freebsd-nq/sys/kern/subr_lock.c
Mateusz Guzik eac22dd480 lockmgr: shrink struct lock by 8 bytes on LP64
Currently the struct has a 4 byte padding stemming from 3 ints.

1. prio comfortably fits in short, unfortunately there is no dedicated
   type for it and plumbing it throughout the codebase is not worth it
   right now, instead an assert is added which covers also flags for
   safety
2. lk_exslpfail can in principle exceed u_short, but the count is
   already not considered reliable and it only ever gets modified
   straight to 0. In other words it can be incrementing with an upper
   bound of USHRT_MAX

With these in place struct lock shrinks from 48 to 40 bytes.

Reviewed by:	kib (previous version)
Differential Revision:	https://reviews.freebsd.org/D28680
2021-02-15 13:57:25 +00:00

753 lines
19 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2006 John Baldwin <jhb@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* This module holds the global variables and functions used to maintain
* lock_object structures.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ddb.h"
#include "opt_mprof.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/lock_profile.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/pcpu.h>
#include <sys/proc.h>
#include <sys/sbuf.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/sysctl.h>
#ifdef DDB
#include <ddb/ddb.h>
#endif
#include <machine/cpufunc.h>
SDT_PROVIDER_DEFINE(lock);
SDT_PROBE_DEFINE1(lock, , , starvation, "u_int");
CTASSERT(LOCK_CLASS_MAX == 15);
struct lock_class *lock_classes[LOCK_CLASS_MAX + 1] = {
&lock_class_mtx_spin,
&lock_class_mtx_sleep,
&lock_class_sx,
&lock_class_rm,
&lock_class_rm_sleepable,
&lock_class_rw,
&lock_class_lockmgr,
};
void
lock_init(struct lock_object *lock, struct lock_class *class, const char *name,
const char *type, int flags)
{
int i;
/* Check for double-init and zero object. */
KASSERT(flags & LO_NEW || !lock_initialized(lock),
("lock \"%s\" %p already initialized", name, lock));
/* Look up lock class to find its index. */
for (i = 0; i < LOCK_CLASS_MAX; i++)
if (lock_classes[i] == class) {
lock->lo_flags = i << LO_CLASSSHIFT;
break;
}
KASSERT(i < LOCK_CLASS_MAX, ("unknown lock class %p", class));
/* Initialize the lock object. */
lock->lo_name = name;
lock->lo_flags |= flags | LO_INITIALIZED;
LOCK_LOG_INIT(lock, 0);
WITNESS_INIT(lock, (type != NULL) ? type : name);
}
void
lock_destroy(struct lock_object *lock)
{
KASSERT(lock_initialized(lock), ("lock %p is not initialized", lock));
WITNESS_DESTROY(lock);
LOCK_LOG_DESTROY(lock, 0);
lock->lo_flags &= ~LO_INITIALIZED;
}
static SYSCTL_NODE(_debug, OID_AUTO, lock, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
"lock debugging");
static SYSCTL_NODE(_debug_lock, OID_AUTO, delay,
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
"lock delay");
static u_int __read_mostly starvation_limit = 131072;
SYSCTL_INT(_debug_lock_delay, OID_AUTO, starvation_limit, CTLFLAG_RW,
&starvation_limit, 0, "");
static u_int __read_mostly restrict_starvation = 0;
SYSCTL_INT(_debug_lock_delay, OID_AUTO, restrict_starvation, CTLFLAG_RW,
&restrict_starvation, 0, "");
void
lock_delay(struct lock_delay_arg *la)
{
struct lock_delay_config *lc = la->config;
u_short i;
la->delay <<= 1;
if (__predict_false(la->delay > lc->max))
la->delay = lc->max;
for (i = la->delay; i > 0; i--)
cpu_spinwait();
la->spin_cnt += la->delay;
if (__predict_false(la->spin_cnt > starvation_limit)) {
SDT_PROBE1(lock, , , starvation, la->delay);
if (restrict_starvation)
la->delay = lc->base;
}
}
static u_int
lock_roundup_2(u_int val)
{
u_int res;
for (res = 1; res <= val; res <<= 1)
continue;
return (res);
}
void
lock_delay_default_init(struct lock_delay_config *lc)
{
lc->base = 1;
lc->max = lock_roundup_2(mp_ncpus) * 256;
if (lc->max > 32678)
lc->max = 32678;
}
struct lock_delay_config __read_frequently locks_delay;
u_short __read_frequently locks_delay_retries;
u_short __read_frequently locks_delay_loops;
SYSCTL_U16(_debug_lock, OID_AUTO, delay_base, CTLFLAG_RW, &locks_delay.base,
0, "");
SYSCTL_U16(_debug_lock, OID_AUTO, delay_max, CTLFLAG_RW, &locks_delay.max,
0, "");
SYSCTL_U16(_debug_lock, OID_AUTO, delay_retries, CTLFLAG_RW, &locks_delay_retries,
0, "");
SYSCTL_U16(_debug_lock, OID_AUTO, delay_loops, CTLFLAG_RW, &locks_delay_loops,
0, "");
static void
locks_delay_init(void *arg __unused)
{
lock_delay_default_init(&locks_delay);
locks_delay_retries = 10;
locks_delay_loops = max(10000, locks_delay.max);
}
LOCK_DELAY_SYSINIT(locks_delay_init);
#ifdef DDB
DB_SHOW_COMMAND(lock, db_show_lock)
{
struct lock_object *lock;
struct lock_class *class;
if (!have_addr)
return;
lock = (struct lock_object *)addr;
if (LO_CLASSINDEX(lock) > LOCK_CLASS_MAX) {
db_printf("Unknown lock class: %d\n", LO_CLASSINDEX(lock));
return;
}
class = LOCK_CLASS(lock);
db_printf(" class: %s\n", class->lc_name);
db_printf(" name: %s\n", lock->lo_name);
class->lc_ddb_show(lock);
}
#endif
#ifdef LOCK_PROFILING
/*
* One object per-thread for each lock the thread owns. Tracks individual
* lock instances.
*/
struct lock_profile_object {
LIST_ENTRY(lock_profile_object) lpo_link;
struct lock_object *lpo_obj;
const char *lpo_file;
int lpo_line;
uint16_t lpo_ref;
uint16_t lpo_cnt;
uint64_t lpo_acqtime;
uint64_t lpo_waittime;
u_int lpo_contest_locking;
};
/*
* One lock_prof for each (file, line, lock object) triple.
*/
struct lock_prof {
SLIST_ENTRY(lock_prof) link;
struct lock_class *class;
const char *file;
const char *name;
int line;
int ticks;
uintmax_t cnt_wait_max;
uintmax_t cnt_max;
uintmax_t cnt_tot;
uintmax_t cnt_wait;
uintmax_t cnt_cur;
uintmax_t cnt_contest_locking;
};
SLIST_HEAD(lphead, lock_prof);
#define LPROF_HASH_SIZE 4096
#define LPROF_HASH_MASK (LPROF_HASH_SIZE - 1)
#define LPROF_CACHE_SIZE 4096
/*
* Array of objects and profs for each type of object for each cpu. Spinlocks
* are handled separately because a thread may be preempted and acquire a
* spinlock while in the lock profiling code of a non-spinlock. In this way
* we only need a critical section to protect the per-cpu lists.
*/
struct lock_prof_type {
struct lphead lpt_lpalloc;
struct lpohead lpt_lpoalloc;
struct lphead lpt_hash[LPROF_HASH_SIZE];
struct lock_prof lpt_prof[LPROF_CACHE_SIZE];
struct lock_profile_object lpt_objs[LPROF_CACHE_SIZE];
};
struct lock_prof_cpu {
struct lock_prof_type lpc_types[2]; /* One for spin one for other. */
};
DPCPU_DEFINE_STATIC(struct lock_prof_cpu, lp);
#define LP_CPU_SELF (DPCPU_PTR(lp))
#define LP_CPU(cpu) (DPCPU_ID_PTR((cpu), lp))
volatile int __read_mostly lock_prof_enable;
static volatile int lock_prof_resetting;
#define LPROF_SBUF_SIZE 256
static int lock_prof_rejected;
static int lock_prof_skipspin;
static int lock_prof_skipcount;
#ifndef USE_CPU_NANOSECONDS
uint64_t
nanoseconds(void)
{
struct bintime bt;
uint64_t ns;
binuptime(&bt);
/* From bintime2timespec */
ns = bt.sec * (uint64_t)1000000000;
ns += ((uint64_t)1000000000 * (uint32_t)(bt.frac >> 32)) >> 32;
return (ns);
}
#endif
static void
lock_prof_init_type(struct lock_prof_type *type)
{
int i;
SLIST_INIT(&type->lpt_lpalloc);
LIST_INIT(&type->lpt_lpoalloc);
for (i = 0; i < LPROF_CACHE_SIZE; i++) {
SLIST_INSERT_HEAD(&type->lpt_lpalloc, &type->lpt_prof[i],
link);
LIST_INSERT_HEAD(&type->lpt_lpoalloc, &type->lpt_objs[i],
lpo_link);
}
}
static void
lock_prof_init(void *arg)
{
int cpu;
CPU_FOREACH(cpu) {
lock_prof_init_type(&LP_CPU(cpu)->lpc_types[0]);
lock_prof_init_type(&LP_CPU(cpu)->lpc_types[1]);
}
}
SYSINIT(lockprof, SI_SUB_SMP, SI_ORDER_ANY, lock_prof_init, NULL);
static void
lock_prof_reset_wait(void)
{
/*
* Spin relinquishing our cpu so that quiesce_all_cpus may
* complete.
*/
while (lock_prof_resetting)
sched_relinquish(curthread);
}
static void
lock_prof_reset(void)
{
struct lock_prof_cpu *lpc;
int enabled, i, cpu;
/*
* We not only race with acquiring and releasing locks but also
* thread exit. To be certain that threads exit without valid head
* pointers they must see resetting set before enabled is cleared.
* Otherwise a lock may not be removed from a per-thread list due
* to disabled being set but not wait for reset() to remove it below.
*/
atomic_store_rel_int(&lock_prof_resetting, 1);
enabled = lock_prof_enable;
lock_prof_enable = 0;
/*
* This both publishes lock_prof_enable as disabled and makes sure
* everyone else reads it if they are not far enough. We wait for the
* rest down below.
*/
cpus_fence_seq_cst();
quiesce_all_critical();
/*
* Some objects may have migrated between CPUs. Clear all links
* before we zero the structures. Some items may still be linked
* into per-thread lists as well.
*/
CPU_FOREACH(cpu) {
lpc = LP_CPU(cpu);
for (i = 0; i < LPROF_CACHE_SIZE; i++) {
LIST_REMOVE(&lpc->lpc_types[0].lpt_objs[i], lpo_link);
LIST_REMOVE(&lpc->lpc_types[1].lpt_objs[i], lpo_link);
}
}
CPU_FOREACH(cpu) {
lpc = LP_CPU(cpu);
bzero(lpc, sizeof(*lpc));
lock_prof_init_type(&lpc->lpc_types[0]);
lock_prof_init_type(&lpc->lpc_types[1]);
}
/*
* Paired with the fence from cpus_fence_seq_cst()
*/
atomic_store_rel_int(&lock_prof_resetting, 0);
lock_prof_enable = enabled;
}
static void
lock_prof_output(struct lock_prof *lp, struct sbuf *sb)
{
const char *p;
for (p = lp->file; p != NULL && strncmp(p, "../", 3) == 0; p += 3);
sbuf_printf(sb,
"%8ju %9ju %11ju %11ju %11ju %6ju %6ju %2ju %6ju %s:%d (%s:%s)\n",
lp->cnt_max / 1000, lp->cnt_wait_max / 1000, lp->cnt_tot / 1000,
lp->cnt_wait / 1000, lp->cnt_cur,
lp->cnt_cur == 0 ? (uintmax_t)0 :
lp->cnt_tot / (lp->cnt_cur * 1000),
lp->cnt_cur == 0 ? (uintmax_t)0 :
lp->cnt_wait / (lp->cnt_cur * 1000),
(uintmax_t)0, lp->cnt_contest_locking,
p, lp->line, lp->class->lc_name, lp->name);
}
static void
lock_prof_sum(struct lock_prof *match, struct lock_prof *dst, int hash,
int spin, int t)
{
struct lock_prof_type *type;
struct lock_prof *l;
int cpu;
dst->file = match->file;
dst->line = match->line;
dst->class = match->class;
dst->name = match->name;
CPU_FOREACH(cpu) {
type = &LP_CPU(cpu)->lpc_types[spin];
SLIST_FOREACH(l, &type->lpt_hash[hash], link) {
if (l->ticks == t)
continue;
if (l->file != match->file || l->line != match->line ||
l->name != match->name)
continue;
l->ticks = t;
if (l->cnt_max > dst->cnt_max)
dst->cnt_max = l->cnt_max;
if (l->cnt_wait_max > dst->cnt_wait_max)
dst->cnt_wait_max = l->cnt_wait_max;
dst->cnt_tot += l->cnt_tot;
dst->cnt_wait += l->cnt_wait;
dst->cnt_cur += l->cnt_cur;
dst->cnt_contest_locking += l->cnt_contest_locking;
}
}
}
static void
lock_prof_type_stats(struct lock_prof_type *type, struct sbuf *sb, int spin,
int t)
{
struct lock_prof *l;
int i;
for (i = 0; i < LPROF_HASH_SIZE; ++i) {
SLIST_FOREACH(l, &type->lpt_hash[i], link) {
struct lock_prof lp = {};
if (l->ticks == t)
continue;
lock_prof_sum(l, &lp, i, spin, t);
lock_prof_output(&lp, sb);
}
}
}
static int
dump_lock_prof_stats(SYSCTL_HANDLER_ARGS)
{
struct sbuf *sb;
int error, cpu, t;
int enabled;
error = sysctl_wire_old_buffer(req, 0);
if (error != 0)
return (error);
sb = sbuf_new_for_sysctl(NULL, NULL, LPROF_SBUF_SIZE, req);
sbuf_printf(sb, "\n%8s %9s %11s %11s %11s %6s %6s %2s %6s %s\n",
"max", "wait_max", "total", "wait_total", "count", "avg", "wait_avg", "cnt_hold", "cnt_lock", "name");
enabled = lock_prof_enable;
lock_prof_enable = 0;
/*
* See the comment in lock_prof_reset
*/
cpus_fence_seq_cst();
quiesce_all_critical();
t = ticks;
CPU_FOREACH(cpu) {
lock_prof_type_stats(&LP_CPU(cpu)->lpc_types[0], sb, 0, t);
lock_prof_type_stats(&LP_CPU(cpu)->lpc_types[1], sb, 1, t);
}
atomic_thread_fence_rel();
lock_prof_enable = enabled;
error = sbuf_finish(sb);
/* Output a trailing NUL. */
if (error == 0)
error = SYSCTL_OUT(req, "", 1);
sbuf_delete(sb);
return (error);
}
static int
enable_lock_prof(SYSCTL_HANDLER_ARGS)
{
int error, v;
v = lock_prof_enable;
error = sysctl_handle_int(oidp, &v, v, req);
if (error)
return (error);
if (req->newptr == NULL)
return (error);
if (v == lock_prof_enable)
return (0);
if (v == 1)
lock_prof_reset();
lock_prof_enable = !!v;
return (0);
}
static int
reset_lock_prof_stats(SYSCTL_HANDLER_ARGS)
{
int error, v;
v = 0;
error = sysctl_handle_int(oidp, &v, 0, req);
if (error)
return (error);
if (req->newptr == NULL)
return (error);
if (v == 0)
return (0);
lock_prof_reset();
return (0);
}
static struct lock_prof *
lock_profile_lookup(struct lock_object *lo, int spin, const char *file,
int line)
{
const char *unknown = "(unknown)";
struct lock_prof_type *type;
struct lock_prof *lp;
struct lphead *head;
const char *p;
u_int hash;
p = file;
if (p == NULL || *p == '\0')
p = unknown;
hash = (uintptr_t)lo->lo_name * 31 + (uintptr_t)p * 31 + line;
hash &= LPROF_HASH_MASK;
type = &LP_CPU_SELF->lpc_types[spin];
head = &type->lpt_hash[hash];
SLIST_FOREACH(lp, head, link) {
if (lp->line == line && lp->file == p &&
lp->name == lo->lo_name)
return (lp);
}
lp = SLIST_FIRST(&type->lpt_lpalloc);
if (lp == NULL) {
lock_prof_rejected++;
return (lp);
}
SLIST_REMOVE_HEAD(&type->lpt_lpalloc, link);
lp->file = p;
lp->line = line;
lp->class = LOCK_CLASS(lo);
lp->name = lo->lo_name;
SLIST_INSERT_HEAD(&type->lpt_hash[hash], lp, link);
return (lp);
}
static struct lock_profile_object *
lock_profile_object_lookup(struct lock_object *lo, int spin, const char *file,
int line)
{
struct lock_profile_object *l;
struct lock_prof_type *type;
struct lpohead *head;
head = &curthread->td_lprof[spin];
LIST_FOREACH(l, head, lpo_link)
if (l->lpo_obj == lo && l->lpo_file == file &&
l->lpo_line == line)
return (l);
type = &LP_CPU_SELF->lpc_types[spin];
l = LIST_FIRST(&type->lpt_lpoalloc);
if (l == NULL) {
lock_prof_rejected++;
return (NULL);
}
LIST_REMOVE(l, lpo_link);
l->lpo_obj = lo;
l->lpo_file = file;
l->lpo_line = line;
l->lpo_cnt = 0;
LIST_INSERT_HEAD(head, l, lpo_link);
return (l);
}
void
lock_profile_obtain_lock_success(struct lock_object *lo, int contested,
uint64_t waittime, const char *file, int line)
{
static int lock_prof_count;
struct lock_profile_object *l;
int spin;
if (SCHEDULER_STOPPED())
return;
/* don't reset the timer when/if recursing */
if (!lock_prof_enable || (lo->lo_flags & LO_NOPROFILE))
return;
if (lock_prof_skipcount &&
(++lock_prof_count % lock_prof_skipcount) != 0)
return;
spin = (LOCK_CLASS(lo)->lc_flags & LC_SPINLOCK) ? 1 : 0;
if (spin && lock_prof_skipspin == 1)
return;
critical_enter();
/* Recheck enabled now that we're in a critical section. */
if (lock_prof_enable == 0)
goto out;
l = lock_profile_object_lookup(lo, spin, file, line);
if (l == NULL)
goto out;
l->lpo_cnt++;
if (++l->lpo_ref > 1)
goto out;
l->lpo_contest_locking = contested;
l->lpo_acqtime = nanoseconds();
if (waittime && (l->lpo_acqtime > waittime))
l->lpo_waittime = l->lpo_acqtime - waittime;
else
l->lpo_waittime = 0;
out:
/*
* Paired with cpus_fence_seq_cst().
*/
atomic_thread_fence_rel();
critical_exit();
}
void
lock_profile_thread_exit(struct thread *td)
{
#ifdef INVARIANTS
struct lock_profile_object *l;
MPASS(curthread->td_critnest == 0);
#endif
/*
* If lock profiling was disabled we have to wait for reset to
* clear our pointers before we can exit safely.
*/
lock_prof_reset_wait();
#ifdef INVARIANTS
LIST_FOREACH(l, &td->td_lprof[0], lpo_link)
printf("thread still holds lock acquired at %s:%d\n",
l->lpo_file, l->lpo_line);
LIST_FOREACH(l, &td->td_lprof[1], lpo_link)
printf("thread still holds lock acquired at %s:%d\n",
l->lpo_file, l->lpo_line);
#endif
MPASS(LIST_FIRST(&td->td_lprof[0]) == NULL);
MPASS(LIST_FIRST(&td->td_lprof[1]) == NULL);
}
void
lock_profile_release_lock(struct lock_object *lo)
{
struct lock_profile_object *l;
struct lock_prof_type *type;
struct lock_prof *lp;
uint64_t curtime, holdtime;
struct lpohead *head;
int spin;
if (SCHEDULER_STOPPED())
return;
if (lo->lo_flags & LO_NOPROFILE)
return;
spin = (LOCK_CLASS(lo)->lc_flags & LC_SPINLOCK) ? 1 : 0;
head = &curthread->td_lprof[spin];
if (LIST_FIRST(head) == NULL)
return;
critical_enter();
/* Recheck enabled now that we're in a critical section. */
if (lock_prof_enable == 0 && lock_prof_resetting == 1)
goto out;
/*
* If lock profiling is not enabled we still want to remove the
* lpo from our queue.
*/
LIST_FOREACH(l, head, lpo_link)
if (l->lpo_obj == lo)
break;
if (l == NULL)
goto out;
if (--l->lpo_ref > 0)
goto out;
lp = lock_profile_lookup(lo, spin, l->lpo_file, l->lpo_line);
if (lp == NULL)
goto release;
curtime = nanoseconds();
if (curtime < l->lpo_acqtime)
goto release;
holdtime = curtime - l->lpo_acqtime;
/*
* Record if the lock has been held longer now than ever
* before.
*/
if (holdtime > lp->cnt_max)
lp->cnt_max = holdtime;
if (l->lpo_waittime > lp->cnt_wait_max)
lp->cnt_wait_max = l->lpo_waittime;
lp->cnt_tot += holdtime;
lp->cnt_wait += l->lpo_waittime;
lp->cnt_contest_locking += l->lpo_contest_locking;
lp->cnt_cur += l->lpo_cnt;
release:
LIST_REMOVE(l, lpo_link);
type = &LP_CPU_SELF->lpc_types[spin];
LIST_INSERT_HEAD(&type->lpt_lpoalloc, l, lpo_link);
out:
/*
* Paired with cpus_fence_seq_cst().
*/
atomic_thread_fence_rel();
critical_exit();
}
static SYSCTL_NODE(_debug_lock, OID_AUTO, prof,
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
"lock profiling");
SYSCTL_INT(_debug_lock_prof, OID_AUTO, skipspin, CTLFLAG_RW,
&lock_prof_skipspin, 0, "Skip profiling on spinlocks.");
SYSCTL_INT(_debug_lock_prof, OID_AUTO, skipcount, CTLFLAG_RW,
&lock_prof_skipcount, 0, "Sample approximately every N lock acquisitions.");
SYSCTL_INT(_debug_lock_prof, OID_AUTO, rejected, CTLFLAG_RD,
&lock_prof_rejected, 0, "Number of rejected profiling records");
SYSCTL_PROC(_debug_lock_prof, OID_AUTO, stats,
CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
dump_lock_prof_stats, "A",
"Lock profiling statistics");
SYSCTL_PROC(_debug_lock_prof, OID_AUTO, reset,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0,
reset_lock_prof_stats, "I",
"Reset lock profiling statistics");
SYSCTL_PROC(_debug_lock_prof, OID_AUTO, enable,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0,
enable_lock_prof, "I",
"Enable lock profiling");
#endif