965cc255c9
- When clearing a bit for a cpuid in pmap->pm_save, ensure that the cpuid is not set in pm_active. The pm_save indicates which CPUs may have cached translations for given PCID, which implies that a CPU executing with the given pmap active have the translations cached. [1] - In smp_masked_invltlb(), pass pmap to smp_targeted_tlb_shootdown(). [1] - In invlrng_handler(), check for the special values of pcid (0 and -1) and do corresponding global or total invalidations before checking for performing PCID-specific range invalidation with INVPCID_ADDR. [2] - In invltlb_pcid_handler(), do not read %cr3 unless needed. [2] - Do minor style tweaks. [2] Submitted by: Henrik Gulbrandsen <henrik@gulbra.net> [1] Other parts sponsored by: The FreeBSD Foundation [2] Tested by: Henrik Gulbrandsen, pho MFC after: 1 week
6816 lines
178 KiB
C
6816 lines
178 KiB
C
/*-
|
||
* Copyright (c) 1991 Regents of the University of California.
|
||
* All rights reserved.
|
||
* Copyright (c) 1994 John S. Dyson
|
||
* All rights reserved.
|
||
* Copyright (c) 1994 David Greenman
|
||
* All rights reserved.
|
||
* Copyright (c) 2003 Peter Wemm
|
||
* All rights reserved.
|
||
* Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
|
||
* All rights reserved.
|
||
*
|
||
* This code is derived from software contributed to Berkeley by
|
||
* the Systems Programming Group of the University of Utah Computer
|
||
* Science Department and William Jolitz of UUNET Technologies Inc.
|
||
*
|
||
* Redistribution and use in source and binary forms, with or without
|
||
* modification, are permitted provided that the following conditions
|
||
* are met:
|
||
* 1. Redistributions of source code must retain the above copyright
|
||
* notice, this list of conditions and the following disclaimer.
|
||
* 2. Redistributions in binary form must reproduce the above copyright
|
||
* notice, this list of conditions and the following disclaimer in the
|
||
* documentation and/or other materials provided with the distribution.
|
||
* 3. All advertising materials mentioning features or use of this software
|
||
* must display the following acknowledgement:
|
||
* This product includes software developed by the University of
|
||
* California, Berkeley and its contributors.
|
||
* 4. Neither the name of the University nor the names of its contributors
|
||
* may be used to endorse or promote products derived from this software
|
||
* without specific prior written permission.
|
||
*
|
||
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||
* SUCH DAMAGE.
|
||
*
|
||
* from: @(#)pmap.c 7.7 (Berkeley) 5/12/91
|
||
*/
|
||
/*-
|
||
* Copyright (c) 2003 Networks Associates Technology, Inc.
|
||
* All rights reserved.
|
||
*
|
||
* This software was developed for the FreeBSD Project by Jake Burkholder,
|
||
* Safeport Network Services, and Network Associates Laboratories, the
|
||
* Security Research Division of Network Associates, Inc. under
|
||
* DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
|
||
* CHATS research program.
|
||
*
|
||
* Redistribution and use in source and binary forms, with or without
|
||
* modification, are permitted provided that the following conditions
|
||
* are met:
|
||
* 1. Redistributions of source code must retain the above copyright
|
||
* notice, this list of conditions and the following disclaimer.
|
||
* 2. Redistributions in binary form must reproduce the above copyright
|
||
* notice, this list of conditions and the following disclaimer in the
|
||
* documentation and/or other materials provided with the distribution.
|
||
*
|
||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||
* SUCH DAMAGE.
|
||
*/
|
||
|
||
#define AMD64_NPT_AWARE
|
||
|
||
#include <sys/cdefs.h>
|
||
__FBSDID("$FreeBSD$");
|
||
|
||
/*
|
||
* Manages physical address maps.
|
||
*
|
||
* Since the information managed by this module is
|
||
* also stored by the logical address mapping module,
|
||
* this module may throw away valid virtual-to-physical
|
||
* mappings at almost any time. However, invalidations
|
||
* of virtual-to-physical mappings must be done as
|
||
* requested.
|
||
*
|
||
* In order to cope with hardware architectures which
|
||
* make virtual-to-physical map invalidates expensive,
|
||
* this module may delay invalidate or reduced protection
|
||
* operations until such time as they are actually
|
||
* necessary. This module is given full information as
|
||
* to which processors are currently using which maps,
|
||
* and to when physical maps must be made correct.
|
||
*/
|
||
|
||
#include "opt_pmap.h"
|
||
#include "opt_vm.h"
|
||
|
||
#include <sys/param.h>
|
||
#include <sys/bus.h>
|
||
#include <sys/systm.h>
|
||
#include <sys/kernel.h>
|
||
#include <sys/ktr.h>
|
||
#include <sys/lock.h>
|
||
#include <sys/malloc.h>
|
||
#include <sys/mman.h>
|
||
#include <sys/mutex.h>
|
||
#include <sys/proc.h>
|
||
#include <sys/rwlock.h>
|
||
#include <sys/sx.h>
|
||
#include <sys/vmmeter.h>
|
||
#include <sys/sched.h>
|
||
#include <sys/sysctl.h>
|
||
#include <sys/_unrhdr.h>
|
||
#include <sys/smp.h>
|
||
|
||
#include <vm/vm.h>
|
||
#include <vm/vm_param.h>
|
||
#include <vm/vm_kern.h>
|
||
#include <vm/vm_page.h>
|
||
#include <vm/vm_map.h>
|
||
#include <vm/vm_object.h>
|
||
#include <vm/vm_extern.h>
|
||
#include <vm/vm_pageout.h>
|
||
#include <vm/vm_pager.h>
|
||
#include <vm/vm_radix.h>
|
||
#include <vm/vm_reserv.h>
|
||
#include <vm/uma.h>
|
||
|
||
#include <machine/intr_machdep.h>
|
||
#include <x86/apicvar.h>
|
||
#include <machine/cpu.h>
|
||
#include <machine/cputypes.h>
|
||
#include <machine/md_var.h>
|
||
#include <machine/pcb.h>
|
||
#include <machine/specialreg.h>
|
||
#ifdef SMP
|
||
#include <machine/smp.h>
|
||
#endif
|
||
|
||
static __inline boolean_t
|
||
pmap_emulate_ad_bits(pmap_t pmap)
|
||
{
|
||
|
||
return ((pmap->pm_flags & PMAP_EMULATE_AD_BITS) != 0);
|
||
}
|
||
|
||
static __inline pt_entry_t
|
||
pmap_valid_bit(pmap_t pmap)
|
||
{
|
||
pt_entry_t mask;
|
||
|
||
switch (pmap->pm_type) {
|
||
case PT_X86:
|
||
mask = X86_PG_V;
|
||
break;
|
||
case PT_EPT:
|
||
if (pmap_emulate_ad_bits(pmap))
|
||
mask = EPT_PG_EMUL_V;
|
||
else
|
||
mask = EPT_PG_READ;
|
||
break;
|
||
default:
|
||
panic("pmap_valid_bit: invalid pm_type %d", pmap->pm_type);
|
||
}
|
||
|
||
return (mask);
|
||
}
|
||
|
||
static __inline pt_entry_t
|
||
pmap_rw_bit(pmap_t pmap)
|
||
{
|
||
pt_entry_t mask;
|
||
|
||
switch (pmap->pm_type) {
|
||
case PT_X86:
|
||
mask = X86_PG_RW;
|
||
break;
|
||
case PT_EPT:
|
||
if (pmap_emulate_ad_bits(pmap))
|
||
mask = EPT_PG_EMUL_RW;
|
||
else
|
||
mask = EPT_PG_WRITE;
|
||
break;
|
||
default:
|
||
panic("pmap_rw_bit: invalid pm_type %d", pmap->pm_type);
|
||
}
|
||
|
||
return (mask);
|
||
}
|
||
|
||
static __inline pt_entry_t
|
||
pmap_global_bit(pmap_t pmap)
|
||
{
|
||
pt_entry_t mask;
|
||
|
||
switch (pmap->pm_type) {
|
||
case PT_X86:
|
||
mask = X86_PG_G;
|
||
break;
|
||
case PT_EPT:
|
||
mask = 0;
|
||
break;
|
||
default:
|
||
panic("pmap_global_bit: invalid pm_type %d", pmap->pm_type);
|
||
}
|
||
|
||
return (mask);
|
||
}
|
||
|
||
static __inline pt_entry_t
|
||
pmap_accessed_bit(pmap_t pmap)
|
||
{
|
||
pt_entry_t mask;
|
||
|
||
switch (pmap->pm_type) {
|
||
case PT_X86:
|
||
mask = X86_PG_A;
|
||
break;
|
||
case PT_EPT:
|
||
if (pmap_emulate_ad_bits(pmap))
|
||
mask = EPT_PG_READ;
|
||
else
|
||
mask = EPT_PG_A;
|
||
break;
|
||
default:
|
||
panic("pmap_accessed_bit: invalid pm_type %d", pmap->pm_type);
|
||
}
|
||
|
||
return (mask);
|
||
}
|
||
|
||
static __inline pt_entry_t
|
||
pmap_modified_bit(pmap_t pmap)
|
||
{
|
||
pt_entry_t mask;
|
||
|
||
switch (pmap->pm_type) {
|
||
case PT_X86:
|
||
mask = X86_PG_M;
|
||
break;
|
||
case PT_EPT:
|
||
if (pmap_emulate_ad_bits(pmap))
|
||
mask = EPT_PG_WRITE;
|
||
else
|
||
mask = EPT_PG_M;
|
||
break;
|
||
default:
|
||
panic("pmap_modified_bit: invalid pm_type %d", pmap->pm_type);
|
||
}
|
||
|
||
return (mask);
|
||
}
|
||
|
||
#if !defined(DIAGNOSTIC)
|
||
#ifdef __GNUC_GNU_INLINE__
|
||
#define PMAP_INLINE __attribute__((__gnu_inline__)) inline
|
||
#else
|
||
#define PMAP_INLINE extern inline
|
||
#endif
|
||
#else
|
||
#define PMAP_INLINE
|
||
#endif
|
||
|
||
#ifdef PV_STATS
|
||
#define PV_STAT(x) do { x ; } while (0)
|
||
#else
|
||
#define PV_STAT(x) do { } while (0)
|
||
#endif
|
||
|
||
#define pa_index(pa) ((pa) >> PDRSHIFT)
|
||
#define pa_to_pvh(pa) (&pv_table[pa_index(pa)])
|
||
|
||
#define NPV_LIST_LOCKS MAXCPU
|
||
|
||
#define PHYS_TO_PV_LIST_LOCK(pa) \
|
||
(&pv_list_locks[pa_index(pa) % NPV_LIST_LOCKS])
|
||
|
||
#define CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa) do { \
|
||
struct rwlock **_lockp = (lockp); \
|
||
struct rwlock *_new_lock; \
|
||
\
|
||
_new_lock = PHYS_TO_PV_LIST_LOCK(pa); \
|
||
if (_new_lock != *_lockp) { \
|
||
if (*_lockp != NULL) \
|
||
rw_wunlock(*_lockp); \
|
||
*_lockp = _new_lock; \
|
||
rw_wlock(*_lockp); \
|
||
} \
|
||
} while (0)
|
||
|
||
#define CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m) \
|
||
CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
|
||
|
||
#define RELEASE_PV_LIST_LOCK(lockp) do { \
|
||
struct rwlock **_lockp = (lockp); \
|
||
\
|
||
if (*_lockp != NULL) { \
|
||
rw_wunlock(*_lockp); \
|
||
*_lockp = NULL; \
|
||
} \
|
||
} while (0)
|
||
|
||
#define VM_PAGE_TO_PV_LIST_LOCK(m) \
|
||
PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
|
||
|
||
struct pmap kernel_pmap_store;
|
||
|
||
vm_offset_t virtual_avail; /* VA of first avail page (after kernel bss) */
|
||
vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */
|
||
|
||
int nkpt;
|
||
SYSCTL_INT(_machdep, OID_AUTO, nkpt, CTLFLAG_RD, &nkpt, 0,
|
||
"Number of kernel page table pages allocated on bootup");
|
||
|
||
static int ndmpdp;
|
||
vm_paddr_t dmaplimit;
|
||
vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
|
||
pt_entry_t pg_nx;
|
||
|
||
static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
|
||
|
||
static int pat_works = 1;
|
||
SYSCTL_INT(_vm_pmap, OID_AUTO, pat_works, CTLFLAG_RD, &pat_works, 1,
|
||
"Is page attribute table fully functional?");
|
||
|
||
static int pg_ps_enabled = 1;
|
||
SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN, &pg_ps_enabled, 0,
|
||
"Are large page mappings enabled?");
|
||
|
||
#define PAT_INDEX_SIZE 8
|
||
static int pat_index[PAT_INDEX_SIZE]; /* cache mode to PAT index conversion */
|
||
|
||
static u_int64_t KPTphys; /* phys addr of kernel level 1 */
|
||
static u_int64_t KPDphys; /* phys addr of kernel level 2 */
|
||
u_int64_t KPDPphys; /* phys addr of kernel level 3 */
|
||
u_int64_t KPML4phys; /* phys addr of kernel level 4 */
|
||
|
||
static u_int64_t DMPDphys; /* phys addr of direct mapped level 2 */
|
||
static u_int64_t DMPDPphys; /* phys addr of direct mapped level 3 */
|
||
static int ndmpdpphys; /* number of DMPDPphys pages */
|
||
|
||
static struct rwlock_padalign pvh_global_lock;
|
||
|
||
/*
|
||
* Data for the pv entry allocation mechanism
|
||
*/
|
||
static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
|
||
static struct mtx pv_chunks_mutex;
|
||
static struct rwlock pv_list_locks[NPV_LIST_LOCKS];
|
||
static struct md_page *pv_table;
|
||
|
||
/*
|
||
* All those kernel PT submaps that BSD is so fond of
|
||
*/
|
||
pt_entry_t *CMAP1 = 0;
|
||
caddr_t CADDR1 = 0;
|
||
|
||
static int pmap_flags = PMAP_PDE_SUPERPAGE; /* flags for x86 pmaps */
|
||
|
||
static struct unrhdr pcid_unr;
|
||
static struct mtx pcid_mtx;
|
||
int pmap_pcid_enabled = 0;
|
||
SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_enabled, CTLFLAG_RDTUN, &pmap_pcid_enabled,
|
||
0, "Is TLB Context ID enabled ?");
|
||
int invpcid_works = 0;
|
||
SYSCTL_INT(_vm_pmap, OID_AUTO, invpcid_works, CTLFLAG_RD, &invpcid_works, 0,
|
||
"Is the invpcid instruction available ?");
|
||
|
||
static int
|
||
pmap_pcid_save_cnt_proc(SYSCTL_HANDLER_ARGS)
|
||
{
|
||
int i;
|
||
uint64_t res;
|
||
|
||
res = 0;
|
||
CPU_FOREACH(i) {
|
||
res += cpuid_to_pcpu[i]->pc_pm_save_cnt;
|
||
}
|
||
return (sysctl_handle_64(oidp, &res, 0, req));
|
||
}
|
||
SYSCTL_PROC(_vm_pmap, OID_AUTO, pcid_save_cnt, CTLTYPE_U64 | CTLFLAG_RW |
|
||
CTLFLAG_MPSAFE, NULL, 0, pmap_pcid_save_cnt_proc, "QU",
|
||
"Count of saved TLB context on switch");
|
||
|
||
/*
|
||
* Crashdump maps.
|
||
*/
|
||
static caddr_t crashdumpmap;
|
||
|
||
static void free_pv_chunk(struct pv_chunk *pc);
|
||
static void free_pv_entry(pmap_t pmap, pv_entry_t pv);
|
||
static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp);
|
||
static int popcnt_pc_map_elem(uint64_t elem);
|
||
static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
|
||
static void reserve_pv_entries(pmap_t pmap, int needed,
|
||
struct rwlock **lockp);
|
||
static void pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
|
||
struct rwlock **lockp);
|
||
static boolean_t pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
|
||
struct rwlock **lockp);
|
||
static void pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
|
||
struct rwlock **lockp);
|
||
static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
|
||
static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
|
||
vm_offset_t va);
|
||
|
||
static int pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode);
|
||
static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
|
||
static boolean_t pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde,
|
||
vm_offset_t va, struct rwlock **lockp);
|
||
static boolean_t pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe,
|
||
vm_offset_t va);
|
||
static boolean_t pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m,
|
||
vm_prot_t prot, struct rwlock **lockp);
|
||
static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
|
||
vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp);
|
||
static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
|
||
static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
|
||
static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
|
||
static vm_page_t pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va);
|
||
static void pmap_pde_attr(pd_entry_t *pde, int cache_bits, int mask);
|
||
static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
|
||
struct rwlock **lockp);
|
||
static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
|
||
vm_prot_t prot);
|
||
static void pmap_pte_attr(pt_entry_t *pte, int cache_bits, int mask);
|
||
static int pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
|
||
struct spglist *free, struct rwlock **lockp);
|
||
static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
|
||
pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
|
||
static void pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte);
|
||
static void pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
|
||
struct spglist *free);
|
||
static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
|
||
vm_page_t m, struct rwlock **lockp);
|
||
static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
|
||
pd_entry_t newpde);
|
||
static void pmap_update_pde_invalidate(pmap_t, vm_offset_t va, pd_entry_t pde);
|
||
|
||
static vm_page_t _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex,
|
||
struct rwlock **lockp);
|
||
static vm_page_t pmap_allocpde(pmap_t pmap, vm_offset_t va,
|
||
struct rwlock **lockp);
|
||
static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va,
|
||
struct rwlock **lockp);
|
||
|
||
static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m,
|
||
struct spglist *free);
|
||
static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t, struct spglist *);
|
||
static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
|
||
|
||
/*
|
||
* Move the kernel virtual free pointer to the next
|
||
* 2MB. This is used to help improve performance
|
||
* by using a large (2MB) page for much of the kernel
|
||
* (.text, .data, .bss)
|
||
*/
|
||
static vm_offset_t
|
||
pmap_kmem_choose(vm_offset_t addr)
|
||
{
|
||
vm_offset_t newaddr = addr;
|
||
|
||
newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
|
||
return (newaddr);
|
||
}
|
||
|
||
/********************/
|
||
/* Inline functions */
|
||
/********************/
|
||
|
||
/* Return a non-clipped PD index for a given VA */
|
||
static __inline vm_pindex_t
|
||
pmap_pde_pindex(vm_offset_t va)
|
||
{
|
||
return (va >> PDRSHIFT);
|
||
}
|
||
|
||
|
||
/* Return various clipped indexes for a given VA */
|
||
static __inline vm_pindex_t
|
||
pmap_pte_index(vm_offset_t va)
|
||
{
|
||
|
||
return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
|
||
}
|
||
|
||
static __inline vm_pindex_t
|
||
pmap_pde_index(vm_offset_t va)
|
||
{
|
||
|
||
return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
|
||
}
|
||
|
||
static __inline vm_pindex_t
|
||
pmap_pdpe_index(vm_offset_t va)
|
||
{
|
||
|
||
return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
|
||
}
|
||
|
||
static __inline vm_pindex_t
|
||
pmap_pml4e_index(vm_offset_t va)
|
||
{
|
||
|
||
return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
|
||
}
|
||
|
||
/* Return a pointer to the PML4 slot that corresponds to a VA */
|
||
static __inline pml4_entry_t *
|
||
pmap_pml4e(pmap_t pmap, vm_offset_t va)
|
||
{
|
||
|
||
return (&pmap->pm_pml4[pmap_pml4e_index(va)]);
|
||
}
|
||
|
||
/* Return a pointer to the PDP slot that corresponds to a VA */
|
||
static __inline pdp_entry_t *
|
||
pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
|
||
{
|
||
pdp_entry_t *pdpe;
|
||
|
||
pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & PG_FRAME);
|
||
return (&pdpe[pmap_pdpe_index(va)]);
|
||
}
|
||
|
||
/* Return a pointer to the PDP slot that corresponds to a VA */
|
||
static __inline pdp_entry_t *
|
||
pmap_pdpe(pmap_t pmap, vm_offset_t va)
|
||
{
|
||
pml4_entry_t *pml4e;
|
||
pt_entry_t PG_V;
|
||
|
||
PG_V = pmap_valid_bit(pmap);
|
||
pml4e = pmap_pml4e(pmap, va);
|
||
if ((*pml4e & PG_V) == 0)
|
||
return (NULL);
|
||
return (pmap_pml4e_to_pdpe(pml4e, va));
|
||
}
|
||
|
||
/* Return a pointer to the PD slot that corresponds to a VA */
|
||
static __inline pd_entry_t *
|
||
pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
|
||
{
|
||
pd_entry_t *pde;
|
||
|
||
pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & PG_FRAME);
|
||
return (&pde[pmap_pde_index(va)]);
|
||
}
|
||
|
||
/* Return a pointer to the PD slot that corresponds to a VA */
|
||
static __inline pd_entry_t *
|
||
pmap_pde(pmap_t pmap, vm_offset_t va)
|
||
{
|
||
pdp_entry_t *pdpe;
|
||
pt_entry_t PG_V;
|
||
|
||
PG_V = pmap_valid_bit(pmap);
|
||
pdpe = pmap_pdpe(pmap, va);
|
||
if (pdpe == NULL || (*pdpe & PG_V) == 0)
|
||
return (NULL);
|
||
return (pmap_pdpe_to_pde(pdpe, va));
|
||
}
|
||
|
||
/* Return a pointer to the PT slot that corresponds to a VA */
|
||
static __inline pt_entry_t *
|
||
pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
|
||
{
|
||
pt_entry_t *pte;
|
||
|
||
pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
|
||
return (&pte[pmap_pte_index(va)]);
|
||
}
|
||
|
||
/* Return a pointer to the PT slot that corresponds to a VA */
|
||
static __inline pt_entry_t *
|
||
pmap_pte(pmap_t pmap, vm_offset_t va)
|
||
{
|
||
pd_entry_t *pde;
|
||
pt_entry_t PG_V;
|
||
|
||
PG_V = pmap_valid_bit(pmap);
|
||
pde = pmap_pde(pmap, va);
|
||
if (pde == NULL || (*pde & PG_V) == 0)
|
||
return (NULL);
|
||
if ((*pde & PG_PS) != 0) /* compat with i386 pmap_pte() */
|
||
return ((pt_entry_t *)pde);
|
||
return (pmap_pde_to_pte(pde, va));
|
||
}
|
||
|
||
static __inline void
|
||
pmap_resident_count_inc(pmap_t pmap, int count)
|
||
{
|
||
|
||
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
||
pmap->pm_stats.resident_count += count;
|
||
}
|
||
|
||
static __inline void
|
||
pmap_resident_count_dec(pmap_t pmap, int count)
|
||
{
|
||
|
||
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
||
KASSERT(pmap->pm_stats.resident_count >= count,
|
||
("pmap %p resident count underflow %ld %d", pmap,
|
||
pmap->pm_stats.resident_count, count));
|
||
pmap->pm_stats.resident_count -= count;
|
||
}
|
||
|
||
PMAP_INLINE pt_entry_t *
|
||
vtopte(vm_offset_t va)
|
||
{
|
||
u_int64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
|
||
|
||
KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopte on a uva/gpa 0x%0lx", va));
|
||
|
||
return (PTmap + ((va >> PAGE_SHIFT) & mask));
|
||
}
|
||
|
||
static __inline pd_entry_t *
|
||
vtopde(vm_offset_t va)
|
||
{
|
||
u_int64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
|
||
|
||
KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopde on a uva/gpa 0x%0lx", va));
|
||
|
||
return (PDmap + ((va >> PDRSHIFT) & mask));
|
||
}
|
||
|
||
static u_int64_t
|
||
allocpages(vm_paddr_t *firstaddr, int n)
|
||
{
|
||
u_int64_t ret;
|
||
|
||
ret = *firstaddr;
|
||
bzero((void *)ret, n * PAGE_SIZE);
|
||
*firstaddr += n * PAGE_SIZE;
|
||
return (ret);
|
||
}
|
||
|
||
CTASSERT(powerof2(NDMPML4E));
|
||
|
||
/* number of kernel PDP slots */
|
||
#define NKPDPE(ptpgs) howmany((ptpgs), NPDEPG)
|
||
|
||
static void
|
||
nkpt_init(vm_paddr_t addr)
|
||
{
|
||
int pt_pages;
|
||
|
||
#ifdef NKPT
|
||
pt_pages = NKPT;
|
||
#else
|
||
pt_pages = howmany(addr, 1 << PDRSHIFT);
|
||
pt_pages += NKPDPE(pt_pages);
|
||
|
||
/*
|
||
* Add some slop beyond the bare minimum required for bootstrapping
|
||
* the kernel.
|
||
*
|
||
* This is quite important when allocating KVA for kernel modules.
|
||
* The modules are required to be linked in the negative 2GB of
|
||
* the address space. If we run out of KVA in this region then
|
||
* pmap_growkernel() will need to allocate page table pages to map
|
||
* the entire 512GB of KVA space which is an unnecessary tax on
|
||
* physical memory.
|
||
*/
|
||
pt_pages += 8; /* 16MB additional slop for kernel modules */
|
||
#endif
|
||
nkpt = pt_pages;
|
||
}
|
||
|
||
static void
|
||
create_pagetables(vm_paddr_t *firstaddr)
|
||
{
|
||
int i, j, ndm1g, nkpdpe;
|
||
pt_entry_t *pt_p;
|
||
pd_entry_t *pd_p;
|
||
pdp_entry_t *pdp_p;
|
||
pml4_entry_t *p4_p;
|
||
|
||
/* Allocate page table pages for the direct map */
|
||
ndmpdp = (ptoa(Maxmem) + NBPDP - 1) >> PDPSHIFT;
|
||
if (ndmpdp < 4) /* Minimum 4GB of dirmap */
|
||
ndmpdp = 4;
|
||
ndmpdpphys = howmany(ndmpdp, NPDPEPG);
|
||
if (ndmpdpphys > NDMPML4E) {
|
||
/*
|
||
* Each NDMPML4E allows 512 GB, so limit to that,
|
||
* and then readjust ndmpdp and ndmpdpphys.
|
||
*/
|
||
printf("NDMPML4E limits system to %d GB\n", NDMPML4E * 512);
|
||
Maxmem = atop(NDMPML4E * NBPML4);
|
||
ndmpdpphys = NDMPML4E;
|
||
ndmpdp = NDMPML4E * NPDEPG;
|
||
}
|
||
DMPDPphys = allocpages(firstaddr, ndmpdpphys);
|
||
ndm1g = 0;
|
||
if ((amd_feature & AMDID_PAGE1GB) != 0)
|
||
ndm1g = ptoa(Maxmem) >> PDPSHIFT;
|
||
if (ndm1g < ndmpdp)
|
||
DMPDphys = allocpages(firstaddr, ndmpdp - ndm1g);
|
||
dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
|
||
|
||
/* Allocate pages */
|
||
KPML4phys = allocpages(firstaddr, 1);
|
||
KPDPphys = allocpages(firstaddr, NKPML4E);
|
||
|
||
/*
|
||
* Allocate the initial number of kernel page table pages required to
|
||
* bootstrap. We defer this until after all memory-size dependent
|
||
* allocations are done (e.g. direct map), so that we don't have to
|
||
* build in too much slop in our estimate.
|
||
*
|
||
* Note that when NKPML4E > 1, we have an empty page underneath
|
||
* all but the KPML4I'th one, so we need NKPML4E-1 extra (zeroed)
|
||
* pages. (pmap_enter requires a PD page to exist for each KPML4E.)
|
||
*/
|
||
nkpt_init(*firstaddr);
|
||
nkpdpe = NKPDPE(nkpt);
|
||
|
||
KPTphys = allocpages(firstaddr, nkpt);
|
||
KPDphys = allocpages(firstaddr, nkpdpe);
|
||
|
||
/* Fill in the underlying page table pages */
|
||
/* Nominally read-only (but really R/W) from zero to physfree */
|
||
/* XXX not fully used, underneath 2M pages */
|
||
pt_p = (pt_entry_t *)KPTphys;
|
||
for (i = 0; ptoa(i) < *firstaddr; i++)
|
||
pt_p[i] = ptoa(i) | X86_PG_RW | X86_PG_V | X86_PG_G;
|
||
|
||
/* Now map the page tables at their location within PTmap */
|
||
pd_p = (pd_entry_t *)KPDphys;
|
||
for (i = 0; i < nkpt; i++)
|
||
pd_p[i] = (KPTphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
|
||
|
||
/* Map from zero to end of allocations under 2M pages */
|
||
/* This replaces some of the KPTphys entries above */
|
||
for (i = 0; (i << PDRSHIFT) < *firstaddr; i++)
|
||
pd_p[i] = (i << PDRSHIFT) | X86_PG_RW | X86_PG_V | PG_PS |
|
||
X86_PG_G;
|
||
|
||
/* And connect up the PD to the PDP (leaving room for L4 pages) */
|
||
pdp_p = (pdp_entry_t *)(KPDPphys + ptoa(KPML4I - KPML4BASE));
|
||
for (i = 0; i < nkpdpe; i++)
|
||
pdp_p[i + KPDPI] = (KPDphys + ptoa(i)) | X86_PG_RW | X86_PG_V |
|
||
PG_U;
|
||
|
||
/*
|
||
* Now, set up the direct map region using 2MB and/or 1GB pages. If
|
||
* the end of physical memory is not aligned to a 1GB page boundary,
|
||
* then the residual physical memory is mapped with 2MB pages. Later,
|
||
* if pmap_mapdev{_attr}() uses the direct map for non-write-back
|
||
* memory, pmap_change_attr() will demote any 2MB or 1GB page mappings
|
||
* that are partially used.
|
||
*/
|
||
pd_p = (pd_entry_t *)DMPDphys;
|
||
for (i = NPDEPG * ndm1g, j = 0; i < NPDEPG * ndmpdp; i++, j++) {
|
||
pd_p[j] = (vm_paddr_t)i << PDRSHIFT;
|
||
/* Preset PG_M and PG_A because demotion expects it. */
|
||
pd_p[j] |= X86_PG_RW | X86_PG_V | PG_PS | X86_PG_G |
|
||
X86_PG_M | X86_PG_A;
|
||
}
|
||
pdp_p = (pdp_entry_t *)DMPDPphys;
|
||
for (i = 0; i < ndm1g; i++) {
|
||
pdp_p[i] = (vm_paddr_t)i << PDPSHIFT;
|
||
/* Preset PG_M and PG_A because demotion expects it. */
|
||
pdp_p[i] |= X86_PG_RW | X86_PG_V | PG_PS | X86_PG_G |
|
||
X86_PG_M | X86_PG_A;
|
||
}
|
||
for (j = 0; i < ndmpdp; i++, j++) {
|
||
pdp_p[i] = DMPDphys + ptoa(j);
|
||
pdp_p[i] |= X86_PG_RW | X86_PG_V | PG_U;
|
||
}
|
||
|
||
/* And recursively map PML4 to itself in order to get PTmap */
|
||
p4_p = (pml4_entry_t *)KPML4phys;
|
||
p4_p[PML4PML4I] = KPML4phys;
|
||
p4_p[PML4PML4I] |= X86_PG_RW | X86_PG_V | PG_U;
|
||
|
||
/* Connect the Direct Map slot(s) up to the PML4. */
|
||
for (i = 0; i < ndmpdpphys; i++) {
|
||
p4_p[DMPML4I + i] = DMPDPphys + ptoa(i);
|
||
p4_p[DMPML4I + i] |= X86_PG_RW | X86_PG_V | PG_U;
|
||
}
|
||
|
||
/* Connect the KVA slots up to the PML4 */
|
||
for (i = 0; i < NKPML4E; i++) {
|
||
p4_p[KPML4BASE + i] = KPDPphys + ptoa(i);
|
||
p4_p[KPML4BASE + i] |= X86_PG_RW | X86_PG_V | PG_U;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Bootstrap the system enough to run with virtual memory.
|
||
*
|
||
* On amd64 this is called after mapping has already been enabled
|
||
* and just syncs the pmap module with what has already been done.
|
||
* [We can't call it easily with mapping off since the kernel is not
|
||
* mapped with PA == VA, hence we would have to relocate every address
|
||
* from the linked base (virtual) address "KERNBASE" to the actual
|
||
* (physical) address starting relative to 0]
|
||
*/
|
||
void
|
||
pmap_bootstrap(vm_paddr_t *firstaddr)
|
||
{
|
||
vm_offset_t va;
|
||
pt_entry_t *pte;
|
||
|
||
/*
|
||
* Create an initial set of page tables to run the kernel in.
|
||
*/
|
||
create_pagetables(firstaddr);
|
||
|
||
virtual_avail = (vm_offset_t) KERNBASE + *firstaddr;
|
||
virtual_avail = pmap_kmem_choose(virtual_avail);
|
||
|
||
virtual_end = VM_MAX_KERNEL_ADDRESS;
|
||
|
||
|
||
/* XXX do %cr0 as well */
|
||
load_cr4(rcr4() | CR4_PGE | CR4_PSE);
|
||
load_cr3(KPML4phys);
|
||
if (cpu_stdext_feature & CPUID_STDEXT_SMEP)
|
||
load_cr4(rcr4() | CR4_SMEP);
|
||
|
||
/*
|
||
* Initialize the kernel pmap (which is statically allocated).
|
||
*/
|
||
PMAP_LOCK_INIT(kernel_pmap);
|
||
kernel_pmap->pm_pml4 = (pdp_entry_t *)PHYS_TO_DMAP(KPML4phys);
|
||
kernel_pmap->pm_cr3 = KPML4phys;
|
||
CPU_FILL(&kernel_pmap->pm_active); /* don't allow deactivation */
|
||
CPU_FILL(&kernel_pmap->pm_save); /* always superset of pm_active */
|
||
TAILQ_INIT(&kernel_pmap->pm_pvchunk);
|
||
kernel_pmap->pm_flags = pmap_flags;
|
||
|
||
/*
|
||
* Initialize the global pv list lock.
|
||
*/
|
||
rw_init(&pvh_global_lock, "pmap pv global");
|
||
|
||
/*
|
||
* Reserve some special page table entries/VA space for temporary
|
||
* mapping of pages.
|
||
*/
|
||
#define SYSMAP(c, p, v, n) \
|
||
v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
|
||
|
||
va = virtual_avail;
|
||
pte = vtopte(va);
|
||
|
||
/*
|
||
* Crashdump maps. The first page is reused as CMAP1 for the
|
||
* memory test.
|
||
*/
|
||
SYSMAP(caddr_t, CMAP1, crashdumpmap, MAXDUMPPGS)
|
||
CADDR1 = crashdumpmap;
|
||
|
||
virtual_avail = va;
|
||
|
||
/* Initialize the PAT MSR. */
|
||
pmap_init_pat();
|
||
|
||
/* Initialize TLB Context Id. */
|
||
TUNABLE_INT_FETCH("vm.pmap.pcid_enabled", &pmap_pcid_enabled);
|
||
if ((cpu_feature2 & CPUID2_PCID) != 0 && pmap_pcid_enabled) {
|
||
load_cr4(rcr4() | CR4_PCIDE);
|
||
mtx_init(&pcid_mtx, "pcid", NULL, MTX_DEF);
|
||
init_unrhdr(&pcid_unr, 1, (1 << 12) - 1, &pcid_mtx);
|
||
/* Check for INVPCID support */
|
||
invpcid_works = (cpu_stdext_feature & CPUID_STDEXT_INVPCID)
|
||
!= 0;
|
||
kernel_pmap->pm_pcid = 0;
|
||
#ifndef SMP
|
||
pmap_pcid_enabled = 0;
|
||
#endif
|
||
} else
|
||
pmap_pcid_enabled = 0;
|
||
}
|
||
|
||
/*
|
||
* Setup the PAT MSR.
|
||
*/
|
||
void
|
||
pmap_init_pat(void)
|
||
{
|
||
int pat_table[PAT_INDEX_SIZE];
|
||
uint64_t pat_msr;
|
||
u_long cr0, cr4;
|
||
int i;
|
||
|
||
/* Bail if this CPU doesn't implement PAT. */
|
||
if ((cpu_feature & CPUID_PAT) == 0)
|
||
panic("no PAT??");
|
||
|
||
/* Set default PAT index table. */
|
||
for (i = 0; i < PAT_INDEX_SIZE; i++)
|
||
pat_table[i] = -1;
|
||
pat_table[PAT_WRITE_BACK] = 0;
|
||
pat_table[PAT_WRITE_THROUGH] = 1;
|
||
pat_table[PAT_UNCACHEABLE] = 3;
|
||
pat_table[PAT_WRITE_COMBINING] = 3;
|
||
pat_table[PAT_WRITE_PROTECTED] = 3;
|
||
pat_table[PAT_UNCACHED] = 3;
|
||
|
||
/* Initialize default PAT entries. */
|
||
pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
|
||
PAT_VALUE(1, PAT_WRITE_THROUGH) |
|
||
PAT_VALUE(2, PAT_UNCACHED) |
|
||
PAT_VALUE(3, PAT_UNCACHEABLE) |
|
||
PAT_VALUE(4, PAT_WRITE_BACK) |
|
||
PAT_VALUE(5, PAT_WRITE_THROUGH) |
|
||
PAT_VALUE(6, PAT_UNCACHED) |
|
||
PAT_VALUE(7, PAT_UNCACHEABLE);
|
||
|
||
if (pat_works) {
|
||
/*
|
||
* Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
|
||
* Program 5 and 6 as WP and WC.
|
||
* Leave 4 and 7 as WB and UC.
|
||
*/
|
||
pat_msr &= ~(PAT_MASK(5) | PAT_MASK(6));
|
||
pat_msr |= PAT_VALUE(5, PAT_WRITE_PROTECTED) |
|
||
PAT_VALUE(6, PAT_WRITE_COMBINING);
|
||
pat_table[PAT_UNCACHED] = 2;
|
||
pat_table[PAT_WRITE_PROTECTED] = 5;
|
||
pat_table[PAT_WRITE_COMBINING] = 6;
|
||
} else {
|
||
/*
|
||
* Just replace PAT Index 2 with WC instead of UC-.
|
||
*/
|
||
pat_msr &= ~PAT_MASK(2);
|
||
pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
|
||
pat_table[PAT_WRITE_COMBINING] = 2;
|
||
}
|
||
|
||
/* Disable PGE. */
|
||
cr4 = rcr4();
|
||
load_cr4(cr4 & ~CR4_PGE);
|
||
|
||
/* Disable caches (CD = 1, NW = 0). */
|
||
cr0 = rcr0();
|
||
load_cr0((cr0 & ~CR0_NW) | CR0_CD);
|
||
|
||
/* Flushes caches and TLBs. */
|
||
wbinvd();
|
||
invltlb();
|
||
|
||
/* Update PAT and index table. */
|
||
wrmsr(MSR_PAT, pat_msr);
|
||
for (i = 0; i < PAT_INDEX_SIZE; i++)
|
||
pat_index[i] = pat_table[i];
|
||
|
||
/* Flush caches and TLBs again. */
|
||
wbinvd();
|
||
invltlb();
|
||
|
||
/* Restore caches and PGE. */
|
||
load_cr0(cr0);
|
||
load_cr4(cr4);
|
||
}
|
||
|
||
/*
|
||
* Initialize a vm_page's machine-dependent fields.
|
||
*/
|
||
void
|
||
pmap_page_init(vm_page_t m)
|
||
{
|
||
|
||
TAILQ_INIT(&m->md.pv_list);
|
||
m->md.pat_mode = PAT_WRITE_BACK;
|
||
}
|
||
|
||
/*
|
||
* Initialize the pmap module.
|
||
* Called by vm_init, to initialize any structures that the pmap
|
||
* system needs to map virtual memory.
|
||
*/
|
||
void
|
||
pmap_init(void)
|
||
{
|
||
vm_page_t mpte;
|
||
vm_size_t s;
|
||
int i, pv_npg;
|
||
|
||
/*
|
||
* Initialize the vm page array entries for the kernel pmap's
|
||
* page table pages.
|
||
*/
|
||
for (i = 0; i < nkpt; i++) {
|
||
mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
|
||
KASSERT(mpte >= vm_page_array &&
|
||
mpte < &vm_page_array[vm_page_array_size],
|
||
("pmap_init: page table page is out of range"));
|
||
mpte->pindex = pmap_pde_pindex(KERNBASE) + i;
|
||
mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
|
||
}
|
||
|
||
/*
|
||
* If the kernel is running on a virtual machine, then it must assume
|
||
* that MCA is enabled by the hypervisor. Moreover, the kernel must
|
||
* be prepared for the hypervisor changing the vendor and family that
|
||
* are reported by CPUID. Consequently, the workaround for AMD Family
|
||
* 10h Erratum 383 is enabled if the processor's feature set does not
|
||
* include at least one feature that is only supported by older Intel
|
||
* or newer AMD processors.
|
||
*/
|
||
if (vm_guest == VM_GUEST_VM && (cpu_feature & CPUID_SS) == 0 &&
|
||
(cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
|
||
CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
|
||
AMDID2_FMA4)) == 0)
|
||
workaround_erratum383 = 1;
|
||
|
||
/*
|
||
* Are large page mappings enabled?
|
||
*/
|
||
TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
|
||
if (pg_ps_enabled) {
|
||
KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
|
||
("pmap_init: can't assign to pagesizes[1]"));
|
||
pagesizes[1] = NBPDR;
|
||
}
|
||
|
||
/*
|
||
* Initialize the pv chunk list mutex.
|
||
*/
|
||
mtx_init(&pv_chunks_mutex, "pmap pv chunk list", NULL, MTX_DEF);
|
||
|
||
/*
|
||
* Initialize the pool of pv list locks.
|
||
*/
|
||
for (i = 0; i < NPV_LIST_LOCKS; i++)
|
||
rw_init(&pv_list_locks[i], "pmap pv list");
|
||
|
||
/*
|
||
* Calculate the size of the pv head table for superpages.
|
||
*/
|
||
for (i = 0; phys_avail[i + 1]; i += 2);
|
||
pv_npg = round_2mpage(phys_avail[(i - 2) + 1]) / NBPDR;
|
||
|
||
/*
|
||
* Allocate memory for the pv head table for superpages.
|
||
*/
|
||
s = (vm_size_t)(pv_npg * sizeof(struct md_page));
|
||
s = round_page(s);
|
||
pv_table = (struct md_page *)kmem_malloc(kernel_arena, s,
|
||
M_WAITOK | M_ZERO);
|
||
for (i = 0; i < pv_npg; i++)
|
||
TAILQ_INIT(&pv_table[i].pv_list);
|
||
}
|
||
|
||
static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
|
||
"2MB page mapping counters");
|
||
|
||
static u_long pmap_pde_demotions;
|
||
SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, demotions, CTLFLAG_RD,
|
||
&pmap_pde_demotions, 0, "2MB page demotions");
|
||
|
||
static u_long pmap_pde_mappings;
|
||
SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
|
||
&pmap_pde_mappings, 0, "2MB page mappings");
|
||
|
||
static u_long pmap_pde_p_failures;
|
||
SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
|
||
&pmap_pde_p_failures, 0, "2MB page promotion failures");
|
||
|
||
static u_long pmap_pde_promotions;
|
||
SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
|
||
&pmap_pde_promotions, 0, "2MB page promotions");
|
||
|
||
static SYSCTL_NODE(_vm_pmap, OID_AUTO, pdpe, CTLFLAG_RD, 0,
|
||
"1GB page mapping counters");
|
||
|
||
static u_long pmap_pdpe_demotions;
|
||
SYSCTL_ULONG(_vm_pmap_pdpe, OID_AUTO, demotions, CTLFLAG_RD,
|
||
&pmap_pdpe_demotions, 0, "1GB page demotions");
|
||
|
||
/***************************************************
|
||
* Low level helper routines.....
|
||
***************************************************/
|
||
|
||
static pt_entry_t
|
||
pmap_swap_pat(pmap_t pmap, pt_entry_t entry)
|
||
{
|
||
int x86_pat_bits = X86_PG_PTE_PAT | X86_PG_PDE_PAT;
|
||
|
||
switch (pmap->pm_type) {
|
||
case PT_X86:
|
||
/* Verify that both PAT bits are not set at the same time */
|
||
KASSERT((entry & x86_pat_bits) != x86_pat_bits,
|
||
("Invalid PAT bits in entry %#lx", entry));
|
||
|
||
/* Swap the PAT bits if one of them is set */
|
||
if ((entry & x86_pat_bits) != 0)
|
||
entry ^= x86_pat_bits;
|
||
break;
|
||
case PT_EPT:
|
||
/*
|
||
* Nothing to do - the memory attributes are represented
|
||
* the same way for regular pages and superpages.
|
||
*/
|
||
break;
|
||
default:
|
||
panic("pmap_switch_pat_bits: bad pm_type %d", pmap->pm_type);
|
||
}
|
||
|
||
return (entry);
|
||
}
|
||
|
||
/*
|
||
* Determine the appropriate bits to set in a PTE or PDE for a specified
|
||
* caching mode.
|
||
*/
|
||
static int
|
||
pmap_cache_bits(pmap_t pmap, int mode, boolean_t is_pde)
|
||
{
|
||
int cache_bits, pat_flag, pat_idx;
|
||
|
||
if (mode < 0 || mode >= PAT_INDEX_SIZE || pat_index[mode] < 0)
|
||
panic("Unknown caching mode %d\n", mode);
|
||
|
||
switch (pmap->pm_type) {
|
||
case PT_X86:
|
||
/* The PAT bit is different for PTE's and PDE's. */
|
||
pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
|
||
|
||
/* Map the caching mode to a PAT index. */
|
||
pat_idx = pat_index[mode];
|
||
|
||
/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
|
||
cache_bits = 0;
|
||
if (pat_idx & 0x4)
|
||
cache_bits |= pat_flag;
|
||
if (pat_idx & 0x2)
|
||
cache_bits |= PG_NC_PCD;
|
||
if (pat_idx & 0x1)
|
||
cache_bits |= PG_NC_PWT;
|
||
break;
|
||
|
||
case PT_EPT:
|
||
cache_bits = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(mode);
|
||
break;
|
||
|
||
default:
|
||
panic("unsupported pmap type %d", pmap->pm_type);
|
||
}
|
||
|
||
return (cache_bits);
|
||
}
|
||
|
||
static int
|
||
pmap_cache_mask(pmap_t pmap, boolean_t is_pde)
|
||
{
|
||
int mask;
|
||
|
||
switch (pmap->pm_type) {
|
||
case PT_X86:
|
||
mask = is_pde ? X86_PG_PDE_CACHE : X86_PG_PTE_CACHE;
|
||
break;
|
||
case PT_EPT:
|
||
mask = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(0x7);
|
||
break;
|
||
default:
|
||
panic("pmap_cache_mask: invalid pm_type %d", pmap->pm_type);
|
||
}
|
||
|
||
return (mask);
|
||
}
|
||
|
||
static __inline boolean_t
|
||
pmap_ps_enabled(pmap_t pmap)
|
||
{
|
||
|
||
return (pg_ps_enabled && (pmap->pm_flags & PMAP_PDE_SUPERPAGE) != 0);
|
||
}
|
||
|
||
static void
|
||
pmap_update_pde_store(pmap_t pmap, pd_entry_t *pde, pd_entry_t newpde)
|
||
{
|
||
|
||
switch (pmap->pm_type) {
|
||
case PT_X86:
|
||
break;
|
||
case PT_EPT:
|
||
/*
|
||
* XXX
|
||
* This is a little bogus since the generation number is
|
||
* supposed to be bumped up when a region of the address
|
||
* space is invalidated in the page tables.
|
||
*
|
||
* In this case the old PDE entry is valid but yet we want
|
||
* to make sure that any mappings using the old entry are
|
||
* invalidated in the TLB.
|
||
*
|
||
* The reason this works as expected is because we rendezvous
|
||
* "all" host cpus and force any vcpu context to exit as a
|
||
* side-effect.
|
||
*/
|
||
atomic_add_acq_long(&pmap->pm_eptgen, 1);
|
||
break;
|
||
default:
|
||
panic("pmap_update_pde_store: bad pm_type %d", pmap->pm_type);
|
||
}
|
||
pde_store(pde, newpde);
|
||
}
|
||
|
||
/*
|
||
* After changing the page size for the specified virtual address in the page
|
||
* table, flush the corresponding entries from the processor's TLB. Only the
|
||
* calling processor's TLB is affected.
|
||
*
|
||
* The calling thread must be pinned to a processor.
|
||
*/
|
||
static void
|
||
pmap_update_pde_invalidate(pmap_t pmap, vm_offset_t va, pd_entry_t newpde)
|
||
{
|
||
pt_entry_t PG_G;
|
||
|
||
if (pmap->pm_type == PT_EPT)
|
||
return;
|
||
|
||
KASSERT(pmap->pm_type == PT_X86,
|
||
("pmap_update_pde_invalidate: invalid type %d", pmap->pm_type));
|
||
|
||
PG_G = pmap_global_bit(pmap);
|
||
|
||
if ((newpde & PG_PS) == 0)
|
||
/* Demotion: flush a specific 2MB page mapping. */
|
||
invlpg(va);
|
||
else if ((newpde & PG_G) == 0)
|
||
/*
|
||
* Promotion: flush every 4KB page mapping from the TLB
|
||
* because there are too many to flush individually.
|
||
*/
|
||
invltlb();
|
||
else {
|
||
/*
|
||
* Promotion: flush every 4KB page mapping from the TLB,
|
||
* including any global (PG_G) mappings.
|
||
*/
|
||
invltlb_globpcid();
|
||
}
|
||
}
|
||
#ifdef SMP
|
||
|
||
static void
|
||
pmap_invalidate_page_pcid(pmap_t pmap, vm_offset_t va)
|
||
{
|
||
struct invpcid_descr d;
|
||
uint64_t cr3;
|
||
|
||
if (invpcid_works) {
|
||
d.pcid = pmap->pm_pcid;
|
||
d.pad = 0;
|
||
d.addr = va;
|
||
invpcid(&d, INVPCID_ADDR);
|
||
return;
|
||
}
|
||
|
||
cr3 = rcr3();
|
||
critical_enter();
|
||
load_cr3(pmap->pm_cr3 | CR3_PCID_SAVE);
|
||
invlpg(va);
|
||
load_cr3(cr3 | CR3_PCID_SAVE);
|
||
critical_exit();
|
||
}
|
||
|
||
/*
|
||
* For SMP, these functions have to use the IPI mechanism for coherence.
|
||
*
|
||
* N.B.: Before calling any of the following TLB invalidation functions,
|
||
* the calling processor must ensure that all stores updating a non-
|
||
* kernel page table are globally performed. Otherwise, another
|
||
* processor could cache an old, pre-update entry without being
|
||
* invalidated. This can happen one of two ways: (1) The pmap becomes
|
||
* active on another processor after its pm_active field is checked by
|
||
* one of the following functions but before a store updating the page
|
||
* table is globally performed. (2) The pmap becomes active on another
|
||
* processor before its pm_active field is checked but due to
|
||
* speculative loads one of the following functions stills reads the
|
||
* pmap as inactive on the other processor.
|
||
*
|
||
* The kernel page table is exempt because its pm_active field is
|
||
* immutable. The kernel page table is always active on every
|
||
* processor.
|
||
*/
|
||
|
||
/*
|
||
* Interrupt the cpus that are executing in the guest context.
|
||
* This will force the vcpu to exit and the cached EPT mappings
|
||
* will be invalidated by the host before the next vmresume.
|
||
*/
|
||
static __inline void
|
||
pmap_invalidate_ept(pmap_t pmap)
|
||
{
|
||
int ipinum;
|
||
|
||
sched_pin();
|
||
KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
|
||
("pmap_invalidate_ept: absurd pm_active"));
|
||
|
||
/*
|
||
* The TLB mappings associated with a vcpu context are not
|
||
* flushed each time a different vcpu is chosen to execute.
|
||
*
|
||
* This is in contrast with a process's vtop mappings that
|
||
* are flushed from the TLB on each context switch.
|
||
*
|
||
* Therefore we need to do more than just a TLB shootdown on
|
||
* the active cpus in 'pmap->pm_active'. To do this we keep
|
||
* track of the number of invalidations performed on this pmap.
|
||
*
|
||
* Each vcpu keeps a cache of this counter and compares it
|
||
* just before a vmresume. If the counter is out-of-date an
|
||
* invept will be done to flush stale mappings from the TLB.
|
||
*/
|
||
atomic_add_acq_long(&pmap->pm_eptgen, 1);
|
||
|
||
/*
|
||
* Force the vcpu to exit and trap back into the hypervisor.
|
||
*/
|
||
ipinum = pmap->pm_flags & PMAP_NESTED_IPIMASK;
|
||
ipi_selected(pmap->pm_active, ipinum);
|
||
sched_unpin();
|
||
}
|
||
|
||
void
|
||
pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
|
||
{
|
||
cpuset_t other_cpus;
|
||
u_int cpuid;
|
||
|
||
if (pmap->pm_type == PT_EPT) {
|
||
pmap_invalidate_ept(pmap);
|
||
return;
|
||
}
|
||
|
||
KASSERT(pmap->pm_type == PT_X86,
|
||
("pmap_invalidate_page: invalid type %d", pmap->pm_type));
|
||
|
||
sched_pin();
|
||
if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
|
||
if (!pmap_pcid_enabled) {
|
||
invlpg(va);
|
||
} else {
|
||
if (pmap->pm_pcid != -1 && pmap->pm_pcid != 0) {
|
||
if (pmap == PCPU_GET(curpmap))
|
||
invlpg(va);
|
||
else
|
||
pmap_invalidate_page_pcid(pmap, va);
|
||
} else {
|
||
invltlb_globpcid();
|
||
}
|
||
}
|
||
smp_invlpg(pmap, va);
|
||
} else {
|
||
cpuid = PCPU_GET(cpuid);
|
||
other_cpus = all_cpus;
|
||
CPU_CLR(cpuid, &other_cpus);
|
||
if (CPU_ISSET(cpuid, &pmap->pm_active))
|
||
invlpg(va);
|
||
else if (pmap_pcid_enabled) {
|
||
if (pmap->pm_pcid != -1 && pmap->pm_pcid != 0)
|
||
pmap_invalidate_page_pcid(pmap, va);
|
||
else
|
||
invltlb_globpcid();
|
||
}
|
||
if (pmap_pcid_enabled)
|
||
CPU_AND(&other_cpus, &pmap->pm_save);
|
||
else
|
||
CPU_AND(&other_cpus, &pmap->pm_active);
|
||
if (!CPU_EMPTY(&other_cpus))
|
||
smp_masked_invlpg(other_cpus, pmap, va);
|
||
}
|
||
sched_unpin();
|
||
}
|
||
|
||
static void
|
||
pmap_invalidate_range_pcid(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
|
||
{
|
||
struct invpcid_descr d;
|
||
uint64_t cr3;
|
||
vm_offset_t addr;
|
||
|
||
if (invpcid_works) {
|
||
d.pcid = pmap->pm_pcid;
|
||
d.pad = 0;
|
||
for (addr = sva; addr < eva; addr += PAGE_SIZE) {
|
||
d.addr = addr;
|
||
invpcid(&d, INVPCID_ADDR);
|
||
}
|
||
return;
|
||
}
|
||
|
||
cr3 = rcr3();
|
||
critical_enter();
|
||
load_cr3(pmap->pm_cr3 | CR3_PCID_SAVE);
|
||
for (addr = sva; addr < eva; addr += PAGE_SIZE)
|
||
invlpg(addr);
|
||
load_cr3(cr3 | CR3_PCID_SAVE);
|
||
critical_exit();
|
||
}
|
||
|
||
void
|
||
pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
|
||
{
|
||
cpuset_t other_cpus;
|
||
vm_offset_t addr;
|
||
u_int cpuid;
|
||
|
||
if (pmap->pm_type == PT_EPT) {
|
||
pmap_invalidate_ept(pmap);
|
||
return;
|
||
}
|
||
|
||
KASSERT(pmap->pm_type == PT_X86,
|
||
("pmap_invalidate_range: invalid type %d", pmap->pm_type));
|
||
|
||
sched_pin();
|
||
if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
|
||
if (!pmap_pcid_enabled) {
|
||
for (addr = sva; addr < eva; addr += PAGE_SIZE)
|
||
invlpg(addr);
|
||
} else {
|
||
if (pmap->pm_pcid != -1 && pmap->pm_pcid != 0) {
|
||
if (pmap == PCPU_GET(curpmap)) {
|
||
for (addr = sva; addr < eva;
|
||
addr += PAGE_SIZE)
|
||
invlpg(addr);
|
||
} else {
|
||
pmap_invalidate_range_pcid(pmap,
|
||
sva, eva);
|
||
}
|
||
} else {
|
||
invltlb_globpcid();
|
||
}
|
||
}
|
||
smp_invlpg_range(pmap, sva, eva);
|
||
} else {
|
||
cpuid = PCPU_GET(cpuid);
|
||
other_cpus = all_cpus;
|
||
CPU_CLR(cpuid, &other_cpus);
|
||
if (CPU_ISSET(cpuid, &pmap->pm_active)) {
|
||
for (addr = sva; addr < eva; addr += PAGE_SIZE)
|
||
invlpg(addr);
|
||
} else if (pmap_pcid_enabled) {
|
||
if (pmap->pm_pcid != -1 && pmap->pm_pcid != 0)
|
||
pmap_invalidate_range_pcid(pmap, sva, eva);
|
||
else
|
||
invltlb_globpcid();
|
||
}
|
||
if (pmap_pcid_enabled)
|
||
CPU_AND(&other_cpus, &pmap->pm_save);
|
||
else
|
||
CPU_AND(&other_cpus, &pmap->pm_active);
|
||
if (!CPU_EMPTY(&other_cpus))
|
||
smp_masked_invlpg_range(other_cpus, pmap, sva, eva);
|
||
}
|
||
sched_unpin();
|
||
}
|
||
|
||
void
|
||
pmap_invalidate_all(pmap_t pmap)
|
||
{
|
||
cpuset_t other_cpus;
|
||
struct invpcid_descr d;
|
||
uint64_t cr3;
|
||
u_int cpuid;
|
||
|
||
if (pmap->pm_type == PT_EPT) {
|
||
pmap_invalidate_ept(pmap);
|
||
return;
|
||
}
|
||
|
||
KASSERT(pmap->pm_type == PT_X86,
|
||
("pmap_invalidate_all: invalid type %d", pmap->pm_type));
|
||
|
||
sched_pin();
|
||
cpuid = PCPU_GET(cpuid);
|
||
if (pmap == kernel_pmap ||
|
||
(pmap_pcid_enabled && !CPU_CMP(&pmap->pm_save, &all_cpus)) ||
|
||
!CPU_CMP(&pmap->pm_active, &all_cpus)) {
|
||
if (invpcid_works) {
|
||
bzero(&d, sizeof(d));
|
||
invpcid(&d, INVPCID_CTXGLOB);
|
||
} else {
|
||
invltlb_globpcid();
|
||
}
|
||
if (!CPU_ISSET(cpuid, &pmap->pm_active))
|
||
CPU_CLR_ATOMIC(cpuid, &pmap->pm_save);
|
||
smp_invltlb(pmap);
|
||
} else {
|
||
other_cpus = all_cpus;
|
||
CPU_CLR(cpuid, &other_cpus);
|
||
|
||
/*
|
||
* This logic is duplicated in the Xinvltlb shootdown
|
||
* IPI handler.
|
||
*/
|
||
if (pmap_pcid_enabled) {
|
||
if (pmap->pm_pcid != -1 && pmap->pm_pcid != 0) {
|
||
if (invpcid_works) {
|
||
d.pcid = pmap->pm_pcid;
|
||
d.pad = 0;
|
||
d.addr = 0;
|
||
invpcid(&d, INVPCID_CTX);
|
||
} else {
|
||
cr3 = rcr3();
|
||
critical_enter();
|
||
|
||
/*
|
||
* Bit 63 is clear, pcid TLB
|
||
* entries are invalidated.
|
||
*/
|
||
load_cr3(pmap->pm_cr3);
|
||
load_cr3(cr3 | CR3_PCID_SAVE);
|
||
critical_exit();
|
||
}
|
||
} else {
|
||
invltlb_globpcid();
|
||
}
|
||
} else if (CPU_ISSET(cpuid, &pmap->pm_active))
|
||
invltlb();
|
||
if (!CPU_ISSET(cpuid, &pmap->pm_active))
|
||
CPU_CLR_ATOMIC(cpuid, &pmap->pm_save);
|
||
if (pmap_pcid_enabled)
|
||
CPU_AND(&other_cpus, &pmap->pm_save);
|
||
else
|
||
CPU_AND(&other_cpus, &pmap->pm_active);
|
||
if (!CPU_EMPTY(&other_cpus))
|
||
smp_masked_invltlb(other_cpus, pmap);
|
||
}
|
||
sched_unpin();
|
||
}
|
||
|
||
void
|
||
pmap_invalidate_cache(void)
|
||
{
|
||
|
||
sched_pin();
|
||
wbinvd();
|
||
smp_cache_flush();
|
||
sched_unpin();
|
||
}
|
||
|
||
struct pde_action {
|
||
cpuset_t invalidate; /* processors that invalidate their TLB */
|
||
pmap_t pmap;
|
||
vm_offset_t va;
|
||
pd_entry_t *pde;
|
||
pd_entry_t newpde;
|
||
u_int store; /* processor that updates the PDE */
|
||
};
|
||
|
||
static void
|
||
pmap_update_pde_action(void *arg)
|
||
{
|
||
struct pde_action *act = arg;
|
||
|
||
if (act->store == PCPU_GET(cpuid))
|
||
pmap_update_pde_store(act->pmap, act->pde, act->newpde);
|
||
}
|
||
|
||
static void
|
||
pmap_update_pde_teardown(void *arg)
|
||
{
|
||
struct pde_action *act = arg;
|
||
|
||
if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
|
||
pmap_update_pde_invalidate(act->pmap, act->va, act->newpde);
|
||
}
|
||
|
||
/*
|
||
* Change the page size for the specified virtual address in a way that
|
||
* prevents any possibility of the TLB ever having two entries that map the
|
||
* same virtual address using different page sizes. This is the recommended
|
||
* workaround for Erratum 383 on AMD Family 10h processors. It prevents a
|
||
* machine check exception for a TLB state that is improperly diagnosed as a
|
||
* hardware error.
|
||
*/
|
||
static void
|
||
pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
|
||
{
|
||
struct pde_action act;
|
||
cpuset_t active, other_cpus;
|
||
u_int cpuid;
|
||
|
||
sched_pin();
|
||
cpuid = PCPU_GET(cpuid);
|
||
other_cpus = all_cpus;
|
||
CPU_CLR(cpuid, &other_cpus);
|
||
if (pmap == kernel_pmap || pmap->pm_type == PT_EPT)
|
||
active = all_cpus;
|
||
else {
|
||
active = pmap->pm_active;
|
||
CPU_AND_ATOMIC(&pmap->pm_save, &active);
|
||
}
|
||
if (CPU_OVERLAP(&active, &other_cpus)) {
|
||
act.store = cpuid;
|
||
act.invalidate = active;
|
||
act.va = va;
|
||
act.pmap = pmap;
|
||
act.pde = pde;
|
||
act.newpde = newpde;
|
||
CPU_SET(cpuid, &active);
|
||
smp_rendezvous_cpus(active,
|
||
smp_no_rendevous_barrier, pmap_update_pde_action,
|
||
pmap_update_pde_teardown, &act);
|
||
} else {
|
||
pmap_update_pde_store(pmap, pde, newpde);
|
||
if (CPU_ISSET(cpuid, &active))
|
||
pmap_update_pde_invalidate(pmap, va, newpde);
|
||
}
|
||
sched_unpin();
|
||
}
|
||
#else /* !SMP */
|
||
/*
|
||
* Normal, non-SMP, invalidation functions.
|
||
* We inline these within pmap.c for speed.
|
||
*/
|
||
PMAP_INLINE void
|
||
pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
|
||
{
|
||
|
||
switch (pmap->pm_type) {
|
||
case PT_X86:
|
||
if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
|
||
invlpg(va);
|
||
break;
|
||
case PT_EPT:
|
||
pmap->pm_eptgen++;
|
||
break;
|
||
default:
|
||
panic("pmap_invalidate_page: unknown type: %d", pmap->pm_type);
|
||
}
|
||
}
|
||
|
||
PMAP_INLINE void
|
||
pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
|
||
{
|
||
vm_offset_t addr;
|
||
|
||
switch (pmap->pm_type) {
|
||
case PT_X86:
|
||
if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
|
||
for (addr = sva; addr < eva; addr += PAGE_SIZE)
|
||
invlpg(addr);
|
||
break;
|
||
case PT_EPT:
|
||
pmap->pm_eptgen++;
|
||
break;
|
||
default:
|
||
panic("pmap_invalidate_range: unknown type: %d", pmap->pm_type);
|
||
}
|
||
}
|
||
|
||
PMAP_INLINE void
|
||
pmap_invalidate_all(pmap_t pmap)
|
||
{
|
||
|
||
switch (pmap->pm_type) {
|
||
case PT_X86:
|
||
if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
|
||
invltlb();
|
||
break;
|
||
case PT_EPT:
|
||
pmap->pm_eptgen++;
|
||
break;
|
||
default:
|
||
panic("pmap_invalidate_all: unknown type %d", pmap->pm_type);
|
||
}
|
||
}
|
||
|
||
PMAP_INLINE void
|
||
pmap_invalidate_cache(void)
|
||
{
|
||
|
||
wbinvd();
|
||
}
|
||
|
||
static void
|
||
pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
|
||
{
|
||
|
||
pmap_update_pde_store(pmap, pde, newpde);
|
||
if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
|
||
pmap_update_pde_invalidate(pmap, va, newpde);
|
||
else
|
||
CPU_ZERO(&pmap->pm_save);
|
||
}
|
||
#endif /* !SMP */
|
||
|
||
#define PMAP_CLFLUSH_THRESHOLD (2 * 1024 * 1024)
|
||
|
||
void
|
||
pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
|
||
{
|
||
|
||
KASSERT((sva & PAGE_MASK) == 0,
|
||
("pmap_invalidate_cache_range: sva not page-aligned"));
|
||
KASSERT((eva & PAGE_MASK) == 0,
|
||
("pmap_invalidate_cache_range: eva not page-aligned"));
|
||
|
||
if (cpu_feature & CPUID_SS)
|
||
; /* If "Self Snoop" is supported, do nothing. */
|
||
else if ((cpu_feature & CPUID_CLFSH) != 0 &&
|
||
eva - sva < PMAP_CLFLUSH_THRESHOLD) {
|
||
|
||
/*
|
||
* XXX: Some CPUs fault, hang, or trash the local APIC
|
||
* registers if we use CLFLUSH on the local APIC
|
||
* range. The local APIC is always uncached, so we
|
||
* don't need to flush for that range anyway.
|
||
*/
|
||
if (pmap_kextract(sva) == lapic_paddr)
|
||
return;
|
||
|
||
/*
|
||
* Otherwise, do per-cache line flush. Use the mfence
|
||
* instruction to insure that previous stores are
|
||
* included in the write-back. The processor
|
||
* propagates flush to other processors in the cache
|
||
* coherence domain.
|
||
*/
|
||
mfence();
|
||
for (; sva < eva; sva += cpu_clflush_line_size)
|
||
clflush(sva);
|
||
mfence();
|
||
} else {
|
||
|
||
/*
|
||
* No targeted cache flush methods are supported by CPU,
|
||
* or the supplied range is bigger than 2MB.
|
||
* Globally invalidate cache.
|
||
*/
|
||
pmap_invalidate_cache();
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Remove the specified set of pages from the data and instruction caches.
|
||
*
|
||
* In contrast to pmap_invalidate_cache_range(), this function does not
|
||
* rely on the CPU's self-snoop feature, because it is intended for use
|
||
* when moving pages into a different cache domain.
|
||
*/
|
||
void
|
||
pmap_invalidate_cache_pages(vm_page_t *pages, int count)
|
||
{
|
||
vm_offset_t daddr, eva;
|
||
int i;
|
||
|
||
if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
|
||
(cpu_feature & CPUID_CLFSH) == 0)
|
||
pmap_invalidate_cache();
|
||
else {
|
||
mfence();
|
||
for (i = 0; i < count; i++) {
|
||
daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
|
||
eva = daddr + PAGE_SIZE;
|
||
for (; daddr < eva; daddr += cpu_clflush_line_size)
|
||
clflush(daddr);
|
||
}
|
||
mfence();
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Routine: pmap_extract
|
||
* Function:
|
||
* Extract the physical page address associated
|
||
* with the given map/virtual_address pair.
|
||
*/
|
||
vm_paddr_t
|
||
pmap_extract(pmap_t pmap, vm_offset_t va)
|
||
{
|
||
pdp_entry_t *pdpe;
|
||
pd_entry_t *pde;
|
||
pt_entry_t *pte, PG_V;
|
||
vm_paddr_t pa;
|
||
|
||
pa = 0;
|
||
PG_V = pmap_valid_bit(pmap);
|
||
PMAP_LOCK(pmap);
|
||
pdpe = pmap_pdpe(pmap, va);
|
||
if (pdpe != NULL && (*pdpe & PG_V) != 0) {
|
||
if ((*pdpe & PG_PS) != 0)
|
||
pa = (*pdpe & PG_PS_FRAME) | (va & PDPMASK);
|
||
else {
|
||
pde = pmap_pdpe_to_pde(pdpe, va);
|
||
if ((*pde & PG_V) != 0) {
|
||
if ((*pde & PG_PS) != 0) {
|
||
pa = (*pde & PG_PS_FRAME) |
|
||
(va & PDRMASK);
|
||
} else {
|
||
pte = pmap_pde_to_pte(pde, va);
|
||
pa = (*pte & PG_FRAME) |
|
||
(va & PAGE_MASK);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
PMAP_UNLOCK(pmap);
|
||
return (pa);
|
||
}
|
||
|
||
/*
|
||
* Routine: pmap_extract_and_hold
|
||
* Function:
|
||
* Atomically extract and hold the physical page
|
||
* with the given pmap and virtual address pair
|
||
* if that mapping permits the given protection.
|
||
*/
|
||
vm_page_t
|
||
pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
|
||
{
|
||
pd_entry_t pde, *pdep;
|
||
pt_entry_t pte, PG_RW, PG_V;
|
||
vm_paddr_t pa;
|
||
vm_page_t m;
|
||
|
||
pa = 0;
|
||
m = NULL;
|
||
PG_RW = pmap_rw_bit(pmap);
|
||
PG_V = pmap_valid_bit(pmap);
|
||
PMAP_LOCK(pmap);
|
||
retry:
|
||
pdep = pmap_pde(pmap, va);
|
||
if (pdep != NULL && (pde = *pdep)) {
|
||
if (pde & PG_PS) {
|
||
if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
|
||
if (vm_page_pa_tryrelock(pmap, (pde &
|
||
PG_PS_FRAME) | (va & PDRMASK), &pa))
|
||
goto retry;
|
||
m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
|
||
(va & PDRMASK));
|
||
vm_page_hold(m);
|
||
}
|
||
} else {
|
||
pte = *pmap_pde_to_pte(pdep, va);
|
||
if ((pte & PG_V) &&
|
||
((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
|
||
if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME,
|
||
&pa))
|
||
goto retry;
|
||
m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
|
||
vm_page_hold(m);
|
||
}
|
||
}
|
||
}
|
||
PA_UNLOCK_COND(pa);
|
||
PMAP_UNLOCK(pmap);
|
||
return (m);
|
||
}
|
||
|
||
vm_paddr_t
|
||
pmap_kextract(vm_offset_t va)
|
||
{
|
||
pd_entry_t pde;
|
||
vm_paddr_t pa;
|
||
|
||
if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
|
||
pa = DMAP_TO_PHYS(va);
|
||
} else {
|
||
pde = *vtopde(va);
|
||
if (pde & PG_PS) {
|
||
pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
|
||
} else {
|
||
/*
|
||
* Beware of a concurrent promotion that changes the
|
||
* PDE at this point! For example, vtopte() must not
|
||
* be used to access the PTE because it would use the
|
||
* new PDE. It is, however, safe to use the old PDE
|
||
* because the page table page is preserved by the
|
||
* promotion.
|
||
*/
|
||
pa = *pmap_pde_to_pte(&pde, va);
|
||
pa = (pa & PG_FRAME) | (va & PAGE_MASK);
|
||
}
|
||
}
|
||
return (pa);
|
||
}
|
||
|
||
/***************************************************
|
||
* Low level mapping routines.....
|
||
***************************************************/
|
||
|
||
/*
|
||
* Add a wired page to the kva.
|
||
* Note: not SMP coherent.
|
||
*/
|
||
PMAP_INLINE void
|
||
pmap_kenter(vm_offset_t va, vm_paddr_t pa)
|
||
{
|
||
pt_entry_t *pte;
|
||
|
||
pte = vtopte(va);
|
||
pte_store(pte, pa | X86_PG_RW | X86_PG_V | X86_PG_G);
|
||
}
|
||
|
||
static __inline void
|
||
pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
|
||
{
|
||
pt_entry_t *pte;
|
||
int cache_bits;
|
||
|
||
pte = vtopte(va);
|
||
cache_bits = pmap_cache_bits(kernel_pmap, mode, 0);
|
||
pte_store(pte, pa | X86_PG_RW | X86_PG_V | X86_PG_G | cache_bits);
|
||
}
|
||
|
||
/*
|
||
* Remove a page from the kernel pagetables.
|
||
* Note: not SMP coherent.
|
||
*/
|
||
PMAP_INLINE void
|
||
pmap_kremove(vm_offset_t va)
|
||
{
|
||
pt_entry_t *pte;
|
||
|
||
pte = vtopte(va);
|
||
pte_clear(pte);
|
||
}
|
||
|
||
/*
|
||
* Used to map a range of physical addresses into kernel
|
||
* virtual address space.
|
||
*
|
||
* The value passed in '*virt' is a suggested virtual address for
|
||
* the mapping. Architectures which can support a direct-mapped
|
||
* physical to virtual region can return the appropriate address
|
||
* within that region, leaving '*virt' unchanged. Other
|
||
* architectures should map the pages starting at '*virt' and
|
||
* update '*virt' with the first usable address after the mapped
|
||
* region.
|
||
*/
|
||
vm_offset_t
|
||
pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
|
||
{
|
||
return PHYS_TO_DMAP(start);
|
||
}
|
||
|
||
|
||
/*
|
||
* Add a list of wired pages to the kva
|
||
* this routine is only used for temporary
|
||
* kernel mappings that do not need to have
|
||
* page modification or references recorded.
|
||
* Note that old mappings are simply written
|
||
* over. The page *must* be wired.
|
||
* Note: SMP coherent. Uses a ranged shootdown IPI.
|
||
*/
|
||
void
|
||
pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
|
||
{
|
||
pt_entry_t *endpte, oldpte, pa, *pte;
|
||
vm_page_t m;
|
||
int cache_bits;
|
||
|
||
oldpte = 0;
|
||
pte = vtopte(sva);
|
||
endpte = pte + count;
|
||
while (pte < endpte) {
|
||
m = *ma++;
|
||
cache_bits = pmap_cache_bits(kernel_pmap, m->md.pat_mode, 0);
|
||
pa = VM_PAGE_TO_PHYS(m) | cache_bits;
|
||
if ((*pte & (PG_FRAME | X86_PG_PTE_CACHE)) != pa) {
|
||
oldpte |= *pte;
|
||
pte_store(pte, pa | X86_PG_G | X86_PG_RW | X86_PG_V);
|
||
}
|
||
pte++;
|
||
}
|
||
if (__predict_false((oldpte & X86_PG_V) != 0))
|
||
pmap_invalidate_range(kernel_pmap, sva, sva + count *
|
||
PAGE_SIZE);
|
||
}
|
||
|
||
/*
|
||
* This routine tears out page mappings from the
|
||
* kernel -- it is meant only for temporary mappings.
|
||
* Note: SMP coherent. Uses a ranged shootdown IPI.
|
||
*/
|
||
void
|
||
pmap_qremove(vm_offset_t sva, int count)
|
||
{
|
||
vm_offset_t va;
|
||
|
||
va = sva;
|
||
while (count-- > 0) {
|
||
KASSERT(va >= VM_MIN_KERNEL_ADDRESS, ("usermode va %lx", va));
|
||
pmap_kremove(va);
|
||
va += PAGE_SIZE;
|
||
}
|
||
pmap_invalidate_range(kernel_pmap, sva, va);
|
||
}
|
||
|
||
/***************************************************
|
||
* Page table page management routines.....
|
||
***************************************************/
|
||
static __inline void
|
||
pmap_free_zero_pages(struct spglist *free)
|
||
{
|
||
vm_page_t m;
|
||
|
||
while ((m = SLIST_FIRST(free)) != NULL) {
|
||
SLIST_REMOVE_HEAD(free, plinks.s.ss);
|
||
/* Preserve the page's PG_ZERO setting. */
|
||
vm_page_free_toq(m);
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Schedule the specified unused page table page to be freed. Specifically,
|
||
* add the page to the specified list of pages that will be released to the
|
||
* physical memory manager after the TLB has been updated.
|
||
*/
|
||
static __inline void
|
||
pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
|
||
boolean_t set_PG_ZERO)
|
||
{
|
||
|
||
if (set_PG_ZERO)
|
||
m->flags |= PG_ZERO;
|
||
else
|
||
m->flags &= ~PG_ZERO;
|
||
SLIST_INSERT_HEAD(free, m, plinks.s.ss);
|
||
}
|
||
|
||
/*
|
||
* Inserts the specified page table page into the specified pmap's collection
|
||
* of idle page table pages. Each of a pmap's page table pages is responsible
|
||
* for mapping a distinct range of virtual addresses. The pmap's collection is
|
||
* ordered by this virtual address range.
|
||
*/
|
||
static __inline int
|
||
pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
|
||
{
|
||
|
||
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
||
return (vm_radix_insert(&pmap->pm_root, mpte));
|
||
}
|
||
|
||
/*
|
||
* Looks for a page table page mapping the specified virtual address in the
|
||
* specified pmap's collection of idle page table pages. Returns NULL if there
|
||
* is no page table page corresponding to the specified virtual address.
|
||
*/
|
||
static __inline vm_page_t
|
||
pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va)
|
||
{
|
||
|
||
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
||
return (vm_radix_lookup(&pmap->pm_root, pmap_pde_pindex(va)));
|
||
}
|
||
|
||
/*
|
||
* Removes the specified page table page from the specified pmap's collection
|
||
* of idle page table pages. The specified page table page must be a member of
|
||
* the pmap's collection.
|
||
*/
|
||
static __inline void
|
||
pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte)
|
||
{
|
||
|
||
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
||
vm_radix_remove(&pmap->pm_root, mpte->pindex);
|
||
}
|
||
|
||
/*
|
||
* Decrements a page table page's wire count, which is used to record the
|
||
* number of valid page table entries within the page. If the wire count
|
||
* drops to zero, then the page table page is unmapped. Returns TRUE if the
|
||
* page table page was unmapped and FALSE otherwise.
|
||
*/
|
||
static inline boolean_t
|
||
pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
|
||
{
|
||
|
||
--m->wire_count;
|
||
if (m->wire_count == 0) {
|
||
_pmap_unwire_ptp(pmap, va, m, free);
|
||
return (TRUE);
|
||
} else
|
||
return (FALSE);
|
||
}
|
||
|
||
static void
|
||
_pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
|
||
{
|
||
|
||
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
||
/*
|
||
* unmap the page table page
|
||
*/
|
||
if (m->pindex >= (NUPDE + NUPDPE)) {
|
||
/* PDP page */
|
||
pml4_entry_t *pml4;
|
||
pml4 = pmap_pml4e(pmap, va);
|
||
*pml4 = 0;
|
||
} else if (m->pindex >= NUPDE) {
|
||
/* PD page */
|
||
pdp_entry_t *pdp;
|
||
pdp = pmap_pdpe(pmap, va);
|
||
*pdp = 0;
|
||
} else {
|
||
/* PTE page */
|
||
pd_entry_t *pd;
|
||
pd = pmap_pde(pmap, va);
|
||
*pd = 0;
|
||
}
|
||
pmap_resident_count_dec(pmap, 1);
|
||
if (m->pindex < NUPDE) {
|
||
/* We just released a PT, unhold the matching PD */
|
||
vm_page_t pdpg;
|
||
|
||
pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & PG_FRAME);
|
||
pmap_unwire_ptp(pmap, va, pdpg, free);
|
||
}
|
||
if (m->pindex >= NUPDE && m->pindex < (NUPDE + NUPDPE)) {
|
||
/* We just released a PD, unhold the matching PDP */
|
||
vm_page_t pdppg;
|
||
|
||
pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & PG_FRAME);
|
||
pmap_unwire_ptp(pmap, va, pdppg, free);
|
||
}
|
||
|
||
/*
|
||
* This is a release store so that the ordinary store unmapping
|
||
* the page table page is globally performed before TLB shoot-
|
||
* down is begun.
|
||
*/
|
||
atomic_subtract_rel_int(&vm_cnt.v_wire_count, 1);
|
||
|
||
/*
|
||
* Put page on a list so that it is released after
|
||
* *ALL* TLB shootdown is done
|
||
*/
|
||
pmap_add_delayed_free_list(m, free, TRUE);
|
||
}
|
||
|
||
/*
|
||
* After removing a page table entry, this routine is used to
|
||
* conditionally free the page, and manage the hold/wire counts.
|
||
*/
|
||
static int
|
||
pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde,
|
||
struct spglist *free)
|
||
{
|
||
vm_page_t mpte;
|
||
|
||
if (va >= VM_MAXUSER_ADDRESS)
|
||
return (0);
|
||
KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
|
||
mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
|
||
return (pmap_unwire_ptp(pmap, va, mpte, free));
|
||
}
|
||
|
||
void
|
||
pmap_pinit0(pmap_t pmap)
|
||
{
|
||
|
||
PMAP_LOCK_INIT(pmap);
|
||
pmap->pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
|
||
pmap->pm_cr3 = KPML4phys;
|
||
pmap->pm_root.rt_root = 0;
|
||
CPU_ZERO(&pmap->pm_active);
|
||
CPU_ZERO(&pmap->pm_save);
|
||
PCPU_SET(curpmap, pmap);
|
||
TAILQ_INIT(&pmap->pm_pvchunk);
|
||
bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
|
||
pmap->pm_pcid = pmap_pcid_enabled ? 0 : -1;
|
||
pmap->pm_flags = pmap_flags;
|
||
}
|
||
|
||
/*
|
||
* Initialize a preallocated and zeroed pmap structure,
|
||
* such as one in a vmspace structure.
|
||
*/
|
||
int
|
||
pmap_pinit_type(pmap_t pmap, enum pmap_type pm_type, int flags)
|
||
{
|
||
vm_page_t pml4pg;
|
||
vm_paddr_t pml4phys;
|
||
int i;
|
||
|
||
/*
|
||
* allocate the page directory page
|
||
*/
|
||
while ((pml4pg = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
|
||
VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL)
|
||
VM_WAIT;
|
||
|
||
pml4phys = VM_PAGE_TO_PHYS(pml4pg);
|
||
pmap->pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(pml4phys);
|
||
pmap->pm_pcid = -1;
|
||
pmap->pm_cr3 = ~0; /* initialize to an invalid value */
|
||
|
||
if ((pml4pg->flags & PG_ZERO) == 0)
|
||
pagezero(pmap->pm_pml4);
|
||
|
||
/*
|
||
* Do not install the host kernel mappings in the nested page
|
||
* tables. These mappings are meaningless in the guest physical
|
||
* address space.
|
||
*/
|
||
if ((pmap->pm_type = pm_type) == PT_X86) {
|
||
pmap->pm_cr3 = pml4phys;
|
||
|
||
/* Wire in kernel global address entries. */
|
||
for (i = 0; i < NKPML4E; i++) {
|
||
pmap->pm_pml4[KPML4BASE + i] = (KPDPphys + ptoa(i)) |
|
||
X86_PG_RW | X86_PG_V | PG_U;
|
||
}
|
||
for (i = 0; i < ndmpdpphys; i++) {
|
||
pmap->pm_pml4[DMPML4I + i] = (DMPDPphys + ptoa(i)) |
|
||
X86_PG_RW | X86_PG_V | PG_U;
|
||
}
|
||
|
||
/* install self-referential address mapping entry(s) */
|
||
pmap->pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pml4pg) |
|
||
X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
|
||
|
||
if (pmap_pcid_enabled) {
|
||
pmap->pm_pcid = alloc_unr(&pcid_unr);
|
||
if (pmap->pm_pcid != -1)
|
||
pmap->pm_cr3 |= pmap->pm_pcid;
|
||
}
|
||
}
|
||
|
||
pmap->pm_root.rt_root = 0;
|
||
CPU_ZERO(&pmap->pm_active);
|
||
TAILQ_INIT(&pmap->pm_pvchunk);
|
||
bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
|
||
pmap->pm_flags = flags;
|
||
pmap->pm_eptgen = 0;
|
||
CPU_ZERO(&pmap->pm_save);
|
||
|
||
return (1);
|
||
}
|
||
|
||
int
|
||
pmap_pinit(pmap_t pmap)
|
||
{
|
||
|
||
return (pmap_pinit_type(pmap, PT_X86, pmap_flags));
|
||
}
|
||
|
||
/*
|
||
* This routine is called if the desired page table page does not exist.
|
||
*
|
||
* If page table page allocation fails, this routine may sleep before
|
||
* returning NULL. It sleeps only if a lock pointer was given.
|
||
*
|
||
* Note: If a page allocation fails at page table level two or three,
|
||
* one or two pages may be held during the wait, only to be released
|
||
* afterwards. This conservative approach is easily argued to avoid
|
||
* race conditions.
|
||
*/
|
||
static vm_page_t
|
||
_pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp)
|
||
{
|
||
vm_page_t m, pdppg, pdpg;
|
||
pt_entry_t PG_A, PG_M, PG_RW, PG_V;
|
||
|
||
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
||
|
||
PG_A = pmap_accessed_bit(pmap);
|
||
PG_M = pmap_modified_bit(pmap);
|
||
PG_V = pmap_valid_bit(pmap);
|
||
PG_RW = pmap_rw_bit(pmap);
|
||
|
||
/*
|
||
* Allocate a page table page.
|
||
*/
|
||
if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
|
||
VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
|
||
if (lockp != NULL) {
|
||
RELEASE_PV_LIST_LOCK(lockp);
|
||
PMAP_UNLOCK(pmap);
|
||
rw_runlock(&pvh_global_lock);
|
||
VM_WAIT;
|
||
rw_rlock(&pvh_global_lock);
|
||
PMAP_LOCK(pmap);
|
||
}
|
||
|
||
/*
|
||
* Indicate the need to retry. While waiting, the page table
|
||
* page may have been allocated.
|
||
*/
|
||
return (NULL);
|
||
}
|
||
if ((m->flags & PG_ZERO) == 0)
|
||
pmap_zero_page(m);
|
||
|
||
/*
|
||
* Map the pagetable page into the process address space, if
|
||
* it isn't already there.
|
||
*/
|
||
|
||
if (ptepindex >= (NUPDE + NUPDPE)) {
|
||
pml4_entry_t *pml4;
|
||
vm_pindex_t pml4index;
|
||
|
||
/* Wire up a new PDPE page */
|
||
pml4index = ptepindex - (NUPDE + NUPDPE);
|
||
pml4 = &pmap->pm_pml4[pml4index];
|
||
*pml4 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
|
||
|
||
} else if (ptepindex >= NUPDE) {
|
||
vm_pindex_t pml4index;
|
||
vm_pindex_t pdpindex;
|
||
pml4_entry_t *pml4;
|
||
pdp_entry_t *pdp;
|
||
|
||
/* Wire up a new PDE page */
|
||
pdpindex = ptepindex - NUPDE;
|
||
pml4index = pdpindex >> NPML4EPGSHIFT;
|
||
|
||
pml4 = &pmap->pm_pml4[pml4index];
|
||
if ((*pml4 & PG_V) == 0) {
|
||
/* Have to allocate a new pdp, recurse */
|
||
if (_pmap_allocpte(pmap, NUPDE + NUPDPE + pml4index,
|
||
lockp) == NULL) {
|
||
--m->wire_count;
|
||
atomic_subtract_int(&vm_cnt.v_wire_count, 1);
|
||
vm_page_free_zero(m);
|
||
return (NULL);
|
||
}
|
||
} else {
|
||
/* Add reference to pdp page */
|
||
pdppg = PHYS_TO_VM_PAGE(*pml4 & PG_FRAME);
|
||
pdppg->wire_count++;
|
||
}
|
||
pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
|
||
|
||
/* Now find the pdp page */
|
||
pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
|
||
*pdp = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
|
||
|
||
} else {
|
||
vm_pindex_t pml4index;
|
||
vm_pindex_t pdpindex;
|
||
pml4_entry_t *pml4;
|
||
pdp_entry_t *pdp;
|
||
pd_entry_t *pd;
|
||
|
||
/* Wire up a new PTE page */
|
||
pdpindex = ptepindex >> NPDPEPGSHIFT;
|
||
pml4index = pdpindex >> NPML4EPGSHIFT;
|
||
|
||
/* First, find the pdp and check that its valid. */
|
||
pml4 = &pmap->pm_pml4[pml4index];
|
||
if ((*pml4 & PG_V) == 0) {
|
||
/* Have to allocate a new pd, recurse */
|
||
if (_pmap_allocpte(pmap, NUPDE + pdpindex,
|
||
lockp) == NULL) {
|
||
--m->wire_count;
|
||
atomic_subtract_int(&vm_cnt.v_wire_count, 1);
|
||
vm_page_free_zero(m);
|
||
return (NULL);
|
||
}
|
||
pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
|
||
pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
|
||
} else {
|
||
pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
|
||
pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
|
||
if ((*pdp & PG_V) == 0) {
|
||
/* Have to allocate a new pd, recurse */
|
||
if (_pmap_allocpte(pmap, NUPDE + pdpindex,
|
||
lockp) == NULL) {
|
||
--m->wire_count;
|
||
atomic_subtract_int(&vm_cnt.v_wire_count,
|
||
1);
|
||
vm_page_free_zero(m);
|
||
return (NULL);
|
||
}
|
||
} else {
|
||
/* Add reference to the pd page */
|
||
pdpg = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
|
||
pdpg->wire_count++;
|
||
}
|
||
}
|
||
pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & PG_FRAME);
|
||
|
||
/* Now we know where the page directory page is */
|
||
pd = &pd[ptepindex & ((1ul << NPDEPGSHIFT) - 1)];
|
||
*pd = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
|
||
}
|
||
|
||
pmap_resident_count_inc(pmap, 1);
|
||
|
||
return (m);
|
||
}
|
||
|
||
static vm_page_t
|
||
pmap_allocpde(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
|
||
{
|
||
vm_pindex_t pdpindex, ptepindex;
|
||
pdp_entry_t *pdpe, PG_V;
|
||
vm_page_t pdpg;
|
||
|
||
PG_V = pmap_valid_bit(pmap);
|
||
|
||
retry:
|
||
pdpe = pmap_pdpe(pmap, va);
|
||
if (pdpe != NULL && (*pdpe & PG_V) != 0) {
|
||
/* Add a reference to the pd page. */
|
||
pdpg = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
|
||
pdpg->wire_count++;
|
||
} else {
|
||
/* Allocate a pd page. */
|
||
ptepindex = pmap_pde_pindex(va);
|
||
pdpindex = ptepindex >> NPDPEPGSHIFT;
|
||
pdpg = _pmap_allocpte(pmap, NUPDE + pdpindex, lockp);
|
||
if (pdpg == NULL && lockp != NULL)
|
||
goto retry;
|
||
}
|
||
return (pdpg);
|
||
}
|
||
|
||
static vm_page_t
|
||
pmap_allocpte(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
|
||
{
|
||
vm_pindex_t ptepindex;
|
||
pd_entry_t *pd, PG_V;
|
||
vm_page_t m;
|
||
|
||
PG_V = pmap_valid_bit(pmap);
|
||
|
||
/*
|
||
* Calculate pagetable page index
|
||
*/
|
||
ptepindex = pmap_pde_pindex(va);
|
||
retry:
|
||
/*
|
||
* Get the page directory entry
|
||
*/
|
||
pd = pmap_pde(pmap, va);
|
||
|
||
/*
|
||
* This supports switching from a 2MB page to a
|
||
* normal 4K page.
|
||
*/
|
||
if (pd != NULL && (*pd & (PG_PS | PG_V)) == (PG_PS | PG_V)) {
|
||
if (!pmap_demote_pde_locked(pmap, pd, va, lockp)) {
|
||
/*
|
||
* Invalidation of the 2MB page mapping may have caused
|
||
* the deallocation of the underlying PD page.
|
||
*/
|
||
pd = NULL;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* If the page table page is mapped, we just increment the
|
||
* hold count, and activate it.
|
||
*/
|
||
if (pd != NULL && (*pd & PG_V) != 0) {
|
||
m = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
|
||
m->wire_count++;
|
||
} else {
|
||
/*
|
||
* Here if the pte page isn't mapped, or if it has been
|
||
* deallocated.
|
||
*/
|
||
m = _pmap_allocpte(pmap, ptepindex, lockp);
|
||
if (m == NULL && lockp != NULL)
|
||
goto retry;
|
||
}
|
||
return (m);
|
||
}
|
||
|
||
|
||
/***************************************************
|
||
* Pmap allocation/deallocation routines.
|
||
***************************************************/
|
||
|
||
/*
|
||
* Release any resources held by the given physical map.
|
||
* Called when a pmap initialized by pmap_pinit is being released.
|
||
* Should only be called if the map contains no valid mappings.
|
||
*/
|
||
void
|
||
pmap_release(pmap_t pmap)
|
||
{
|
||
vm_page_t m;
|
||
int i;
|
||
|
||
KASSERT(pmap->pm_stats.resident_count == 0,
|
||
("pmap_release: pmap resident count %ld != 0",
|
||
pmap->pm_stats.resident_count));
|
||
KASSERT(vm_radix_is_empty(&pmap->pm_root),
|
||
("pmap_release: pmap has reserved page table page(s)"));
|
||
|
||
if (pmap_pcid_enabled) {
|
||
/*
|
||
* Invalidate any left TLB entries, to allow the reuse
|
||
* of the pcid.
|
||
*/
|
||
pmap_invalidate_all(pmap);
|
||
}
|
||
|
||
m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->pm_pml4));
|
||
|
||
for (i = 0; i < NKPML4E; i++) /* KVA */
|
||
pmap->pm_pml4[KPML4BASE + i] = 0;
|
||
for (i = 0; i < ndmpdpphys; i++)/* Direct Map */
|
||
pmap->pm_pml4[DMPML4I + i] = 0;
|
||
pmap->pm_pml4[PML4PML4I] = 0; /* Recursive Mapping */
|
||
|
||
m->wire_count--;
|
||
atomic_subtract_int(&vm_cnt.v_wire_count, 1);
|
||
vm_page_free_zero(m);
|
||
if (pmap->pm_pcid != -1)
|
||
free_unr(&pcid_unr, pmap->pm_pcid);
|
||
}
|
||
|
||
static int
|
||
kvm_size(SYSCTL_HANDLER_ARGS)
|
||
{
|
||
unsigned long ksize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
|
||
|
||
return sysctl_handle_long(oidp, &ksize, 0, req);
|
||
}
|
||
SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
|
||
0, 0, kvm_size, "LU", "Size of KVM");
|
||
|
||
static int
|
||
kvm_free(SYSCTL_HANDLER_ARGS)
|
||
{
|
||
unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
|
||
|
||
return sysctl_handle_long(oidp, &kfree, 0, req);
|
||
}
|
||
SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
|
||
0, 0, kvm_free, "LU", "Amount of KVM free");
|
||
|
||
/*
|
||
* grow the number of kernel page table entries, if needed
|
||
*/
|
||
void
|
||
pmap_growkernel(vm_offset_t addr)
|
||
{
|
||
vm_paddr_t paddr;
|
||
vm_page_t nkpg;
|
||
pd_entry_t *pde, newpdir;
|
||
pdp_entry_t *pdpe;
|
||
|
||
mtx_assert(&kernel_map->system_mtx, MA_OWNED);
|
||
|
||
/*
|
||
* Return if "addr" is within the range of kernel page table pages
|
||
* that were preallocated during pmap bootstrap. Moreover, leave
|
||
* "kernel_vm_end" and the kernel page table as they were.
|
||
*
|
||
* The correctness of this action is based on the following
|
||
* argument: vm_map_findspace() allocates contiguous ranges of the
|
||
* kernel virtual address space. It calls this function if a range
|
||
* ends after "kernel_vm_end". If the kernel is mapped between
|
||
* "kernel_vm_end" and "addr", then the range cannot begin at
|
||
* "kernel_vm_end". In fact, its beginning address cannot be less
|
||
* than the kernel. Thus, there is no immediate need to allocate
|
||
* any new kernel page table pages between "kernel_vm_end" and
|
||
* "KERNBASE".
|
||
*/
|
||
if (KERNBASE < addr && addr <= KERNBASE + nkpt * NBPDR)
|
||
return;
|
||
|
||
addr = roundup2(addr, NBPDR);
|
||
if (addr - 1 >= kernel_map->max_offset)
|
||
addr = kernel_map->max_offset;
|
||
while (kernel_vm_end < addr) {
|
||
pdpe = pmap_pdpe(kernel_pmap, kernel_vm_end);
|
||
if ((*pdpe & X86_PG_V) == 0) {
|
||
/* We need a new PDP entry */
|
||
nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDPSHIFT,
|
||
VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
|
||
VM_ALLOC_WIRED | VM_ALLOC_ZERO);
|
||
if (nkpg == NULL)
|
||
panic("pmap_growkernel: no memory to grow kernel");
|
||
if ((nkpg->flags & PG_ZERO) == 0)
|
||
pmap_zero_page(nkpg);
|
||
paddr = VM_PAGE_TO_PHYS(nkpg);
|
||
*pdpe = (pdp_entry_t)(paddr | X86_PG_V | X86_PG_RW |
|
||
X86_PG_A | X86_PG_M);
|
||
continue; /* try again */
|
||
}
|
||
pde = pmap_pdpe_to_pde(pdpe, kernel_vm_end);
|
||
if ((*pde & X86_PG_V) != 0) {
|
||
kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
|
||
if (kernel_vm_end - 1 >= kernel_map->max_offset) {
|
||
kernel_vm_end = kernel_map->max_offset;
|
||
break;
|
||
}
|
||
continue;
|
||
}
|
||
|
||
nkpg = vm_page_alloc(NULL, pmap_pde_pindex(kernel_vm_end),
|
||
VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
|
||
VM_ALLOC_ZERO);
|
||
if (nkpg == NULL)
|
||
panic("pmap_growkernel: no memory to grow kernel");
|
||
if ((nkpg->flags & PG_ZERO) == 0)
|
||
pmap_zero_page(nkpg);
|
||
paddr = VM_PAGE_TO_PHYS(nkpg);
|
||
newpdir = paddr | X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
|
||
pde_store(pde, newpdir);
|
||
|
||
kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
|
||
if (kernel_vm_end - 1 >= kernel_map->max_offset) {
|
||
kernel_vm_end = kernel_map->max_offset;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/***************************************************
|
||
* page management routines.
|
||
***************************************************/
|
||
|
||
CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
|
||
CTASSERT(_NPCM == 3);
|
||
CTASSERT(_NPCPV == 168);
|
||
|
||
static __inline struct pv_chunk *
|
||
pv_to_chunk(pv_entry_t pv)
|
||
{
|
||
|
||
return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
|
||
}
|
||
|
||
#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
|
||
|
||
#define PC_FREE0 0xfffffffffffffffful
|
||
#define PC_FREE1 0xfffffffffffffffful
|
||
#define PC_FREE2 0x000000fffffffffful
|
||
|
||
static const uint64_t pc_freemask[_NPCM] = { PC_FREE0, PC_FREE1, PC_FREE2 };
|
||
|
||
#ifdef PV_STATS
|
||
static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
|
||
|
||
SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
|
||
"Current number of pv entry chunks");
|
||
SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
|
||
"Current number of pv entry chunks allocated");
|
||
SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
|
||
"Current number of pv entry chunks frees");
|
||
SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
|
||
"Number of times tried to get a chunk page but failed.");
|
||
|
||
static long pv_entry_frees, pv_entry_allocs, pv_entry_count;
|
||
static int pv_entry_spare;
|
||
|
||
SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
|
||
"Current number of pv entry frees");
|
||
SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
|
||
"Current number of pv entry allocs");
|
||
SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
|
||
"Current number of pv entries");
|
||
SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
|
||
"Current number of spare pv entries");
|
||
#endif
|
||
|
||
/*
|
||
* We are in a serious low memory condition. Resort to
|
||
* drastic measures to free some pages so we can allocate
|
||
* another pv entry chunk.
|
||
*
|
||
* Returns NULL if PV entries were reclaimed from the specified pmap.
|
||
*
|
||
* We do not, however, unmap 2mpages because subsequent accesses will
|
||
* allocate per-page pv entries until repromotion occurs, thereby
|
||
* exacerbating the shortage of free pv entries.
|
||
*/
|
||
static vm_page_t
|
||
reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
|
||
{
|
||
struct pch new_tail;
|
||
struct pv_chunk *pc;
|
||
struct md_page *pvh;
|
||
pd_entry_t *pde;
|
||
pmap_t pmap;
|
||
pt_entry_t *pte, tpte;
|
||
pt_entry_t PG_G, PG_A, PG_M, PG_RW;
|
||
pv_entry_t pv;
|
||
vm_offset_t va;
|
||
vm_page_t m, m_pc;
|
||
struct spglist free;
|
||
uint64_t inuse;
|
||
int bit, field, freed;
|
||
|
||
rw_assert(&pvh_global_lock, RA_LOCKED);
|
||
PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
|
||
KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
|
||
pmap = NULL;
|
||
m_pc = NULL;
|
||
PG_G = PG_A = PG_M = PG_RW = 0;
|
||
SLIST_INIT(&free);
|
||
TAILQ_INIT(&new_tail);
|
||
mtx_lock(&pv_chunks_mutex);
|
||
while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && SLIST_EMPTY(&free)) {
|
||
TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
|
||
mtx_unlock(&pv_chunks_mutex);
|
||
if (pmap != pc->pc_pmap) {
|
||
if (pmap != NULL) {
|
||
pmap_invalidate_all(pmap);
|
||
if (pmap != locked_pmap)
|
||
PMAP_UNLOCK(pmap);
|
||
}
|
||
pmap = pc->pc_pmap;
|
||
/* Avoid deadlock and lock recursion. */
|
||
if (pmap > locked_pmap) {
|
||
RELEASE_PV_LIST_LOCK(lockp);
|
||
PMAP_LOCK(pmap);
|
||
} else if (pmap != locked_pmap &&
|
||
!PMAP_TRYLOCK(pmap)) {
|
||
pmap = NULL;
|
||
TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
|
||
mtx_lock(&pv_chunks_mutex);
|
||
continue;
|
||
}
|
||
PG_G = pmap_global_bit(pmap);
|
||
PG_A = pmap_accessed_bit(pmap);
|
||
PG_M = pmap_modified_bit(pmap);
|
||
PG_RW = pmap_rw_bit(pmap);
|
||
}
|
||
|
||
/*
|
||
* Destroy every non-wired, 4 KB page mapping in the chunk.
|
||
*/
|
||
freed = 0;
|
||
for (field = 0; field < _NPCM; field++) {
|
||
for (inuse = ~pc->pc_map[field] & pc_freemask[field];
|
||
inuse != 0; inuse &= ~(1UL << bit)) {
|
||
bit = bsfq(inuse);
|
||
pv = &pc->pc_pventry[field * 64 + bit];
|
||
va = pv->pv_va;
|
||
pde = pmap_pde(pmap, va);
|
||
if ((*pde & PG_PS) != 0)
|
||
continue;
|
||
pte = pmap_pde_to_pte(pde, va);
|
||
if ((*pte & PG_W) != 0)
|
||
continue;
|
||
tpte = pte_load_clear(pte);
|
||
if ((tpte & PG_G) != 0)
|
||
pmap_invalidate_page(pmap, va);
|
||
m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
|
||
if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
|
||
vm_page_dirty(m);
|
||
if ((tpte & PG_A) != 0)
|
||
vm_page_aflag_set(m, PGA_REFERENCED);
|
||
CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
|
||
TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
|
||
m->md.pv_gen++;
|
||
if (TAILQ_EMPTY(&m->md.pv_list) &&
|
||
(m->flags & PG_FICTITIOUS) == 0) {
|
||
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
|
||
if (TAILQ_EMPTY(&pvh->pv_list)) {
|
||
vm_page_aflag_clear(m,
|
||
PGA_WRITEABLE);
|
||
}
|
||
}
|
||
pc->pc_map[field] |= 1UL << bit;
|
||
pmap_unuse_pt(pmap, va, *pde, &free);
|
||
freed++;
|
||
}
|
||
}
|
||
if (freed == 0) {
|
||
TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
|
||
mtx_lock(&pv_chunks_mutex);
|
||
continue;
|
||
}
|
||
/* Every freed mapping is for a 4 KB page. */
|
||
pmap_resident_count_dec(pmap, freed);
|
||
PV_STAT(atomic_add_long(&pv_entry_frees, freed));
|
||
PV_STAT(atomic_add_int(&pv_entry_spare, freed));
|
||
PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
|
||
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
|
||
if (pc->pc_map[0] == PC_FREE0 && pc->pc_map[1] == PC_FREE1 &&
|
||
pc->pc_map[2] == PC_FREE2) {
|
||
PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
|
||
PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
|
||
PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
|
||
/* Entire chunk is free; return it. */
|
||
m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
|
||
dump_drop_page(m_pc->phys_addr);
|
||
mtx_lock(&pv_chunks_mutex);
|
||
break;
|
||
}
|
||
TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
|
||
TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
|
||
mtx_lock(&pv_chunks_mutex);
|
||
/* One freed pv entry in locked_pmap is sufficient. */
|
||
if (pmap == locked_pmap)
|
||
break;
|
||
}
|
||
TAILQ_CONCAT(&pv_chunks, &new_tail, pc_lru);
|
||
mtx_unlock(&pv_chunks_mutex);
|
||
if (pmap != NULL) {
|
||
pmap_invalidate_all(pmap);
|
||
if (pmap != locked_pmap)
|
||
PMAP_UNLOCK(pmap);
|
||
}
|
||
if (m_pc == NULL && !SLIST_EMPTY(&free)) {
|
||
m_pc = SLIST_FIRST(&free);
|
||
SLIST_REMOVE_HEAD(&free, plinks.s.ss);
|
||
/* Recycle a freed page table page. */
|
||
m_pc->wire_count = 1;
|
||
atomic_add_int(&vm_cnt.v_wire_count, 1);
|
||
}
|
||
pmap_free_zero_pages(&free);
|
||
return (m_pc);
|
||
}
|
||
|
||
/*
|
||
* free the pv_entry back to the free list
|
||
*/
|
||
static void
|
||
free_pv_entry(pmap_t pmap, pv_entry_t pv)
|
||
{
|
||
struct pv_chunk *pc;
|
||
int idx, field, bit;
|
||
|
||
rw_assert(&pvh_global_lock, RA_LOCKED);
|
||
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
||
PV_STAT(atomic_add_long(&pv_entry_frees, 1));
|
||
PV_STAT(atomic_add_int(&pv_entry_spare, 1));
|
||
PV_STAT(atomic_subtract_long(&pv_entry_count, 1));
|
||
pc = pv_to_chunk(pv);
|
||
idx = pv - &pc->pc_pventry[0];
|
||
field = idx / 64;
|
||
bit = idx % 64;
|
||
pc->pc_map[field] |= 1ul << bit;
|
||
if (pc->pc_map[0] != PC_FREE0 || pc->pc_map[1] != PC_FREE1 ||
|
||
pc->pc_map[2] != PC_FREE2) {
|
||
/* 98% of the time, pc is already at the head of the list. */
|
||
if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
|
||
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
|
||
TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
|
||
}
|
||
return;
|
||
}
|
||
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
|
||
free_pv_chunk(pc);
|
||
}
|
||
|
||
static void
|
||
free_pv_chunk(struct pv_chunk *pc)
|
||
{
|
||
vm_page_t m;
|
||
|
||
mtx_lock(&pv_chunks_mutex);
|
||
TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
|
||
mtx_unlock(&pv_chunks_mutex);
|
||
PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
|
||
PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
|
||
PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
|
||
/* entire chunk is free, return it */
|
||
m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
|
||
dump_drop_page(m->phys_addr);
|
||
vm_page_unwire(m, 0);
|
||
vm_page_free(m);
|
||
}
|
||
|
||
/*
|
||
* Returns a new PV entry, allocating a new PV chunk from the system when
|
||
* needed. If this PV chunk allocation fails and a PV list lock pointer was
|
||
* given, a PV chunk is reclaimed from an arbitrary pmap. Otherwise, NULL is
|
||
* returned.
|
||
*
|
||
* The given PV list lock may be released.
|
||
*/
|
||
static pv_entry_t
|
||
get_pv_entry(pmap_t pmap, struct rwlock **lockp)
|
||
{
|
||
int bit, field;
|
||
pv_entry_t pv;
|
||
struct pv_chunk *pc;
|
||
vm_page_t m;
|
||
|
||
rw_assert(&pvh_global_lock, RA_LOCKED);
|
||
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
||
PV_STAT(atomic_add_long(&pv_entry_allocs, 1));
|
||
retry:
|
||
pc = TAILQ_FIRST(&pmap->pm_pvchunk);
|
||
if (pc != NULL) {
|
||
for (field = 0; field < _NPCM; field++) {
|
||
if (pc->pc_map[field]) {
|
||
bit = bsfq(pc->pc_map[field]);
|
||
break;
|
||
}
|
||
}
|
||
if (field < _NPCM) {
|
||
pv = &pc->pc_pventry[field * 64 + bit];
|
||
pc->pc_map[field] &= ~(1ul << bit);
|
||
/* If this was the last item, move it to tail */
|
||
if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 &&
|
||
pc->pc_map[2] == 0) {
|
||
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
|
||
TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
|
||
pc_list);
|
||
}
|
||
PV_STAT(atomic_add_long(&pv_entry_count, 1));
|
||
PV_STAT(atomic_subtract_int(&pv_entry_spare, 1));
|
||
return (pv);
|
||
}
|
||
}
|
||
/* No free items, allocate another chunk */
|
||
m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
|
||
VM_ALLOC_WIRED);
|
||
if (m == NULL) {
|
||
if (lockp == NULL) {
|
||
PV_STAT(pc_chunk_tryfail++);
|
||
return (NULL);
|
||
}
|
||
m = reclaim_pv_chunk(pmap, lockp);
|
||
if (m == NULL)
|
||
goto retry;
|
||
}
|
||
PV_STAT(atomic_add_int(&pc_chunk_count, 1));
|
||
PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
|
||
dump_add_page(m->phys_addr);
|
||
pc = (void *)PHYS_TO_DMAP(m->phys_addr);
|
||
pc->pc_pmap = pmap;
|
||
pc->pc_map[0] = PC_FREE0 & ~1ul; /* preallocated bit 0 */
|
||
pc->pc_map[1] = PC_FREE1;
|
||
pc->pc_map[2] = PC_FREE2;
|
||
mtx_lock(&pv_chunks_mutex);
|
||
TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
|
||
mtx_unlock(&pv_chunks_mutex);
|
||
pv = &pc->pc_pventry[0];
|
||
TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
|
||
PV_STAT(atomic_add_long(&pv_entry_count, 1));
|
||
PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV - 1));
|
||
return (pv);
|
||
}
|
||
|
||
/*
|
||
* Returns the number of one bits within the given PV chunk map element.
|
||
*/
|
||
static int
|
||
popcnt_pc_map_elem(uint64_t elem)
|
||
{
|
||
int count;
|
||
|
||
/*
|
||
* This simple method of counting the one bits performs well because
|
||
* the given element typically contains more zero bits than one bits.
|
||
*/
|
||
count = 0;
|
||
for (; elem != 0; elem &= elem - 1)
|
||
count++;
|
||
return (count);
|
||
}
|
||
|
||
/*
|
||
* Ensure that the number of spare PV entries in the specified pmap meets or
|
||
* exceeds the given count, "needed".
|
||
*
|
||
* The given PV list lock may be released.
|
||
*/
|
||
static void
|
||
reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
|
||
{
|
||
struct pch new_tail;
|
||
struct pv_chunk *pc;
|
||
int avail, free;
|
||
vm_page_t m;
|
||
|
||
rw_assert(&pvh_global_lock, RA_LOCKED);
|
||
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
||
KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
|
||
|
||
/*
|
||
* Newly allocated PV chunks must be stored in a private list until
|
||
* the required number of PV chunks have been allocated. Otherwise,
|
||
* reclaim_pv_chunk() could recycle one of these chunks. In
|
||
* contrast, these chunks must be added to the pmap upon allocation.
|
||
*/
|
||
TAILQ_INIT(&new_tail);
|
||
retry:
|
||
avail = 0;
|
||
TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
|
||
if ((cpu_feature2 & CPUID2_POPCNT) == 0) {
|
||
free = popcnt_pc_map_elem(pc->pc_map[0]);
|
||
free += popcnt_pc_map_elem(pc->pc_map[1]);
|
||
free += popcnt_pc_map_elem(pc->pc_map[2]);
|
||
} else {
|
||
free = popcntq(pc->pc_map[0]);
|
||
free += popcntq(pc->pc_map[1]);
|
||
free += popcntq(pc->pc_map[2]);
|
||
}
|
||
if (free == 0)
|
||
break;
|
||
avail += free;
|
||
if (avail >= needed)
|
||
break;
|
||
}
|
||
for (; avail < needed; avail += _NPCPV) {
|
||
m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
|
||
VM_ALLOC_WIRED);
|
||
if (m == NULL) {
|
||
m = reclaim_pv_chunk(pmap, lockp);
|
||
if (m == NULL)
|
||
goto retry;
|
||
}
|
||
PV_STAT(atomic_add_int(&pc_chunk_count, 1));
|
||
PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
|
||
dump_add_page(m->phys_addr);
|
||
pc = (void *)PHYS_TO_DMAP(m->phys_addr);
|
||
pc->pc_pmap = pmap;
|
||
pc->pc_map[0] = PC_FREE0;
|
||
pc->pc_map[1] = PC_FREE1;
|
||
pc->pc_map[2] = PC_FREE2;
|
||
TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
|
||
TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
|
||
PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV));
|
||
}
|
||
if (!TAILQ_EMPTY(&new_tail)) {
|
||
mtx_lock(&pv_chunks_mutex);
|
||
TAILQ_CONCAT(&pv_chunks, &new_tail, pc_lru);
|
||
mtx_unlock(&pv_chunks_mutex);
|
||
}
|
||
}
|
||
|
||
/*
|
||
* First find and then remove the pv entry for the specified pmap and virtual
|
||
* address from the specified pv list. Returns the pv entry if found and NULL
|
||
* otherwise. This operation can be performed on pv lists for either 4KB or
|
||
* 2MB page mappings.
|
||
*/
|
||
static __inline pv_entry_t
|
||
pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
|
||
{
|
||
pv_entry_t pv;
|
||
|
||
rw_assert(&pvh_global_lock, RA_LOCKED);
|
||
TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
|
||
if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
|
||
TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
|
||
pvh->pv_gen++;
|
||
break;
|
||
}
|
||
}
|
||
return (pv);
|
||
}
|
||
|
||
/*
|
||
* After demotion from a 2MB page mapping to 512 4KB page mappings,
|
||
* destroy the pv entry for the 2MB page mapping and reinstantiate the pv
|
||
* entries for each of the 4KB page mappings.
|
||
*/
|
||
static void
|
||
pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
|
||
struct rwlock **lockp)
|
||
{
|
||
struct md_page *pvh;
|
||
struct pv_chunk *pc;
|
||
pv_entry_t pv;
|
||
vm_offset_t va_last;
|
||
vm_page_t m;
|
||
int bit, field;
|
||
|
||
rw_assert(&pvh_global_lock, RA_LOCKED);
|
||
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
||
KASSERT((pa & PDRMASK) == 0,
|
||
("pmap_pv_demote_pde: pa is not 2mpage aligned"));
|
||
CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
|
||
|
||
/*
|
||
* Transfer the 2mpage's pv entry for this mapping to the first
|
||
* page's pv list. Once this transfer begins, the pv list lock
|
||
* must not be released until the last pv entry is reinstantiated.
|
||
*/
|
||
pvh = pa_to_pvh(pa);
|
||
va = trunc_2mpage(va);
|
||
pv = pmap_pvh_remove(pvh, pmap, va);
|
||
KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
|
||
m = PHYS_TO_VM_PAGE(pa);
|
||
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
|
||
m->md.pv_gen++;
|
||
/* Instantiate the remaining NPTEPG - 1 pv entries. */
|
||
PV_STAT(atomic_add_long(&pv_entry_allocs, NPTEPG - 1));
|
||
va_last = va + NBPDR - PAGE_SIZE;
|
||
for (;;) {
|
||
pc = TAILQ_FIRST(&pmap->pm_pvchunk);
|
||
KASSERT(pc->pc_map[0] != 0 || pc->pc_map[1] != 0 ||
|
||
pc->pc_map[2] != 0, ("pmap_pv_demote_pde: missing spare"));
|
||
for (field = 0; field < _NPCM; field++) {
|
||
while (pc->pc_map[field]) {
|
||
bit = bsfq(pc->pc_map[field]);
|
||
pc->pc_map[field] &= ~(1ul << bit);
|
||
pv = &pc->pc_pventry[field * 64 + bit];
|
||
va += PAGE_SIZE;
|
||
pv->pv_va = va;
|
||
m++;
|
||
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
|
||
("pmap_pv_demote_pde: page %p is not managed", m));
|
||
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
|
||
m->md.pv_gen++;
|
||
if (va == va_last)
|
||
goto out;
|
||
}
|
||
}
|
||
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
|
||
TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
|
||
}
|
||
out:
|
||
if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 && pc->pc_map[2] == 0) {
|
||
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
|
||
TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
|
||
}
|
||
PV_STAT(atomic_add_long(&pv_entry_count, NPTEPG - 1));
|
||
PV_STAT(atomic_subtract_int(&pv_entry_spare, NPTEPG - 1));
|
||
}
|
||
|
||
/*
|
||
* After promotion from 512 4KB page mappings to a single 2MB page mapping,
|
||
* replace the many pv entries for the 4KB page mappings by a single pv entry
|
||
* for the 2MB page mapping.
|
||
*/
|
||
static void
|
||
pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
|
||
struct rwlock **lockp)
|
||
{
|
||
struct md_page *pvh;
|
||
pv_entry_t pv;
|
||
vm_offset_t va_last;
|
||
vm_page_t m;
|
||
|
||
rw_assert(&pvh_global_lock, RA_LOCKED);
|
||
KASSERT((pa & PDRMASK) == 0,
|
||
("pmap_pv_promote_pde: pa is not 2mpage aligned"));
|
||
CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
|
||
|
||
/*
|
||
* Transfer the first page's pv entry for this mapping to the 2mpage's
|
||
* pv list. Aside from avoiding the cost of a call to get_pv_entry(),
|
||
* a transfer avoids the possibility that get_pv_entry() calls
|
||
* reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
|
||
* mappings that is being promoted.
|
||
*/
|
||
m = PHYS_TO_VM_PAGE(pa);
|
||
va = trunc_2mpage(va);
|
||
pv = pmap_pvh_remove(&m->md, pmap, va);
|
||
KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
|
||
pvh = pa_to_pvh(pa);
|
||
TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
|
||
pvh->pv_gen++;
|
||
/* Free the remaining NPTEPG - 1 pv entries. */
|
||
va_last = va + NBPDR - PAGE_SIZE;
|
||
do {
|
||
m++;
|
||
va += PAGE_SIZE;
|
||
pmap_pvh_free(&m->md, pmap, va);
|
||
} while (va < va_last);
|
||
}
|
||
|
||
/*
|
||
* First find and then destroy the pv entry for the specified pmap and virtual
|
||
* address. This operation can be performed on pv lists for either 4KB or 2MB
|
||
* page mappings.
|
||
*/
|
||
static void
|
||
pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
|
||
{
|
||
pv_entry_t pv;
|
||
|
||
pv = pmap_pvh_remove(pvh, pmap, va);
|
||
KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
|
||
free_pv_entry(pmap, pv);
|
||
}
|
||
|
||
/*
|
||
* Conditionally create the PV entry for a 4KB page mapping if the required
|
||
* memory can be allocated without resorting to reclamation.
|
||
*/
|
||
static boolean_t
|
||
pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
|
||
struct rwlock **lockp)
|
||
{
|
||
pv_entry_t pv;
|
||
|
||
rw_assert(&pvh_global_lock, RA_LOCKED);
|
||
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
||
/* Pass NULL instead of the lock pointer to disable reclamation. */
|
||
if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
|
||
pv->pv_va = va;
|
||
CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
|
||
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
|
||
m->md.pv_gen++;
|
||
return (TRUE);
|
||
} else
|
||
return (FALSE);
|
||
}
|
||
|
||
/*
|
||
* Conditionally create the PV entry for a 2MB page mapping if the required
|
||
* memory can be allocated without resorting to reclamation.
|
||
*/
|
||
static boolean_t
|
||
pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
|
||
struct rwlock **lockp)
|
||
{
|
||
struct md_page *pvh;
|
||
pv_entry_t pv;
|
||
|
||
rw_assert(&pvh_global_lock, RA_LOCKED);
|
||
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
||
/* Pass NULL instead of the lock pointer to disable reclamation. */
|
||
if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
|
||
pv->pv_va = va;
|
||
CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
|
||
pvh = pa_to_pvh(pa);
|
||
TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
|
||
pvh->pv_gen++;
|
||
return (TRUE);
|
||
} else
|
||
return (FALSE);
|
||
}
|
||
|
||
/*
|
||
* Fills a page table page with mappings to consecutive physical pages.
|
||
*/
|
||
static void
|
||
pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
|
||
{
|
||
pt_entry_t *pte;
|
||
|
||
for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
|
||
*pte = newpte;
|
||
newpte += PAGE_SIZE;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Tries to demote a 2MB page mapping. If demotion fails, the 2MB page
|
||
* mapping is invalidated.
|
||
*/
|
||
static boolean_t
|
||
pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
|
||
{
|
||
struct rwlock *lock;
|
||
boolean_t rv;
|
||
|
||
lock = NULL;
|
||
rv = pmap_demote_pde_locked(pmap, pde, va, &lock);
|
||
if (lock != NULL)
|
||
rw_wunlock(lock);
|
||
return (rv);
|
||
}
|
||
|
||
static boolean_t
|
||
pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
|
||
struct rwlock **lockp)
|
||
{
|
||
pd_entry_t newpde, oldpde;
|
||
pt_entry_t *firstpte, newpte;
|
||
pt_entry_t PG_A, PG_G, PG_M, PG_RW, PG_V;
|
||
vm_paddr_t mptepa;
|
||
vm_page_t mpte;
|
||
struct spglist free;
|
||
int PG_PTE_CACHE;
|
||
|
||
PG_G = pmap_global_bit(pmap);
|
||
PG_A = pmap_accessed_bit(pmap);
|
||
PG_M = pmap_modified_bit(pmap);
|
||
PG_RW = pmap_rw_bit(pmap);
|
||
PG_V = pmap_valid_bit(pmap);
|
||
PG_PTE_CACHE = pmap_cache_mask(pmap, 0);
|
||
|
||
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
||
oldpde = *pde;
|
||
KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
|
||
("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
|
||
if ((oldpde & PG_A) != 0 && (mpte = pmap_lookup_pt_page(pmap, va)) !=
|
||
NULL)
|
||
pmap_remove_pt_page(pmap, mpte);
|
||
else {
|
||
KASSERT((oldpde & PG_W) == 0,
|
||
("pmap_demote_pde: page table page for a wired mapping"
|
||
" is missing"));
|
||
|
||
/*
|
||
* Invalidate the 2MB page mapping and return "failure" if the
|
||
* mapping was never accessed or the allocation of the new
|
||
* page table page fails. If the 2MB page mapping belongs to
|
||
* the direct map region of the kernel's address space, then
|
||
* the page allocation request specifies the highest possible
|
||
* priority (VM_ALLOC_INTERRUPT). Otherwise, the priority is
|
||
* normal. Page table pages are preallocated for every other
|
||
* part of the kernel address space, so the direct map region
|
||
* is the only part of the kernel address space that must be
|
||
* handled here.
|
||
*/
|
||
if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
|
||
pmap_pde_pindex(va), (va >= DMAP_MIN_ADDRESS && va <
|
||
DMAP_MAX_ADDRESS ? VM_ALLOC_INTERRUPT : VM_ALLOC_NORMAL) |
|
||
VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
|
||
SLIST_INIT(&free);
|
||
pmap_remove_pde(pmap, pde, trunc_2mpage(va), &free,
|
||
lockp);
|
||
pmap_invalidate_page(pmap, trunc_2mpage(va));
|
||
pmap_free_zero_pages(&free);
|
||
CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#lx"
|
||
" in pmap %p", va, pmap);
|
||
return (FALSE);
|
||
}
|
||
if (va < VM_MAXUSER_ADDRESS)
|
||
pmap_resident_count_inc(pmap, 1);
|
||
}
|
||
mptepa = VM_PAGE_TO_PHYS(mpte);
|
||
firstpte = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
|
||
newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
|
||
KASSERT((oldpde & PG_A) != 0,
|
||
("pmap_demote_pde: oldpde is missing PG_A"));
|
||
KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
|
||
("pmap_demote_pde: oldpde is missing PG_M"));
|
||
newpte = oldpde & ~PG_PS;
|
||
newpte = pmap_swap_pat(pmap, newpte);
|
||
|
||
/*
|
||
* If the page table page is new, initialize it.
|
||
*/
|
||
if (mpte->wire_count == 1) {
|
||
mpte->wire_count = NPTEPG;
|
||
pmap_fill_ptp(firstpte, newpte);
|
||
}
|
||
KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
|
||
("pmap_demote_pde: firstpte and newpte map different physical"
|
||
" addresses"));
|
||
|
||
/*
|
||
* If the mapping has changed attributes, update the page table
|
||
* entries.
|
||
*/
|
||
if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
|
||
pmap_fill_ptp(firstpte, newpte);
|
||
|
||
/*
|
||
* The spare PV entries must be reserved prior to demoting the
|
||
* mapping, that is, prior to changing the PDE. Otherwise, the state
|
||
* of the PDE and the PV lists will be inconsistent, which can result
|
||
* in reclaim_pv_chunk() attempting to remove a PV entry from the
|
||
* wrong PV list and pmap_pv_demote_pde() failing to find the expected
|
||
* PV entry for the 2MB page mapping that is being demoted.
|
||
*/
|
||
if ((oldpde & PG_MANAGED) != 0)
|
||
reserve_pv_entries(pmap, NPTEPG - 1, lockp);
|
||
|
||
/*
|
||
* Demote the mapping. This pmap is locked. The old PDE has
|
||
* PG_A set. If the old PDE has PG_RW set, it also has PG_M
|
||
* set. Thus, there is no danger of a race with another
|
||
* processor changing the setting of PG_A and/or PG_M between
|
||
* the read above and the store below.
|
||
*/
|
||
if (workaround_erratum383)
|
||
pmap_update_pde(pmap, va, pde, newpde);
|
||
else
|
||
pde_store(pde, newpde);
|
||
|
||
/*
|
||
* Invalidate a stale recursive mapping of the page table page.
|
||
*/
|
||
if (va >= VM_MAXUSER_ADDRESS)
|
||
pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
|
||
|
||
/*
|
||
* Demote the PV entry.
|
||
*/
|
||
if ((oldpde & PG_MANAGED) != 0)
|
||
pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME, lockp);
|
||
|
||
atomic_add_long(&pmap_pde_demotions, 1);
|
||
CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#lx"
|
||
" in pmap %p", va, pmap);
|
||
return (TRUE);
|
||
}
|
||
|
||
/*
|
||
* pmap_remove_kernel_pde: Remove a kernel superpage mapping.
|
||
*/
|
||
static void
|
||
pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
|
||
{
|
||
pd_entry_t newpde;
|
||
vm_paddr_t mptepa;
|
||
vm_page_t mpte;
|
||
|
||
KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
|
||
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
||
mpte = pmap_lookup_pt_page(pmap, va);
|
||
if (mpte == NULL)
|
||
panic("pmap_remove_kernel_pde: Missing pt page.");
|
||
|
||
pmap_remove_pt_page(pmap, mpte);
|
||
mptepa = VM_PAGE_TO_PHYS(mpte);
|
||
newpde = mptepa | X86_PG_M | X86_PG_A | X86_PG_RW | X86_PG_V;
|
||
|
||
/*
|
||
* Initialize the page table page.
|
||
*/
|
||
pagezero((void *)PHYS_TO_DMAP(mptepa));
|
||
|
||
/*
|
||
* Demote the mapping.
|
||
*/
|
||
if (workaround_erratum383)
|
||
pmap_update_pde(pmap, va, pde, newpde);
|
||
else
|
||
pde_store(pde, newpde);
|
||
|
||
/*
|
||
* Invalidate a stale recursive mapping of the page table page.
|
||
*/
|
||
pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
|
||
}
|
||
|
||
/*
|
||
* pmap_remove_pde: do the things to unmap a superpage in a process
|
||
*/
|
||
static int
|
||
pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
|
||
struct spglist *free, struct rwlock **lockp)
|
||
{
|
||
struct md_page *pvh;
|
||
pd_entry_t oldpde;
|
||
vm_offset_t eva, va;
|
||
vm_page_t m, mpte;
|
||
pt_entry_t PG_G, PG_A, PG_M, PG_RW;
|
||
|
||
PG_G = pmap_global_bit(pmap);
|
||
PG_A = pmap_accessed_bit(pmap);
|
||
PG_M = pmap_modified_bit(pmap);
|
||
PG_RW = pmap_rw_bit(pmap);
|
||
|
||
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
||
KASSERT((sva & PDRMASK) == 0,
|
||
("pmap_remove_pde: sva is not 2mpage aligned"));
|
||
oldpde = pte_load_clear(pdq);
|
||
if (oldpde & PG_W)
|
||
pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
|
||
|
||
/*
|
||
* Machines that don't support invlpg, also don't support
|
||
* PG_G.
|
||
*/
|
||
if (oldpde & PG_G)
|
||
pmap_invalidate_page(kernel_pmap, sva);
|
||
pmap_resident_count_dec(pmap, NBPDR / PAGE_SIZE);
|
||
if (oldpde & PG_MANAGED) {
|
||
CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, oldpde & PG_PS_FRAME);
|
||
pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
|
||
pmap_pvh_free(pvh, pmap, sva);
|
||
eva = sva + NBPDR;
|
||
for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
|
||
va < eva; va += PAGE_SIZE, m++) {
|
||
if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
|
||
vm_page_dirty(m);
|
||
if (oldpde & PG_A)
|
||
vm_page_aflag_set(m, PGA_REFERENCED);
|
||
if (TAILQ_EMPTY(&m->md.pv_list) &&
|
||
TAILQ_EMPTY(&pvh->pv_list))
|
||
vm_page_aflag_clear(m, PGA_WRITEABLE);
|
||
}
|
||
}
|
||
if (pmap == kernel_pmap) {
|
||
pmap_remove_kernel_pde(pmap, pdq, sva);
|
||
} else {
|
||
mpte = pmap_lookup_pt_page(pmap, sva);
|
||
if (mpte != NULL) {
|
||
pmap_remove_pt_page(pmap, mpte);
|
||
pmap_resident_count_dec(pmap, 1);
|
||
KASSERT(mpte->wire_count == NPTEPG,
|
||
("pmap_remove_pde: pte page wire count error"));
|
||
mpte->wire_count = 0;
|
||
pmap_add_delayed_free_list(mpte, free, FALSE);
|
||
atomic_subtract_int(&vm_cnt.v_wire_count, 1);
|
||
}
|
||
}
|
||
return (pmap_unuse_pt(pmap, sva, *pmap_pdpe(pmap, sva), free));
|
||
}
|
||
|
||
/*
|
||
* pmap_remove_pte: do the things to unmap a page in a process
|
||
*/
|
||
static int
|
||
pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
|
||
pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp)
|
||
{
|
||
struct md_page *pvh;
|
||
pt_entry_t oldpte, PG_A, PG_M, PG_RW;
|
||
vm_page_t m;
|
||
|
||
PG_A = pmap_accessed_bit(pmap);
|
||
PG_M = pmap_modified_bit(pmap);
|
||
PG_RW = pmap_rw_bit(pmap);
|
||
|
||
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
||
oldpte = pte_load_clear(ptq);
|
||
if (oldpte & PG_W)
|
||
pmap->pm_stats.wired_count -= 1;
|
||
pmap_resident_count_dec(pmap, 1);
|
||
if (oldpte & PG_MANAGED) {
|
||
m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
|
||
if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
|
||
vm_page_dirty(m);
|
||
if (oldpte & PG_A)
|
||
vm_page_aflag_set(m, PGA_REFERENCED);
|
||
CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
|
||
pmap_pvh_free(&m->md, pmap, va);
|
||
if (TAILQ_EMPTY(&m->md.pv_list) &&
|
||
(m->flags & PG_FICTITIOUS) == 0) {
|
||
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
|
||
if (TAILQ_EMPTY(&pvh->pv_list))
|
||
vm_page_aflag_clear(m, PGA_WRITEABLE);
|
||
}
|
||
}
|
||
return (pmap_unuse_pt(pmap, va, ptepde, free));
|
||
}
|
||
|
||
/*
|
||
* Remove a single page from a process address space
|
||
*/
|
||
static void
|
||
pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
|
||
struct spglist *free)
|
||
{
|
||
struct rwlock *lock;
|
||
pt_entry_t *pte, PG_V;
|
||
|
||
PG_V = pmap_valid_bit(pmap);
|
||
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
||
if ((*pde & PG_V) == 0)
|
||
return;
|
||
pte = pmap_pde_to_pte(pde, va);
|
||
if ((*pte & PG_V) == 0)
|
||
return;
|
||
lock = NULL;
|
||
pmap_remove_pte(pmap, pte, va, *pde, free, &lock);
|
||
if (lock != NULL)
|
||
rw_wunlock(lock);
|
||
pmap_invalidate_page(pmap, va);
|
||
}
|
||
|
||
/*
|
||
* Remove the given range of addresses from the specified map.
|
||
*
|
||
* It is assumed that the start and end are properly
|
||
* rounded to the page size.
|
||
*/
|
||
void
|
||
pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
|
||
{
|
||
struct rwlock *lock;
|
||
vm_offset_t va, va_next;
|
||
pml4_entry_t *pml4e;
|
||
pdp_entry_t *pdpe;
|
||
pd_entry_t ptpaddr, *pde;
|
||
pt_entry_t *pte, PG_G, PG_V;
|
||
struct spglist free;
|
||
int anyvalid;
|
||
|
||
PG_G = pmap_global_bit(pmap);
|
||
PG_V = pmap_valid_bit(pmap);
|
||
|
||
/*
|
||
* Perform an unsynchronized read. This is, however, safe.
|
||
*/
|
||
if (pmap->pm_stats.resident_count == 0)
|
||
return;
|
||
|
||
anyvalid = 0;
|
||
SLIST_INIT(&free);
|
||
|
||
rw_rlock(&pvh_global_lock);
|
||
PMAP_LOCK(pmap);
|
||
|
||
/*
|
||
* special handling of removing one page. a very
|
||
* common operation and easy to short circuit some
|
||
* code.
|
||
*/
|
||
if (sva + PAGE_SIZE == eva) {
|
||
pde = pmap_pde(pmap, sva);
|
||
if (pde && (*pde & PG_PS) == 0) {
|
||
pmap_remove_page(pmap, sva, pde, &free);
|
||
goto out;
|
||
}
|
||
}
|
||
|
||
lock = NULL;
|
||
for (; sva < eva; sva = va_next) {
|
||
|
||
if (pmap->pm_stats.resident_count == 0)
|
||
break;
|
||
|
||
pml4e = pmap_pml4e(pmap, sva);
|
||
if ((*pml4e & PG_V) == 0) {
|
||
va_next = (sva + NBPML4) & ~PML4MASK;
|
||
if (va_next < sva)
|
||
va_next = eva;
|
||
continue;
|
||
}
|
||
|
||
pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
|
||
if ((*pdpe & PG_V) == 0) {
|
||
va_next = (sva + NBPDP) & ~PDPMASK;
|
||
if (va_next < sva)
|
||
va_next = eva;
|
||
continue;
|
||
}
|
||
|
||
/*
|
||
* Calculate index for next page table.
|
||
*/
|
||
va_next = (sva + NBPDR) & ~PDRMASK;
|
||
if (va_next < sva)
|
||
va_next = eva;
|
||
|
||
pde = pmap_pdpe_to_pde(pdpe, sva);
|
||
ptpaddr = *pde;
|
||
|
||
/*
|
||
* Weed out invalid mappings.
|
||
*/
|
||
if (ptpaddr == 0)
|
||
continue;
|
||
|
||
/*
|
||
* Check for large page.
|
||
*/
|
||
if ((ptpaddr & PG_PS) != 0) {
|
||
/*
|
||
* Are we removing the entire large page? If not,
|
||
* demote the mapping and fall through.
|
||
*/
|
||
if (sva + NBPDR == va_next && eva >= va_next) {
|
||
/*
|
||
* The TLB entry for a PG_G mapping is
|
||
* invalidated by pmap_remove_pde().
|
||
*/
|
||
if ((ptpaddr & PG_G) == 0)
|
||
anyvalid = 1;
|
||
pmap_remove_pde(pmap, pde, sva, &free, &lock);
|
||
continue;
|
||
} else if (!pmap_demote_pde_locked(pmap, pde, sva,
|
||
&lock)) {
|
||
/* The large page mapping was destroyed. */
|
||
continue;
|
||
} else
|
||
ptpaddr = *pde;
|
||
}
|
||
|
||
/*
|
||
* Limit our scan to either the end of the va represented
|
||
* by the current page table page, or to the end of the
|
||
* range being removed.
|
||
*/
|
||
if (va_next > eva)
|
||
va_next = eva;
|
||
|
||
va = va_next;
|
||
for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
|
||
sva += PAGE_SIZE) {
|
||
if (*pte == 0) {
|
||
if (va != va_next) {
|
||
pmap_invalidate_range(pmap, va, sva);
|
||
va = va_next;
|
||
}
|
||
continue;
|
||
}
|
||
if ((*pte & PG_G) == 0)
|
||
anyvalid = 1;
|
||
else if (va == va_next)
|
||
va = sva;
|
||
if (pmap_remove_pte(pmap, pte, sva, ptpaddr, &free,
|
||
&lock)) {
|
||
sva += PAGE_SIZE;
|
||
break;
|
||
}
|
||
}
|
||
if (va != va_next)
|
||
pmap_invalidate_range(pmap, va, sva);
|
||
}
|
||
if (lock != NULL)
|
||
rw_wunlock(lock);
|
||
out:
|
||
if (anyvalid)
|
||
pmap_invalidate_all(pmap);
|
||
rw_runlock(&pvh_global_lock);
|
||
PMAP_UNLOCK(pmap);
|
||
pmap_free_zero_pages(&free);
|
||
}
|
||
|
||
/*
|
||
* Routine: pmap_remove_all
|
||
* Function:
|
||
* Removes this physical page from
|
||
* all physical maps in which it resides.
|
||
* Reflects back modify bits to the pager.
|
||
*
|
||
* Notes:
|
||
* Original versions of this routine were very
|
||
* inefficient because they iteratively called
|
||
* pmap_remove (slow...)
|
||
*/
|
||
|
||
void
|
||
pmap_remove_all(vm_page_t m)
|
||
{
|
||
struct md_page *pvh;
|
||
pv_entry_t pv;
|
||
pmap_t pmap;
|
||
pt_entry_t *pte, tpte, PG_A, PG_M, PG_RW;
|
||
pd_entry_t *pde;
|
||
vm_offset_t va;
|
||
struct spglist free;
|
||
|
||
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
|
||
("pmap_remove_all: page %p is not managed", m));
|
||
SLIST_INIT(&free);
|
||
rw_wlock(&pvh_global_lock);
|
||
if ((m->flags & PG_FICTITIOUS) != 0)
|
||
goto small_mappings;
|
||
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
|
||
while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
|
||
pmap = PV_PMAP(pv);
|
||
PMAP_LOCK(pmap);
|
||
va = pv->pv_va;
|
||
pde = pmap_pde(pmap, va);
|
||
(void)pmap_demote_pde(pmap, pde, va);
|
||
PMAP_UNLOCK(pmap);
|
||
}
|
||
small_mappings:
|
||
while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
|
||
pmap = PV_PMAP(pv);
|
||
PMAP_LOCK(pmap);
|
||
PG_A = pmap_accessed_bit(pmap);
|
||
PG_M = pmap_modified_bit(pmap);
|
||
PG_RW = pmap_rw_bit(pmap);
|
||
pmap_resident_count_dec(pmap, 1);
|
||
pde = pmap_pde(pmap, pv->pv_va);
|
||
KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
|
||
" a 2mpage in page %p's pv list", m));
|
||
pte = pmap_pde_to_pte(pde, pv->pv_va);
|
||
tpte = pte_load_clear(pte);
|
||
if (tpte & PG_W)
|
||
pmap->pm_stats.wired_count--;
|
||
if (tpte & PG_A)
|
||
vm_page_aflag_set(m, PGA_REFERENCED);
|
||
|
||
/*
|
||
* Update the vm_page_t clean and reference bits.
|
||
*/
|
||
if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
|
||
vm_page_dirty(m);
|
||
pmap_unuse_pt(pmap, pv->pv_va, *pde, &free);
|
||
pmap_invalidate_page(pmap, pv->pv_va);
|
||
TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
|
||
m->md.pv_gen++;
|
||
free_pv_entry(pmap, pv);
|
||
PMAP_UNLOCK(pmap);
|
||
}
|
||
vm_page_aflag_clear(m, PGA_WRITEABLE);
|
||
rw_wunlock(&pvh_global_lock);
|
||
pmap_free_zero_pages(&free);
|
||
}
|
||
|
||
/*
|
||
* pmap_protect_pde: do the things to protect a 2mpage in a process
|
||
*/
|
||
static boolean_t
|
||
pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
|
||
{
|
||
pd_entry_t newpde, oldpde;
|
||
vm_offset_t eva, va;
|
||
vm_page_t m;
|
||
boolean_t anychanged;
|
||
pt_entry_t PG_G, PG_M, PG_RW;
|
||
|
||
PG_G = pmap_global_bit(pmap);
|
||
PG_M = pmap_modified_bit(pmap);
|
||
PG_RW = pmap_rw_bit(pmap);
|
||
|
||
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
||
KASSERT((sva & PDRMASK) == 0,
|
||
("pmap_protect_pde: sva is not 2mpage aligned"));
|
||
anychanged = FALSE;
|
||
retry:
|
||
oldpde = newpde = *pde;
|
||
if (oldpde & PG_MANAGED) {
|
||
eva = sva + NBPDR;
|
||
for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
|
||
va < eva; va += PAGE_SIZE, m++)
|
||
if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
|
||
vm_page_dirty(m);
|
||
}
|
||
if ((prot & VM_PROT_WRITE) == 0)
|
||
newpde &= ~(PG_RW | PG_M);
|
||
if ((prot & VM_PROT_EXECUTE) == 0)
|
||
newpde |= pg_nx;
|
||
if (newpde != oldpde) {
|
||
if (!atomic_cmpset_long(pde, oldpde, newpde))
|
||
goto retry;
|
||
if (oldpde & PG_G)
|
||
pmap_invalidate_page(pmap, sva);
|
||
else
|
||
anychanged = TRUE;
|
||
}
|
||
return (anychanged);
|
||
}
|
||
|
||
/*
|
||
* Set the physical protection on the
|
||
* specified range of this map as requested.
|
||
*/
|
||
void
|
||
pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
|
||
{
|
||
vm_offset_t va_next;
|
||
pml4_entry_t *pml4e;
|
||
pdp_entry_t *pdpe;
|
||
pd_entry_t ptpaddr, *pde;
|
||
pt_entry_t *pte, PG_G, PG_M, PG_RW, PG_V;
|
||
boolean_t anychanged, pv_lists_locked;
|
||
|
||
if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
|
||
pmap_remove(pmap, sva, eva);
|
||
return;
|
||
}
|
||
|
||
if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
|
||
(VM_PROT_WRITE|VM_PROT_EXECUTE))
|
||
return;
|
||
|
||
PG_G = pmap_global_bit(pmap);
|
||
PG_M = pmap_modified_bit(pmap);
|
||
PG_V = pmap_valid_bit(pmap);
|
||
PG_RW = pmap_rw_bit(pmap);
|
||
pv_lists_locked = FALSE;
|
||
resume:
|
||
anychanged = FALSE;
|
||
|
||
PMAP_LOCK(pmap);
|
||
for (; sva < eva; sva = va_next) {
|
||
|
||
pml4e = pmap_pml4e(pmap, sva);
|
||
if ((*pml4e & PG_V) == 0) {
|
||
va_next = (sva + NBPML4) & ~PML4MASK;
|
||
if (va_next < sva)
|
||
va_next = eva;
|
||
continue;
|
||
}
|
||
|
||
pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
|
||
if ((*pdpe & PG_V) == 0) {
|
||
va_next = (sva + NBPDP) & ~PDPMASK;
|
||
if (va_next < sva)
|
||
va_next = eva;
|
||
continue;
|
||
}
|
||
|
||
va_next = (sva + NBPDR) & ~PDRMASK;
|
||
if (va_next < sva)
|
||
va_next = eva;
|
||
|
||
pde = pmap_pdpe_to_pde(pdpe, sva);
|
||
ptpaddr = *pde;
|
||
|
||
/*
|
||
* Weed out invalid mappings.
|
||
*/
|
||
if (ptpaddr == 0)
|
||
continue;
|
||
|
||
/*
|
||
* Check for large page.
|
||
*/
|
||
if ((ptpaddr & PG_PS) != 0) {
|
||
/*
|
||
* Are we protecting the entire large page? If not,
|
||
* demote the mapping and fall through.
|
||
*/
|
||
if (sva + NBPDR == va_next && eva >= va_next) {
|
||
/*
|
||
* The TLB entry for a PG_G mapping is
|
||
* invalidated by pmap_protect_pde().
|
||
*/
|
||
if (pmap_protect_pde(pmap, pde, sva, prot))
|
||
anychanged = TRUE;
|
||
continue;
|
||
} else {
|
||
if (!pv_lists_locked) {
|
||
pv_lists_locked = TRUE;
|
||
if (!rw_try_rlock(&pvh_global_lock)) {
|
||
if (anychanged)
|
||
pmap_invalidate_all(
|
||
pmap);
|
||
PMAP_UNLOCK(pmap);
|
||
rw_rlock(&pvh_global_lock);
|
||
goto resume;
|
||
}
|
||
}
|
||
if (!pmap_demote_pde(pmap, pde, sva)) {
|
||
/*
|
||
* The large page mapping was
|
||
* destroyed.
|
||
*/
|
||
continue;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (va_next > eva)
|
||
va_next = eva;
|
||
|
||
for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
|
||
sva += PAGE_SIZE) {
|
||
pt_entry_t obits, pbits;
|
||
vm_page_t m;
|
||
|
||
retry:
|
||
obits = pbits = *pte;
|
||
if ((pbits & PG_V) == 0)
|
||
continue;
|
||
|
||
if ((prot & VM_PROT_WRITE) == 0) {
|
||
if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
|
||
(PG_MANAGED | PG_M | PG_RW)) {
|
||
m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
|
||
vm_page_dirty(m);
|
||
}
|
||
pbits &= ~(PG_RW | PG_M);
|
||
}
|
||
if ((prot & VM_PROT_EXECUTE) == 0)
|
||
pbits |= pg_nx;
|
||
|
||
if (pbits != obits) {
|
||
if (!atomic_cmpset_long(pte, obits, pbits))
|
||
goto retry;
|
||
if (obits & PG_G)
|
||
pmap_invalidate_page(pmap, sva);
|
||
else
|
||
anychanged = TRUE;
|
||
}
|
||
}
|
||
}
|
||
if (anychanged)
|
||
pmap_invalidate_all(pmap);
|
||
if (pv_lists_locked)
|
||
rw_runlock(&pvh_global_lock);
|
||
PMAP_UNLOCK(pmap);
|
||
}
|
||
|
||
/*
|
||
* Tries to promote the 512, contiguous 4KB page mappings that are within a
|
||
* single page table page (PTP) to a single 2MB page mapping. For promotion
|
||
* to occur, two conditions must be met: (1) the 4KB page mappings must map
|
||
* aligned, contiguous physical memory and (2) the 4KB page mappings must have
|
||
* identical characteristics.
|
||
*/
|
||
static void
|
||
pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
|
||
struct rwlock **lockp)
|
||
{
|
||
pd_entry_t newpde;
|
||
pt_entry_t *firstpte, oldpte, pa, *pte;
|
||
pt_entry_t PG_G, PG_A, PG_M, PG_RW, PG_V;
|
||
vm_offset_t oldpteva;
|
||
vm_page_t mpte;
|
||
int PG_PTE_CACHE;
|
||
|
||
PG_A = pmap_accessed_bit(pmap);
|
||
PG_G = pmap_global_bit(pmap);
|
||
PG_M = pmap_modified_bit(pmap);
|
||
PG_V = pmap_valid_bit(pmap);
|
||
PG_RW = pmap_rw_bit(pmap);
|
||
PG_PTE_CACHE = pmap_cache_mask(pmap, 0);
|
||
|
||
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
||
|
||
/*
|
||
* Examine the first PTE in the specified PTP. Abort if this PTE is
|
||
* either invalid, unused, or does not map the first 4KB physical page
|
||
* within a 2MB page.
|
||
*/
|
||
firstpte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
|
||
setpde:
|
||
newpde = *firstpte;
|
||
if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
|
||
atomic_add_long(&pmap_pde_p_failures, 1);
|
||
CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
|
||
" in pmap %p", va, pmap);
|
||
return;
|
||
}
|
||
if ((newpde & (PG_M | PG_RW)) == PG_RW) {
|
||
/*
|
||
* When PG_M is already clear, PG_RW can be cleared without
|
||
* a TLB invalidation.
|
||
*/
|
||
if (!atomic_cmpset_long(firstpte, newpde, newpde & ~PG_RW))
|
||
goto setpde;
|
||
newpde &= ~PG_RW;
|
||
}
|
||
|
||
/*
|
||
* Examine each of the other PTEs in the specified PTP. Abort if this
|
||
* PTE maps an unexpected 4KB physical page or does not have identical
|
||
* characteristics to the first PTE.
|
||
*/
|
||
pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
|
||
for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
|
||
setpte:
|
||
oldpte = *pte;
|
||
if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
|
||
atomic_add_long(&pmap_pde_p_failures, 1);
|
||
CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
|
||
" in pmap %p", va, pmap);
|
||
return;
|
||
}
|
||
if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
|
||
/*
|
||
* When PG_M is already clear, PG_RW can be cleared
|
||
* without a TLB invalidation.
|
||
*/
|
||
if (!atomic_cmpset_long(pte, oldpte, oldpte & ~PG_RW))
|
||
goto setpte;
|
||
oldpte &= ~PG_RW;
|
||
oldpteva = (oldpte & PG_FRAME & PDRMASK) |
|
||
(va & ~PDRMASK);
|
||
CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
|
||
" in pmap %p", oldpteva, pmap);
|
||
}
|
||
if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
|
||
atomic_add_long(&pmap_pde_p_failures, 1);
|
||
CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
|
||
" in pmap %p", va, pmap);
|
||
return;
|
||
}
|
||
pa -= PAGE_SIZE;
|
||
}
|
||
|
||
/*
|
||
* Save the page table page in its current state until the PDE
|
||
* mapping the superpage is demoted by pmap_demote_pde() or
|
||
* destroyed by pmap_remove_pde().
|
||
*/
|
||
mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
|
||
KASSERT(mpte >= vm_page_array &&
|
||
mpte < &vm_page_array[vm_page_array_size],
|
||
("pmap_promote_pde: page table page is out of range"));
|
||
KASSERT(mpte->pindex == pmap_pde_pindex(va),
|
||
("pmap_promote_pde: page table page's pindex is wrong"));
|
||
if (pmap_insert_pt_page(pmap, mpte)) {
|
||
atomic_add_long(&pmap_pde_p_failures, 1);
|
||
CTR2(KTR_PMAP,
|
||
"pmap_promote_pde: failure for va %#lx in pmap %p", va,
|
||
pmap);
|
||
return;
|
||
}
|
||
|
||
/*
|
||
* Promote the pv entries.
|
||
*/
|
||
if ((newpde & PG_MANAGED) != 0)
|
||
pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME, lockp);
|
||
|
||
/*
|
||
* Propagate the PAT index to its proper position.
|
||
*/
|
||
newpde = pmap_swap_pat(pmap, newpde);
|
||
|
||
/*
|
||
* Map the superpage.
|
||
*/
|
||
if (workaround_erratum383)
|
||
pmap_update_pde(pmap, va, pde, PG_PS | newpde);
|
||
else
|
||
pde_store(pde, PG_PS | newpde);
|
||
|
||
atomic_add_long(&pmap_pde_promotions, 1);
|
||
CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#lx"
|
||
" in pmap %p", va, pmap);
|
||
}
|
||
|
||
/*
|
||
* Insert the given physical page (p) at
|
||
* the specified virtual address (v) in the
|
||
* target physical map with the protection requested.
|
||
*
|
||
* If specified, the page will be wired down, meaning
|
||
* that the related pte can not be reclaimed.
|
||
*
|
||
* NB: This is the only routine which MAY NOT lazy-evaluate
|
||
* or lose information. That is, this routine must actually
|
||
* insert this page into the given map NOW.
|
||
*/
|
||
void
|
||
pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
|
||
vm_prot_t prot, boolean_t wired)
|
||
{
|
||
struct rwlock *lock;
|
||
pd_entry_t *pde;
|
||
pt_entry_t *pte, PG_G, PG_A, PG_M, PG_RW, PG_V;
|
||
pt_entry_t newpte, origpte;
|
||
pv_entry_t pv;
|
||
vm_paddr_t opa, pa;
|
||
vm_page_t mpte, om;
|
||
|
||
PG_A = pmap_accessed_bit(pmap);
|
||
PG_G = pmap_global_bit(pmap);
|
||
PG_M = pmap_modified_bit(pmap);
|
||
PG_V = pmap_valid_bit(pmap);
|
||
PG_RW = pmap_rw_bit(pmap);
|
||
|
||
va = trunc_page(va);
|
||
KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
|
||
KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
|
||
("pmap_enter: invalid to pmap_enter page table pages (va: 0x%lx)",
|
||
va));
|
||
KASSERT((m->oflags & VPO_UNMANAGED) != 0 || va < kmi.clean_sva ||
|
||
va >= kmi.clean_eva,
|
||
("pmap_enter: managed mapping within the clean submap"));
|
||
if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
|
||
VM_OBJECT_ASSERT_WLOCKED(m->object);
|
||
pa = VM_PAGE_TO_PHYS(m);
|
||
newpte = (pt_entry_t)(pa | PG_A | PG_V);
|
||
if ((access & VM_PROT_WRITE) != 0)
|
||
newpte |= PG_M;
|
||
if ((prot & VM_PROT_WRITE) != 0)
|
||
newpte |= PG_RW;
|
||
KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
|
||
("pmap_enter: access includes VM_PROT_WRITE but prot doesn't"));
|
||
if ((prot & VM_PROT_EXECUTE) == 0)
|
||
newpte |= pg_nx;
|
||
if (wired)
|
||
newpte |= PG_W;
|
||
if (va < VM_MAXUSER_ADDRESS)
|
||
newpte |= PG_U;
|
||
if (pmap == kernel_pmap)
|
||
newpte |= PG_G;
|
||
newpte |= pmap_cache_bits(pmap, m->md.pat_mode, 0);
|
||
|
||
/*
|
||
* Set modified bit gratuitously for writeable mappings if
|
||
* the page is unmanaged. We do not want to take a fault
|
||
* to do the dirty bit accounting for these mappings.
|
||
*/
|
||
if ((m->oflags & VPO_UNMANAGED) != 0) {
|
||
if ((newpte & PG_RW) != 0)
|
||
newpte |= PG_M;
|
||
}
|
||
|
||
mpte = NULL;
|
||
|
||
lock = NULL;
|
||
rw_rlock(&pvh_global_lock);
|
||
PMAP_LOCK(pmap);
|
||
|
||
/*
|
||
* In the case that a page table page is not
|
||
* resident, we are creating it here.
|
||
*/
|
||
retry:
|
||
pde = pmap_pde(pmap, va);
|
||
if (pde != NULL && (*pde & PG_V) != 0 && ((*pde & PG_PS) == 0 ||
|
||
pmap_demote_pde_locked(pmap, pde, va, &lock))) {
|
||
pte = pmap_pde_to_pte(pde, va);
|
||
if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
|
||
mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
|
||
mpte->wire_count++;
|
||
}
|
||
} else if (va < VM_MAXUSER_ADDRESS) {
|
||
/*
|
||
* Here if the pte page isn't mapped, or if it has been
|
||
* deallocated.
|
||
*/
|
||
mpte = _pmap_allocpte(pmap, pmap_pde_pindex(va), &lock);
|
||
goto retry;
|
||
} else
|
||
panic("pmap_enter: invalid page directory va=%#lx", va);
|
||
|
||
origpte = *pte;
|
||
|
||
/*
|
||
* Is the specified virtual address already mapped?
|
||
*/
|
||
if ((origpte & PG_V) != 0) {
|
||
/*
|
||
* Wiring change, just update stats. We don't worry about
|
||
* wiring PT pages as they remain resident as long as there
|
||
* are valid mappings in them. Hence, if a user page is wired,
|
||
* the PT page will be also.
|
||
*/
|
||
if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
|
||
pmap->pm_stats.wired_count++;
|
||
else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
|
||
pmap->pm_stats.wired_count--;
|
||
|
||
/*
|
||
* Remove the extra PT page reference.
|
||
*/
|
||
if (mpte != NULL) {
|
||
mpte->wire_count--;
|
||
KASSERT(mpte->wire_count > 0,
|
||
("pmap_enter: missing reference to page table page,"
|
||
" va: 0x%lx", va));
|
||
}
|
||
|
||
/*
|
||
* Has the physical page changed?
|
||
*/
|
||
opa = origpte & PG_FRAME;
|
||
if (opa == pa) {
|
||
/*
|
||
* No, might be a protection or wiring change.
|
||
*/
|
||
if ((origpte & PG_MANAGED) != 0) {
|
||
newpte |= PG_MANAGED;
|
||
if ((newpte & PG_RW) != 0)
|
||
vm_page_aflag_set(m, PGA_WRITEABLE);
|
||
}
|
||
if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
|
||
goto unchanged;
|
||
goto validate;
|
||
}
|
||
} else {
|
||
/*
|
||
* Increment the counters.
|
||
*/
|
||
if ((newpte & PG_W) != 0)
|
||
pmap->pm_stats.wired_count++;
|
||
pmap_resident_count_inc(pmap, 1);
|
||
}
|
||
|
||
/*
|
||
* Enter on the PV list if part of our managed memory.
|
||
*/
|
||
if ((m->oflags & VPO_UNMANAGED) == 0) {
|
||
newpte |= PG_MANAGED;
|
||
pv = get_pv_entry(pmap, &lock);
|
||
pv->pv_va = va;
|
||
CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
|
||
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
|
||
m->md.pv_gen++;
|
||
if ((newpte & PG_RW) != 0)
|
||
vm_page_aflag_set(m, PGA_WRITEABLE);
|
||
}
|
||
|
||
/*
|
||
* Update the PTE.
|
||
*/
|
||
if ((origpte & PG_V) != 0) {
|
||
validate:
|
||
origpte = pte_load_store(pte, newpte);
|
||
opa = origpte & PG_FRAME;
|
||
if (opa != pa) {
|
||
if ((origpte & PG_MANAGED) != 0) {
|
||
om = PHYS_TO_VM_PAGE(opa);
|
||
if ((origpte & (PG_M | PG_RW)) == (PG_M |
|
||
PG_RW))
|
||
vm_page_dirty(om);
|
||
if ((origpte & PG_A) != 0)
|
||
vm_page_aflag_set(om, PGA_REFERENCED);
|
||
CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
|
||
pmap_pvh_free(&om->md, pmap, va);
|
||
if ((om->aflags & PGA_WRITEABLE) != 0 &&
|
||
TAILQ_EMPTY(&om->md.pv_list) &&
|
||
((om->flags & PG_FICTITIOUS) != 0 ||
|
||
TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
|
||
vm_page_aflag_clear(om, PGA_WRITEABLE);
|
||
}
|
||
} else if ((newpte & PG_M) == 0 && (origpte & (PG_M |
|
||
PG_RW)) == (PG_M | PG_RW)) {
|
||
if ((origpte & PG_MANAGED) != 0)
|
||
vm_page_dirty(m);
|
||
|
||
/*
|
||
* Although the PTE may still have PG_RW set, TLB
|
||
* invalidation may nonetheless be required because
|
||
* the PTE no longer has PG_M set.
|
||
*/
|
||
} else if ((origpte & PG_NX) != 0 || (newpte & PG_NX) == 0) {
|
||
/*
|
||
* This PTE change does not require TLB invalidation.
|
||
*/
|
||
goto unchanged;
|
||
}
|
||
if ((origpte & PG_A) != 0)
|
||
pmap_invalidate_page(pmap, va);
|
||
} else
|
||
pte_store(pte, newpte);
|
||
|
||
unchanged:
|
||
|
||
/*
|
||
* If both the page table page and the reservation are fully
|
||
* populated, then attempt promotion.
|
||
*/
|
||
if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
|
||
pmap_ps_enabled(pmap) &&
|
||
(m->flags & PG_FICTITIOUS) == 0 &&
|
||
vm_reserv_level_iffullpop(m) == 0)
|
||
pmap_promote_pde(pmap, pde, va, &lock);
|
||
|
||
if (lock != NULL)
|
||
rw_wunlock(lock);
|
||
rw_runlock(&pvh_global_lock);
|
||
PMAP_UNLOCK(pmap);
|
||
}
|
||
|
||
/*
|
||
* Tries to create a 2MB page mapping. Returns TRUE if successful and FALSE
|
||
* otherwise. Fails if (1) a page table page cannot be allocated without
|
||
* blocking, (2) a mapping already exists at the specified virtual address, or
|
||
* (3) a pv entry cannot be allocated without reclaiming another pv entry.
|
||
*/
|
||
static boolean_t
|
||
pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
|
||
struct rwlock **lockp)
|
||
{
|
||
pd_entry_t *pde, newpde;
|
||
pt_entry_t PG_V;
|
||
vm_page_t mpde;
|
||
struct spglist free;
|
||
|
||
PG_V = pmap_valid_bit(pmap);
|
||
rw_assert(&pvh_global_lock, RA_LOCKED);
|
||
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
||
|
||
if ((mpde = pmap_allocpde(pmap, va, NULL)) == NULL) {
|
||
CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
|
||
" in pmap %p", va, pmap);
|
||
return (FALSE);
|
||
}
|
||
pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpde));
|
||
pde = &pde[pmap_pde_index(va)];
|
||
if ((*pde & PG_V) != 0) {
|
||
KASSERT(mpde->wire_count > 1,
|
||
("pmap_enter_pde: mpde's wire count is too low"));
|
||
mpde->wire_count--;
|
||
CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
|
||
" in pmap %p", va, pmap);
|
||
return (FALSE);
|
||
}
|
||
newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(pmap, m->md.pat_mode, 1) |
|
||
PG_PS | PG_V;
|
||
if ((m->oflags & VPO_UNMANAGED) == 0) {
|
||
newpde |= PG_MANAGED;
|
||
|
||
/*
|
||
* Abort this mapping if its PV entry could not be created.
|
||
*/
|
||
if (!pmap_pv_insert_pde(pmap, va, VM_PAGE_TO_PHYS(m),
|
||
lockp)) {
|
||
SLIST_INIT(&free);
|
||
if (pmap_unwire_ptp(pmap, va, mpde, &free)) {
|
||
pmap_invalidate_page(pmap, va);
|
||
pmap_free_zero_pages(&free);
|
||
}
|
||
CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
|
||
" in pmap %p", va, pmap);
|
||
return (FALSE);
|
||
}
|
||
}
|
||
if ((prot & VM_PROT_EXECUTE) == 0)
|
||
newpde |= pg_nx;
|
||
if (va < VM_MAXUSER_ADDRESS)
|
||
newpde |= PG_U;
|
||
|
||
/*
|
||
* Increment counters.
|
||
*/
|
||
pmap_resident_count_inc(pmap, NBPDR / PAGE_SIZE);
|
||
|
||
/*
|
||
* Map the superpage.
|
||
*/
|
||
pde_store(pde, newpde);
|
||
|
||
atomic_add_long(&pmap_pde_mappings, 1);
|
||
CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
|
||
" in pmap %p", va, pmap);
|
||
return (TRUE);
|
||
}
|
||
|
||
/*
|
||
* Maps a sequence of resident pages belonging to the same object.
|
||
* The sequence begins with the given page m_start. This page is
|
||
* mapped at the given virtual address start. Each subsequent page is
|
||
* mapped at a virtual address that is offset from start by the same
|
||
* amount as the page is offset from m_start within the object. The
|
||
* last page in the sequence is the page with the largest offset from
|
||
* m_start that can be mapped at a virtual address less than the given
|
||
* virtual address end. Not every virtual page between start and end
|
||
* is mapped; only those for which a resident page exists with the
|
||
* corresponding offset from m_start are mapped.
|
||
*/
|
||
void
|
||
pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
|
||
vm_page_t m_start, vm_prot_t prot)
|
||
{
|
||
struct rwlock *lock;
|
||
vm_offset_t va;
|
||
vm_page_t m, mpte;
|
||
vm_pindex_t diff, psize;
|
||
|
||
VM_OBJECT_ASSERT_LOCKED(m_start->object);
|
||
|
||
psize = atop(end - start);
|
||
mpte = NULL;
|
||
m = m_start;
|
||
lock = NULL;
|
||
rw_rlock(&pvh_global_lock);
|
||
PMAP_LOCK(pmap);
|
||
while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
|
||
va = start + ptoa(diff);
|
||
if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
|
||
(VM_PAGE_TO_PHYS(m) & PDRMASK) == 0 &&
|
||
pmap_ps_enabled(pmap) &&
|
||
vm_reserv_level_iffullpop(m) == 0 &&
|
||
pmap_enter_pde(pmap, va, m, prot, &lock))
|
||
m = &m[NBPDR / PAGE_SIZE - 1];
|
||
else
|
||
mpte = pmap_enter_quick_locked(pmap, va, m, prot,
|
||
mpte, &lock);
|
||
m = TAILQ_NEXT(m, listq);
|
||
}
|
||
if (lock != NULL)
|
||
rw_wunlock(lock);
|
||
rw_runlock(&pvh_global_lock);
|
||
PMAP_UNLOCK(pmap);
|
||
}
|
||
|
||
/*
|
||
* this code makes some *MAJOR* assumptions:
|
||
* 1. Current pmap & pmap exists.
|
||
* 2. Not wired.
|
||
* 3. Read access.
|
||
* 4. No page table pages.
|
||
* but is *MUCH* faster than pmap_enter...
|
||
*/
|
||
|
||
void
|
||
pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
|
||
{
|
||
struct rwlock *lock;
|
||
|
||
lock = NULL;
|
||
rw_rlock(&pvh_global_lock);
|
||
PMAP_LOCK(pmap);
|
||
(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock);
|
||
if (lock != NULL)
|
||
rw_wunlock(lock);
|
||
rw_runlock(&pvh_global_lock);
|
||
PMAP_UNLOCK(pmap);
|
||
}
|
||
|
||
static vm_page_t
|
||
pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
|
||
vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp)
|
||
{
|
||
struct spglist free;
|
||
pt_entry_t *pte, PG_V;
|
||
vm_paddr_t pa;
|
||
|
||
KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
|
||
(m->oflags & VPO_UNMANAGED) != 0,
|
||
("pmap_enter_quick_locked: managed mapping within the clean submap"));
|
||
PG_V = pmap_valid_bit(pmap);
|
||
rw_assert(&pvh_global_lock, RA_LOCKED);
|
||
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
||
|
||
/*
|
||
* In the case that a page table page is not
|
||
* resident, we are creating it here.
|
||
*/
|
||
if (va < VM_MAXUSER_ADDRESS) {
|
||
vm_pindex_t ptepindex;
|
||
pd_entry_t *ptepa;
|
||
|
||
/*
|
||
* Calculate pagetable page index
|
||
*/
|
||
ptepindex = pmap_pde_pindex(va);
|
||
if (mpte && (mpte->pindex == ptepindex)) {
|
||
mpte->wire_count++;
|
||
} else {
|
||
/*
|
||
* Get the page directory entry
|
||
*/
|
||
ptepa = pmap_pde(pmap, va);
|
||
|
||
/*
|
||
* If the page table page is mapped, we just increment
|
||
* the hold count, and activate it. Otherwise, we
|
||
* attempt to allocate a page table page. If this
|
||
* attempt fails, we don't retry. Instead, we give up.
|
||
*/
|
||
if (ptepa && (*ptepa & PG_V) != 0) {
|
||
if (*ptepa & PG_PS)
|
||
return (NULL);
|
||
mpte = PHYS_TO_VM_PAGE(*ptepa & PG_FRAME);
|
||
mpte->wire_count++;
|
||
} else {
|
||
/*
|
||
* Pass NULL instead of the PV list lock
|
||
* pointer, because we don't intend to sleep.
|
||
*/
|
||
mpte = _pmap_allocpte(pmap, ptepindex, NULL);
|
||
if (mpte == NULL)
|
||
return (mpte);
|
||
}
|
||
}
|
||
pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
|
||
pte = &pte[pmap_pte_index(va)];
|
||
} else {
|
||
mpte = NULL;
|
||
pte = vtopte(va);
|
||
}
|
||
if (*pte) {
|
||
if (mpte != NULL) {
|
||
mpte->wire_count--;
|
||
mpte = NULL;
|
||
}
|
||
return (mpte);
|
||
}
|
||
|
||
/*
|
||
* Enter on the PV list if part of our managed memory.
|
||
*/
|
||
if ((m->oflags & VPO_UNMANAGED) == 0 &&
|
||
!pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
|
||
if (mpte != NULL) {
|
||
SLIST_INIT(&free);
|
||
if (pmap_unwire_ptp(pmap, va, mpte, &free)) {
|
||
pmap_invalidate_page(pmap, va);
|
||
pmap_free_zero_pages(&free);
|
||
}
|
||
mpte = NULL;
|
||
}
|
||
return (mpte);
|
||
}
|
||
|
||
/*
|
||
* Increment counters
|
||
*/
|
||
pmap_resident_count_inc(pmap, 1);
|
||
|
||
pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(pmap, m->md.pat_mode, 0);
|
||
if ((prot & VM_PROT_EXECUTE) == 0)
|
||
pa |= pg_nx;
|
||
|
||
/*
|
||
* Now validate mapping with RO protection
|
||
*/
|
||
if ((m->oflags & VPO_UNMANAGED) != 0)
|
||
pte_store(pte, pa | PG_V | PG_U);
|
||
else
|
||
pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
|
||
return (mpte);
|
||
}
|
||
|
||
/*
|
||
* Make a temporary mapping for a physical address. This is only intended
|
||
* to be used for panic dumps.
|
||
*/
|
||
void *
|
||
pmap_kenter_temporary(vm_paddr_t pa, int i)
|
||
{
|
||
vm_offset_t va;
|
||
|
||
va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
|
||
pmap_kenter(va, pa);
|
||
invlpg(va);
|
||
return ((void *)crashdumpmap);
|
||
}
|
||
|
||
/*
|
||
* This code maps large physical mmap regions into the
|
||
* processor address space. Note that some shortcuts
|
||
* are taken, but the code works.
|
||
*/
|
||
void
|
||
pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
|
||
vm_pindex_t pindex, vm_size_t size)
|
||
{
|
||
pd_entry_t *pde;
|
||
pt_entry_t PG_A, PG_M, PG_RW, PG_V;
|
||
vm_paddr_t pa, ptepa;
|
||
vm_page_t p, pdpg;
|
||
int pat_mode;
|
||
|
||
PG_A = pmap_accessed_bit(pmap);
|
||
PG_M = pmap_modified_bit(pmap);
|
||
PG_V = pmap_valid_bit(pmap);
|
||
PG_RW = pmap_rw_bit(pmap);
|
||
|
||
VM_OBJECT_ASSERT_WLOCKED(object);
|
||
KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
|
||
("pmap_object_init_pt: non-device object"));
|
||
if ((addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
|
||
if (!pmap_ps_enabled(pmap))
|
||
return;
|
||
if (!vm_object_populate(object, pindex, pindex + atop(size)))
|
||
return;
|
||
p = vm_page_lookup(object, pindex);
|
||
KASSERT(p->valid == VM_PAGE_BITS_ALL,
|
||
("pmap_object_init_pt: invalid page %p", p));
|
||
pat_mode = p->md.pat_mode;
|
||
|
||
/*
|
||
* Abort the mapping if the first page is not physically
|
||
* aligned to a 2MB page boundary.
|
||
*/
|
||
ptepa = VM_PAGE_TO_PHYS(p);
|
||
if (ptepa & (NBPDR - 1))
|
||
return;
|
||
|
||
/*
|
||
* Skip the first page. Abort the mapping if the rest of
|
||
* the pages are not physically contiguous or have differing
|
||
* memory attributes.
|
||
*/
|
||
p = TAILQ_NEXT(p, listq);
|
||
for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
|
||
pa += PAGE_SIZE) {
|
||
KASSERT(p->valid == VM_PAGE_BITS_ALL,
|
||
("pmap_object_init_pt: invalid page %p", p));
|
||
if (pa != VM_PAGE_TO_PHYS(p) ||
|
||
pat_mode != p->md.pat_mode)
|
||
return;
|
||
p = TAILQ_NEXT(p, listq);
|
||
}
|
||
|
||
/*
|
||
* Map using 2MB pages. Since "ptepa" is 2M aligned and
|
||
* "size" is a multiple of 2M, adding the PAT setting to "pa"
|
||
* will not affect the termination of this loop.
|
||
*/
|
||
PMAP_LOCK(pmap);
|
||
for (pa = ptepa | pmap_cache_bits(pmap, pat_mode, 1);
|
||
pa < ptepa + size; pa += NBPDR) {
|
||
pdpg = pmap_allocpde(pmap, addr, NULL);
|
||
if (pdpg == NULL) {
|
||
/*
|
||
* The creation of mappings below is only an
|
||
* optimization. If a page directory page
|
||
* cannot be allocated without blocking,
|
||
* continue on to the next mapping rather than
|
||
* blocking.
|
||
*/
|
||
addr += NBPDR;
|
||
continue;
|
||
}
|
||
pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
|
||
pde = &pde[pmap_pde_index(addr)];
|
||
if ((*pde & PG_V) == 0) {
|
||
pde_store(pde, pa | PG_PS | PG_M | PG_A |
|
||
PG_U | PG_RW | PG_V);
|
||
pmap_resident_count_inc(pmap, NBPDR / PAGE_SIZE);
|
||
atomic_add_long(&pmap_pde_mappings, 1);
|
||
} else {
|
||
/* Continue on if the PDE is already valid. */
|
||
pdpg->wire_count--;
|
||
KASSERT(pdpg->wire_count > 0,
|
||
("pmap_object_init_pt: missing reference "
|
||
"to page directory page, va: 0x%lx", addr));
|
||
}
|
||
addr += NBPDR;
|
||
}
|
||
PMAP_UNLOCK(pmap);
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Routine: pmap_change_wiring
|
||
* Function: Change the wiring attribute for a map/virtual-address
|
||
* pair.
|
||
* In/out conditions:
|
||
* The mapping must already exist in the pmap.
|
||
*/
|
||
void
|
||
pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
|
||
{
|
||
pd_entry_t *pde;
|
||
pt_entry_t *pte;
|
||
boolean_t pv_lists_locked;
|
||
|
||
pv_lists_locked = FALSE;
|
||
|
||
/*
|
||
* Wiring is not a hardware characteristic so there is no need to
|
||
* invalidate TLB.
|
||
*/
|
||
retry:
|
||
PMAP_LOCK(pmap);
|
||
pde = pmap_pde(pmap, va);
|
||
if ((*pde & PG_PS) != 0) {
|
||
if (!wired != ((*pde & PG_W) == 0)) {
|
||
if (!pv_lists_locked) {
|
||
pv_lists_locked = TRUE;
|
||
if (!rw_try_rlock(&pvh_global_lock)) {
|
||
PMAP_UNLOCK(pmap);
|
||
rw_rlock(&pvh_global_lock);
|
||
goto retry;
|
||
}
|
||
}
|
||
if (!pmap_demote_pde(pmap, pde, va))
|
||
panic("pmap_change_wiring: demotion failed");
|
||
} else
|
||
goto out;
|
||
}
|
||
pte = pmap_pde_to_pte(pde, va);
|
||
if (wired && (*pte & PG_W) == 0) {
|
||
pmap->pm_stats.wired_count++;
|
||
atomic_set_long(pte, PG_W);
|
||
} else if (!wired && (*pte & PG_W) != 0) {
|
||
pmap->pm_stats.wired_count--;
|
||
atomic_clear_long(pte, PG_W);
|
||
}
|
||
out:
|
||
if (pv_lists_locked)
|
||
rw_runlock(&pvh_global_lock);
|
||
PMAP_UNLOCK(pmap);
|
||
}
|
||
|
||
/*
|
||
* Copy the range specified by src_addr/len
|
||
* from the source map to the range dst_addr/len
|
||
* in the destination map.
|
||
*
|
||
* This routine is only advisory and need not do anything.
|
||
*/
|
||
|
||
void
|
||
pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
|
||
vm_offset_t src_addr)
|
||
{
|
||
struct rwlock *lock;
|
||
struct spglist free;
|
||
vm_offset_t addr;
|
||
vm_offset_t end_addr = src_addr + len;
|
||
vm_offset_t va_next;
|
||
pt_entry_t PG_A, PG_M, PG_V;
|
||
|
||
if (dst_addr != src_addr)
|
||
return;
|
||
|
||
if (dst_pmap->pm_type != src_pmap->pm_type)
|
||
return;
|
||
|
||
/*
|
||
* EPT page table entries that require emulation of A/D bits are
|
||
* sensitive to clearing the PG_A bit (aka EPT_PG_READ). Although
|
||
* we clear PG_M (aka EPT_PG_WRITE) concomitantly, the PG_U bit
|
||
* (aka EPT_PG_EXECUTE) could still be set. Since some EPT
|
||
* implementations flag an EPT misconfiguration for exec-only
|
||
* mappings we skip this function entirely for emulated pmaps.
|
||
*/
|
||
if (pmap_emulate_ad_bits(dst_pmap))
|
||
return;
|
||
|
||
lock = NULL;
|
||
rw_rlock(&pvh_global_lock);
|
||
if (dst_pmap < src_pmap) {
|
||
PMAP_LOCK(dst_pmap);
|
||
PMAP_LOCK(src_pmap);
|
||
} else {
|
||
PMAP_LOCK(src_pmap);
|
||
PMAP_LOCK(dst_pmap);
|
||
}
|
||
|
||
PG_A = pmap_accessed_bit(dst_pmap);
|
||
PG_M = pmap_modified_bit(dst_pmap);
|
||
PG_V = pmap_valid_bit(dst_pmap);
|
||
|
||
for (addr = src_addr; addr < end_addr; addr = va_next) {
|
||
pt_entry_t *src_pte, *dst_pte;
|
||
vm_page_t dstmpde, dstmpte, srcmpte;
|
||
pml4_entry_t *pml4e;
|
||
pdp_entry_t *pdpe;
|
||
pd_entry_t srcptepaddr, *pde;
|
||
|
||
KASSERT(addr < UPT_MIN_ADDRESS,
|
||
("pmap_copy: invalid to pmap_copy page tables"));
|
||
|
||
pml4e = pmap_pml4e(src_pmap, addr);
|
||
if ((*pml4e & PG_V) == 0) {
|
||
va_next = (addr + NBPML4) & ~PML4MASK;
|
||
if (va_next < addr)
|
||
va_next = end_addr;
|
||
continue;
|
||
}
|
||
|
||
pdpe = pmap_pml4e_to_pdpe(pml4e, addr);
|
||
if ((*pdpe & PG_V) == 0) {
|
||
va_next = (addr + NBPDP) & ~PDPMASK;
|
||
if (va_next < addr)
|
||
va_next = end_addr;
|
||
continue;
|
||
}
|
||
|
||
va_next = (addr + NBPDR) & ~PDRMASK;
|
||
if (va_next < addr)
|
||
va_next = end_addr;
|
||
|
||
pde = pmap_pdpe_to_pde(pdpe, addr);
|
||
srcptepaddr = *pde;
|
||
if (srcptepaddr == 0)
|
||
continue;
|
||
|
||
if (srcptepaddr & PG_PS) {
|
||
if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
|
||
continue;
|
||
dstmpde = pmap_allocpde(dst_pmap, addr, NULL);
|
||
if (dstmpde == NULL)
|
||
break;
|
||
pde = (pd_entry_t *)
|
||
PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpde));
|
||
pde = &pde[pmap_pde_index(addr)];
|
||
if (*pde == 0 && ((srcptepaddr & PG_MANAGED) == 0 ||
|
||
pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr &
|
||
PG_PS_FRAME, &lock))) {
|
||
*pde = srcptepaddr & ~PG_W;
|
||
pmap_resident_count_inc(dst_pmap, NBPDR / PAGE_SIZE);
|
||
} else
|
||
dstmpde->wire_count--;
|
||
continue;
|
||
}
|
||
|
||
srcptepaddr &= PG_FRAME;
|
||
srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
|
||
KASSERT(srcmpte->wire_count > 0,
|
||
("pmap_copy: source page table page is unused"));
|
||
|
||
if (va_next > end_addr)
|
||
va_next = end_addr;
|
||
|
||
src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
|
||
src_pte = &src_pte[pmap_pte_index(addr)];
|
||
dstmpte = NULL;
|
||
while (addr < va_next) {
|
||
pt_entry_t ptetemp;
|
||
ptetemp = *src_pte;
|
||
/*
|
||
* we only virtual copy managed pages
|
||
*/
|
||
if ((ptetemp & PG_MANAGED) != 0) {
|
||
if (dstmpte != NULL &&
|
||
dstmpte->pindex == pmap_pde_pindex(addr))
|
||
dstmpte->wire_count++;
|
||
else if ((dstmpte = pmap_allocpte(dst_pmap,
|
||
addr, NULL)) == NULL)
|
||
goto out;
|
||
dst_pte = (pt_entry_t *)
|
||
PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
|
||
dst_pte = &dst_pte[pmap_pte_index(addr)];
|
||
if (*dst_pte == 0 &&
|
||
pmap_try_insert_pv_entry(dst_pmap, addr,
|
||
PHYS_TO_VM_PAGE(ptetemp & PG_FRAME),
|
||
&lock)) {
|
||
/*
|
||
* Clear the wired, modified, and
|
||
* accessed (referenced) bits
|
||
* during the copy.
|
||
*/
|
||
*dst_pte = ptetemp & ~(PG_W | PG_M |
|
||
PG_A);
|
||
pmap_resident_count_inc(dst_pmap, 1);
|
||
} else {
|
||
SLIST_INIT(&free);
|
||
if (pmap_unwire_ptp(dst_pmap, addr,
|
||
dstmpte, &free)) {
|
||
pmap_invalidate_page(dst_pmap,
|
||
addr);
|
||
pmap_free_zero_pages(&free);
|
||
}
|
||
goto out;
|
||
}
|
||
if (dstmpte->wire_count >= srcmpte->wire_count)
|
||
break;
|
||
}
|
||
addr += PAGE_SIZE;
|
||
src_pte++;
|
||
}
|
||
}
|
||
out:
|
||
if (lock != NULL)
|
||
rw_wunlock(lock);
|
||
rw_runlock(&pvh_global_lock);
|
||
PMAP_UNLOCK(src_pmap);
|
||
PMAP_UNLOCK(dst_pmap);
|
||
}
|
||
|
||
/*
|
||
* pmap_zero_page zeros the specified hardware page by mapping
|
||
* the page into KVM and using bzero to clear its contents.
|
||
*/
|
||
void
|
||
pmap_zero_page(vm_page_t m)
|
||
{
|
||
vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
|
||
|
||
pagezero((void *)va);
|
||
}
|
||
|
||
/*
|
||
* pmap_zero_page_area zeros the specified hardware page by mapping
|
||
* the page into KVM and using bzero to clear its contents.
|
||
*
|
||
* off and size may not cover an area beyond a single hardware page.
|
||
*/
|
||
void
|
||
pmap_zero_page_area(vm_page_t m, int off, int size)
|
||
{
|
||
vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
|
||
|
||
if (off == 0 && size == PAGE_SIZE)
|
||
pagezero((void *)va);
|
||
else
|
||
bzero((char *)va + off, size);
|
||
}
|
||
|
||
/*
|
||
* pmap_zero_page_idle zeros the specified hardware page by mapping
|
||
* the page into KVM and using bzero to clear its contents. This
|
||
* is intended to be called from the vm_pagezero process only and
|
||
* outside of Giant.
|
||
*/
|
||
void
|
||
pmap_zero_page_idle(vm_page_t m)
|
||
{
|
||
vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
|
||
|
||
pagezero((void *)va);
|
||
}
|
||
|
||
/*
|
||
* pmap_copy_page copies the specified (machine independent)
|
||
* page by mapping the page into virtual memory and using
|
||
* bcopy to copy the page, one machine dependent page at a
|
||
* time.
|
||
*/
|
||
void
|
||
pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
|
||
{
|
||
vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
|
||
vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
|
||
|
||
pagecopy((void *)src, (void *)dst);
|
||
}
|
||
|
||
int unmapped_buf_allowed = 1;
|
||
|
||
void
|
||
pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
|
||
vm_offset_t b_offset, int xfersize)
|
||
{
|
||
void *a_cp, *b_cp;
|
||
vm_offset_t a_pg_offset, b_pg_offset;
|
||
int cnt;
|
||
|
||
while (xfersize > 0) {
|
||
a_pg_offset = a_offset & PAGE_MASK;
|
||
cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
|
||
a_cp = (char *)PHYS_TO_DMAP(ma[a_offset >> PAGE_SHIFT]->
|
||
phys_addr) + a_pg_offset;
|
||
b_pg_offset = b_offset & PAGE_MASK;
|
||
cnt = min(cnt, PAGE_SIZE - b_pg_offset);
|
||
b_cp = (char *)PHYS_TO_DMAP(mb[b_offset >> PAGE_SHIFT]->
|
||
phys_addr) + b_pg_offset;
|
||
bcopy(a_cp, b_cp, cnt);
|
||
a_offset += cnt;
|
||
b_offset += cnt;
|
||
xfersize -= cnt;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Returns true if the pmap's pv is one of the first
|
||
* 16 pvs linked to from this page. This count may
|
||
* be changed upwards or downwards in the future; it
|
||
* is only necessary that true be returned for a small
|
||
* subset of pmaps for proper page aging.
|
||
*/
|
||
boolean_t
|
||
pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
|
||
{
|
||
struct md_page *pvh;
|
||
struct rwlock *lock;
|
||
pv_entry_t pv;
|
||
int loops = 0;
|
||
boolean_t rv;
|
||
|
||
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
|
||
("pmap_page_exists_quick: page %p is not managed", m));
|
||
rv = FALSE;
|
||
rw_rlock(&pvh_global_lock);
|
||
lock = VM_PAGE_TO_PV_LIST_LOCK(m);
|
||
rw_rlock(lock);
|
||
TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
|
||
if (PV_PMAP(pv) == pmap) {
|
||
rv = TRUE;
|
||
break;
|
||
}
|
||
loops++;
|
||
if (loops >= 16)
|
||
break;
|
||
}
|
||
if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
|
||
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
|
||
TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
|
||
if (PV_PMAP(pv) == pmap) {
|
||
rv = TRUE;
|
||
break;
|
||
}
|
||
loops++;
|
||
if (loops >= 16)
|
||
break;
|
||
}
|
||
}
|
||
rw_runlock(lock);
|
||
rw_runlock(&pvh_global_lock);
|
||
return (rv);
|
||
}
|
||
|
||
/*
|
||
* pmap_page_wired_mappings:
|
||
*
|
||
* Return the number of managed mappings to the given physical page
|
||
* that are wired.
|
||
*/
|
||
int
|
||
pmap_page_wired_mappings(vm_page_t m)
|
||
{
|
||
struct rwlock *lock;
|
||
struct md_page *pvh;
|
||
pmap_t pmap;
|
||
pt_entry_t *pte;
|
||
pv_entry_t pv;
|
||
int count, md_gen, pvh_gen;
|
||
|
||
if ((m->oflags & VPO_UNMANAGED) != 0)
|
||
return (0);
|
||
rw_rlock(&pvh_global_lock);
|
||
lock = VM_PAGE_TO_PV_LIST_LOCK(m);
|
||
rw_rlock(lock);
|
||
restart:
|
||
count = 0;
|
||
TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
|
||
pmap = PV_PMAP(pv);
|
||
if (!PMAP_TRYLOCK(pmap)) {
|
||
md_gen = m->md.pv_gen;
|
||
rw_runlock(lock);
|
||
PMAP_LOCK(pmap);
|
||
rw_rlock(lock);
|
||
if (md_gen != m->md.pv_gen) {
|
||
PMAP_UNLOCK(pmap);
|
||
goto restart;
|
||
}
|
||
}
|
||
pte = pmap_pte(pmap, pv->pv_va);
|
||
if ((*pte & PG_W) != 0)
|
||
count++;
|
||
PMAP_UNLOCK(pmap);
|
||
}
|
||
if ((m->flags & PG_FICTITIOUS) == 0) {
|
||
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
|
||
TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
|
||
pmap = PV_PMAP(pv);
|
||
if (!PMAP_TRYLOCK(pmap)) {
|
||
md_gen = m->md.pv_gen;
|
||
pvh_gen = pvh->pv_gen;
|
||
rw_runlock(lock);
|
||
PMAP_LOCK(pmap);
|
||
rw_rlock(lock);
|
||
if (md_gen != m->md.pv_gen ||
|
||
pvh_gen != pvh->pv_gen) {
|
||
PMAP_UNLOCK(pmap);
|
||
goto restart;
|
||
}
|
||
}
|
||
pte = pmap_pde(pmap, pv->pv_va);
|
||
if ((*pte & PG_W) != 0)
|
||
count++;
|
||
PMAP_UNLOCK(pmap);
|
||
}
|
||
}
|
||
rw_runlock(lock);
|
||
rw_runlock(&pvh_global_lock);
|
||
return (count);
|
||
}
|
||
|
||
/*
|
||
* Returns TRUE if the given page is mapped individually or as part of
|
||
* a 2mpage. Otherwise, returns FALSE.
|
||
*/
|
||
boolean_t
|
||
pmap_page_is_mapped(vm_page_t m)
|
||
{
|
||
struct rwlock *lock;
|
||
boolean_t rv;
|
||
|
||
if ((m->oflags & VPO_UNMANAGED) != 0)
|
||
return (FALSE);
|
||
rw_rlock(&pvh_global_lock);
|
||
lock = VM_PAGE_TO_PV_LIST_LOCK(m);
|
||
rw_rlock(lock);
|
||
rv = !TAILQ_EMPTY(&m->md.pv_list) ||
|
||
((m->flags & PG_FICTITIOUS) == 0 &&
|
||
!TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
|
||
rw_runlock(lock);
|
||
rw_runlock(&pvh_global_lock);
|
||
return (rv);
|
||
}
|
||
|
||
/*
|
||
* Destroy all managed, non-wired mappings in the given user-space
|
||
* pmap. This pmap cannot be active on any processor besides the
|
||
* caller.
|
||
*
|
||
* This function cannot be applied to the kernel pmap. Moreover, it
|
||
* is not intended for general use. It is only to be used during
|
||
* process termination. Consequently, it can be implemented in ways
|
||
* that make it faster than pmap_remove(). First, it can more quickly
|
||
* destroy mappings by iterating over the pmap's collection of PV
|
||
* entries, rather than searching the page table. Second, it doesn't
|
||
* have to test and clear the page table entries atomically, because
|
||
* no processor is currently accessing the user address space. In
|
||
* particular, a page table entry's dirty bit won't change state once
|
||
* this function starts.
|
||
*/
|
||
void
|
||
pmap_remove_pages(pmap_t pmap)
|
||
{
|
||
pd_entry_t ptepde;
|
||
pt_entry_t *pte, tpte;
|
||
pt_entry_t PG_M, PG_RW, PG_V;
|
||
struct spglist free;
|
||
vm_page_t m, mpte, mt;
|
||
pv_entry_t pv;
|
||
struct md_page *pvh;
|
||
struct pv_chunk *pc, *npc;
|
||
struct rwlock *lock;
|
||
int64_t bit;
|
||
uint64_t inuse, bitmask;
|
||
int allfree, field, freed, idx;
|
||
boolean_t superpage;
|
||
vm_paddr_t pa;
|
||
|
||
/*
|
||
* Assert that the given pmap is only active on the current
|
||
* CPU. Unfortunately, we cannot block another CPU from
|
||
* activating the pmap while this function is executing.
|
||
*/
|
||
KASSERT(pmap == PCPU_GET(curpmap), ("non-current pmap %p", pmap));
|
||
#ifdef INVARIANTS
|
||
{
|
||
cpuset_t other_cpus;
|
||
|
||
other_cpus = all_cpus;
|
||
critical_enter();
|
||
CPU_CLR(PCPU_GET(cpuid), &other_cpus);
|
||
CPU_AND(&other_cpus, &pmap->pm_active);
|
||
critical_exit();
|
||
KASSERT(CPU_EMPTY(&other_cpus), ("pmap active %p", pmap));
|
||
}
|
||
#endif
|
||
|
||
lock = NULL;
|
||
PG_M = pmap_modified_bit(pmap);
|
||
PG_V = pmap_valid_bit(pmap);
|
||
PG_RW = pmap_rw_bit(pmap);
|
||
|
||
SLIST_INIT(&free);
|
||
rw_rlock(&pvh_global_lock);
|
||
PMAP_LOCK(pmap);
|
||
TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
|
||
allfree = 1;
|
||
freed = 0;
|
||
for (field = 0; field < _NPCM; field++) {
|
||
inuse = ~pc->pc_map[field] & pc_freemask[field];
|
||
while (inuse != 0) {
|
||
bit = bsfq(inuse);
|
||
bitmask = 1UL << bit;
|
||
idx = field * 64 + bit;
|
||
pv = &pc->pc_pventry[idx];
|
||
inuse &= ~bitmask;
|
||
|
||
pte = pmap_pdpe(pmap, pv->pv_va);
|
||
ptepde = *pte;
|
||
pte = pmap_pdpe_to_pde(pte, pv->pv_va);
|
||
tpte = *pte;
|
||
if ((tpte & (PG_PS | PG_V)) == PG_V) {
|
||
superpage = FALSE;
|
||
ptepde = tpte;
|
||
pte = (pt_entry_t *)PHYS_TO_DMAP(tpte &
|
||
PG_FRAME);
|
||
pte = &pte[pmap_pte_index(pv->pv_va)];
|
||
tpte = *pte;
|
||
} else {
|
||
/*
|
||
* Keep track whether 'tpte' is a
|
||
* superpage explicitly instead of
|
||
* relying on PG_PS being set.
|
||
*
|
||
* This is because PG_PS is numerically
|
||
* identical to PG_PTE_PAT and thus a
|
||
* regular page could be mistaken for
|
||
* a superpage.
|
||
*/
|
||
superpage = TRUE;
|
||
}
|
||
|
||
if ((tpte & PG_V) == 0) {
|
||
panic("bad pte va %lx pte %lx",
|
||
pv->pv_va, tpte);
|
||
}
|
||
|
||
/*
|
||
* We cannot remove wired pages from a process' mapping at this time
|
||
*/
|
||
if (tpte & PG_W) {
|
||
allfree = 0;
|
||
continue;
|
||
}
|
||
|
||
if (superpage)
|
||
pa = tpte & PG_PS_FRAME;
|
||
else
|
||
pa = tpte & PG_FRAME;
|
||
|
||
m = PHYS_TO_VM_PAGE(pa);
|
||
KASSERT(m->phys_addr == pa,
|
||
("vm_page_t %p phys_addr mismatch %016jx %016jx",
|
||
m, (uintmax_t)m->phys_addr,
|
||
(uintmax_t)tpte));
|
||
|
||
KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
|
||
m < &vm_page_array[vm_page_array_size],
|
||
("pmap_remove_pages: bad tpte %#jx",
|
||
(uintmax_t)tpte));
|
||
|
||
pte_clear(pte);
|
||
|
||
/*
|
||
* Update the vm_page_t clean/reference bits.
|
||
*/
|
||
if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
|
||
if (superpage) {
|
||
for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
|
||
vm_page_dirty(mt);
|
||
} else
|
||
vm_page_dirty(m);
|
||
}
|
||
|
||
CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
|
||
|
||
/* Mark free */
|
||
pc->pc_map[field] |= bitmask;
|
||
if (superpage) {
|
||
pmap_resident_count_dec(pmap, NBPDR / PAGE_SIZE);
|
||
pvh = pa_to_pvh(tpte & PG_PS_FRAME);
|
||
TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
|
||
pvh->pv_gen++;
|
||
if (TAILQ_EMPTY(&pvh->pv_list)) {
|
||
for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
|
||
if ((mt->aflags & PGA_WRITEABLE) != 0 &&
|
||
TAILQ_EMPTY(&mt->md.pv_list))
|
||
vm_page_aflag_clear(mt, PGA_WRITEABLE);
|
||
}
|
||
mpte = pmap_lookup_pt_page(pmap, pv->pv_va);
|
||
if (mpte != NULL) {
|
||
pmap_remove_pt_page(pmap, mpte);
|
||
pmap_resident_count_dec(pmap, 1);
|
||
KASSERT(mpte->wire_count == NPTEPG,
|
||
("pmap_remove_pages: pte page wire count error"));
|
||
mpte->wire_count = 0;
|
||
pmap_add_delayed_free_list(mpte, &free, FALSE);
|
||
atomic_subtract_int(&vm_cnt.v_wire_count, 1);
|
||
}
|
||
} else {
|
||
pmap_resident_count_dec(pmap, 1);
|
||
TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
|
||
m->md.pv_gen++;
|
||
if ((m->aflags & PGA_WRITEABLE) != 0 &&
|
||
TAILQ_EMPTY(&m->md.pv_list) &&
|
||
(m->flags & PG_FICTITIOUS) == 0) {
|
||
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
|
||
if (TAILQ_EMPTY(&pvh->pv_list))
|
||
vm_page_aflag_clear(m, PGA_WRITEABLE);
|
||
}
|
||
}
|
||
pmap_unuse_pt(pmap, pv->pv_va, ptepde, &free);
|
||
freed++;
|
||
}
|
||
}
|
||
PV_STAT(atomic_add_long(&pv_entry_frees, freed));
|
||
PV_STAT(atomic_add_int(&pv_entry_spare, freed));
|
||
PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
|
||
if (allfree) {
|
||
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
|
||
free_pv_chunk(pc);
|
||
}
|
||
}
|
||
if (lock != NULL)
|
||
rw_wunlock(lock);
|
||
pmap_invalidate_all(pmap);
|
||
rw_runlock(&pvh_global_lock);
|
||
PMAP_UNLOCK(pmap);
|
||
pmap_free_zero_pages(&free);
|
||
}
|
||
|
||
static boolean_t
|
||
pmap_page_test_mappings(vm_page_t m, boolean_t accessed, boolean_t modified)
|
||
{
|
||
struct rwlock *lock;
|
||
pv_entry_t pv;
|
||
struct md_page *pvh;
|
||
pt_entry_t *pte, mask;
|
||
pt_entry_t PG_A, PG_M, PG_RW, PG_V;
|
||
pmap_t pmap;
|
||
int md_gen, pvh_gen;
|
||
boolean_t rv;
|
||
|
||
rv = FALSE;
|
||
rw_rlock(&pvh_global_lock);
|
||
lock = VM_PAGE_TO_PV_LIST_LOCK(m);
|
||
rw_rlock(lock);
|
||
restart:
|
||
TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
|
||
pmap = PV_PMAP(pv);
|
||
if (!PMAP_TRYLOCK(pmap)) {
|
||
md_gen = m->md.pv_gen;
|
||
rw_runlock(lock);
|
||
PMAP_LOCK(pmap);
|
||
rw_rlock(lock);
|
||
if (md_gen != m->md.pv_gen) {
|
||
PMAP_UNLOCK(pmap);
|
||
goto restart;
|
||
}
|
||
}
|
||
pte = pmap_pte(pmap, pv->pv_va);
|
||
mask = 0;
|
||
if (modified) {
|
||
PG_M = pmap_modified_bit(pmap);
|
||
PG_RW = pmap_rw_bit(pmap);
|
||
mask |= PG_RW | PG_M;
|
||
}
|
||
if (accessed) {
|
||
PG_A = pmap_accessed_bit(pmap);
|
||
PG_V = pmap_valid_bit(pmap);
|
||
mask |= PG_V | PG_A;
|
||
}
|
||
rv = (*pte & mask) == mask;
|
||
PMAP_UNLOCK(pmap);
|
||
if (rv)
|
||
goto out;
|
||
}
|
||
if ((m->flags & PG_FICTITIOUS) == 0) {
|
||
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
|
||
TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
|
||
pmap = PV_PMAP(pv);
|
||
if (!PMAP_TRYLOCK(pmap)) {
|
||
md_gen = m->md.pv_gen;
|
||
pvh_gen = pvh->pv_gen;
|
||
rw_runlock(lock);
|
||
PMAP_LOCK(pmap);
|
||
rw_rlock(lock);
|
||
if (md_gen != m->md.pv_gen ||
|
||
pvh_gen != pvh->pv_gen) {
|
||
PMAP_UNLOCK(pmap);
|
||
goto restart;
|
||
}
|
||
}
|
||
pte = pmap_pde(pmap, pv->pv_va);
|
||
mask = 0;
|
||
if (modified) {
|
||
PG_M = pmap_modified_bit(pmap);
|
||
PG_RW = pmap_rw_bit(pmap);
|
||
mask |= PG_RW | PG_M;
|
||
}
|
||
if (accessed) {
|
||
PG_A = pmap_accessed_bit(pmap);
|
||
PG_V = pmap_valid_bit(pmap);
|
||
mask |= PG_V | PG_A;
|
||
}
|
||
rv = (*pte & mask) == mask;
|
||
PMAP_UNLOCK(pmap);
|
||
if (rv)
|
||
goto out;
|
||
}
|
||
}
|
||
out:
|
||
rw_runlock(lock);
|
||
rw_runlock(&pvh_global_lock);
|
||
return (rv);
|
||
}
|
||
|
||
/*
|
||
* pmap_is_modified:
|
||
*
|
||
* Return whether or not the specified physical page was modified
|
||
* in any physical maps.
|
||
*/
|
||
boolean_t
|
||
pmap_is_modified(vm_page_t m)
|
||
{
|
||
|
||
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
|
||
("pmap_is_modified: page %p is not managed", m));
|
||
|
||
/*
|
||
* If the page is not exclusive busied, then PGA_WRITEABLE cannot be
|
||
* concurrently set while the object is locked. Thus, if PGA_WRITEABLE
|
||
* is clear, no PTEs can have PG_M set.
|
||
*/
|
||
VM_OBJECT_ASSERT_WLOCKED(m->object);
|
||
if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
|
||
return (FALSE);
|
||
return (pmap_page_test_mappings(m, FALSE, TRUE));
|
||
}
|
||
|
||
/*
|
||
* pmap_is_prefaultable:
|
||
*
|
||
* Return whether or not the specified virtual address is eligible
|
||
* for prefault.
|
||
*/
|
||
boolean_t
|
||
pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
|
||
{
|
||
pd_entry_t *pde;
|
||
pt_entry_t *pte, PG_V;
|
||
boolean_t rv;
|
||
|
||
PG_V = pmap_valid_bit(pmap);
|
||
rv = FALSE;
|
||
PMAP_LOCK(pmap);
|
||
pde = pmap_pde(pmap, addr);
|
||
if (pde != NULL && (*pde & (PG_PS | PG_V)) == PG_V) {
|
||
pte = pmap_pde_to_pte(pde, addr);
|
||
rv = (*pte & PG_V) == 0;
|
||
}
|
||
PMAP_UNLOCK(pmap);
|
||
return (rv);
|
||
}
|
||
|
||
/*
|
||
* pmap_is_referenced:
|
||
*
|
||
* Return whether or not the specified physical page was referenced
|
||
* in any physical maps.
|
||
*/
|
||
boolean_t
|
||
pmap_is_referenced(vm_page_t m)
|
||
{
|
||
|
||
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
|
||
("pmap_is_referenced: page %p is not managed", m));
|
||
return (pmap_page_test_mappings(m, TRUE, FALSE));
|
||
}
|
||
|
||
/*
|
||
* Clear the write and modified bits in each of the given page's mappings.
|
||
*/
|
||
void
|
||
pmap_remove_write(vm_page_t m)
|
||
{
|
||
struct md_page *pvh;
|
||
pmap_t pmap;
|
||
struct rwlock *lock;
|
||
pv_entry_t next_pv, pv;
|
||
pd_entry_t *pde;
|
||
pt_entry_t oldpte, *pte, PG_M, PG_RW;
|
||
vm_offset_t va;
|
||
int pvh_gen, md_gen;
|
||
|
||
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
|
||
("pmap_remove_write: page %p is not managed", m));
|
||
|
||
/*
|
||
* If the page is not exclusive busied, then PGA_WRITEABLE cannot be
|
||
* set by another thread while the object is locked. Thus,
|
||
* if PGA_WRITEABLE is clear, no page table entries need updating.
|
||
*/
|
||
VM_OBJECT_ASSERT_WLOCKED(m->object);
|
||
if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
|
||
return;
|
||
rw_rlock(&pvh_global_lock);
|
||
lock = VM_PAGE_TO_PV_LIST_LOCK(m);
|
||
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
|
||
retry_pv_loop:
|
||
rw_wlock(lock);
|
||
if ((m->flags & PG_FICTITIOUS) != 0)
|
||
goto small_mappings;
|
||
TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
|
||
pmap = PV_PMAP(pv);
|
||
if (!PMAP_TRYLOCK(pmap)) {
|
||
pvh_gen = pvh->pv_gen;
|
||
rw_wunlock(lock);
|
||
PMAP_LOCK(pmap);
|
||
rw_wlock(lock);
|
||
if (pvh_gen != pvh->pv_gen) {
|
||
PMAP_UNLOCK(pmap);
|
||
rw_wunlock(lock);
|
||
goto retry_pv_loop;
|
||
}
|
||
}
|
||
PG_RW = pmap_rw_bit(pmap);
|
||
va = pv->pv_va;
|
||
pde = pmap_pde(pmap, va);
|
||
if ((*pde & PG_RW) != 0)
|
||
(void)pmap_demote_pde_locked(pmap, pde, va, &lock);
|
||
KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
|
||
("inconsistent pv lock %p %p for page %p",
|
||
lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
|
||
PMAP_UNLOCK(pmap);
|
||
}
|
||
small_mappings:
|
||
TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
|
||
pmap = PV_PMAP(pv);
|
||
if (!PMAP_TRYLOCK(pmap)) {
|
||
pvh_gen = pvh->pv_gen;
|
||
md_gen = m->md.pv_gen;
|
||
rw_wunlock(lock);
|
||
PMAP_LOCK(pmap);
|
||
rw_wlock(lock);
|
||
if (pvh_gen != pvh->pv_gen ||
|
||
md_gen != m->md.pv_gen) {
|
||
PMAP_UNLOCK(pmap);
|
||
rw_wunlock(lock);
|
||
goto retry_pv_loop;
|
||
}
|
||
}
|
||
PG_M = pmap_modified_bit(pmap);
|
||
PG_RW = pmap_rw_bit(pmap);
|
||
pde = pmap_pde(pmap, pv->pv_va);
|
||
KASSERT((*pde & PG_PS) == 0,
|
||
("pmap_remove_write: found a 2mpage in page %p's pv list",
|
||
m));
|
||
pte = pmap_pde_to_pte(pde, pv->pv_va);
|
||
retry:
|
||
oldpte = *pte;
|
||
if (oldpte & PG_RW) {
|
||
if (!atomic_cmpset_long(pte, oldpte, oldpte &
|
||
~(PG_RW | PG_M)))
|
||
goto retry;
|
||
if ((oldpte & PG_M) != 0)
|
||
vm_page_dirty(m);
|
||
pmap_invalidate_page(pmap, pv->pv_va);
|
||
}
|
||
PMAP_UNLOCK(pmap);
|
||
}
|
||
rw_wunlock(lock);
|
||
vm_page_aflag_clear(m, PGA_WRITEABLE);
|
||
rw_runlock(&pvh_global_lock);
|
||
}
|
||
|
||
static __inline boolean_t
|
||
safe_to_clear_referenced(pmap_t pmap, pt_entry_t pte)
|
||
{
|
||
|
||
if (!pmap_emulate_ad_bits(pmap))
|
||
return (TRUE);
|
||
|
||
KASSERT(pmap->pm_type == PT_EPT, ("invalid pm_type %d", pmap->pm_type));
|
||
|
||
/*
|
||
* XWR = 010 or 110 will cause an unconditional EPT misconfiguration
|
||
* so we don't let the referenced (aka EPT_PG_READ) bit to be cleared
|
||
* if the EPT_PG_WRITE bit is set.
|
||
*/
|
||
if ((pte & EPT_PG_WRITE) != 0)
|
||
return (FALSE);
|
||
|
||
/*
|
||
* XWR = 100 is allowed only if the PMAP_SUPPORTS_EXEC_ONLY is set.
|
||
*/
|
||
if ((pte & EPT_PG_EXECUTE) == 0 ||
|
||
((pmap->pm_flags & PMAP_SUPPORTS_EXEC_ONLY) != 0))
|
||
return (TRUE);
|
||
else
|
||
return (FALSE);
|
||
}
|
||
|
||
#define PMAP_TS_REFERENCED_MAX 5
|
||
|
||
/*
|
||
* pmap_ts_referenced:
|
||
*
|
||
* Return a count of reference bits for a page, clearing those bits.
|
||
* It is not necessary for every reference bit to be cleared, but it
|
||
* is necessary that 0 only be returned when there are truly no
|
||
* reference bits set.
|
||
*
|
||
* XXX: The exact number of bits to check and clear is a matter that
|
||
* should be tested and standardized at some point in the future for
|
||
* optimal aging of shared pages.
|
||
*/
|
||
int
|
||
pmap_ts_referenced(vm_page_t m)
|
||
{
|
||
struct md_page *pvh;
|
||
pv_entry_t pv, pvf;
|
||
pmap_t pmap;
|
||
struct rwlock *lock;
|
||
pd_entry_t oldpde, *pde;
|
||
pt_entry_t *pte, PG_A;
|
||
vm_offset_t va;
|
||
vm_paddr_t pa;
|
||
int cleared, md_gen, not_cleared, pvh_gen;
|
||
struct spglist free;
|
||
boolean_t demoted;
|
||
|
||
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
|
||
("pmap_ts_referenced: page %p is not managed", m));
|
||
SLIST_INIT(&free);
|
||
cleared = 0;
|
||
pa = VM_PAGE_TO_PHYS(m);
|
||
lock = PHYS_TO_PV_LIST_LOCK(pa);
|
||
pvh = pa_to_pvh(pa);
|
||
rw_rlock(&pvh_global_lock);
|
||
rw_wlock(lock);
|
||
retry:
|
||
not_cleared = 0;
|
||
if ((m->flags & PG_FICTITIOUS) != 0 ||
|
||
(pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
|
||
goto small_mappings;
|
||
pv = pvf;
|
||
do {
|
||
if (pvf == NULL)
|
||
pvf = pv;
|
||
pmap = PV_PMAP(pv);
|
||
if (!PMAP_TRYLOCK(pmap)) {
|
||
pvh_gen = pvh->pv_gen;
|
||
rw_wunlock(lock);
|
||
PMAP_LOCK(pmap);
|
||
rw_wlock(lock);
|
||
if (pvh_gen != pvh->pv_gen) {
|
||
PMAP_UNLOCK(pmap);
|
||
goto retry;
|
||
}
|
||
}
|
||
PG_A = pmap_accessed_bit(pmap);
|
||
va = pv->pv_va;
|
||
pde = pmap_pde(pmap, pv->pv_va);
|
||
oldpde = *pde;
|
||
if ((*pde & PG_A) != 0) {
|
||
/*
|
||
* Since this reference bit is shared by 512 4KB
|
||
* pages, it should not be cleared every time it is
|
||
* tested. Apply a simple "hash" function on the
|
||
* physical page number, the virtual superpage number,
|
||
* and the pmap address to select one 4KB page out of
|
||
* the 512 on which testing the reference bit will
|
||
* result in clearing that reference bit. This
|
||
* function is designed to avoid the selection of the
|
||
* same 4KB page for every 2MB page mapping.
|
||
*
|
||
* On demotion, a mapping that hasn't been referenced
|
||
* is simply destroyed. To avoid the possibility of a
|
||
* subsequent page fault on a demoted wired mapping,
|
||
* always leave its reference bit set. Moreover,
|
||
* since the superpage is wired, the current state of
|
||
* its reference bit won't affect page replacement.
|
||
*/
|
||
if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
|
||
(uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
|
||
(*pde & PG_W) == 0) {
|
||
if (safe_to_clear_referenced(pmap, oldpde)) {
|
||
atomic_clear_long(pde, PG_A);
|
||
pmap_invalidate_page(pmap, pv->pv_va);
|
||
demoted = FALSE;
|
||
} else if (pmap_demote_pde_locked(pmap, pde,
|
||
pv->pv_va, &lock)) {
|
||
/*
|
||
* Remove the mapping to a single page
|
||
* so that a subsequent access may
|
||
* repromote. Since the underlying
|
||
* page table page is fully populated,
|
||
* this removal never frees a page
|
||
* table page.
|
||
*/
|
||
demoted = TRUE;
|
||
va += VM_PAGE_TO_PHYS(m) - (oldpde &
|
||
PG_PS_FRAME);
|
||
pte = pmap_pde_to_pte(pde, va);
|
||
pmap_remove_pte(pmap, pte, va, *pde,
|
||
NULL, &lock);
|
||
pmap_invalidate_page(pmap, va);
|
||
} else
|
||
demoted = TRUE;
|
||
|
||
if (demoted) {
|
||
/*
|
||
* The superpage mapping was removed
|
||
* entirely and therefore 'pv' is no
|
||
* longer valid.
|
||
*/
|
||
if (pvf == pv)
|
||
pvf = NULL;
|
||
pv = NULL;
|
||
}
|
||
cleared++;
|
||
KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
|
||
("inconsistent pv lock %p %p for page %p",
|
||
lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
|
||
} else
|
||
not_cleared++;
|
||
}
|
||
PMAP_UNLOCK(pmap);
|
||
/* Rotate the PV list if it has more than one entry. */
|
||
if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
|
||
TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
|
||
TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
|
||
pvh->pv_gen++;
|
||
}
|
||
if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
|
||
goto out;
|
||
} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
|
||
small_mappings:
|
||
if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
|
||
goto out;
|
||
pv = pvf;
|
||
do {
|
||
if (pvf == NULL)
|
||
pvf = pv;
|
||
pmap = PV_PMAP(pv);
|
||
if (!PMAP_TRYLOCK(pmap)) {
|
||
pvh_gen = pvh->pv_gen;
|
||
md_gen = m->md.pv_gen;
|
||
rw_wunlock(lock);
|
||
PMAP_LOCK(pmap);
|
||
rw_wlock(lock);
|
||
if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
|
||
PMAP_UNLOCK(pmap);
|
||
goto retry;
|
||
}
|
||
}
|
||
PG_A = pmap_accessed_bit(pmap);
|
||
pde = pmap_pde(pmap, pv->pv_va);
|
||
KASSERT((*pde & PG_PS) == 0,
|
||
("pmap_ts_referenced: found a 2mpage in page %p's pv list",
|
||
m));
|
||
pte = pmap_pde_to_pte(pde, pv->pv_va);
|
||
if ((*pte & PG_A) != 0) {
|
||
if (safe_to_clear_referenced(pmap, *pte)) {
|
||
atomic_clear_long(pte, PG_A);
|
||
pmap_invalidate_page(pmap, pv->pv_va);
|
||
cleared++;
|
||
} else if ((*pte & PG_W) == 0) {
|
||
/*
|
||
* Wired pages cannot be paged out so
|
||
* doing accessed bit emulation for
|
||
* them is wasted effort. We do the
|
||
* hard work for unwired pages only.
|
||
*/
|
||
pmap_remove_pte(pmap, pte, pv->pv_va,
|
||
*pde, &free, &lock);
|
||
pmap_invalidate_page(pmap, pv->pv_va);
|
||
cleared++;
|
||
if (pvf == pv)
|
||
pvf = NULL;
|
||
pv = NULL;
|
||
KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
|
||
("inconsistent pv lock %p %p for page %p",
|
||
lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
|
||
} else
|
||
not_cleared++;
|
||
}
|
||
PMAP_UNLOCK(pmap);
|
||
/* Rotate the PV list if it has more than one entry. */
|
||
if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
|
||
TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
|
||
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
|
||
m->md.pv_gen++;
|
||
}
|
||
} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
|
||
not_cleared < PMAP_TS_REFERENCED_MAX);
|
||
out:
|
||
rw_wunlock(lock);
|
||
rw_runlock(&pvh_global_lock);
|
||
pmap_free_zero_pages(&free);
|
||
return (cleared + not_cleared);
|
||
}
|
||
|
||
/*
|
||
* Apply the given advice to the specified range of addresses within the
|
||
* given pmap. Depending on the advice, clear the referenced and/or
|
||
* modified flags in each mapping and set the mapped page's dirty field.
|
||
*/
|
||
void
|
||
pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
|
||
{
|
||
struct rwlock *lock;
|
||
pml4_entry_t *pml4e;
|
||
pdp_entry_t *pdpe;
|
||
pd_entry_t oldpde, *pde;
|
||
pt_entry_t *pte, PG_A, PG_G, PG_M, PG_RW, PG_V;
|
||
vm_offset_t va_next;
|
||
vm_page_t m;
|
||
boolean_t anychanged, pv_lists_locked;
|
||
|
||
if (advice != MADV_DONTNEED && advice != MADV_FREE)
|
||
return;
|
||
|
||
/*
|
||
* A/D bit emulation requires an alternate code path when clearing
|
||
* the modified and accessed bits below. Since this function is
|
||
* advisory in nature we skip it entirely for pmaps that require
|
||
* A/D bit emulation.
|
||
*/
|
||
if (pmap_emulate_ad_bits(pmap))
|
||
return;
|
||
|
||
PG_A = pmap_accessed_bit(pmap);
|
||
PG_G = pmap_global_bit(pmap);
|
||
PG_M = pmap_modified_bit(pmap);
|
||
PG_V = pmap_valid_bit(pmap);
|
||
PG_RW = pmap_rw_bit(pmap);
|
||
|
||
pv_lists_locked = FALSE;
|
||
resume:
|
||
anychanged = FALSE;
|
||
PMAP_LOCK(pmap);
|
||
for (; sva < eva; sva = va_next) {
|
||
pml4e = pmap_pml4e(pmap, sva);
|
||
if ((*pml4e & PG_V) == 0) {
|
||
va_next = (sva + NBPML4) & ~PML4MASK;
|
||
if (va_next < sva)
|
||
va_next = eva;
|
||
continue;
|
||
}
|
||
pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
|
||
if ((*pdpe & PG_V) == 0) {
|
||
va_next = (sva + NBPDP) & ~PDPMASK;
|
||
if (va_next < sva)
|
||
va_next = eva;
|
||
continue;
|
||
}
|
||
va_next = (sva + NBPDR) & ~PDRMASK;
|
||
if (va_next < sva)
|
||
va_next = eva;
|
||
pde = pmap_pdpe_to_pde(pdpe, sva);
|
||
oldpde = *pde;
|
||
if ((oldpde & PG_V) == 0)
|
||
continue;
|
||
else if ((oldpde & PG_PS) != 0) {
|
||
if ((oldpde & PG_MANAGED) == 0)
|
||
continue;
|
||
if (!pv_lists_locked) {
|
||
pv_lists_locked = TRUE;
|
||
if (!rw_try_rlock(&pvh_global_lock)) {
|
||
if (anychanged)
|
||
pmap_invalidate_all(pmap);
|
||
PMAP_UNLOCK(pmap);
|
||
rw_rlock(&pvh_global_lock);
|
||
goto resume;
|
||
}
|
||
}
|
||
lock = NULL;
|
||
if (!pmap_demote_pde_locked(pmap, pde, sva, &lock)) {
|
||
if (lock != NULL)
|
||
rw_wunlock(lock);
|
||
|
||
/*
|
||
* The large page mapping was destroyed.
|
||
*/
|
||
continue;
|
||
}
|
||
|
||
/*
|
||
* Unless the page mappings are wired, remove the
|
||
* mapping to a single page so that a subsequent
|
||
* access may repromote. Since the underlying page
|
||
* table page is fully populated, this removal never
|
||
* frees a page table page.
|
||
*/
|
||
if ((oldpde & PG_W) == 0) {
|
||
pte = pmap_pde_to_pte(pde, sva);
|
||
KASSERT((*pte & PG_V) != 0,
|
||
("pmap_advise: invalid PTE"));
|
||
pmap_remove_pte(pmap, pte, sva, *pde, NULL,
|
||
&lock);
|
||
anychanged = TRUE;
|
||
}
|
||
if (lock != NULL)
|
||
rw_wunlock(lock);
|
||
}
|
||
if (va_next > eva)
|
||
va_next = eva;
|
||
for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
|
||
sva += PAGE_SIZE) {
|
||
if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED |
|
||
PG_V))
|
||
continue;
|
||
else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
|
||
if (advice == MADV_DONTNEED) {
|
||
/*
|
||
* Future calls to pmap_is_modified()
|
||
* can be avoided by making the page
|
||
* dirty now.
|
||
*/
|
||
m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
|
||
vm_page_dirty(m);
|
||
}
|
||
atomic_clear_long(pte, PG_M | PG_A);
|
||
} else if ((*pte & PG_A) != 0)
|
||
atomic_clear_long(pte, PG_A);
|
||
else
|
||
continue;
|
||
if ((*pte & PG_G) != 0)
|
||
pmap_invalidate_page(pmap, sva);
|
||
else
|
||
anychanged = TRUE;
|
||
}
|
||
}
|
||
if (anychanged)
|
||
pmap_invalidate_all(pmap);
|
||
if (pv_lists_locked)
|
||
rw_runlock(&pvh_global_lock);
|
||
PMAP_UNLOCK(pmap);
|
||
}
|
||
|
||
/*
|
||
* Clear the modify bits on the specified physical page.
|
||
*/
|
||
void
|
||
pmap_clear_modify(vm_page_t m)
|
||
{
|
||
struct md_page *pvh;
|
||
pmap_t pmap;
|
||
pv_entry_t next_pv, pv;
|
||
pd_entry_t oldpde, *pde;
|
||
pt_entry_t oldpte, *pte, PG_M, PG_RW, PG_V;
|
||
struct rwlock *lock;
|
||
vm_offset_t va;
|
||
int md_gen, pvh_gen;
|
||
|
||
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
|
||
("pmap_clear_modify: page %p is not managed", m));
|
||
VM_OBJECT_ASSERT_WLOCKED(m->object);
|
||
KASSERT(!vm_page_xbusied(m),
|
||
("pmap_clear_modify: page %p is exclusive busied", m));
|
||
|
||
/*
|
||
* If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
|
||
* If the object containing the page is locked and the page is not
|
||
* exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
|
||
*/
|
||
if ((m->aflags & PGA_WRITEABLE) == 0)
|
||
return;
|
||
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
|
||
rw_rlock(&pvh_global_lock);
|
||
lock = VM_PAGE_TO_PV_LIST_LOCK(m);
|
||
rw_wlock(lock);
|
||
restart:
|
||
if ((m->flags & PG_FICTITIOUS) != 0)
|
||
goto small_mappings;
|
||
TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
|
||
pmap = PV_PMAP(pv);
|
||
if (!PMAP_TRYLOCK(pmap)) {
|
||
pvh_gen = pvh->pv_gen;
|
||
rw_wunlock(lock);
|
||
PMAP_LOCK(pmap);
|
||
rw_wlock(lock);
|
||
if (pvh_gen != pvh->pv_gen) {
|
||
PMAP_UNLOCK(pmap);
|
||
goto restart;
|
||
}
|
||
}
|
||
PG_M = pmap_modified_bit(pmap);
|
||
PG_V = pmap_valid_bit(pmap);
|
||
PG_RW = pmap_rw_bit(pmap);
|
||
va = pv->pv_va;
|
||
pde = pmap_pde(pmap, va);
|
||
oldpde = *pde;
|
||
if ((oldpde & PG_RW) != 0) {
|
||
if (pmap_demote_pde_locked(pmap, pde, va, &lock)) {
|
||
if ((oldpde & PG_W) == 0) {
|
||
/*
|
||
* Write protect the mapping to a
|
||
* single page so that a subsequent
|
||
* write access may repromote.
|
||
*/
|
||
va += VM_PAGE_TO_PHYS(m) - (oldpde &
|
||
PG_PS_FRAME);
|
||
pte = pmap_pde_to_pte(pde, va);
|
||
oldpte = *pte;
|
||
if ((oldpte & PG_V) != 0) {
|
||
while (!atomic_cmpset_long(pte,
|
||
oldpte,
|
||
oldpte & ~(PG_M | PG_RW)))
|
||
oldpte = *pte;
|
||
vm_page_dirty(m);
|
||
pmap_invalidate_page(pmap, va);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
PMAP_UNLOCK(pmap);
|
||
}
|
||
small_mappings:
|
||
TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
|
||
pmap = PV_PMAP(pv);
|
||
if (!PMAP_TRYLOCK(pmap)) {
|
||
md_gen = m->md.pv_gen;
|
||
pvh_gen = pvh->pv_gen;
|
||
rw_wunlock(lock);
|
||
PMAP_LOCK(pmap);
|
||
rw_wlock(lock);
|
||
if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
|
||
PMAP_UNLOCK(pmap);
|
||
goto restart;
|
||
}
|
||
}
|
||
PG_M = pmap_modified_bit(pmap);
|
||
PG_RW = pmap_rw_bit(pmap);
|
||
pde = pmap_pde(pmap, pv->pv_va);
|
||
KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
|
||
" a 2mpage in page %p's pv list", m));
|
||
pte = pmap_pde_to_pte(pde, pv->pv_va);
|
||
if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
|
||
atomic_clear_long(pte, PG_M);
|
||
pmap_invalidate_page(pmap, pv->pv_va);
|
||
}
|
||
PMAP_UNLOCK(pmap);
|
||
}
|
||
rw_wunlock(lock);
|
||
rw_runlock(&pvh_global_lock);
|
||
}
|
||
|
||
/*
|
||
* Miscellaneous support routines follow
|
||
*/
|
||
|
||
/* Adjust the cache mode for a 4KB page mapped via a PTE. */
|
||
static __inline void
|
||
pmap_pte_attr(pt_entry_t *pte, int cache_bits, int mask)
|
||
{
|
||
u_int opte, npte;
|
||
|
||
/*
|
||
* The cache mode bits are all in the low 32-bits of the
|
||
* PTE, so we can just spin on updating the low 32-bits.
|
||
*/
|
||
do {
|
||
opte = *(u_int *)pte;
|
||
npte = opte & ~mask;
|
||
npte |= cache_bits;
|
||
} while (npte != opte && !atomic_cmpset_int((u_int *)pte, opte, npte));
|
||
}
|
||
|
||
/* Adjust the cache mode for a 2MB page mapped via a PDE. */
|
||
static __inline void
|
||
pmap_pde_attr(pd_entry_t *pde, int cache_bits, int mask)
|
||
{
|
||
u_int opde, npde;
|
||
|
||
/*
|
||
* The cache mode bits are all in the low 32-bits of the
|
||
* PDE, so we can just spin on updating the low 32-bits.
|
||
*/
|
||
do {
|
||
opde = *(u_int *)pde;
|
||
npde = opde & ~mask;
|
||
npde |= cache_bits;
|
||
} while (npde != opde && !atomic_cmpset_int((u_int *)pde, opde, npde));
|
||
}
|
||
|
||
/*
|
||
* Map a set of physical memory pages into the kernel virtual
|
||
* address space. Return a pointer to where it is mapped. This
|
||
* routine is intended to be used for mapping device memory,
|
||
* NOT real memory.
|
||
*/
|
||
void *
|
||
pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
|
||
{
|
||
vm_offset_t va, offset;
|
||
vm_size_t tmpsize;
|
||
|
||
/*
|
||
* If the specified range of physical addresses fits within the direct
|
||
* map window, use the direct map.
|
||
*/
|
||
if (pa < dmaplimit && pa + size < dmaplimit) {
|
||
va = PHYS_TO_DMAP(pa);
|
||
if (!pmap_change_attr(va, size, mode))
|
||
return ((void *)va);
|
||
}
|
||
offset = pa & PAGE_MASK;
|
||
size = round_page(offset + size);
|
||
va = kva_alloc(size);
|
||
if (!va)
|
||
panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
|
||
pa = trunc_page(pa);
|
||
for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
|
||
pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
|
||
pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
|
||
pmap_invalidate_cache_range(va, va + tmpsize);
|
||
return ((void *)(va + offset));
|
||
}
|
||
|
||
void *
|
||
pmap_mapdev(vm_paddr_t pa, vm_size_t size)
|
||
{
|
||
|
||
return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
|
||
}
|
||
|
||
void *
|
||
pmap_mapbios(vm_paddr_t pa, vm_size_t size)
|
||
{
|
||
|
||
return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
|
||
}
|
||
|
||
void
|
||
pmap_unmapdev(vm_offset_t va, vm_size_t size)
|
||
{
|
||
vm_offset_t base, offset;
|
||
|
||
/* If we gave a direct map region in pmap_mapdev, do nothing */
|
||
if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
|
||
return;
|
||
base = trunc_page(va);
|
||
offset = va & PAGE_MASK;
|
||
size = round_page(offset + size);
|
||
kva_free(base, size);
|
||
}
|
||
|
||
/*
|
||
* Tries to demote a 1GB page mapping.
|
||
*/
|
||
static boolean_t
|
||
pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe, vm_offset_t va)
|
||
{
|
||
pdp_entry_t newpdpe, oldpdpe;
|
||
pd_entry_t *firstpde, newpde, *pde;
|
||
pt_entry_t PG_A, PG_M, PG_RW, PG_V;
|
||
vm_paddr_t mpdepa;
|
||
vm_page_t mpde;
|
||
|
||
PG_A = pmap_accessed_bit(pmap);
|
||
PG_M = pmap_modified_bit(pmap);
|
||
PG_V = pmap_valid_bit(pmap);
|
||
PG_RW = pmap_rw_bit(pmap);
|
||
|
||
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
||
oldpdpe = *pdpe;
|
||
KASSERT((oldpdpe & (PG_PS | PG_V)) == (PG_PS | PG_V),
|
||
("pmap_demote_pdpe: oldpdpe is missing PG_PS and/or PG_V"));
|
||
if ((mpde = vm_page_alloc(NULL, va >> PDPSHIFT, VM_ALLOC_INTERRUPT |
|
||
VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
|
||
CTR2(KTR_PMAP, "pmap_demote_pdpe: failure for va %#lx"
|
||
" in pmap %p", va, pmap);
|
||
return (FALSE);
|
||
}
|
||
mpdepa = VM_PAGE_TO_PHYS(mpde);
|
||
firstpde = (pd_entry_t *)PHYS_TO_DMAP(mpdepa);
|
||
newpdpe = mpdepa | PG_M | PG_A | (oldpdpe & PG_U) | PG_RW | PG_V;
|
||
KASSERT((oldpdpe & PG_A) != 0,
|
||
("pmap_demote_pdpe: oldpdpe is missing PG_A"));
|
||
KASSERT((oldpdpe & (PG_M | PG_RW)) != PG_RW,
|
||
("pmap_demote_pdpe: oldpdpe is missing PG_M"));
|
||
newpde = oldpdpe;
|
||
|
||
/*
|
||
* Initialize the page directory page.
|
||
*/
|
||
for (pde = firstpde; pde < firstpde + NPDEPG; pde++) {
|
||
*pde = newpde;
|
||
newpde += NBPDR;
|
||
}
|
||
|
||
/*
|
||
* Demote the mapping.
|
||
*/
|
||
*pdpe = newpdpe;
|
||
|
||
/*
|
||
* Invalidate a stale recursive mapping of the page directory page.
|
||
*/
|
||
pmap_invalidate_page(pmap, (vm_offset_t)vtopde(va));
|
||
|
||
pmap_pdpe_demotions++;
|
||
CTR2(KTR_PMAP, "pmap_demote_pdpe: success for va %#lx"
|
||
" in pmap %p", va, pmap);
|
||
return (TRUE);
|
||
}
|
||
|
||
/*
|
||
* Sets the memory attribute for the specified page.
|
||
*/
|
||
void
|
||
pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
|
||
{
|
||
|
||
m->md.pat_mode = ma;
|
||
|
||
/*
|
||
* If "m" is a normal page, update its direct mapping. This update
|
||
* can be relied upon to perform any cache operations that are
|
||
* required for data coherence.
|
||
*/
|
||
if ((m->flags & PG_FICTITIOUS) == 0 &&
|
||
pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), PAGE_SIZE,
|
||
m->md.pat_mode))
|
||
panic("memory attribute change on the direct map failed");
|
||
}
|
||
|
||
/*
|
||
* Changes the specified virtual address range's memory type to that given by
|
||
* the parameter "mode". The specified virtual address range must be
|
||
* completely contained within either the direct map or the kernel map. If
|
||
* the virtual address range is contained within the kernel map, then the
|
||
* memory type for each of the corresponding ranges of the direct map is also
|
||
* changed. (The corresponding ranges of the direct map are those ranges that
|
||
* map the same physical pages as the specified virtual address range.) These
|
||
* changes to the direct map are necessary because Intel describes the
|
||
* behavior of their processors as "undefined" if two or more mappings to the
|
||
* same physical page have different memory types.
|
||
*
|
||
* Returns zero if the change completed successfully, and either EINVAL or
|
||
* ENOMEM if the change failed. Specifically, EINVAL is returned if some part
|
||
* of the virtual address range was not mapped, and ENOMEM is returned if
|
||
* there was insufficient memory available to complete the change. In the
|
||
* latter case, the memory type may have been changed on some part of the
|
||
* virtual address range or the direct map.
|
||
*/
|
||
int
|
||
pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
|
||
{
|
||
int error;
|
||
|
||
PMAP_LOCK(kernel_pmap);
|
||
error = pmap_change_attr_locked(va, size, mode);
|
||
PMAP_UNLOCK(kernel_pmap);
|
||
return (error);
|
||
}
|
||
|
||
static int
|
||
pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode)
|
||
{
|
||
vm_offset_t base, offset, tmpva;
|
||
vm_paddr_t pa_start, pa_end;
|
||
pdp_entry_t *pdpe;
|
||
pd_entry_t *pde;
|
||
pt_entry_t *pte;
|
||
int cache_bits_pte, cache_bits_pde, error;
|
||
boolean_t changed;
|
||
|
||
PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
|
||
base = trunc_page(va);
|
||
offset = va & PAGE_MASK;
|
||
size = round_page(offset + size);
|
||
|
||
/*
|
||
* Only supported on kernel virtual addresses, including the direct
|
||
* map but excluding the recursive map.
|
||
*/
|
||
if (base < DMAP_MIN_ADDRESS)
|
||
return (EINVAL);
|
||
|
||
cache_bits_pde = pmap_cache_bits(kernel_pmap, mode, 1);
|
||
cache_bits_pte = pmap_cache_bits(kernel_pmap, mode, 0);
|
||
changed = FALSE;
|
||
|
||
/*
|
||
* Pages that aren't mapped aren't supported. Also break down 2MB pages
|
||
* into 4KB pages if required.
|
||
*/
|
||
for (tmpva = base; tmpva < base + size; ) {
|
||
pdpe = pmap_pdpe(kernel_pmap, tmpva);
|
||
if (*pdpe == 0)
|
||
return (EINVAL);
|
||
if (*pdpe & PG_PS) {
|
||
/*
|
||
* If the current 1GB page already has the required
|
||
* memory type, then we need not demote this page. Just
|
||
* increment tmpva to the next 1GB page frame.
|
||
*/
|
||
if ((*pdpe & X86_PG_PDE_CACHE) == cache_bits_pde) {
|
||
tmpva = trunc_1gpage(tmpva) + NBPDP;
|
||
continue;
|
||
}
|
||
|
||
/*
|
||
* If the current offset aligns with a 1GB page frame
|
||
* and there is at least 1GB left within the range, then
|
||
* we need not break down this page into 2MB pages.
|
||
*/
|
||
if ((tmpva & PDPMASK) == 0 &&
|
||
tmpva + PDPMASK < base + size) {
|
||
tmpva += NBPDP;
|
||
continue;
|
||
}
|
||
if (!pmap_demote_pdpe(kernel_pmap, pdpe, tmpva))
|
||
return (ENOMEM);
|
||
}
|
||
pde = pmap_pdpe_to_pde(pdpe, tmpva);
|
||
if (*pde == 0)
|
||
return (EINVAL);
|
||
if (*pde & PG_PS) {
|
||
/*
|
||
* If the current 2MB page already has the required
|
||
* memory type, then we need not demote this page. Just
|
||
* increment tmpva to the next 2MB page frame.
|
||
*/
|
||
if ((*pde & X86_PG_PDE_CACHE) == cache_bits_pde) {
|
||
tmpva = trunc_2mpage(tmpva) + NBPDR;
|
||
continue;
|
||
}
|
||
|
||
/*
|
||
* If the current offset aligns with a 2MB page frame
|
||
* and there is at least 2MB left within the range, then
|
||
* we need not break down this page into 4KB pages.
|
||
*/
|
||
if ((tmpva & PDRMASK) == 0 &&
|
||
tmpva + PDRMASK < base + size) {
|
||
tmpva += NBPDR;
|
||
continue;
|
||
}
|
||
if (!pmap_demote_pde(kernel_pmap, pde, tmpva))
|
||
return (ENOMEM);
|
||
}
|
||
pte = pmap_pde_to_pte(pde, tmpva);
|
||
if (*pte == 0)
|
||
return (EINVAL);
|
||
tmpva += PAGE_SIZE;
|
||
}
|
||
error = 0;
|
||
|
||
/*
|
||
* Ok, all the pages exist, so run through them updating their
|
||
* cache mode if required.
|
||
*/
|
||
pa_start = pa_end = 0;
|
||
for (tmpva = base; tmpva < base + size; ) {
|
||
pdpe = pmap_pdpe(kernel_pmap, tmpva);
|
||
if (*pdpe & PG_PS) {
|
||
if ((*pdpe & X86_PG_PDE_CACHE) != cache_bits_pde) {
|
||
pmap_pde_attr(pdpe, cache_bits_pde,
|
||
X86_PG_PDE_CACHE);
|
||
changed = TRUE;
|
||
}
|
||
if (tmpva >= VM_MIN_KERNEL_ADDRESS) {
|
||
if (pa_start == pa_end) {
|
||
/* Start physical address run. */
|
||
pa_start = *pdpe & PG_PS_FRAME;
|
||
pa_end = pa_start + NBPDP;
|
||
} else if (pa_end == (*pdpe & PG_PS_FRAME))
|
||
pa_end += NBPDP;
|
||
else {
|
||
/* Run ended, update direct map. */
|
||
error = pmap_change_attr_locked(
|
||
PHYS_TO_DMAP(pa_start),
|
||
pa_end - pa_start, mode);
|
||
if (error != 0)
|
||
break;
|
||
/* Start physical address run. */
|
||
pa_start = *pdpe & PG_PS_FRAME;
|
||
pa_end = pa_start + NBPDP;
|
||
}
|
||
}
|
||
tmpva = trunc_1gpage(tmpva) + NBPDP;
|
||
continue;
|
||
}
|
||
pde = pmap_pdpe_to_pde(pdpe, tmpva);
|
||
if (*pde & PG_PS) {
|
||
if ((*pde & X86_PG_PDE_CACHE) != cache_bits_pde) {
|
||
pmap_pde_attr(pde, cache_bits_pde,
|
||
X86_PG_PDE_CACHE);
|
||
changed = TRUE;
|
||
}
|
||
if (tmpva >= VM_MIN_KERNEL_ADDRESS) {
|
||
if (pa_start == pa_end) {
|
||
/* Start physical address run. */
|
||
pa_start = *pde & PG_PS_FRAME;
|
||
pa_end = pa_start + NBPDR;
|
||
} else if (pa_end == (*pde & PG_PS_FRAME))
|
||
pa_end += NBPDR;
|
||
else {
|
||
/* Run ended, update direct map. */
|
||
error = pmap_change_attr_locked(
|
||
PHYS_TO_DMAP(pa_start),
|
||
pa_end - pa_start, mode);
|
||
if (error != 0)
|
||
break;
|
||
/* Start physical address run. */
|
||
pa_start = *pde & PG_PS_FRAME;
|
||
pa_end = pa_start + NBPDR;
|
||
}
|
||
}
|
||
tmpva = trunc_2mpage(tmpva) + NBPDR;
|
||
} else {
|
||
pte = pmap_pde_to_pte(pde, tmpva);
|
||
if ((*pte & X86_PG_PTE_CACHE) != cache_bits_pte) {
|
||
pmap_pte_attr(pte, cache_bits_pte,
|
||
X86_PG_PTE_CACHE);
|
||
changed = TRUE;
|
||
}
|
||
if (tmpva >= VM_MIN_KERNEL_ADDRESS) {
|
||
if (pa_start == pa_end) {
|
||
/* Start physical address run. */
|
||
pa_start = *pte & PG_FRAME;
|
||
pa_end = pa_start + PAGE_SIZE;
|
||
} else if (pa_end == (*pte & PG_FRAME))
|
||
pa_end += PAGE_SIZE;
|
||
else {
|
||
/* Run ended, update direct map. */
|
||
error = pmap_change_attr_locked(
|
||
PHYS_TO_DMAP(pa_start),
|
||
pa_end - pa_start, mode);
|
||
if (error != 0)
|
||
break;
|
||
/* Start physical address run. */
|
||
pa_start = *pte & PG_FRAME;
|
||
pa_end = pa_start + PAGE_SIZE;
|
||
}
|
||
}
|
||
tmpva += PAGE_SIZE;
|
||
}
|
||
}
|
||
if (error == 0 && pa_start != pa_end)
|
||
error = pmap_change_attr_locked(PHYS_TO_DMAP(pa_start),
|
||
pa_end - pa_start, mode);
|
||
|
||
/*
|
||
* Flush CPU caches if required to make sure any data isn't cached that
|
||
* shouldn't be, etc.
|
||
*/
|
||
if (changed) {
|
||
pmap_invalidate_range(kernel_pmap, base, tmpva);
|
||
pmap_invalidate_cache_range(base, tmpva);
|
||
}
|
||
return (error);
|
||
}
|
||
|
||
/*
|
||
* Demotes any mapping within the direct map region that covers more than the
|
||
* specified range of physical addresses. This range's size must be a power
|
||
* of two and its starting address must be a multiple of its size. Since the
|
||
* demotion does not change any attributes of the mapping, a TLB invalidation
|
||
* is not mandatory. The caller may, however, request a TLB invalidation.
|
||
*/
|
||
void
|
||
pmap_demote_DMAP(vm_paddr_t base, vm_size_t len, boolean_t invalidate)
|
||
{
|
||
pdp_entry_t *pdpe;
|
||
pd_entry_t *pde;
|
||
vm_offset_t va;
|
||
boolean_t changed;
|
||
|
||
if (len == 0)
|
||
return;
|
||
KASSERT(powerof2(len), ("pmap_demote_DMAP: len is not a power of 2"));
|
||
KASSERT((base & (len - 1)) == 0,
|
||
("pmap_demote_DMAP: base is not a multiple of len"));
|
||
if (len < NBPDP && base < dmaplimit) {
|
||
va = PHYS_TO_DMAP(base);
|
||
changed = FALSE;
|
||
PMAP_LOCK(kernel_pmap);
|
||
pdpe = pmap_pdpe(kernel_pmap, va);
|
||
if ((*pdpe & X86_PG_V) == 0)
|
||
panic("pmap_demote_DMAP: invalid PDPE");
|
||
if ((*pdpe & PG_PS) != 0) {
|
||
if (!pmap_demote_pdpe(kernel_pmap, pdpe, va))
|
||
panic("pmap_demote_DMAP: PDPE failed");
|
||
changed = TRUE;
|
||
}
|
||
if (len < NBPDR) {
|
||
pde = pmap_pdpe_to_pde(pdpe, va);
|
||
if ((*pde & X86_PG_V) == 0)
|
||
panic("pmap_demote_DMAP: invalid PDE");
|
||
if ((*pde & PG_PS) != 0) {
|
||
if (!pmap_demote_pde(kernel_pmap, pde, va))
|
||
panic("pmap_demote_DMAP: PDE failed");
|
||
changed = TRUE;
|
||
}
|
||
}
|
||
if (changed && invalidate)
|
||
pmap_invalidate_page(kernel_pmap, va);
|
||
PMAP_UNLOCK(kernel_pmap);
|
||
}
|
||
}
|
||
|
||
/*
|
||
* perform the pmap work for mincore
|
||
*/
|
||
int
|
||
pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
|
||
{
|
||
pd_entry_t *pdep;
|
||
pt_entry_t pte, PG_A, PG_M, PG_RW, PG_V;
|
||
vm_paddr_t pa;
|
||
int val;
|
||
|
||
PG_A = pmap_accessed_bit(pmap);
|
||
PG_M = pmap_modified_bit(pmap);
|
||
PG_V = pmap_valid_bit(pmap);
|
||
PG_RW = pmap_rw_bit(pmap);
|
||
|
||
PMAP_LOCK(pmap);
|
||
retry:
|
||
pdep = pmap_pde(pmap, addr);
|
||
if (pdep != NULL && (*pdep & PG_V)) {
|
||
if (*pdep & PG_PS) {
|
||
pte = *pdep;
|
||
/* Compute the physical address of the 4KB page. */
|
||
pa = ((*pdep & PG_PS_FRAME) | (addr & PDRMASK)) &
|
||
PG_FRAME;
|
||
val = MINCORE_SUPER;
|
||
} else {
|
||
pte = *pmap_pde_to_pte(pdep, addr);
|
||
pa = pte & PG_FRAME;
|
||
val = 0;
|
||
}
|
||
} else {
|
||
pte = 0;
|
||
pa = 0;
|
||
val = 0;
|
||
}
|
||
if ((pte & PG_V) != 0) {
|
||
val |= MINCORE_INCORE;
|
||
if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
|
||
val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
|
||
if ((pte & PG_A) != 0)
|
||
val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
|
||
}
|
||
if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
|
||
(MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
|
||
(pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
|
||
/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
|
||
if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
|
||
goto retry;
|
||
} else
|
||
PA_UNLOCK_COND(*locked_pa);
|
||
PMAP_UNLOCK(pmap);
|
||
return (val);
|
||
}
|
||
|
||
void
|
||
pmap_activate(struct thread *td)
|
||
{
|
||
pmap_t pmap, oldpmap;
|
||
u_int cpuid;
|
||
|
||
critical_enter();
|
||
pmap = vmspace_pmap(td->td_proc->p_vmspace);
|
||
oldpmap = PCPU_GET(curpmap);
|
||
cpuid = PCPU_GET(cpuid);
|
||
#ifdef SMP
|
||
CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
|
||
CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
|
||
CPU_SET_ATOMIC(cpuid, &pmap->pm_save);
|
||
#else
|
||
CPU_CLR(cpuid, &oldpmap->pm_active);
|
||
CPU_SET(cpuid, &pmap->pm_active);
|
||
CPU_SET(cpuid, &pmap->pm_save);
|
||
#endif
|
||
td->td_pcb->pcb_cr3 = pmap->pm_cr3;
|
||
load_cr3(pmap->pm_cr3);
|
||
PCPU_SET(curpmap, pmap);
|
||
critical_exit();
|
||
}
|
||
|
||
void
|
||
pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
|
||
{
|
||
}
|
||
|
||
/*
|
||
* Increase the starting virtual address of the given mapping if a
|
||
* different alignment might result in more superpage mappings.
|
||
*/
|
||
void
|
||
pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
|
||
vm_offset_t *addr, vm_size_t size)
|
||
{
|
||
vm_offset_t superpage_offset;
|
||
|
||
if (size < NBPDR)
|
||
return;
|
||
if (object != NULL && (object->flags & OBJ_COLORED) != 0)
|
||
offset += ptoa(object->pg_color);
|
||
superpage_offset = offset & PDRMASK;
|
||
if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
|
||
(*addr & PDRMASK) == superpage_offset)
|
||
return;
|
||
if ((*addr & PDRMASK) < superpage_offset)
|
||
*addr = (*addr & ~PDRMASK) + superpage_offset;
|
||
else
|
||
*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
|
||
}
|
||
|
||
#ifdef INVARIANTS
|
||
static unsigned long num_dirty_emulations;
|
||
SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_dirty_emulations, CTLFLAG_RW,
|
||
&num_dirty_emulations, 0, NULL);
|
||
|
||
static unsigned long num_accessed_emulations;
|
||
SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_accessed_emulations, CTLFLAG_RW,
|
||
&num_accessed_emulations, 0, NULL);
|
||
|
||
static unsigned long num_superpage_accessed_emulations;
|
||
SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_superpage_accessed_emulations, CTLFLAG_RW,
|
||
&num_superpage_accessed_emulations, 0, NULL);
|
||
|
||
static unsigned long ad_emulation_superpage_promotions;
|
||
SYSCTL_ULONG(_vm_pmap, OID_AUTO, ad_emulation_superpage_promotions, CTLFLAG_RW,
|
||
&ad_emulation_superpage_promotions, 0, NULL);
|
||
#endif /* INVARIANTS */
|
||
|
||
int
|
||
pmap_emulate_accessed_dirty(pmap_t pmap, vm_offset_t va, int ftype)
|
||
{
|
||
int rv;
|
||
struct rwlock *lock;
|
||
vm_page_t m, mpte;
|
||
pd_entry_t *pde;
|
||
pt_entry_t *pte, PG_A, PG_M, PG_RW, PG_V;
|
||
boolean_t pv_lists_locked;
|
||
|
||
KASSERT(ftype == VM_PROT_READ || ftype == VM_PROT_WRITE,
|
||
("pmap_emulate_accessed_dirty: invalid fault type %d", ftype));
|
||
|
||
if (!pmap_emulate_ad_bits(pmap))
|
||
return (-1);
|
||
|
||
PG_A = pmap_accessed_bit(pmap);
|
||
PG_M = pmap_modified_bit(pmap);
|
||
PG_V = pmap_valid_bit(pmap);
|
||
PG_RW = pmap_rw_bit(pmap);
|
||
|
||
rv = -1;
|
||
lock = NULL;
|
||
pv_lists_locked = FALSE;
|
||
retry:
|
||
PMAP_LOCK(pmap);
|
||
|
||
pde = pmap_pde(pmap, va);
|
||
if (pde == NULL || (*pde & PG_V) == 0)
|
||
goto done;
|
||
|
||
if ((*pde & PG_PS) != 0) {
|
||
if (ftype == VM_PROT_READ) {
|
||
#ifdef INVARIANTS
|
||
atomic_add_long(&num_superpage_accessed_emulations, 1);
|
||
#endif
|
||
*pde |= PG_A;
|
||
rv = 0;
|
||
}
|
||
goto done;
|
||
}
|
||
|
||
pte = pmap_pde_to_pte(pde, va);
|
||
if ((*pte & PG_V) == 0)
|
||
goto done;
|
||
|
||
if (ftype == VM_PROT_WRITE) {
|
||
if ((*pte & PG_RW) == 0)
|
||
goto done;
|
||
*pte |= PG_M;
|
||
}
|
||
*pte |= PG_A;
|
||
|
||
/* try to promote the mapping */
|
||
if (va < VM_MAXUSER_ADDRESS)
|
||
mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
|
||
else
|
||
mpte = NULL;
|
||
|
||
m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
|
||
|
||
if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
|
||
pmap_ps_enabled(pmap) &&
|
||
(m->flags & PG_FICTITIOUS) == 0 &&
|
||
vm_reserv_level_iffullpop(m) == 0) {
|
||
if (!pv_lists_locked) {
|
||
pv_lists_locked = TRUE;
|
||
if (!rw_try_rlock(&pvh_global_lock)) {
|
||
PMAP_UNLOCK(pmap);
|
||
rw_rlock(&pvh_global_lock);
|
||
goto retry;
|
||
}
|
||
}
|
||
pmap_promote_pde(pmap, pde, va, &lock);
|
||
#ifdef INVARIANTS
|
||
atomic_add_long(&ad_emulation_superpage_promotions, 1);
|
||
#endif
|
||
}
|
||
#ifdef INVARIANTS
|
||
if (ftype == VM_PROT_WRITE)
|
||
atomic_add_long(&num_dirty_emulations, 1);
|
||
else
|
||
atomic_add_long(&num_accessed_emulations, 1);
|
||
#endif
|
||
rv = 0; /* success */
|
||
done:
|
||
if (lock != NULL)
|
||
rw_wunlock(lock);
|
||
if (pv_lists_locked)
|
||
rw_runlock(&pvh_global_lock);
|
||
PMAP_UNLOCK(pmap);
|
||
return (rv);
|
||
}
|
||
|
||
void
|
||
pmap_get_mapping(pmap_t pmap, vm_offset_t va, uint64_t *ptr, int *num)
|
||
{
|
||
pml4_entry_t *pml4;
|
||
pdp_entry_t *pdp;
|
||
pd_entry_t *pde;
|
||
pt_entry_t *pte, PG_V;
|
||
int idx;
|
||
|
||
idx = 0;
|
||
PG_V = pmap_valid_bit(pmap);
|
||
PMAP_LOCK(pmap);
|
||
|
||
pml4 = pmap_pml4e(pmap, va);
|
||
ptr[idx++] = *pml4;
|
||
if ((*pml4 & PG_V) == 0)
|
||
goto done;
|
||
|
||
pdp = pmap_pml4e_to_pdpe(pml4, va);
|
||
ptr[idx++] = *pdp;
|
||
if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0)
|
||
goto done;
|
||
|
||
pde = pmap_pdpe_to_pde(pdp, va);
|
||
ptr[idx++] = *pde;
|
||
if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0)
|
||
goto done;
|
||
|
||
pte = pmap_pde_to_pte(pde, va);
|
||
ptr[idx++] = *pte;
|
||
|
||
done:
|
||
PMAP_UNLOCK(pmap);
|
||
*num = idx;
|
||
}
|
||
|
||
#include "opt_ddb.h"
|
||
#ifdef DDB
|
||
#include <ddb/ddb.h>
|
||
|
||
DB_SHOW_COMMAND(pte, pmap_print_pte)
|
||
{
|
||
pmap_t pmap;
|
||
pml4_entry_t *pml4;
|
||
pdp_entry_t *pdp;
|
||
pd_entry_t *pde;
|
||
pt_entry_t *pte, PG_V;
|
||
vm_offset_t va;
|
||
|
||
if (have_addr) {
|
||
va = (vm_offset_t)addr;
|
||
pmap = PCPU_GET(curpmap); /* XXX */
|
||
} else {
|
||
db_printf("show pte addr\n");
|
||
return;
|
||
}
|
||
PG_V = pmap_valid_bit(pmap);
|
||
pml4 = pmap_pml4e(pmap, va);
|
||
db_printf("VA %#016lx pml4e %#016lx", va, *pml4);
|
||
if ((*pml4 & PG_V) == 0) {
|
||
db_printf("\n");
|
||
return;
|
||
}
|
||
pdp = pmap_pml4e_to_pdpe(pml4, va);
|
||
db_printf(" pdpe %#016lx", *pdp);
|
||
if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0) {
|
||
db_printf("\n");
|
||
return;
|
||
}
|
||
pde = pmap_pdpe_to_pde(pdp, va);
|
||
db_printf(" pde %#016lx", *pde);
|
||
if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0) {
|
||
db_printf("\n");
|
||
return;
|
||
}
|
||
pte = pmap_pde_to_pte(pde, va);
|
||
db_printf(" pte %#016lx\n", *pte);
|
||
}
|
||
|
||
DB_SHOW_COMMAND(phys2dmap, pmap_phys2dmap)
|
||
{
|
||
vm_paddr_t a;
|
||
|
||
if (have_addr) {
|
||
a = (vm_paddr_t)addr;
|
||
db_printf("0x%jx\n", (uintmax_t)PHYS_TO_DMAP(a));
|
||
} else {
|
||
db_printf("show phys2dmap addr\n");
|
||
}
|
||
}
|
||
#endif
|