopy_swap: length %zd isn't 32-bit aligned\n",
len);
return (-1);
}
tmpsrc = src;
tmpdst = dst;
tmplen = len;
while (tmplen) {
if (swap_type == TI_SWAP_NTOH)
*(u_int32_t *)tmpdst =
ntohl(*(const u_int32_t *)tmpsrc);
else
*(u_int32_t *)tmpdst =
htonl(*(const u_int32_t *)tmpsrc);
tmpsrc += 4;
tmpdst += 4;
tmplen -= 4;
}
return (0);
}
/*
* Load firmware image into the NIC. Check that the firmware revision
* is acceptable and see if we want the firmware for the Tigon 1 or
* Tigon 2.
*/
static void
ti_loadfw(sc)
struct ti_softc *sc;
{
TI_LOCK_ASSERT(sc);
switch (sc->ti_hwrev) {
case TI_HWREV_TIGON:
if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
tigonFwReleaseFix != TI_FIRMWARE_FIX) {
device_printf(sc->ti_dev, "firmware revision mismatch; "
"want %d.%d.%d, got %d.%d.%d\n",
TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
TI_FIRMWARE_FIX, tigonFwReleaseMajor,
tigonFwReleaseMinor, tigonFwReleaseFix);
return;
}
ti_mem_write(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
ti_mem_write(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
ti_mem_write(sc, tigonFwRodataAddr, tigonFwRodataLen,
tigonFwRodata);
ti_mem_zero(sc, tigonFwBssAddr, tigonFwBssLen);
ti_mem_zero(sc, tigonFwSbssAddr, tigonFwSbssLen);
CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
break;
case TI_HWREV_TIGON_II:
if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
device_printf(sc->ti_dev, "firmware revision mismatch; "
"want %d.%d.%d, got %d.%d.%d\n",
TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
tigon2FwReleaseMinor, tigon2FwReleaseFix);
return;
}
ti_mem_write(sc, tigon2FwTextAddr, tigon2FwTextLen,
tigon2FwText);
ti_mem_write(sc, tigon2FwDataAddr, tigon2FwDataLen,
tigon2FwData);
ti_mem_write(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
tigon2FwRodata);
ti_mem_zero(sc, tigon2FwBssAddr, tigon2FwBssLen);
ti_mem_zero(sc, tigon2FwSbssAddr, tigon2FwSbssLen);
CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
break;
default:
device_printf(sc->ti_dev,
"can't load firmware: unknown hardware rev\n");
break;
}
}
/*
* Send the NIC a command via the command ring.
*/
static void
ti_cmd(sc, cmd)
struct ti_softc *sc;
struct ti_cmd_desc *cmd;
{
int index;
index = sc->ti_cmd_saved_prodidx;
CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
TI_INC(index, TI_CMD_RING_CNT);
CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
sc->ti_cmd_saved_prodidx = index;
}
/*
* Send the NIC an extended command. The 'len' parameter specifies the
* number of command slots to include after the initial command.
*/
static void
ti_cmd_ext(sc, cmd, arg, len)
struct ti_softc *sc;
struct ti_cmd_desc *cmd;
caddr_t arg;
int len;
{
int index;
int i;
index = sc->ti_cmd_saved_prodidx;
CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
TI_INC(index, TI_CMD_RING_CNT);
for (i = 0; i < len; i++) {
CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
*(u_int32_t *)(&arg[i * 4]));
TI_INC(index, TI_CMD_RING_CNT);
}
CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
sc->ti_cmd_saved_prodidx = index;
}
/*
* Handle events that have triggered interrupts.
*/
static void
ti_handle_events(sc)
struct ti_softc *sc;
{
struct ti_event_desc *e;
if (sc->ti_rdata->ti_event_ring == NULL)
return;
while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
switch (TI_EVENT_EVENT(e)) {
case TI_EV_LINKSTAT_CHANGED:
sc->ti_linkstat = TI_EVENT_CODE(e);
if (sc->ti_linkstat == TI_EV_CODE_LINK_UP)
device_printf(sc->ti_dev, "10/100 link up\n");
else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP)
device_printf(sc->ti_dev, "gigabit link up\n");
else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
device_printf(sc->ti_dev, "link down\n");
break;
case TI_EV_ERROR:
if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
device_printf(sc->ti_dev, "invalid command\n");
else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
device_printf(sc->ti_dev, "unknown command\n");
else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
device_printf(sc->ti_dev, "bad config data\n");
break;
case TI_EV_FIRMWARE_UP:
ti_init2(sc);
break;
case TI_EV_STATS_UPDATED:
ti_stats_update(sc);
break;
case TI_EV_RESET_JUMBO_RING:
case TI_EV_MCAST_UPDATED:
/* Who cares. */
break;
default:
device_printf(sc->ti_dev, "unknown event: %d\n",
TI_EVENT_EVENT(e));
break;
}
/* Advance the consumer index. */
TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
}
}
static int
ti_alloc_dmamaps(struct ti_softc *sc)
{
int i;
for (i = 0; i < TI_TX_RING_CNT; i++) {
sc->ti_cdata.ti_txdesc[i].tx_m = NULL;
sc->ti_cdata.ti_txdesc[i].tx_dmamap = 0;
if (bus_dmamap_create(sc->ti_mbuftx_dmat, 0,
&sc->ti_cdata.ti_txdesc[i].tx_dmamap))
return (ENOBUFS);
}
for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
if (bus_dmamap_create(sc->ti_mbufrx_dmat, 0,
&sc->ti_cdata.ti_rx_std_maps[i]))
return (ENOBUFS);
}
for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
if (bus_dmamap_create(sc->ti_jumbo_dmat, 0,
&sc->ti_cdata.ti_rx_jumbo_maps[i]))
return (ENOBUFS);
}
for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
if (bus_dmamap_create(sc->ti_mbufrx_dmat, 0,
&sc->ti_cdata.ti_rx_mini_maps[i]))
return (ENOBUFS);
}
return (0);
}
static void
ti_free_dmamaps(struct ti_softc *sc)
{
int i;
if (sc->ti_mbuftx_dmat)
for (i = 0; i < TI_TX_RING_CNT; i++)
if (sc->ti_cdata.ti_txdesc[i].tx_dmamap) {
bus_dmamap_destroy(sc->ti_mbuftx_dmat,
sc->ti_cdata.ti_txdesc[i].tx_dmamap);
sc->ti_cdata.ti_txdesc[i].tx_dmamap = 0;
}
if (sc->ti_mbufrx_dmat)
for (i = 0; i < TI_STD_RX_RING_CNT; i++)
if (sc->ti_cdata.ti_rx_std_maps[i]) {
bus_dmamap_destroy(sc->ti_mbufrx_dmat,
sc->ti_cdata.ti_rx_std_maps[i]);
sc->ti_cdata.ti_rx_std_maps[i] = 0;
}
if (sc->ti_jumbo_dmat)
for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++)
if (sc->ti_cdata.ti_rx_jumbo_maps[i]) {
bus_dmamap_destroy(sc->ti_jumbo_dmat,
sc->ti_cdata.ti_rx_jumbo_maps[i]);
sc->ti_cdata.ti_rx_jumbo_maps[i] = 0;
}
if (sc->ti_mbufrx_dmat)
for (i = 0; i < TI_MINI_RX_RING_CNT; i++)
if (sc->ti_cdata.ti_rx_mini_maps[i]) {
bus_dmamap_destroy(sc->ti_mbufrx_dmat,
sc->ti_cdata.ti_rx_mini_maps[i]);
sc->ti_cdata.ti_rx_mini_maps[i] = 0;
}
}
#ifdef TI_PRIVATE_JUMBOS
/*
* Memory management for the jumbo receive ring is a pain in the
* butt. We need to allocate at least 9018 bytes of space per frame,
* _and_ it has to be contiguous (unless you use the extended
* jumbo descriptor format). Using malloc() all the time won't
* work: malloc() allocates memory in powers of two, which means we
* would end up wasting a considerable amount of space by allocating
* 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
* to do our own memory management.
*
* The driver needs to allocate a contiguous chunk of memory at boot
* time. We then chop this up ourselves into 9K pieces and use them
* as external mbuf storage.
*
* One issue here is how much memory to allocate. The jumbo ring has
* 256 slots in it, but at 9K per slot than can consume over 2MB of
* RAM. This is a bit much, especially considering we also need
* RAM for the standard ring and mini ring (on the Tigon 2). To
* save space, we only actually allocate enough memory for 64 slots
* by default, which works out to between 500 and 600K. This can
* be tuned by changing a #define in if_tireg.h.
*/
static int
ti_alloc_jumbo_mem(sc)
struct ti_softc *sc;
{
caddr_t ptr;
int i;
struct ti_jpool_entry *entry;
/*
* Grab a big chunk o' storage. Since we are chopping this pool up
* into ~9k chunks, there doesn't appear to be a need to use page
* alignment.
*/
if (bus_dma_tag_create(sc->ti_parent_dmat, /* parent */
1, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
TI_JMEM, /* maxsize */
1, /* nsegments */
TI_JMEM, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->ti_jumbo_dmat) != 0) {
device_printf(sc->ti_dev, "Failed to allocate jumbo dmat\n");
return (ENOBUFS);
}
if (bus_dmamem_alloc(sc->ti_jumbo_dmat,
(void**)&sc->ti_cdata.ti_jumbo_buf,
BUS_DMA_NOWAIT, &sc->ti_jumbo_dmamap) != 0) {
device_printf(sc->ti_dev, "Failed to allocate jumbo memory\n");
return (ENOBUFS);
}
SLIST_INIT(&sc->ti_jfree_listhead);
SLIST_INIT(&sc->ti_jinuse_listhead);
/*
* Now divide it up into 9K pieces and save the addresses
* in an array.
*/
ptr = sc->ti_cdata.ti_jumbo_buf;
for (i = 0; i < TI_JSLOTS; i++) {
sc->ti_cdata.ti_jslots[i] = ptr;
ptr += TI_JLEN;
entry = malloc(sizeof(struct ti_jpool_entry),
M_DEVBUF, M_NOWAIT);
if (entry == NULL) {
device_printf(sc->ti_dev, "no memory for jumbo "
"buffer queue!\n");
return (ENOBUFS);
}
entry->slot = i;
SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
}
return (0);
}
/*
* Allocate a jumbo buffer.
*/
static void *ti_jalloc(sc)
struct ti_softc *sc;
{
struct ti_jpool_entry *entry;
entry = SLIST_FIRST(&sc->ti_jfree_listhead);
if (entry == NULL) {
device_printf(sc->ti_dev, "no free jumbo buffers\n");
return (NULL);
}
SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
return (sc->ti_cdata.ti_jslots[entry->slot]);
}
/*
* Release a jumbo buffer.
*/
static void
ti_jfree(buf, args)
void *buf;
void *args;
{
struct ti_softc *sc;
int i;
struct ti_jpool_entry *entry;
/* Extract the softc struct pointer. */
sc = (struct ti_softc *)args;
if (sc == NULL)
panic("ti_jfree: didn't get softc pointer!");
/* calculate the slot this buffer belongs to */
i = ((vm_offset_t)buf
- (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
if ((i < 0) || (i >= TI_JSLOTS))
panic("ti_jfree: asked to free buffer that we don't manage!");
entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
if (entry == NULL)
panic("ti_jfree: buffer not in use!");
entry->slot = i;
SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
}
#else
static int
ti_alloc_jumbo_mem(sc)
struct ti_softc *sc;
{
/*
* The VM system will take care of providing aligned pages. Alignment
* is set to 1 here so that busdma resources won't be wasted.
*/
if (bus_dma_tag_create(sc->ti_parent_dmat, /* parent */
1, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
PAGE_SIZE * 4 /*XXX*/, /* maxsize */
4, /* nsegments */
PAGE_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->ti_jumbo_dmat) != 0) {
device_printf(sc->ti_dev, "Failed to allocate jumbo dmat\n");
return (ENOBUFS);
}
return (0);
}
#endif /* TI_PRIVATE_JUMBOS */
/*
* Intialize a standard receive ring descriptor.
*/
static int
ti_newbuf_std(sc, i, m)
struct ti_softc *sc;
int i;
struct mbuf *m;
{
bus_dmamap_t map;
bus_dma_segment_t segs;
struct mbuf *m_new = NULL;
struct ti_rx_desc *r;
int nsegs;
nsegs = 0;
if (m == NULL) {
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL)
return (ENOBUFS);
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
m_freem(m_new);
return (ENOBUFS);
}
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
} else {
m_new = m;
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
m_new->m_data = m_new->m_ext.ext_buf;
}
m_adj(m_new, ETHER_ALIGN);
sc->ti_cdata.ti_rx_std_chain[i] = m_new;
r = &sc->ti_rdata->ti_rx_std_ring[i];
map = sc->ti_cdata.ti_rx_std_maps[i];
if (bus_dmamap_load_mbuf_sg(sc->ti_mbufrx_dmat, map, m_new, &segs,
&nsegs, 0))
return (ENOBUFS);
if (nsegs != 1)
return (ENOBUFS);
ti_hostaddr64(&r->ti_addr, segs.ds_addr);
r->ti_len = segs.ds_len;
r->ti_type = TI_BDTYPE_RECV_BD;
r->ti_flags = 0;
if (sc->ti_ifp->if_hwassist)
r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
r->ti_idx = i;
bus_dmamap_sync(sc->ti_mbufrx_dmat, map, BUS_DMASYNC_PREREAD);
return (0);
}
/*
* Intialize a mini receive ring descriptor. This only applies to
* the Tigon 2.
*/
static int
ti_newbuf_mini(sc, i, m)
struct ti_softc *sc;
int i;
struct mbuf *m;
{
bus_dma_segment_t segs;
bus_dmamap_t map;
struct mbuf *m_new = NULL;
struct ti_rx_desc *r;
int nsegs;
nsegs = 0;
if (m == NULL) {
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
return (ENOBUFS);
}
m_new->m_len = m_new->m_pkthdr.len = MHLEN;
} else {
m_new = m;
m_new->m_data = m_new->m_pktdat;
m_new->m_len = m_new->m_pkthdr.len = MHLEN;
}
m_adj(m_new, ETHER_ALIGN);
r = &sc->ti_rdata->ti_rx_mini_ring[i];
sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
map = sc->ti_cdata.ti_rx_mini_maps[i];
if (bus_dmamap_load_mbuf_sg(sc->ti_mbufrx_dmat, map, m_new, &segs,
&nsegs, 0))
return (ENOBUFS);
if (nsegs != 1)
return (ENOBUFS);
ti_hostaddr64(&r->ti_addr, segs.ds_addr);
r->ti_len = segs.ds_len;
r->ti_type = TI_BDTYPE_RECV_BD;
r->ti_flags = TI_BDFLAG_MINI_RING;
if (sc->ti_ifp->if_hwassist)
r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
r->ti_idx = i;
bus_dmamap_sync(sc->ti_mbufrx_dmat, map, BUS_DMASYNC_PREREAD);
return (0);
}
#ifdef TI_PRIVATE_JUMBOS
/*
* Initialize a jumbo receive ring descriptor. This allocates
* a jumbo buffer from the pool managed internally by the driver.
*/
static int
ti_newbuf_jumbo(sc, i, m)
struct ti_softc *sc;
int i;
struct mbuf *m;
{
bus_dmamap_t map;
struct mbuf *m_new = NULL;
struct ti_rx_desc *r;
int nsegs;
bus_dma_segment_t segs;
if (m == NULL) {
caddr_t *buf = NULL;
/* Allocate the mbuf. */
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
return (ENOBUFS);
}
/* Allocate the jumbo buffer */
buf = ti_jalloc(sc);
if (buf == NULL) {
m_freem(m_new);
device_printf(sc->ti_dev, "jumbo allocation failed "
"-- packet dropped!\n");
return (ENOBUFS);
}
/* Attach the buffer to the mbuf. */
m_new->m_data = (void *) buf;
m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree,
(struct ti_softc *)sc, 0, EXT_NET_DRV);
} else {
m_new = m;
m_new->m_data = m_new->m_ext.ext_buf;
m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
}
m_adj(m_new, ETHER_ALIGN);
/* Set up the descriptor. */
r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
map = sc->ti_cdata.ti_rx_jumbo_maps[i];
if (bus_dmamap_load_mbuf_sg(sc->ti_jumbo_dmat, map, m_new, &segs,
&nsegs, 0))
return (ENOBUFS);
if (nsegs != 1)
return (ENOBUFS);
ti_hostaddr64(&r->ti_addr, segs.ds_addr);
r->ti_len = segs.ds_len;
r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
r->ti_flags = TI_BDFLAG_JUMBO_RING;
if (sc->ti_ifp->if_hwassist)
r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
r->ti_idx = i;
bus_dmamap_sync(sc->ti_jumbo_dmat, map, BUS_DMASYNC_PREREAD);
return (0);
}
#else
#if (PAGE_SIZE == 4096)
#define NPAYLOAD 2
#else
#define NPAYLOAD 1
#endif
#define TCP_HDR_LEN (52 + sizeof(struct ether_header))
#define UDP_HDR_LEN (28 + sizeof(struct ether_header))
#define NFS_HDR_LEN (UDP_HDR_LEN)
static int HDR_LEN = TCP_HDR_LEN;
/*
* Initialize a jumbo receive ring descriptor. This allocates
* a jumbo buffer from the pool managed internally by the driver.
*/
static int
ti_newbuf_jumbo(sc, idx, m_old)
struct ti_softc *sc;
int idx;
struct mbuf *m_old;
{
bus_dmamap_t map;
struct mbuf *cur, *m_new = NULL;
struct mbuf *m[3] = {NULL, NULL, NULL};
struct ti_rx_desc_ext *r;
vm_page_t frame;
static int color;
/* 1 extra buf to make nobufs easy*/
struct sf_buf *sf[3] = {NULL, NULL, NULL};
int i;
bus_dma_segment_t segs[4];
int nsegs;
if (m_old != NULL) {
m_new = m_old;
cur = m_old->m_next;
for (i = 0; i <= NPAYLOAD; i++){
m[i] = cur;
cur = cur->m_next;
}
} else {
/* Allocate the mbufs. */
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
device_printf(sc->ti_dev, "mbuf allocation failed "
"-- packet dropped!\n");
goto nobufs;
}
MGET(m[NPAYLOAD], M_DONTWAIT, MT_DATA);
if (m[NPAYLOAD] == NULL) {
device_printf(sc->ti_dev, "cluster mbuf allocation "
"failed -- packet dropped!\n");
goto nobufs;
}
MCLGET(m[NPAYLOAD], M_DONTWAIT);
if ((m[NPAYLOAD]->m_flags & M_EXT) == 0) {
device_printf(sc->ti_dev, "mbuf allocation failed "
"-- packet dropped!\n");
goto nobufs;
}
m[NPAYLOAD]->m_len = MCLBYTES;
for (i = 0; i < NPAYLOAD; i++){
MGET(m[i], M_DONTWAIT, MT_DATA);
if (m[i] == NULL) {
device_printf(sc->ti_dev, "mbuf allocation "
"failed -- packet dropped!\n");
goto nobufs;
}
frame = vm_page_alloc(NULL, color++,
VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
VM_ALLOC_WIRED);
if (frame == NULL) {
device_printf(sc->ti_dev, "buffer allocation "
"failed -- packet dropped!\n");
printf(" index %d page %d\n", idx, i);
goto nobufs;
}
sf[i] = sf_buf_alloc(frame, SFB_NOWAIT);
if (sf[i] == NULL) {
vm_page_lock_queues();
vm_page_unwire(frame, 0);
vm_page_free(frame);
vm_page_unlock_queues();
device_printf(sc->ti_dev, "buffer allocation "
"failed -- packet dropped!\n");
printf(" index %d page %d\n", idx, i);
goto nobufs;
}
}
for (i = 0; i < NPAYLOAD; i++){
/* Attach the buffer to the mbuf. */
m[i]->m_data = (void *)sf_buf_kva(sf[i]);
m[i]->m_len = PAGE_SIZE;
MEXTADD(m[i], sf_buf_kva(sf[i]), PAGE_SIZE,
sf_buf_mext, sf[i], 0, EXT_DISPOSABLE);
m[i]->m_next = m[i+1];
}
/* link the buffers to the header */
m_new->m_next = m[0];
m_new->m_data += ETHER_ALIGN;
if (sc->ti_hdrsplit)
m_new->m_len = MHLEN - ETHER_ALIGN;
else
m_new->m_len = HDR_LEN;
m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
}
/* Set up the descriptor. */
r = &sc->ti_rdata->ti_rx_jumbo_ring[idx];
sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
map = sc->ti_cdata.ti_rx_jumbo_maps[i];
if (bus_dmamap_load_mbuf_sg(sc->ti_jumbo_dmat, map, m_new, segs,
&nsegs, 0))
return (ENOBUFS);
if ((nsegs < 1) || (nsegs > 4))
return (ENOBUFS);
ti_hostaddr64(&r->ti_addr0, segs[0].ds_addr);
r->ti_len0 = m_new->m_len;
ti_hostaddr64(&r->ti_addr1, segs[1].ds_addr);
r->ti_len1 = PAGE_SIZE;
ti_hostaddr64(&r->ti_addr2, segs[2].ds_addr);
r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
if (PAGE_SIZE == 4096) {
ti_hostaddr64(&r->ti_addr3, segs[3].ds_addr);
r->ti_len3 = MCLBYTES;
} else {
r->ti_len3 = 0;
}
r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
if (sc->ti_ifp->if_hwassist)
r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
r->ti_idx = idx;
bus_dmamap_sync(sc->ti_jumbo_dmat, map, BUS_DMASYNC_PREREAD);
return (0);
nobufs:
/*
* Warning! :
* This can only be called before the mbufs are strung together.
* If the mbufs are strung together, m_freem() will free the chain,
* so that the later mbufs will be freed multiple times.
*/
if (m_new)
m_freem(m_new);
for (i = 0; i < 3; i++) {
if (m[i])
m_freem(m[i]);
if (sf[i])
sf_buf_mext((void *)sf_buf_kva(sf[i]), sf[i]);
}
return (ENOBUFS);
}
#endif
/*
* The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
* that's 1MB or memory, which is a lot. For now, we fill only the first
* 256 ring entries and hope that our CPU is fast enough to keep up with
* the NIC.
*/
static int
ti_init_rx_ring_std(sc)
struct ti_softc *sc;
{
int i;
struct ti_cmd_desc cmd;
for (i = 0; i < TI_SSLOTS; i++) {
if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
return (ENOBUFS);
};
TI_UPDATE_STDPROD(sc, i - 1);
sc->ti_std = i - 1;
return (0);
}
static void
ti_free_rx_ring_std(sc)
struct ti_softc *sc;
{
bus_dmamap_t map;
int i;
for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
map = sc->ti_cdata.ti_rx_std_maps[i];
bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
sc->ti_cdata.ti_rx_std_chain[i] = NULL;
}
bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
sizeof(struct ti_rx_desc));
}
}
static int
ti_init_rx_ring_jumbo(sc)
struct ti_softc *sc;
{
int i;
struct ti_cmd_desc cmd;
for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
return (ENOBUFS);
};
TI_UPDATE_JUMBOPROD(sc, i - 1);
sc->ti_jumbo = i - 1;
return (0);
}
static void
ti_free_rx_ring_jumbo(sc)
struct ti_softc *sc;
{
bus_dmamap_t map;
int i;
for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
map = sc->ti_cdata.ti_rx_jumbo_maps[i];
bus_dmamap_sync(sc->ti_jumbo_dmat, map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->ti_jumbo_dmat, map);
m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
}
bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
sizeof(struct ti_rx_desc));
}
}
static int
ti_init_rx_ring_mini(sc)
struct ti_softc *sc;
{
int i;
for (i = 0; i < TI_MSLOTS; i++) {
if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
return (ENOBUFS);
};
TI_UPDATE_MINIPROD(sc, i - 1);
sc->ti_mini = i - 1;
return (0);
}
static void
ti_free_rx_ring_mini(sc)
struct ti_softc *sc;
{
bus_dmamap_t map;
int i;
for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
map = sc->ti_cdata.ti_rx_mini_maps[i];
bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
}
bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
sizeof(struct ti_rx_desc));
}
}
static void
ti_free_tx_ring(sc)
struct ti_softc *sc;
{
struct ti_txdesc *txd;
int i;
if (sc->ti_rdata->ti_tx_ring == NULL)
return;
for (i = 0; i < TI_TX_RING_CNT; i++) {
txd = &sc->ti_cdata.ti_txdesc[i];
if (txd->tx_m != NULL) {
bus_dmamap_sync(sc->ti_mbuftx_dmat, txd->tx_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->ti_mbuftx_dmat, txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
}
bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
sizeof(struct ti_tx_desc));
}
}
static int
ti_init_tx_ring(sc)
struct ti_softc *sc;
{
struct ti_txdesc *txd;
int i;
STAILQ_INIT(&sc->ti_cdata.ti_txfreeq);
STAILQ_INIT(&sc->ti_cdata.ti_txbusyq);
for (i = 0; i < TI_TX_RING_CNT; i++) {
txd = &sc->ti_cdata.ti_txdesc[i];
STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
}
sc->ti_txcnt = 0;
sc->ti_tx_saved_considx = 0;
sc->ti_tx_saved_prodidx = 0;
CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
return (0);
}
/*
* The Tigon 2 firmware has a new way to add/delete multicast addresses,
* but we have to support the old way too so that Tigon 1 cards will
* work.
*/
static void
ti_add_mcast(sc, addr)
struct ti_softc *sc;
struct ether_addr *addr;
{
struct ti_cmd_desc cmd;
u_int16_t *m;
u_int32_t ext[2] = {0, 0};
m = (u_int16_t *)&addr->octet[0];
switch (sc->ti_hwrev) {
case TI_HWREV_TIGON:
CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
break;
case TI_HWREV_TIGON_II:
ext[0] = htons(m[0]);
ext[1] = (htons(m[1]) << 16) | htons(m[2]);
TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
break;
default:
device_printf(sc->ti_dev, "unknown hwrev\n");
break;
}
}
static void
ti_del_mcast(sc, addr)
struct ti_softc *sc;
struct ether_addr *addr;
{
struct ti_cmd_desc cmd;
u_int16_t *m;
u_int32_t ext[2] = {0, 0};
m = (u_int16_t *)&addr->octet[0];
switch (sc->ti_hwrev) {
case TI_HWREV_TIGON:
CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
break;
case TI_HWREV_TIGON_II:
ext[0] = htons(m[0]);
ext[1] = (htons(m[1]) << 16) | htons(m[2]);
TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
break;
default:
device_printf(sc->ti_dev, "unknown hwrev\n");
break;
}
}
/*
* Configure the Tigon's multicast address filter.
*
* The actual multicast table management is a bit of a pain, thanks to
* slight brain damage on the part of both Alteon and us. With our
* multicast code, we are only alerted when the multicast address table
* changes and at that point we only have the current list of addresses:
* we only know the current state, not the previous state, so we don't
* actually know what addresses were removed or added. The firmware has
* state, but we can't get our grubby mits on it, and there is no 'delete
* all multicast addresses' command. Hence, we have to maintain our own
* state so we know what addresses have been programmed into the NIC at
* any given time.
*/
static void
ti_setmulti(sc)
struct ti_softc *sc;
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
struct ti_cmd_desc cmd;
struct ti_mc_entry *mc;
u_int32_t intrs;
TI_LOCK_ASSERT(sc);
ifp = sc->ti_ifp;
if (ifp->if_flags & IFF_ALLMULTI) {
TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
return;
} else {
TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
}
/* Disable interrupts. */
intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
/* First, zot all the existing filters. */
while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
mc = SLIST_FIRST(&sc->ti_mc_listhead);
ti_del_mcast(sc, &mc->mc_addr);
SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
free(mc, M_DEVBUF);
}
/* Now program new ones. */
IF_ADDR_LOCK(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
if (mc == NULL) {
device_printf(sc->ti_dev,
"no memory for mcast filter entry\n");
continue;
}
bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
(char *)&mc->mc_addr, ETHER_ADDR_LEN);
SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
ti_add_mcast(sc, &mc->mc_addr);
}
IF_ADDR_UNLOCK(ifp);
/* Re-enable interrupts. */
CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
}
/*
* Check to see if the BIOS has configured us for a 64 bit slot when
* we aren't actually in one. If we detect this condition, we can work
* around it on the Tigon 2 by setting a bit in the PCI state register,
* but for the Tigon 1 we must give up and abort the interface attach.
*/
static int ti_64bitslot_war(sc)
struct ti_softc *sc;
{
if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
CSR_WRITE_4(sc, 0x600, 0);
CSR_WRITE_4(sc, 0x604, 0);
CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
if (sc->ti_hwrev == TI_HWREV_TIGON)
return (EINVAL);
else {
TI_SETBIT(sc, TI_PCI_STATE,
TI_PCISTATE_32BIT_BUS);
return (0);
}
}
}
return (0);
}
/*
* Do endian, PCI and DMA initialization. Also check the on-board ROM
* self-test results.
*/
static int
ti_chipinit(sc)
struct ti_softc *sc;
{
u_int32_t cacheline;
u_int32_t pci_writemax = 0;
u_int32_t hdrsplit;
/* Initialize link to down state. */
sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
if (sc->ti_ifp->if_capenable & IFCAP_HWCSUM)
sc->ti_ifp->if_hwassist = TI_CSUM_FEATURES;
else
sc->ti_ifp->if_hwassist = 0;
/* Set endianness before we access any non-PCI registers. */
#if 0 && BYTE_ORDER == BIG_ENDIAN
CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
#else
CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
#endif
/* Check the ROM failed bit to see if self-tests passed. */
if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
device_printf(sc->ti_dev, "board self-diagnostics failed!\n");
return (ENODEV);
}
/* Halt the CPU. */
TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
/* Figure out the hardware revision. */
switch (CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
case TI_REV_TIGON_I:
sc->ti_hwrev = TI_HWREV_TIGON;
break;
case TI_REV_TIGON_II:
sc->ti_hwrev = TI_HWREV_TIGON_II;
break;
default:
device_printf(sc->ti_dev, "unsupported chip revision\n");
return (ENODEV);
}
/* Do special setup for Tigon 2. */
if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
}
/*
* We don't have firmware source for the Tigon 1, so Tigon 1 boards
* can't do header splitting.
*/
#ifdef TI_JUMBO_HDRSPLIT
if (sc->ti_hwrev != TI_HWREV_TIGON)
sc->ti_hdrsplit = 1;
else
device_printf(sc->ti_dev,
"can't do header splitting on a Tigon I board\n");
#endif /* TI_JUMBO_HDRSPLIT */
/* Set up the PCI state register. */
CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
}
/* Clear the read/write max DMA parameters. */
TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
TI_PCISTATE_READ_MAXDMA));
/* Get cache line size. */
cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
/*
* If the system has set enabled the PCI memory write
* and invalidate command in the command register, set
* the write max parameter accordingly. This is necessary
* to use MWI with the Tigon 2.
*/
if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
switch (cacheline) {
case 1:
case 4:
case 8:
case 16:
case 32:
case 64:
break;
default:
/* Disable PCI memory write and invalidate. */
if (bootverbose)
device_printf(sc->ti_dev, "cache line size %d"
" not supported; disabling PCI MWI\n",
cacheline);
CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
break;
}
}
#ifdef __brokenalpha__
/*
* From the Alteon sample driver:
* Must insure that we do not cross an 8K (bytes) boundary
* for DMA reads. Our highest limit is 1K bytes. This is a
* restriction on some ALPHA platforms with early revision
* 21174 PCI chipsets, such as the AlphaPC 164lx
*/
TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
#else
TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
#endif
/* This sets the min dma param all the way up (0xff). */
TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
if (sc->ti_hdrsplit)
hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
else
hdrsplit = 0;
/* Configure DMA variables. */
#if BYTE_ORDER == BIG_ENDIAN
CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
#else /* BYTE_ORDER */
CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
#endif /* BYTE_ORDER */
/*
* Only allow 1 DMA channel to be active at a time.
* I don't think this is a good idea, but without it
* the firmware racks up lots of nicDmaReadRingFull
* errors. This is not compatible with hardware checksums.
*/
if (sc->ti_ifp->if_hwassist == 0)
TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
/* Recommended settings from Tigon manual. */
CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
if (ti_64bitslot_war(sc)) {
device_printf(sc->ti_dev, "bios thinks we're in a 64 bit slot, "
"but we aren't");
return (EINVAL);
}
return (0);
}
/*
* Initialize the general information block and firmware, and
* start the CPU(s) running.
*/
static int
ti_gibinit(sc)
struct ti_softc *sc;
{
struct ti_rcb *rcb;
int i;
struct ifnet *ifp;
uint32_t rdphys;
TI_LOCK_ASSERT(sc);
ifp = sc->ti_ifp;
rdphys = sc->ti_rdata_phys;
/* Disable interrupts for now. */
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
/*
* Tell the chip where to find the general information block.
* While this struct could go into >4GB memory, we allocate it in a
* single slab with the other descriptors, and those don't seem to
* support being located in a 64-bit region.
*/
CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, rdphys + TI_RD_OFF(ti_info));
/* Load the firmware into SRAM. */
ti_loadfw(sc);
/* Set up the contents of the general info and ring control blocks. */
/* Set up the event ring and producer pointer. */
rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_event_ring);
rcb->ti_flags = 0;
TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
rdphys + TI_RD_OFF(ti_ev_prodidx_r);
sc->ti_ev_prodidx.ti_idx = 0;
CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
sc->ti_ev_saved_considx = 0;
/* Set up the command ring and producer mailbox. */
rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
rcb->ti_flags = 0;
rcb->ti_max_len = 0;
for (i = 0; i < TI_CMD_RING_CNT; i++) {
CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
}
CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
sc->ti_cmd_saved_prodidx = 0;
/*
* Assign the address of the stats refresh buffer.
* We re-use the current stats buffer for this to
* conserve memory.
*/
TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
rdphys + TI_RD_OFF(ti_info.ti_stats);
/* Set up the standard receive ring. */
rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_std_ring);
rcb->ti_max_len = TI_FRAMELEN;
rcb->ti_flags = 0;
if (sc->ti_ifp->if_hwassist)
rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
/* Set up the jumbo receive ring. */
rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_jumbo_ring);
#ifdef TI_PRIVATE_JUMBOS
rcb->ti_max_len = TI_JUMBO_FRAMELEN;
rcb->ti_flags = 0;
#else
rcb->ti_max_len = PAGE_SIZE;
rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
#endif
if (sc->ti_ifp->if_hwassist)
rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
/*
* Set up the mini ring. Only activated on the
* Tigon 2 but the slot in the config block is
* still there on the Tigon 1.
*/
rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_mini_ring);
rcb->ti_max_len = MHLEN - ETHER_ALIGN;
if (sc->ti_hwrev == TI_HWREV_TIGON)
rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
else
rcb->ti_flags = 0;
if (sc->ti_ifp->if_hwassist)
rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
/*
* Set up the receive return ring.
*/
rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_return_ring);
rcb->ti_flags = 0;
rcb->ti_max_len = TI_RETURN_RING_CNT;
TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
rdphys + TI_RD_OFF(ti_return_prodidx_r);
/*
* Set up the tx ring. Note: for the Tigon 2, we have the option
* of putting the transmit ring in the host's address space and
* letting the chip DMA it instead of leaving the ring in the NIC's
* memory and accessing it through the shared memory region. We
* do this for the Tigon 2, but it doesn't work on the Tigon 1,
* so we have to revert to the shared memory scheme if we detect
* a Tigon 1 chip.
*/
CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
bzero((char *)sc->ti_rdata->ti_tx_ring,
TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
if (sc->ti_hwrev == TI_HWREV_TIGON)
rcb->ti_flags = 0;
else
rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
if (sc->ti_ifp->if_hwassist)
rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
rcb->ti_max_len = TI_TX_RING_CNT;
if (sc->ti_hwrev == TI_HWREV_TIGON)
TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
else
TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_tx_ring);
TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
rdphys + TI_RD_OFF(ti_tx_considx_r);
bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/* Set up tuneables */
#if 0
if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
(sc->ti_rx_coal_ticks / 10));
else
#endif
CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
/* Turn interrupts on. */
CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
/* Start CPU. */
TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
return (0);
}
static void
ti_rdata_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct ti_softc *sc;
sc = arg;
if (error || nseg != 1)
return;
/*
* All of the Tigon data structures need to live at <4GB. This
* cast is fine since busdma was told about this constraint.
*/
sc->ti_rdata_phys = segs[0].ds_addr;
return;
}
/*
* Probe for a Tigon chip. Check the PCI vendor and device IDs
* against our list and return its name if we find a match.
*/
static int
ti_probe(dev)
device_t dev;
{
struct ti_type *t;
t = ti_devs;
while (t->ti_name != NULL) {
if ((pci_get_vendor(dev) == t->ti_vid) &&
(pci_get_device(dev) == t->ti_did)) {
device_set_desc(dev, t->ti_name);
return (BUS_PROBE_DEFAULT);
}
t++;
}
return (ENXIO);
}
static int
ti_attach(dev)
device_t dev;
{
struct ifnet *ifp;
struct ti_softc *sc;
int error = 0, rid;
u_char eaddr[6];
sc = device_get_softc(dev);
sc->ti_unit = device_get_unit(dev);
sc->ti_dev = dev;
mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
ifp = sc->ti_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "can not if_alloc()\n");
error = ENOSPC;
goto fail;
}
sc->ti_ifp->if_capabilities = IFCAP_HWCSUM |
IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
sc->ti_ifp->if_capenable = sc->ti_ifp->if_capabilities;
/*
* Map control/status registers.
*/
pci_enable_busmaster(dev);
rid = TI_PCI_LOMEM;
sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE|PCI_RF_DENSE);
if (sc->ti_res == NULL) {
device_printf(dev, "couldn't map memory\n");
error = ENXIO;
goto fail;
}
sc->ti_btag = rman_get_bustag(sc->ti_res);
sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
/* Allocate interrupt */
rid = 0;
sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
if (sc->ti_irq == NULL) {
device_printf(dev, "couldn't map interrupt\n");
error = ENXIO;
goto fail;
}
if (ti_chipinit(sc)) {
device_printf(dev, "chip initialization failed\n");
error = ENXIO;
goto fail;
}
/* Zero out the NIC's on-board SRAM. */
ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
/* Init again -- zeroing memory may have clobbered some registers. */
if (ti_chipinit(sc)) {
device_printf(dev, "chip initialization failed\n");
error = ENXIO;
goto fail;
}
/*
* Get station address from the EEPROM. Note: the manual states
* that the MAC address is at offset 0x8c, however the data is
* stored as two longwords (since that's how it's loaded into
* the NIC). This means the MAC address is actually preceded
* by two zero bytes. We need to skip over those.
*/
if (ti_read_eeprom(sc, eaddr,
TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
device_printf(dev, "failed to read station address\n");
error = ENXIO;
goto fail;
}
/* Allocate the general information block and ring buffers. */
if (bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */
1, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
0, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->ti_parent_dmat) != 0) {
device_printf(dev, "Failed to allocate parent dmat\n");
error = ENOMEM;
goto fail;
}
if (bus_dma_tag_create(sc->ti_parent_dmat, /* parent */
PAGE_SIZE, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
sizeof(struct ti_ring_data), /* maxsize */
1, /* nsegments */
sizeof(struct ti_ring_data), /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->ti_rdata_dmat) != 0) {
device_printf(dev, "Failed to allocate rdata dmat\n");
error = ENOMEM;
goto fail;
}
if (bus_dmamem_alloc(sc->ti_rdata_dmat, (void**)&sc->ti_rdata,
BUS_DMA_NOWAIT, &sc->ti_rdata_dmamap) != 0) {
device_printf(dev, "Failed to allocate rdata memory\n");
error = ENOMEM;
goto fail;
}
if (bus_dmamap_load(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
sc->ti_rdata, sizeof(struct ti_ring_data),
ti_rdata_cb, sc, BUS_DMA_NOWAIT) != 0) {
device_printf(dev, "Failed to load rdata segments\n");
error = ENOMEM;
goto fail;
}
bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
/* Try to allocate memory for jumbo buffers. */
if (ti_alloc_jumbo_mem(sc)) {
device_printf(dev, "jumbo buffer allocation failed\n");
error = ENXIO;
goto fail;
}
if (bus_dma_tag_create(sc->ti_parent_dmat, /* parent */
1, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES * TI_MAXTXSEGS,/* maxsize */
TI_MAXTXSEGS, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->ti_mbuftx_dmat) != 0) {
device_printf(dev, "Failed to allocate rdata dmat\n");
error = ENOMEM;
goto fail;
}
if (bus_dma_tag_create(sc->ti_parent_dmat, /* parent */
1, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES, /* maxsize */
1, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->ti_mbufrx_dmat) != 0) {
device_printf(dev, "Failed to allocate rdata dmat\n");
error = ENOMEM;
goto fail;
}
if (ti_alloc_dmamaps(sc)) {
device_printf(dev, "dma map creation failed\n");
error = ENXIO;
goto fail;
}
/*
* We really need a better way to tell a 1000baseTX card
* from a 1000baseSX one, since in theory there could be
* OEMed 1000baseTX cards from lame vendors who aren't
* clever enough to change the PCI ID. For the moment
* though, the AceNIC is the only copper card available.
*/
if (pci_get_vendor(dev) == ALT_VENDORID &&
pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
sc->ti_copper = 1;
/* Ok, it's not the only copper card available. */
if (pci_get_vendor(dev) == NG_VENDORID &&
pci_get_device(dev) == NG_DEVICEID_GA620T)
sc->ti_copper = 1;
/* Set default tuneable values. */
sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
#if 0
sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
#endif
sc->ti_rx_coal_ticks = 170;
sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
sc->ti_rx_max_coal_bds = 64;
#if 0
sc->ti_tx_max_coal_bds = 128;
#endif
sc->ti_tx_max_coal_bds = 32;
sc->ti_tx_buf_ratio = 21;
/* Set up ifnet structure */
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = ti_ioctl;
ifp->if_start = ti_start;
ifp->if_watchdog = ti_watchdog;
ifp->if_init = ti_init;
ifp->if_mtu = ETHERMTU;
ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
/* Set up ifmedia support. */
if (sc->ti_copper) {
/*
* Copper cards allow manual 10/100 mode selection,
* but not manual 1000baseTX mode selection. Why?
* Becuase currently there's no way to specify the
* master/slave setting through the firmware interface,
* so Alteon decided to just bag it and handle it
* via autonegotiation.
*/
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
} else {
/* Fiber cards don't support 10/100 modes. */
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
}
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
/*
* We're assuming here that card initialization is a sequential
* thing. If it isn't, multiple cards probing at the same time
* could stomp on the list of softcs here.
*/
/* Register the device */
sc->dev = make_dev(&ti_cdevsw, sc->ti_unit, UID_ROOT, GID_OPERATOR,
0600, "ti%d", sc->ti_unit);
sc->dev->si_drv1 = sc;
/*
* Call MI attach routine.
*/
ether_ifattach(ifp, eaddr);
/* Hook interrupt last to avoid having to lock softc */
error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET|INTR_MPSAFE,
ti_intr, sc, &sc->ti_intrhand);
if (error) {
device_printf(dev, "couldn't set up irq\n");
goto fail;
}
fail:
if (error)
ti_detach(dev);
return (error);
}
/*
* Shutdown hardware and free up resources. This can be called any
* time after the mutex has been initialized. It is called in both
* the error case in attach and the normal detach case so it needs
* to be careful about only freeing resources that have actually been
* allocated.
*/
static int
ti_detach(dev)
device_t dev;
{
struct ti_softc *sc;
struct ifnet *ifp;
int attached;
sc = device_get_softc(dev);
if (sc->dev)
destroy_dev(sc->dev);
KASSERT(mtx_initialized(&sc->ti_mtx), ("ti mutex not initialized"));
attached = device_is_attached(dev);
TI_LOCK(sc);
ifp = sc->ti_ifp;
if (attached)
ti_stop(sc);
TI_UNLOCK(sc);
if (attached)
ether_ifdetach(ifp);
/* These should only be active if attach succeeded */
if (attached)
bus_generic_detach(dev);
ti_free_dmamaps(sc);
ifmedia_removeall(&sc->ifmedia);
#ifdef TI_PRIVATE_JUMBOS
if (sc->ti_cdata.ti_jumbo_buf)
bus_dmamem_free(sc->ti_jumbo_dmat, sc->ti_cdata.ti_jumbo_buf,
sc->ti_jumbo_dmamap);
#endif
if (sc->ti_jumbo_dmat)
bus_dma_tag_destroy(sc->ti_jumbo_dmat);
if (sc->ti_mbuftx_dmat)
bus_dma_tag_destroy(sc->ti_mbuftx_dmat);
if (sc->ti_mbufrx_dmat)
bus_dma_tag_destroy(sc->ti_mbufrx_dmat);
if (sc->ti_rdata)
bus_dmamem_free(sc->ti_rdata_dmat, sc->ti_rdata,
sc->ti_rdata_dmamap);
if (sc->ti_rdata_dmat)
bus_dma_tag_destroy(sc->ti_rdata_dmat);
if (sc->ti_parent_dmat)
bus_dma_tag_destroy(sc->ti_parent_dmat);
if (sc->ti_intrhand)
bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
if (sc->ti_irq)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
if (sc->ti_res) {
bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM,
sc->ti_res);
}
if (ifp)
if_free(ifp);
mtx_destroy(&sc->ti_mtx);
return (0);
}
#ifdef TI_JUMBO_HDRSPLIT
/*
* If hdr_len is 0, that means that header splitting wasn't done on
* this packet for some reason. The two most likely reasons are that
* the protocol isn't a supported protocol for splitting, or this
* packet had a fragment offset that wasn't 0.
*
* The header length, if it is non-zero, will always be the length of
* the headers on the packet, but that length could be longer than the
* first mbuf. So we take the minimum of the two as the actual
* length.
*/
static __inline void
ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
{
int i = 0;
int lengths[4] = {0, 0, 0, 0};
struct mbuf *m, *mp;
if (hdr_len != 0)
top->m_len = min(hdr_len, top->m_len);
pkt_len -= top->m_len;
lengths[i++] = top->m_len;
mp = top;
for (m = top->m_next; m && pkt_len; m = m->m_next) {
m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
pkt_len -= m->m_len;
lengths[i++] = m->m_len;
mp = m;
}
#if 0
if (hdr_len != 0)
printf("got split packet: ");
else
printf("got non-split packet: ");
printf("%d,%d,%d,%d = %d\n", lengths[0],
lengths[1], lengths[2], lengths[3],
lengths[0] + lengths[1] + lengths[2] +
lengths[3]);
#endif
if (pkt_len)
panic("header splitting didn't");
if (m) {
m_freem(m);
mp->m_next = NULL;
}
if (mp->m_next != NULL)
panic("ti_hdr_split: last mbuf in chain should be null");
}
#endif /* TI_JUMBO_HDRSPLIT */
/*
* Frame reception handling. This is called if there's a frame
* on the receive return list.
*
* Note: we have to be able to handle three possibilities here:
* 1) the frame is from the mini receive ring (can only happen)
* on Tigon 2 boards)
* 2) the frame is from the jumbo recieve ring
* 3) the frame is from the standard receive ring
*/
static void
ti_rxeof(sc)
struct ti_softc *sc;
{
bus_dmamap_t map;
struct ifnet *ifp;
struct ti_cmd_desc cmd;
TI_LOCK_ASSERT(sc);
ifp = sc->ti_ifp;
while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
struct ti_rx_desc *cur_rx;
u_int32_t rxidx;
struct mbuf *m = NULL;
u_int16_t vlan_tag = 0;
int have_tag = 0;
cur_rx =
&sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
rxidx = cur_rx->ti_idx;
TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
have_tag = 1;
vlan_tag = cur_rx->ti_vlan_tag & 0xfff;
}
if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
map = sc->ti_cdata.ti_rx_jumbo_maps[rxidx];
bus_dmamap_sync(sc->ti_jumbo_dmat, map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->ti_jumbo_dmat, map);
if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
ifp->if_ierrors++;
ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
continue;
}
if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
ifp->if_ierrors++;
ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
continue;
}
#ifdef TI_PRIVATE_JUMBOS
m->m_len = cur_rx->ti_len;
#else /* TI_PRIVATE_JUMBOS */
#ifdef TI_JUMBO_HDRSPLIT
if (sc->ti_hdrsplit)
ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
cur_rx->ti_len, rxidx);
else
#endif /* TI_JUMBO_HDRSPLIT */
m_adj(m, cur_rx->ti_len - m->m_pkthdr.len);
#endif /* TI_PRIVATE_JUMBOS */
} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
map = sc->ti_cdata.ti_rx_mini_maps[rxidx];
bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
ifp->if_ierrors++;
ti_newbuf_mini(sc, sc->ti_mini, m);
continue;
}
if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
ifp->if_ierrors++;
ti_newbuf_mini(sc, sc->ti_mini, m);
continue;
}
m->m_len = cur_rx->ti_len;
} else {
TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
m = sc->ti_cdata.ti_rx_std_chain[rxidx];
sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
map = sc->ti_cdata.ti_rx_std_maps[rxidx];
bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
ifp->if_ierrors++;
ti_newbuf_std(sc, sc->ti_std, m);
continue;
}
if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
ifp->if_ierrors++;
ti_newbuf_std(sc, sc->ti_std, m);
continue;
}
m->m_len = cur_rx->ti_len;
}
m->m_pkthdr.len = cur_rx->ti_len;
ifp->if_ipackets++;
m->m_pkthdr.rcvif = ifp;
if (ifp->if_hwassist) {
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
CSUM_DATA_VALID;
if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
}
/*
* If we received a packet with a vlan tag,
* tag it before passing the packet upward.
*/
if (have_tag) {
m->m_pkthdr.ether_vtag = vlan_tag;
m->m_flags |= M_VLANTAG;
}
TI_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
TI_LOCK(sc);
}
/* Only necessary on the Tigon 1. */
if (sc->ti_hwrev == TI_HWREV_TIGON)
CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
sc->ti_rx_saved_considx);
TI_UPDATE_STDPROD(sc, sc->ti_std);
TI_UPDATE_MINIPROD(sc, sc->ti_mini);
TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
}
static void
ti_txeof(sc)
struct ti_softc *sc;
{
struct ti_txdesc *txd;
struct ti_tx_desc txdesc;
struct ti_tx_desc *cur_tx = NULL;
struct ifnet *ifp;
int idx;
ifp = sc->ti_ifp;
txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
if (txd == NULL)
return;
/*
* Go through our tx ring and free mbufs for those
* frames that have been sent.
*/
for (idx = sc->ti_tx_saved_considx; idx != sc->ti_tx_considx.ti_idx;
TI_INC(idx, TI_TX_RING_CNT)) {
if (sc->ti_hwrev == TI_HWREV_TIGON) {
ti_mem_read(sc, TI_TX_RING_BASE + idx * sizeof(txdesc),
sizeof(txdesc), &txdesc);
cur_tx = &txdesc;
} else
cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
sc->ti_txcnt--;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
if ((cur_tx->ti_flags & TI_BDFLAG_END) == 0)
continue;
bus_dmamap_sync(sc->ti_mbuftx_dmat, txd->tx_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->ti_mbuftx_dmat, txd->tx_dmamap);
ifp->if_opackets++;
m_freem(txd->tx_m);
txd->tx_m = NULL;
STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txbusyq, tx_q);
STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
}
sc->ti_tx_saved_considx = idx;
ifp->if_timer = sc->ti_txcnt > 0 ? 5 : 0;
}
static void
ti_intr(xsc)
void *xsc;
{
struct ti_softc *sc;
struct ifnet *ifp;
sc = xsc;
TI_LOCK(sc);
ifp = sc->ti_ifp;
/*#ifdef notdef*/
/* Avoid this for now -- checking this register is expensive. */
/* Make sure this is really our interrupt. */
if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
TI_UNLOCK(sc);
return;
}
/*#endif*/
/* Ack interrupt and stop others from occuring. */
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
/* Check RX return ring producer/consumer */
ti_rxeof(sc);
/* Check TX ring producer/consumer */
ti_txeof(sc);
}
ti_handle_events(sc);
/* Re-enable interrupts. */
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
ifp->if_snd.ifq_head != NULL)
ti_start_locked(ifp);
TI_UNLOCK(sc);
}
static void
ti_stats_update(sc)
struct ti_softc *sc;
{
struct ifnet *ifp;
ifp = sc->ti_ifp;
bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
BUS_DMASYNC_POSTREAD);
ifp->if_collisions +=
(sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
ifp->if_collisions;
bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
BUS_DMASYNC_PREREAD);
}
/*
* Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
* pointers to descriptors.
*/
static int
ti_encap(sc, m_head)
struct ti_softc *sc;
struct mbuf **m_head;
{
struct ti_txdesc *txd;
struct ti_tx_desc *f;
struct ti_tx_desc txdesc;
struct mbuf *m;
bus_dma_segment_t txsegs[TI_MAXTXSEGS];
u_int16_t csum_flags;
int error, frag, i, nseg;
if ((txd = STAILQ_FIRST(&sc->ti_cdata.ti_txfreeq)) == NULL)
return (ENOBUFS);
error = bus_dmamap_load_mbuf_sg(sc->ti_mbuftx_dmat, txd->tx_dmamap,
*m_head, txsegs, &nseg, 0);
if (error == EFBIG) {
m = m_defrag(*m_head, M_DONTWAIT);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOMEM);
}
*m_head = m;
error = bus_dmamap_load_mbuf_sg(sc->ti_mbuftx_dmat,
txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
if (error) {
m_freem(*m_head);
*m_head = NULL;
return (error);
}
} else if (error != 0)
return (error);
if (nseg == 0) {
m_freem(*m_head);
*m_head = NULL;
return (EIO);
}
if (sc->ti_txcnt + nseg >= TI_TX_RING_CNT) {
bus_dmamap_unload(sc->ti_mbuftx_dmat, txd->tx_dmamap);
return (ENOBUFS);
}
m = *m_head;
csum_flags = 0;
if (m->m_pkthdr.csum_flags) {
if (m->m_pkthdr.csum_flags & CSUM_IP)
csum_flags |= TI_BDFLAG_IP_CKSUM;
if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
if (m->m_flags & M_LASTFRAG)
csum_flags |= TI_BDFLAG_IP_FRAG_END;
else if (m->m_flags & M_FRAG)
csum_flags |= TI_BDFLAG_IP_FRAG;
}
bus_dmamap_sync(sc->ti_mbuftx_dmat, txd->tx_dmamap,
BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
BUS_DMASYNC_PREWRITE);
frag = sc->ti_tx_saved_prodidx;
for (i = 0; i < nseg; i++) {
if (sc->ti_hwrev == TI_HWREV_TIGON) {
bzero(&txdesc, sizeof(txdesc));
f = &txdesc;
} else
f = &sc->ti_rdata->ti_tx_ring[frag];
ti_hostaddr64(&f->ti_addr, txsegs[i].ds_addr);
f->ti_len = txsegs[i].ds_len;
f->ti_flags = csum_flags;
if (m->m_flags & M_VLANTAG) {
f->ti_flags |= TI_BDFLAG_VLAN_TAG;
f->ti_vlan_tag = m->m_pkthdr.ether_vtag & 0xfff;
} else {
f->ti_vlan_tag = 0;
}
if (sc->ti_hwrev == TI_HWREV_TIGON)
ti_mem_write(sc, TI_TX_RING_BASE + frag *
sizeof(txdesc), sizeof(txdesc), &txdesc);
TI_INC(frag, TI_TX_RING_CNT);
}
sc->ti_tx_saved_prodidx = frag;
/* set TI_BDFLAG_END on the last descriptor */
frag = (frag + TI_TX_RING_CNT - 1) % TI_TX_RING_CNT;
if (sc->ti_hwrev == TI_HWREV_TIGON) {
txdesc.ti_flags |= TI_BDFLAG_END;
ti_mem_write(sc, TI_TX_RING_BASE + frag * sizeof(txdesc),
sizeof(txdesc), &txdesc);
} else
sc->ti_rdata->ti_tx_ring[frag].ti_flags |= TI_BDFLAG_END;
STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txfreeq, tx_q);
STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txbusyq, txd, tx_q);
txd->tx_m = m;
sc->ti_txcnt += nseg;
return (0);
}
static void
ti_start(ifp)
struct ifnet *ifp;
{
struct ti_softc *sc;
sc = ifp->if_softc;
TI_LOCK(sc);
ti_start_locked(ifp);
TI_UNLOCK(sc);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit descriptors.
*/
static void
ti_start_locked(ifp)
struct ifnet *ifp;
{
struct ti_softc *sc;
struct mbuf *m_head = NULL;
int enq = 0;
sc = ifp->if_softc;
for (; ifp->if_snd.ifq_head != NULL &&
sc->ti_txcnt < (TI_TX_RING_CNT - 16);) {
IF_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* XXX
* safety overkill. If this is a fragmented packet chain
* with delayed TCP/UDP checksums, then only encapsulate
* it if we have enough descriptors to handle the entire
* chain at once.
* (paranoia -- may not actually be needed)
*/
if (m_head->m_flags & M_FIRSTFRAG &&
m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
if ((TI_TX_RING_CNT - sc->ti_txcnt) <
m_head->m_pkthdr.csum_data + 16) {
IF_PREPEND(&ifp->if_snd, m_head);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
}
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
*/
if (ti_encap(sc, &m_head)) {
if (m_head == NULL)
break;
IF_PREPEND(&ifp->if_snd, m_head);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
enq++;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
BPF_MTAP(ifp, m_head);
}
if (enq > 0) {
/* Transmit */
CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, sc->ti_tx_saved_prodidx);
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
}
}
static void
ti_init(xsc)
void *xsc;
{
struct ti_softc *sc;
sc = xsc;
TI_LOCK(sc);
ti_init_locked(sc);
TI_UNLOCK(sc);
}
static void
ti_init_locked(xsc)
void *xsc;
{
struct ti_softc *sc = xsc;
/* Cancel pending I/O and flush buffers. */
ti_stop(sc);
/* Init the gen info block, ring control blocks and firmware. */
if (ti_gibinit(sc)) {
device_printf(sc->ti_dev, "initialization failure\n");
return;
}
}
static void ti_init2(sc)
struct ti_softc *sc;
{
struct ti_cmd_desc cmd;
struct ifnet *ifp;
u_int8_t *ea;
struct ifmedia *ifm;
int tmp;
TI_LOCK_ASSERT(sc);
ifp = sc->ti_ifp;
/* Specify MTU and interface index. */
CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->ti_unit);
CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
/* Load our MAC address. */
ea = IF_LLADDR(sc->ti_ifp);
CSR_WRITE_4(sc, TI_GCR_PAR0, (ea[0] << 8) | ea[1]);
CSR_WRITE_4(sc, TI_GCR_PAR1,
(ea[2] << 24) | (ea[3] << 16) | (ea[4] << 8) | ea[5]);
TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
/* Enable or disable promiscuous mode as needed. */
if (ifp->if_flags & IFF_PROMISC) {
TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
} else {
TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
}
/* Program multicast filter. */
ti_setmulti(sc);
/*
* If this is a Tigon 1, we should tell the
* firmware to use software packet filtering.
*/
if (sc->ti_hwrev == TI_HWREV_TIGON) {
TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
}
/* Init RX ring. */
ti_init_rx_ring_std(sc);
/* Init jumbo RX ring. */
if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
ti_init_rx_ring_jumbo(sc);
/*
* If this is a Tigon 2, we can also configure the
* mini ring.
*/
if (sc->ti_hwrev == TI_HWREV_TIGON_II)
ti_init_rx_ring_mini(sc);
CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
sc->ti_rx_saved_considx = 0;
/* Init TX ring. */
ti_init_tx_ring(sc);
/* Tell firmware we're alive. */
TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
/* Enable host interrupts. */
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
/*
* Make sure to set media properly. We have to do this
* here since we have to issue commands in order to set
* the link negotiation and we can't issue commands until
* the firmware is running.
*/
ifm = &sc->ifmedia;
tmp = ifm->ifm_media;
ifm->ifm_media = ifm->ifm_cur->ifm_media;
ti_ifmedia_upd(ifp);
ifm->ifm_media = tmp;
}
/*
* Set media options.
*/
static int
ti_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct ti_softc *sc;
struct ifmedia *ifm;
struct ti_cmd_desc cmd;
u_int32_t flowctl;
sc = ifp->if_softc;
ifm = &sc->ifmedia;
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
return (EINVAL);
flowctl = 0;
switch (IFM_SUBTYPE(ifm->ifm_media)) {
case IFM_AUTO:
/*
* Transmit flow control doesn't work on the Tigon 1.
*/
flowctl = TI_GLNK_RX_FLOWCTL_Y;
/*
* Transmit flow control can also cause problems on the
* Tigon 2, apparantly with both the copper and fiber
* boards. The symptom is that the interface will just
* hang. This was reproduced with Alteon 180 switches.
*/
#if 0
if (sc->ti_hwrev != TI_HWREV_TIGON)
flowctl |= TI_GLNK_TX_FLOWCTL_Y;
#endif
CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
TI_GLNK_FULL_DUPLEX| flowctl |
TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
flowctl = TI_LNK_RX_FLOWCTL_Y;
#if 0
if (sc->ti_hwrev != TI_HWREV_TIGON)
flowctl |= TI_LNK_TX_FLOWCTL_Y;
#endif
CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
TI_LNK_AUTONEGENB|TI_LNK_ENB);
TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
TI_CMD_CODE_NEGOTIATE_BOTH, 0);
break;
case IFM_1000_SX:
case IFM_1000_T:
flowctl = TI_GLNK_RX_FLOWCTL_Y;
#if 0
if (sc->ti_hwrev != TI_HWREV_TIGON)
flowctl |= TI_GLNK_TX_FLOWCTL_Y;
#endif
CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
flowctl |TI_GLNK_ENB);
CSR_WRITE_4(sc, TI_GCR_LINK, 0);
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
}
TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
break;
case IFM_100_FX:
case IFM_10_FL:
case IFM_100_TX:
case IFM_10_T:
flowctl = TI_LNK_RX_FLOWCTL_Y;
#if 0
if (sc->ti_hwrev != TI_HWREV_TIGON)
flowctl |= TI_LNK_TX_FLOWCTL_Y;
#endif
CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
} else {
TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
}
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
} else {
TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
}
TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
TI_CMD_CODE_NEGOTIATE_10_100, 0);
break;
}
return (0);
}
/*
* Report current media status.
*/
static void
ti_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct ti_softc *sc;
u_int32_t media = 0;
sc = ifp->if_softc;
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
return;
ifmr->ifm_status |= IFM_ACTIVE;
if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
if (sc->ti_copper)
ifmr->ifm_active |= IFM_1000_T;
else
ifmr->ifm_active |= IFM_1000_SX;
if (media & TI_GLNK_FULL_DUPLEX)
ifmr->ifm_active |= IFM_FDX;
else
ifmr->ifm_active |= IFM_HDX;
} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
if (sc->ti_copper) {
if (media & TI_LNK_100MB)
ifmr->ifm_active |= IFM_100_TX;
if (media & TI_LNK_10MB)
ifmr->ifm_active |= IFM_10_T;
} else {
if (media & TI_LNK_100MB)
ifmr->ifm_active |= IFM_100_FX;
if (media & TI_LNK_10MB)
ifmr->ifm_active |= IFM_10_FL;
}
if (media & TI_LNK_FULL_DUPLEX)
ifmr->ifm_active |= IFM_FDX;
if (media & TI_LNK_HALF_DUPLEX)
ifmr->ifm_active |= IFM_HDX;
}
}
static int
ti_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct ti_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
int mask, error = 0;
struct ti_cmd_desc cmd;
switch (command) {
case SIOCSIFMTU:
TI_LOCK(sc);
if (ifr->ifr_mtu > TI_JUMBO_MTU)
error = EINVAL;
else {
ifp->if_mtu = ifr->ifr_mtu;
ti_init_locked(sc);
}
TI_UNLOCK(sc);
break;
case SIOCSIFFLAGS:
TI_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
/*
* If only the state of the PROMISC flag changed,
* then just use the 'set promisc mode' command
* instead of reinitializing the entire NIC. Doing
* a full re-init means reloading the firmware and
* waiting for it to start up, which may take a
* second or two.
*/
if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
ifp->if_flags & IFF_PROMISC &&
!(sc->ti_if_flags & IFF_PROMISC)) {
TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
TI_CMD_CODE_PROMISC_ENB, 0);
} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
!(ifp->if_flags & IFF_PROMISC) &&
sc->ti_if_flags & IFF_PROMISC) {
TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
TI_CMD_CODE_PROMISC_DIS, 0);
} else
ti_init_locked(sc);
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
ti_stop(sc);
}
}
sc->ti_if_flags = ifp->if_flags;
TI_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
TI_LOCK(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
ti_setmulti(sc);
TI_UNLOCK(sc);
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
break;
case SIOCSIFCAP:
TI_LOCK(sc);
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
if (mask & IFCAP_HWCSUM) {
if (IFCAP_HWCSUM & ifp->if_capenable)
ifp->if_capenable &= ~IFCAP_HWCSUM;
else
ifp->if_capenable |= IFCAP_HWCSUM;
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
ti_init_locked(sc);
}
TI_UNLOCK(sc);
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
return (error);
}
static int
ti_open(struct cdev *dev, int flags, int fmt, struct thread *td)
{
struct ti_softc *sc;
sc = dev->si_drv1;
if (sc == NULL)
return (ENODEV);
TI_LOCK(sc);
sc->ti_flags |= TI_FLAG_DEBUGING;
TI_UNLOCK(sc);
return (0);
}
static int
ti_close(struct cdev *dev, int flag, int fmt, struct thread *td)
{
struct ti_softc *sc;
sc = dev->si_drv1;
if (sc == NULL)
return (ENODEV);
TI_LOCK(sc);
sc->ti_flags &= ~TI_FLAG_DEBUGING;
TI_UNLOCK(sc);
return (0);
}
/*
* This ioctl routine goes along with the Tigon character device.
*/
static int
ti_ioctl2(struct cdev *dev, u_long cmd, caddr_t addr, int flag,
struct thread *td)
{
int error;
struct ti_softc *sc;
sc = dev->si_drv1;
if (sc == NULL)
return (ENODEV);
error = 0;
switch (cmd) {
case TIIOCGETSTATS:
{
struct ti_stats *outstats;
outstats = (struct ti_stats *)addr;
TI_LOCK(sc);
bcopy(&sc->ti_rdata->ti_info.ti_stats, outstats,
sizeof(struct ti_stats));
TI_UNLOCK(sc);
break;
}
case TIIOCGETPARAMS:
{
struct ti_params *params;
params = (struct ti_params *)addr;
TI_LOCK(sc);
params->ti_stat_ticks = sc->ti_stat_ticks;
params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
params->param_mask = TI_PARAM_ALL;
TI_UNLOCK(sc);
error = 0;
break;
}
case TIIOCSETPARAMS:
{
struct ti_params *params;
params = (struct ti_params *)addr;
TI_LOCK(sc);
if (params->param_mask & TI_PARAM_STAT_TICKS) {
sc->ti_stat_ticks = params->ti_stat_ticks;
CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
}
if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
sc->ti_rx_coal_ticks);
}
if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
sc->ti_tx_coal_ticks);
}
if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
sc->ti_rx_max_coal_bds);
}
if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
sc->ti_tx_max_coal_bds);
}
if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
sc->ti_tx_buf_ratio);
}
TI_UNLOCK(sc);
error = 0;
break;
}
case TIIOCSETTRACE: {
ti_trace_type trace_type;
trace_type = *(ti_trace_type *)addr;
/*
* Set tracing to whatever the user asked for. Setting
* this register to 0 should have the effect of disabling
* tracing.
*/
CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
error = 0;
break;
}
case TIIOCGETTRACE: {
struct ti_trace_buf *trace_buf;
u_int32_t trace_start, cur_trace_ptr, trace_len;
trace_buf = (struct ti_trace_buf *)addr;
TI_LOCK(sc);
trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
#if 0
if_printf(sc->ti_ifp, "trace_start = %#x, cur_trace_ptr = %#x, "
"trace_len = %d\n", trace_start,
cur_trace_ptr, trace_len);
if_printf(sc->ti_ifp, "trace_buf->buf_len = %d\n",
trace_buf->buf_len);
#endif
error = ti_copy_mem(sc, trace_start, min(trace_len,
trace_buf->buf_len),
(caddr_t)trace_buf->buf, 1, 1);
if (error == 0) {
trace_buf->fill_len = min(trace_len,
trace_buf->buf_len);
if (cur_trace_ptr < trace_start)
trace_buf->cur_trace_ptr =
trace_start - cur_trace_ptr;
else
trace_buf->cur_trace_ptr =
cur_trace_ptr - trace_start;
} else
trace_buf->fill_len = 0;
TI_UNLOCK(sc);
break;
}
/*
* For debugging, five ioctls are needed:
* ALT_ATTACH
* ALT_READ_TG_REG
* ALT_WRITE_TG_REG
* ALT_READ_TG_MEM
* ALT_WRITE_TG_MEM
*/
case ALT_ATTACH:
/*
* From what I can tell, Alteon's Solaris Tigon driver
* only has one character device, so you have to attach
* to the Tigon board you're interested in. This seems
* like a not-so-good way to do things, since unless you
* subsequently specify the unit number of the device
* you're interested in in every ioctl, you'll only be
* able to debug one board at a time.
*/
error = 0;
break;
case ALT_READ_TG_MEM:
case ALT_WRITE_TG_MEM:
{
struct tg_mem *mem_param;
u_int32_t sram_end, scratch_end;
mem_param = (struct tg_mem *)addr;
if (sc->ti_hwrev == TI_HWREV_TIGON) {
sram_end = TI_END_SRAM_I;
scratch_end = TI_END_SCRATCH_I;
} else {
sram_end = TI_END_SRAM_II;
scratch_end = TI_END_SCRATCH_II;
}
/*
* For now, we'll only handle accessing regular SRAM,
* nothing else.
*/
TI_LOCK(sc);
if ((mem_param->tgAddr >= TI_BEG_SRAM)
&& ((mem_param->tgAddr + mem_param->len) <= sram_end)) {
/*
* In this instance, we always copy to/from user
* space, so the user space argument is set to 1.
*/
error = ti_copy_mem(sc, mem_param->tgAddr,
mem_param->len,
mem_param->userAddr, 1,
(cmd == ALT_READ_TG_MEM) ? 1 : 0);
} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH)
&& (mem_param->tgAddr <= scratch_end)) {
error = ti_copy_scratch(sc, mem_param->tgAddr,
mem_param->len,
mem_param->userAddr, 1,
(cmd == ALT_READ_TG_MEM) ?
1 : 0, TI_PROCESSOR_A);
} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG)
&& (mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG)) {
if (sc->ti_hwrev == TI_HWREV_TIGON) {
if_printf(sc->ti_ifp,
"invalid memory range for Tigon I\n");
error = EINVAL;
break;
}
error = ti_copy_scratch(sc, mem_param->tgAddr -
TI_SCRATCH_DEBUG_OFF,
mem_param->len,
mem_param->userAddr, 1,
(cmd == ALT_READ_TG_MEM) ?
1 : 0, TI_PROCESSOR_B);
} else {
if_printf(sc->ti_ifp, "memory address %#x len %d is "
"out of supported range\n",
mem_param->tgAddr, mem_param->len);
error = EINVAL;
}
TI_UNLOCK(sc);
break;
}
case ALT_READ_TG_REG:
case ALT_WRITE_TG_REG:
{
struct tg_reg *regs;
u_int32_t tmpval;
regs = (struct tg_reg *)addr;
/*
* Make sure the address in question isn't out of range.
*/
if (regs->addr > TI_REG_MAX) {
error = EINVAL;
break;
}
TI_LOCK(sc);
if (cmd == ALT_READ_TG_REG) {
bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
regs->addr, &tmpval, 1);
regs->data = ntohl(tmpval);
#if 0
if ((regs->addr == TI_CPU_STATE)
|| (regs->addr == TI_CPU_CTL_B)) {
if_printf(sc->ti_ifp, "register %#x = %#x\n",
regs->addr, tmpval);
}
#endif
} else {
tmpval = htonl(regs->data);
bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
regs->addr, &tmpval, 1);
}
TI_UNLOCK(sc);
break;
}
default:
error = ENOTTY;
break;
}
return (error);
}
static void
ti_watchdog(ifp)
struct ifnet *ifp;
{
struct ti_softc *sc;
sc = ifp->if_softc;
TI_LOCK(sc);
/*
* When we're debugging, the chip is often stopped for long periods
* of time, and that would normally cause the watchdog timer to fire.
* Since that impedes debugging, we don't want to do that.
*/
if (sc->ti_flags & TI_FLAG_DEBUGING) {
TI_UNLOCK(sc);
return;
}
if_printf(ifp, "watchdog timeout -- resetting\n");
ti_stop(sc);
ti_init_locked(sc);
ifp->if_oerrors++;
TI_UNLOCK(sc);
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void
ti_stop(sc)
struct ti_softc *sc;
{
struct ifnet *ifp;
struct ti_cmd_desc cmd;
TI_LOCK_ASSERT(sc);
ifp = sc->ti_ifp;
/* Disable host interrupts. */
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
/*
* Tell firmware we're shutting down.
*/
TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
/* Halt and reinitialize. */
if (ti_chipinit(sc) != 0)
return;
ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
if (ti_chipinit(sc) != 0)
return;
/* Free the RX lists. */
ti_free_rx_ring_std(sc);
/* Free jumbo RX list. */
ti_free_rx_ring_jumbo(sc);
/* Free mini RX list. */
ti_free_rx_ring_mini(sc);
/* Free TX buffers. */
ti_free_tx_ring(sc);
sc->ti_ev_prodidx.ti_idx = 0;
sc->ti_return_prodidx.ti_idx = 0;
sc->ti_tx_considx.ti_idx = 0;
sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static void
ti_shutdown(dev)
device_t dev;
{
struct ti_softc *sc;
sc = device_get_softc(dev);
TI_LOCK(sc);
ti_chipinit(sc);
TI_UNLOCK(sc);
}