f3eb12e4a6
Noted and reviewed by: grehan Sponsored by: The FreeBSD Foundation Differential revision: https://reviews.freebsd.org/D25273
2943 lines
69 KiB
C
2943 lines
69 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright (c) 2012 Sandvine, Inc.
|
|
* Copyright (c) 2012 NetApp, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#ifdef _KERNEL
|
|
#include <sys/param.h>
|
|
#include <sys/pcpu.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/pmap.h>
|
|
|
|
#include <machine/vmparam.h>
|
|
#include <machine/vmm.h>
|
|
#else /* !_KERNEL */
|
|
#include <sys/types.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/_iovec.h>
|
|
|
|
#include <machine/vmm.h>
|
|
|
|
#include <err.h>
|
|
#include <assert.h>
|
|
#include <stdbool.h>
|
|
#include <stddef.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <strings.h>
|
|
#include <vmmapi.h>
|
|
#define KASSERT(exp,msg) assert((exp))
|
|
#define panic(...) errx(4, __VA_ARGS__)
|
|
#endif /* _KERNEL */
|
|
|
|
#include <machine/vmm_instruction_emul.h>
|
|
#include <x86/psl.h>
|
|
#include <x86/specialreg.h>
|
|
|
|
/* struct vie_op.op_type */
|
|
enum {
|
|
VIE_OP_TYPE_NONE = 0,
|
|
VIE_OP_TYPE_MOV,
|
|
VIE_OP_TYPE_MOVSX,
|
|
VIE_OP_TYPE_MOVZX,
|
|
VIE_OP_TYPE_AND,
|
|
VIE_OP_TYPE_OR,
|
|
VIE_OP_TYPE_SUB,
|
|
VIE_OP_TYPE_TWO_BYTE,
|
|
VIE_OP_TYPE_PUSH,
|
|
VIE_OP_TYPE_CMP,
|
|
VIE_OP_TYPE_POP,
|
|
VIE_OP_TYPE_MOVS,
|
|
VIE_OP_TYPE_GROUP1,
|
|
VIE_OP_TYPE_STOS,
|
|
VIE_OP_TYPE_BITTEST,
|
|
VIE_OP_TYPE_TWOB_GRP15,
|
|
VIE_OP_TYPE_ADD,
|
|
VIE_OP_TYPE_TEST,
|
|
VIE_OP_TYPE_BEXTR,
|
|
VIE_OP_TYPE_LAST
|
|
};
|
|
|
|
/* struct vie_op.op_flags */
|
|
#define VIE_OP_F_IMM (1 << 0) /* 16/32-bit immediate operand */
|
|
#define VIE_OP_F_IMM8 (1 << 1) /* 8-bit immediate operand */
|
|
#define VIE_OP_F_MOFFSET (1 << 2) /* 16/32/64-bit immediate moffset */
|
|
#define VIE_OP_F_NO_MODRM (1 << 3)
|
|
#define VIE_OP_F_NO_GLA_VERIFICATION (1 << 4)
|
|
|
|
static const struct vie_op three_byte_opcodes_0f38[256] = {
|
|
[0xF7] = {
|
|
.op_byte = 0xF7,
|
|
.op_type = VIE_OP_TYPE_BEXTR,
|
|
},
|
|
};
|
|
|
|
static const struct vie_op two_byte_opcodes[256] = {
|
|
[0xAE] = {
|
|
.op_byte = 0xAE,
|
|
.op_type = VIE_OP_TYPE_TWOB_GRP15,
|
|
},
|
|
[0xB6] = {
|
|
.op_byte = 0xB6,
|
|
.op_type = VIE_OP_TYPE_MOVZX,
|
|
},
|
|
[0xB7] = {
|
|
.op_byte = 0xB7,
|
|
.op_type = VIE_OP_TYPE_MOVZX,
|
|
},
|
|
[0xBA] = {
|
|
.op_byte = 0xBA,
|
|
.op_type = VIE_OP_TYPE_BITTEST,
|
|
.op_flags = VIE_OP_F_IMM8,
|
|
},
|
|
[0xBE] = {
|
|
.op_byte = 0xBE,
|
|
.op_type = VIE_OP_TYPE_MOVSX,
|
|
},
|
|
};
|
|
|
|
static const struct vie_op one_byte_opcodes[256] = {
|
|
[0x03] = {
|
|
.op_byte = 0x03,
|
|
.op_type = VIE_OP_TYPE_ADD,
|
|
},
|
|
[0x0F] = {
|
|
.op_byte = 0x0F,
|
|
.op_type = VIE_OP_TYPE_TWO_BYTE
|
|
},
|
|
[0x0B] = {
|
|
.op_byte = 0x0B,
|
|
.op_type = VIE_OP_TYPE_OR,
|
|
},
|
|
[0x2B] = {
|
|
.op_byte = 0x2B,
|
|
.op_type = VIE_OP_TYPE_SUB,
|
|
},
|
|
[0x39] = {
|
|
.op_byte = 0x39,
|
|
.op_type = VIE_OP_TYPE_CMP,
|
|
},
|
|
[0x3B] = {
|
|
.op_byte = 0x3B,
|
|
.op_type = VIE_OP_TYPE_CMP,
|
|
},
|
|
[0x88] = {
|
|
.op_byte = 0x88,
|
|
.op_type = VIE_OP_TYPE_MOV,
|
|
},
|
|
[0x89] = {
|
|
.op_byte = 0x89,
|
|
.op_type = VIE_OP_TYPE_MOV,
|
|
},
|
|
[0x8A] = {
|
|
.op_byte = 0x8A,
|
|
.op_type = VIE_OP_TYPE_MOV,
|
|
},
|
|
[0x8B] = {
|
|
.op_byte = 0x8B,
|
|
.op_type = VIE_OP_TYPE_MOV,
|
|
},
|
|
[0xA1] = {
|
|
.op_byte = 0xA1,
|
|
.op_type = VIE_OP_TYPE_MOV,
|
|
.op_flags = VIE_OP_F_MOFFSET | VIE_OP_F_NO_MODRM,
|
|
},
|
|
[0xA3] = {
|
|
.op_byte = 0xA3,
|
|
.op_type = VIE_OP_TYPE_MOV,
|
|
.op_flags = VIE_OP_F_MOFFSET | VIE_OP_F_NO_MODRM,
|
|
},
|
|
[0xA4] = {
|
|
.op_byte = 0xA4,
|
|
.op_type = VIE_OP_TYPE_MOVS,
|
|
.op_flags = VIE_OP_F_NO_MODRM | VIE_OP_F_NO_GLA_VERIFICATION
|
|
},
|
|
[0xA5] = {
|
|
.op_byte = 0xA5,
|
|
.op_type = VIE_OP_TYPE_MOVS,
|
|
.op_flags = VIE_OP_F_NO_MODRM | VIE_OP_F_NO_GLA_VERIFICATION
|
|
},
|
|
[0xAA] = {
|
|
.op_byte = 0xAA,
|
|
.op_type = VIE_OP_TYPE_STOS,
|
|
.op_flags = VIE_OP_F_NO_MODRM | VIE_OP_F_NO_GLA_VERIFICATION
|
|
},
|
|
[0xAB] = {
|
|
.op_byte = 0xAB,
|
|
.op_type = VIE_OP_TYPE_STOS,
|
|
.op_flags = VIE_OP_F_NO_MODRM | VIE_OP_F_NO_GLA_VERIFICATION
|
|
},
|
|
[0xC6] = {
|
|
/* XXX Group 11 extended opcode - not just MOV */
|
|
.op_byte = 0xC6,
|
|
.op_type = VIE_OP_TYPE_MOV,
|
|
.op_flags = VIE_OP_F_IMM8,
|
|
},
|
|
[0xC7] = {
|
|
.op_byte = 0xC7,
|
|
.op_type = VIE_OP_TYPE_MOV,
|
|
.op_flags = VIE_OP_F_IMM,
|
|
},
|
|
[0x23] = {
|
|
.op_byte = 0x23,
|
|
.op_type = VIE_OP_TYPE_AND,
|
|
},
|
|
[0x80] = {
|
|
/* Group 1 extended opcode */
|
|
.op_byte = 0x80,
|
|
.op_type = VIE_OP_TYPE_GROUP1,
|
|
.op_flags = VIE_OP_F_IMM8,
|
|
},
|
|
[0x81] = {
|
|
/* Group 1 extended opcode */
|
|
.op_byte = 0x81,
|
|
.op_type = VIE_OP_TYPE_GROUP1,
|
|
.op_flags = VIE_OP_F_IMM,
|
|
},
|
|
[0x83] = {
|
|
/* Group 1 extended opcode */
|
|
.op_byte = 0x83,
|
|
.op_type = VIE_OP_TYPE_GROUP1,
|
|
.op_flags = VIE_OP_F_IMM8,
|
|
},
|
|
[0x8F] = {
|
|
/* XXX Group 1A extended opcode - not just POP */
|
|
.op_byte = 0x8F,
|
|
.op_type = VIE_OP_TYPE_POP,
|
|
},
|
|
[0xF7] = {
|
|
/* XXX Group 3 extended opcode - not just TEST */
|
|
.op_byte = 0xF7,
|
|
.op_type = VIE_OP_TYPE_TEST,
|
|
.op_flags = VIE_OP_F_IMM,
|
|
},
|
|
[0xFF] = {
|
|
/* XXX Group 5 extended opcode - not just PUSH */
|
|
.op_byte = 0xFF,
|
|
.op_type = VIE_OP_TYPE_PUSH,
|
|
}
|
|
};
|
|
|
|
/* struct vie.mod */
|
|
#define VIE_MOD_INDIRECT 0
|
|
#define VIE_MOD_INDIRECT_DISP8 1
|
|
#define VIE_MOD_INDIRECT_DISP32 2
|
|
#define VIE_MOD_DIRECT 3
|
|
|
|
/* struct vie.rm */
|
|
#define VIE_RM_SIB 4
|
|
#define VIE_RM_DISP32 5
|
|
|
|
#define GB (1024 * 1024 * 1024)
|
|
|
|
static enum vm_reg_name gpr_map[16] = {
|
|
VM_REG_GUEST_RAX,
|
|
VM_REG_GUEST_RCX,
|
|
VM_REG_GUEST_RDX,
|
|
VM_REG_GUEST_RBX,
|
|
VM_REG_GUEST_RSP,
|
|
VM_REG_GUEST_RBP,
|
|
VM_REG_GUEST_RSI,
|
|
VM_REG_GUEST_RDI,
|
|
VM_REG_GUEST_R8,
|
|
VM_REG_GUEST_R9,
|
|
VM_REG_GUEST_R10,
|
|
VM_REG_GUEST_R11,
|
|
VM_REG_GUEST_R12,
|
|
VM_REG_GUEST_R13,
|
|
VM_REG_GUEST_R14,
|
|
VM_REG_GUEST_R15
|
|
};
|
|
|
|
static uint64_t size2mask[] = {
|
|
[1] = 0xff,
|
|
[2] = 0xffff,
|
|
[4] = 0xffffffff,
|
|
[8] = 0xffffffffffffffff,
|
|
};
|
|
|
|
static int
|
|
vie_read_register(void *vm, int vcpuid, enum vm_reg_name reg, uint64_t *rval)
|
|
{
|
|
int error;
|
|
|
|
error = vm_get_register(vm, vcpuid, reg, rval);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
vie_calc_bytereg(struct vie *vie, enum vm_reg_name *reg, int *lhbr)
|
|
{
|
|
*lhbr = 0;
|
|
*reg = gpr_map[vie->reg];
|
|
|
|
/*
|
|
* 64-bit mode imposes limitations on accessing legacy high byte
|
|
* registers (lhbr).
|
|
*
|
|
* The legacy high-byte registers cannot be addressed if the REX
|
|
* prefix is present. In this case the values 4, 5, 6 and 7 of the
|
|
* 'ModRM:reg' field address %spl, %bpl, %sil and %dil respectively.
|
|
*
|
|
* If the REX prefix is not present then the values 4, 5, 6 and 7
|
|
* of the 'ModRM:reg' field address the legacy high-byte registers,
|
|
* %ah, %ch, %dh and %bh respectively.
|
|
*/
|
|
if (!vie->rex_present) {
|
|
if (vie->reg & 0x4) {
|
|
*lhbr = 1;
|
|
*reg = gpr_map[vie->reg & 0x3];
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
vie_read_bytereg(void *vm, int vcpuid, struct vie *vie, uint8_t *rval)
|
|
{
|
|
uint64_t val;
|
|
int error, lhbr;
|
|
enum vm_reg_name reg;
|
|
|
|
vie_calc_bytereg(vie, ®, &lhbr);
|
|
error = vm_get_register(vm, vcpuid, reg, &val);
|
|
|
|
/*
|
|
* To obtain the value of a legacy high byte register shift the
|
|
* base register right by 8 bits (%ah = %rax >> 8).
|
|
*/
|
|
if (lhbr)
|
|
*rval = val >> 8;
|
|
else
|
|
*rval = val;
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
vie_write_bytereg(void *vm, int vcpuid, struct vie *vie, uint8_t byte)
|
|
{
|
|
uint64_t origval, val, mask;
|
|
int error, lhbr;
|
|
enum vm_reg_name reg;
|
|
|
|
vie_calc_bytereg(vie, ®, &lhbr);
|
|
error = vm_get_register(vm, vcpuid, reg, &origval);
|
|
if (error == 0) {
|
|
val = byte;
|
|
mask = 0xff;
|
|
if (lhbr) {
|
|
/*
|
|
* Shift left by 8 to store 'byte' in a legacy high
|
|
* byte register.
|
|
*/
|
|
val <<= 8;
|
|
mask <<= 8;
|
|
}
|
|
val |= origval & ~mask;
|
|
error = vm_set_register(vm, vcpuid, reg, val);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
vie_update_register(void *vm, int vcpuid, enum vm_reg_name reg,
|
|
uint64_t val, int size)
|
|
{
|
|
int error;
|
|
uint64_t origval;
|
|
|
|
switch (size) {
|
|
case 1:
|
|
case 2:
|
|
error = vie_read_register(vm, vcpuid, reg, &origval);
|
|
if (error)
|
|
return (error);
|
|
val &= size2mask[size];
|
|
val |= origval & ~size2mask[size];
|
|
break;
|
|
case 4:
|
|
val &= 0xffffffffUL;
|
|
break;
|
|
case 8:
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
error = vm_set_register(vm, vcpuid, reg, val);
|
|
return (error);
|
|
}
|
|
|
|
#define RFLAGS_STATUS_BITS (PSL_C | PSL_PF | PSL_AF | PSL_Z | PSL_N | PSL_V)
|
|
|
|
/*
|
|
* Return the status flags that would result from doing (x - y).
|
|
*/
|
|
#define GETCC(sz) \
|
|
static u_long \
|
|
getcc##sz(uint##sz##_t x, uint##sz##_t y) \
|
|
{ \
|
|
u_long rflags; \
|
|
\
|
|
__asm __volatile("sub %2,%1; pushfq; popq %0" : \
|
|
"=r" (rflags), "+r" (x) : "m" (y)); \
|
|
return (rflags); \
|
|
} struct __hack
|
|
|
|
GETCC(8);
|
|
GETCC(16);
|
|
GETCC(32);
|
|
GETCC(64);
|
|
|
|
static u_long
|
|
getcc(int opsize, uint64_t x, uint64_t y)
|
|
{
|
|
KASSERT(opsize == 1 || opsize == 2 || opsize == 4 || opsize == 8,
|
|
("getcc: invalid operand size %d", opsize));
|
|
|
|
if (opsize == 1)
|
|
return (getcc8(x, y));
|
|
else if (opsize == 2)
|
|
return (getcc16(x, y));
|
|
else if (opsize == 4)
|
|
return (getcc32(x, y));
|
|
else
|
|
return (getcc64(x, y));
|
|
}
|
|
|
|
/*
|
|
* Macro creation of functions getaddflags{8,16,32,64}
|
|
*/
|
|
#define GETADDFLAGS(sz) \
|
|
static u_long \
|
|
getaddflags##sz(uint##sz##_t x, uint##sz##_t y) \
|
|
{ \
|
|
u_long rflags; \
|
|
\
|
|
__asm __volatile("add %2,%1; pushfq; popq %0" : \
|
|
"=r" (rflags), "+r" (x) : "m" (y)); \
|
|
return (rflags); \
|
|
} struct __hack
|
|
|
|
GETADDFLAGS(8);
|
|
GETADDFLAGS(16);
|
|
GETADDFLAGS(32);
|
|
GETADDFLAGS(64);
|
|
|
|
static u_long
|
|
getaddflags(int opsize, uint64_t x, uint64_t y)
|
|
{
|
|
KASSERT(opsize == 1 || opsize == 2 || opsize == 4 || opsize == 8,
|
|
("getaddflags: invalid operand size %d", opsize));
|
|
|
|
if (opsize == 1)
|
|
return (getaddflags8(x, y));
|
|
else if (opsize == 2)
|
|
return (getaddflags16(x, y));
|
|
else if (opsize == 4)
|
|
return (getaddflags32(x, y));
|
|
else
|
|
return (getaddflags64(x, y));
|
|
}
|
|
|
|
/*
|
|
* Return the status flags that would result from doing (x & y).
|
|
*/
|
|
#define GETANDFLAGS(sz) \
|
|
static u_long \
|
|
getandflags##sz(uint##sz##_t x, uint##sz##_t y) \
|
|
{ \
|
|
u_long rflags; \
|
|
\
|
|
__asm __volatile("and %2,%1; pushfq; popq %0" : \
|
|
"=r" (rflags), "+r" (x) : "m" (y)); \
|
|
return (rflags); \
|
|
} struct __hack
|
|
|
|
GETANDFLAGS(8);
|
|
GETANDFLAGS(16);
|
|
GETANDFLAGS(32);
|
|
GETANDFLAGS(64);
|
|
|
|
static u_long
|
|
getandflags(int opsize, uint64_t x, uint64_t y)
|
|
{
|
|
KASSERT(opsize == 1 || opsize == 2 || opsize == 4 || opsize == 8,
|
|
("getandflags: invalid operand size %d", opsize));
|
|
|
|
if (opsize == 1)
|
|
return (getandflags8(x, y));
|
|
else if (opsize == 2)
|
|
return (getandflags16(x, y));
|
|
else if (opsize == 4)
|
|
return (getandflags32(x, y));
|
|
else
|
|
return (getandflags64(x, y));
|
|
}
|
|
|
|
static int
|
|
emulate_mov(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
|
|
mem_region_read_t memread, mem_region_write_t memwrite, void *arg)
|
|
{
|
|
int error, size;
|
|
enum vm_reg_name reg;
|
|
uint8_t byte;
|
|
uint64_t val;
|
|
|
|
size = vie->opsize;
|
|
error = EINVAL;
|
|
|
|
switch (vie->op.op_byte) {
|
|
case 0x88:
|
|
/*
|
|
* MOV byte from reg (ModRM:reg) to mem (ModRM:r/m)
|
|
* 88/r: mov r/m8, r8
|
|
* REX + 88/r: mov r/m8, r8 (%ah, %ch, %dh, %bh not available)
|
|
*/
|
|
size = 1; /* override for byte operation */
|
|
error = vie_read_bytereg(vm, vcpuid, vie, &byte);
|
|
if (error == 0)
|
|
error = memwrite(vm, vcpuid, gpa, byte, size, arg);
|
|
break;
|
|
case 0x89:
|
|
/*
|
|
* MOV from reg (ModRM:reg) to mem (ModRM:r/m)
|
|
* 89/r: mov r/m16, r16
|
|
* 89/r: mov r/m32, r32
|
|
* REX.W + 89/r mov r/m64, r64
|
|
*/
|
|
reg = gpr_map[vie->reg];
|
|
error = vie_read_register(vm, vcpuid, reg, &val);
|
|
if (error == 0) {
|
|
val &= size2mask[size];
|
|
error = memwrite(vm, vcpuid, gpa, val, size, arg);
|
|
}
|
|
break;
|
|
case 0x8A:
|
|
/*
|
|
* MOV byte from mem (ModRM:r/m) to reg (ModRM:reg)
|
|
* 8A/r: mov r8, r/m8
|
|
* REX + 8A/r: mov r8, r/m8
|
|
*/
|
|
size = 1; /* override for byte operation */
|
|
error = memread(vm, vcpuid, gpa, &val, size, arg);
|
|
if (error == 0)
|
|
error = vie_write_bytereg(vm, vcpuid, vie, val);
|
|
break;
|
|
case 0x8B:
|
|
/*
|
|
* MOV from mem (ModRM:r/m) to reg (ModRM:reg)
|
|
* 8B/r: mov r16, r/m16
|
|
* 8B/r: mov r32, r/m32
|
|
* REX.W 8B/r: mov r64, r/m64
|
|
*/
|
|
error = memread(vm, vcpuid, gpa, &val, size, arg);
|
|
if (error == 0) {
|
|
reg = gpr_map[vie->reg];
|
|
error = vie_update_register(vm, vcpuid, reg, val, size);
|
|
}
|
|
break;
|
|
case 0xA1:
|
|
/*
|
|
* MOV from seg:moffset to AX/EAX/RAX
|
|
* A1: mov AX, moffs16
|
|
* A1: mov EAX, moffs32
|
|
* REX.W + A1: mov RAX, moffs64
|
|
*/
|
|
error = memread(vm, vcpuid, gpa, &val, size, arg);
|
|
if (error == 0) {
|
|
reg = VM_REG_GUEST_RAX;
|
|
error = vie_update_register(vm, vcpuid, reg, val, size);
|
|
}
|
|
break;
|
|
case 0xA3:
|
|
/*
|
|
* MOV from AX/EAX/RAX to seg:moffset
|
|
* A3: mov moffs16, AX
|
|
* A3: mov moffs32, EAX
|
|
* REX.W + A3: mov moffs64, RAX
|
|
*/
|
|
error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RAX, &val);
|
|
if (error == 0) {
|
|
val &= size2mask[size];
|
|
error = memwrite(vm, vcpuid, gpa, val, size, arg);
|
|
}
|
|
break;
|
|
case 0xC6:
|
|
/*
|
|
* MOV from imm8 to mem (ModRM:r/m)
|
|
* C6/0 mov r/m8, imm8
|
|
* REX + C6/0 mov r/m8, imm8
|
|
*/
|
|
size = 1; /* override for byte operation */
|
|
error = memwrite(vm, vcpuid, gpa, vie->immediate, size, arg);
|
|
break;
|
|
case 0xC7:
|
|
/*
|
|
* MOV from imm16/imm32 to mem (ModRM:r/m)
|
|
* C7/0 mov r/m16, imm16
|
|
* C7/0 mov r/m32, imm32
|
|
* REX.W + C7/0 mov r/m64, imm32 (sign-extended to 64-bits)
|
|
*/
|
|
val = vie->immediate & size2mask[size];
|
|
error = memwrite(vm, vcpuid, gpa, val, size, arg);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
emulate_movx(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
|
|
mem_region_read_t memread, mem_region_write_t memwrite,
|
|
void *arg)
|
|
{
|
|
int error, size;
|
|
enum vm_reg_name reg;
|
|
uint64_t val;
|
|
|
|
size = vie->opsize;
|
|
error = EINVAL;
|
|
|
|
switch (vie->op.op_byte) {
|
|
case 0xB6:
|
|
/*
|
|
* MOV and zero extend byte from mem (ModRM:r/m) to
|
|
* reg (ModRM:reg).
|
|
*
|
|
* 0F B6/r movzx r16, r/m8
|
|
* 0F B6/r movzx r32, r/m8
|
|
* REX.W + 0F B6/r movzx r64, r/m8
|
|
*/
|
|
|
|
/* get the first operand */
|
|
error = memread(vm, vcpuid, gpa, &val, 1, arg);
|
|
if (error)
|
|
break;
|
|
|
|
/* get the second operand */
|
|
reg = gpr_map[vie->reg];
|
|
|
|
/* zero-extend byte */
|
|
val = (uint8_t)val;
|
|
|
|
/* write the result */
|
|
error = vie_update_register(vm, vcpuid, reg, val, size);
|
|
break;
|
|
case 0xB7:
|
|
/*
|
|
* MOV and zero extend word from mem (ModRM:r/m) to
|
|
* reg (ModRM:reg).
|
|
*
|
|
* 0F B7/r movzx r32, r/m16
|
|
* REX.W + 0F B7/r movzx r64, r/m16
|
|
*/
|
|
error = memread(vm, vcpuid, gpa, &val, 2, arg);
|
|
if (error)
|
|
return (error);
|
|
|
|
reg = gpr_map[vie->reg];
|
|
|
|
/* zero-extend word */
|
|
val = (uint16_t)val;
|
|
|
|
error = vie_update_register(vm, vcpuid, reg, val, size);
|
|
break;
|
|
case 0xBE:
|
|
/*
|
|
* MOV and sign extend byte from mem (ModRM:r/m) to
|
|
* reg (ModRM:reg).
|
|
*
|
|
* 0F BE/r movsx r16, r/m8
|
|
* 0F BE/r movsx r32, r/m8
|
|
* REX.W + 0F BE/r movsx r64, r/m8
|
|
*/
|
|
|
|
/* get the first operand */
|
|
error = memread(vm, vcpuid, gpa, &val, 1, arg);
|
|
if (error)
|
|
break;
|
|
|
|
/* get the second operand */
|
|
reg = gpr_map[vie->reg];
|
|
|
|
/* sign extend byte */
|
|
val = (int8_t)val;
|
|
|
|
/* write the result */
|
|
error = vie_update_register(vm, vcpuid, reg, val, size);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Helper function to calculate and validate a linear address.
|
|
*/
|
|
static int
|
|
get_gla(void *vm, int vcpuid, struct vie *vie, struct vm_guest_paging *paging,
|
|
int opsize, int addrsize, int prot, enum vm_reg_name seg,
|
|
enum vm_reg_name gpr, uint64_t *gla, int *fault)
|
|
{
|
|
struct seg_desc desc;
|
|
uint64_t cr0, val, rflags;
|
|
int error;
|
|
|
|
error = vie_read_register(vm, vcpuid, VM_REG_GUEST_CR0, &cr0);
|
|
KASSERT(error == 0, ("%s: error %d getting cr0", __func__, error));
|
|
|
|
error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
|
|
KASSERT(error == 0, ("%s: error %d getting rflags", __func__, error));
|
|
|
|
error = vm_get_seg_desc(vm, vcpuid, seg, &desc);
|
|
KASSERT(error == 0, ("%s: error %d getting segment descriptor %d",
|
|
__func__, error, seg));
|
|
|
|
error = vie_read_register(vm, vcpuid, gpr, &val);
|
|
KASSERT(error == 0, ("%s: error %d getting register %d", __func__,
|
|
error, gpr));
|
|
|
|
if (vie_calculate_gla(paging->cpu_mode, seg, &desc, val, opsize,
|
|
addrsize, prot, gla)) {
|
|
if (seg == VM_REG_GUEST_SS)
|
|
vm_inject_ss(vm, vcpuid, 0);
|
|
else
|
|
vm_inject_gp(vm, vcpuid);
|
|
goto guest_fault;
|
|
}
|
|
|
|
if (vie_canonical_check(paging->cpu_mode, *gla)) {
|
|
if (seg == VM_REG_GUEST_SS)
|
|
vm_inject_ss(vm, vcpuid, 0);
|
|
else
|
|
vm_inject_gp(vm, vcpuid);
|
|
goto guest_fault;
|
|
}
|
|
|
|
if (vie_alignment_check(paging->cpl, opsize, cr0, rflags, *gla)) {
|
|
vm_inject_ac(vm, vcpuid, 0);
|
|
goto guest_fault;
|
|
}
|
|
|
|
*fault = 0;
|
|
return (0);
|
|
|
|
guest_fault:
|
|
*fault = 1;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
emulate_movs(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
|
|
struct vm_guest_paging *paging, mem_region_read_t memread,
|
|
mem_region_write_t memwrite, void *arg)
|
|
{
|
|
#ifdef _KERNEL
|
|
struct vm_copyinfo copyinfo[2];
|
|
#else
|
|
struct iovec copyinfo[2];
|
|
#endif
|
|
uint64_t dstaddr, srcaddr, dstgpa, srcgpa, val;
|
|
uint64_t rcx, rdi, rsi, rflags;
|
|
int error, fault, opsize, seg, repeat;
|
|
|
|
opsize = (vie->op.op_byte == 0xA4) ? 1 : vie->opsize;
|
|
val = 0;
|
|
error = 0;
|
|
|
|
/*
|
|
* XXX although the MOVS instruction is only supposed to be used with
|
|
* the "rep" prefix some guests like FreeBSD will use "repnz" instead.
|
|
*
|
|
* Empirically the "repnz" prefix has identical behavior to "rep"
|
|
* and the zero flag does not make a difference.
|
|
*/
|
|
repeat = vie->repz_present | vie->repnz_present;
|
|
|
|
if (repeat) {
|
|
error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RCX, &rcx);
|
|
KASSERT(!error, ("%s: error %d getting rcx", __func__, error));
|
|
|
|
/*
|
|
* The count register is %rcx, %ecx or %cx depending on the
|
|
* address size of the instruction.
|
|
*/
|
|
if ((rcx & vie_size2mask(vie->addrsize)) == 0) {
|
|
error = 0;
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Source Destination Comments
|
|
* --------------------------------------------
|
|
* (1) memory memory n/a
|
|
* (2) memory mmio emulated
|
|
* (3) mmio memory emulated
|
|
* (4) mmio mmio emulated
|
|
*
|
|
* At this point we don't have sufficient information to distinguish
|
|
* between (2), (3) and (4). We use 'vm_copy_setup()' to tease this
|
|
* out because it will succeed only when operating on regular memory.
|
|
*
|
|
* XXX the emulation doesn't properly handle the case where 'gpa'
|
|
* is straddling the boundary between the normal memory and MMIO.
|
|
*/
|
|
|
|
seg = vie->segment_override ? vie->segment_register : VM_REG_GUEST_DS;
|
|
error = get_gla(vm, vcpuid, vie, paging, opsize, vie->addrsize,
|
|
PROT_READ, seg, VM_REG_GUEST_RSI, &srcaddr, &fault);
|
|
if (error || fault)
|
|
goto done;
|
|
|
|
error = vm_copy_setup(vm, vcpuid, paging, srcaddr, opsize, PROT_READ,
|
|
copyinfo, nitems(copyinfo), &fault);
|
|
if (error == 0) {
|
|
if (fault)
|
|
goto done; /* Resume guest to handle fault */
|
|
|
|
/*
|
|
* case (2): read from system memory and write to mmio.
|
|
*/
|
|
vm_copyin(vm, vcpuid, copyinfo, &val, opsize);
|
|
vm_copy_teardown(vm, vcpuid, copyinfo, nitems(copyinfo));
|
|
error = memwrite(vm, vcpuid, gpa, val, opsize, arg);
|
|
if (error)
|
|
goto done;
|
|
} else {
|
|
/*
|
|
* 'vm_copy_setup()' is expected to fail for cases (3) and (4)
|
|
* if 'srcaddr' is in the mmio space.
|
|
*/
|
|
|
|
error = get_gla(vm, vcpuid, vie, paging, opsize, vie->addrsize,
|
|
PROT_WRITE, VM_REG_GUEST_ES, VM_REG_GUEST_RDI, &dstaddr,
|
|
&fault);
|
|
if (error || fault)
|
|
goto done;
|
|
|
|
error = vm_copy_setup(vm, vcpuid, paging, dstaddr, opsize,
|
|
PROT_WRITE, copyinfo, nitems(copyinfo), &fault);
|
|
if (error == 0) {
|
|
if (fault)
|
|
goto done; /* Resume guest to handle fault */
|
|
|
|
/*
|
|
* case (3): read from MMIO and write to system memory.
|
|
*
|
|
* A MMIO read can have side-effects so we
|
|
* commit to it only after vm_copy_setup() is
|
|
* successful. If a page-fault needs to be
|
|
* injected into the guest then it will happen
|
|
* before the MMIO read is attempted.
|
|
*/
|
|
error = memread(vm, vcpuid, gpa, &val, opsize, arg);
|
|
if (error)
|
|
goto done;
|
|
|
|
vm_copyout(vm, vcpuid, &val, copyinfo, opsize);
|
|
vm_copy_teardown(vm, vcpuid, copyinfo, nitems(copyinfo));
|
|
} else {
|
|
/*
|
|
* Case (4): read from and write to mmio.
|
|
*
|
|
* Commit to the MMIO read/write (with potential
|
|
* side-effects) only after we are sure that the
|
|
* instruction is not going to be restarted due
|
|
* to address translation faults.
|
|
*/
|
|
error = vm_gla2gpa(vm, vcpuid, paging, srcaddr,
|
|
PROT_READ, &srcgpa, &fault);
|
|
if (error || fault)
|
|
goto done;
|
|
|
|
error = vm_gla2gpa(vm, vcpuid, paging, dstaddr,
|
|
PROT_WRITE, &dstgpa, &fault);
|
|
if (error || fault)
|
|
goto done;
|
|
|
|
error = memread(vm, vcpuid, srcgpa, &val, opsize, arg);
|
|
if (error)
|
|
goto done;
|
|
|
|
error = memwrite(vm, vcpuid, dstgpa, val, opsize, arg);
|
|
if (error)
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RSI, &rsi);
|
|
KASSERT(error == 0, ("%s: error %d getting rsi", __func__, error));
|
|
|
|
error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RDI, &rdi);
|
|
KASSERT(error == 0, ("%s: error %d getting rdi", __func__, error));
|
|
|
|
error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
|
|
KASSERT(error == 0, ("%s: error %d getting rflags", __func__, error));
|
|
|
|
if (rflags & PSL_D) {
|
|
rsi -= opsize;
|
|
rdi -= opsize;
|
|
} else {
|
|
rsi += opsize;
|
|
rdi += opsize;
|
|
}
|
|
|
|
error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RSI, rsi,
|
|
vie->addrsize);
|
|
KASSERT(error == 0, ("%s: error %d updating rsi", __func__, error));
|
|
|
|
error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RDI, rdi,
|
|
vie->addrsize);
|
|
KASSERT(error == 0, ("%s: error %d updating rdi", __func__, error));
|
|
|
|
if (repeat) {
|
|
rcx = rcx - 1;
|
|
error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RCX,
|
|
rcx, vie->addrsize);
|
|
KASSERT(!error, ("%s: error %d updating rcx", __func__, error));
|
|
|
|
/*
|
|
* Repeat the instruction if the count register is not zero.
|
|
*/
|
|
if ((rcx & vie_size2mask(vie->addrsize)) != 0)
|
|
vm_restart_instruction(vm, vcpuid);
|
|
}
|
|
done:
|
|
KASSERT(error == 0 || error == EFAULT, ("%s: unexpected error %d",
|
|
__func__, error));
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
emulate_stos(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
|
|
struct vm_guest_paging *paging, mem_region_read_t memread,
|
|
mem_region_write_t memwrite, void *arg)
|
|
{
|
|
int error, opsize, repeat;
|
|
uint64_t val;
|
|
uint64_t rcx, rdi, rflags;
|
|
|
|
opsize = (vie->op.op_byte == 0xAA) ? 1 : vie->opsize;
|
|
repeat = vie->repz_present | vie->repnz_present;
|
|
|
|
if (repeat) {
|
|
error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RCX, &rcx);
|
|
KASSERT(!error, ("%s: error %d getting rcx", __func__, error));
|
|
|
|
/*
|
|
* The count register is %rcx, %ecx or %cx depending on the
|
|
* address size of the instruction.
|
|
*/
|
|
if ((rcx & vie_size2mask(vie->addrsize)) == 0)
|
|
return (0);
|
|
}
|
|
|
|
error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RAX, &val);
|
|
KASSERT(!error, ("%s: error %d getting rax", __func__, error));
|
|
|
|
error = memwrite(vm, vcpuid, gpa, val, opsize, arg);
|
|
if (error)
|
|
return (error);
|
|
|
|
error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RDI, &rdi);
|
|
KASSERT(error == 0, ("%s: error %d getting rdi", __func__, error));
|
|
|
|
error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
|
|
KASSERT(error == 0, ("%s: error %d getting rflags", __func__, error));
|
|
|
|
if (rflags & PSL_D)
|
|
rdi -= opsize;
|
|
else
|
|
rdi += opsize;
|
|
|
|
error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RDI, rdi,
|
|
vie->addrsize);
|
|
KASSERT(error == 0, ("%s: error %d updating rdi", __func__, error));
|
|
|
|
if (repeat) {
|
|
rcx = rcx - 1;
|
|
error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RCX,
|
|
rcx, vie->addrsize);
|
|
KASSERT(!error, ("%s: error %d updating rcx", __func__, error));
|
|
|
|
/*
|
|
* Repeat the instruction if the count register is not zero.
|
|
*/
|
|
if ((rcx & vie_size2mask(vie->addrsize)) != 0)
|
|
vm_restart_instruction(vm, vcpuid);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
emulate_and(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
|
|
mem_region_read_t memread, mem_region_write_t memwrite, void *arg)
|
|
{
|
|
int error, size;
|
|
enum vm_reg_name reg;
|
|
uint64_t result, rflags, rflags2, val1, val2;
|
|
|
|
size = vie->opsize;
|
|
error = EINVAL;
|
|
|
|
switch (vie->op.op_byte) {
|
|
case 0x23:
|
|
/*
|
|
* AND reg (ModRM:reg) and mem (ModRM:r/m) and store the
|
|
* result in reg.
|
|
*
|
|
* 23/r and r16, r/m16
|
|
* 23/r and r32, r/m32
|
|
* REX.W + 23/r and r64, r/m64
|
|
*/
|
|
|
|
/* get the first operand */
|
|
reg = gpr_map[vie->reg];
|
|
error = vie_read_register(vm, vcpuid, reg, &val1);
|
|
if (error)
|
|
break;
|
|
|
|
/* get the second operand */
|
|
error = memread(vm, vcpuid, gpa, &val2, size, arg);
|
|
if (error)
|
|
break;
|
|
|
|
/* perform the operation and write the result */
|
|
result = val1 & val2;
|
|
error = vie_update_register(vm, vcpuid, reg, result, size);
|
|
break;
|
|
case 0x81:
|
|
case 0x83:
|
|
/*
|
|
* AND mem (ModRM:r/m) with immediate and store the
|
|
* result in mem.
|
|
*
|
|
* 81 /4 and r/m16, imm16
|
|
* 81 /4 and r/m32, imm32
|
|
* REX.W + 81 /4 and r/m64, imm32 sign-extended to 64
|
|
*
|
|
* 83 /4 and r/m16, imm8 sign-extended to 16
|
|
* 83 /4 and r/m32, imm8 sign-extended to 32
|
|
* REX.W + 83/4 and r/m64, imm8 sign-extended to 64
|
|
*/
|
|
|
|
/* get the first operand */
|
|
error = memread(vm, vcpuid, gpa, &val1, size, arg);
|
|
if (error)
|
|
break;
|
|
|
|
/*
|
|
* perform the operation with the pre-fetched immediate
|
|
* operand and write the result
|
|
*/
|
|
result = val1 & vie->immediate;
|
|
error = memwrite(vm, vcpuid, gpa, result, size, arg);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if (error)
|
|
return (error);
|
|
|
|
error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
|
|
if (error)
|
|
return (error);
|
|
|
|
/*
|
|
* OF and CF are cleared; the SF, ZF and PF flags are set according
|
|
* to the result; AF is undefined.
|
|
*
|
|
* The updated status flags are obtained by subtracting 0 from 'result'.
|
|
*/
|
|
rflags2 = getcc(size, result, 0);
|
|
rflags &= ~RFLAGS_STATUS_BITS;
|
|
rflags |= rflags2 & (PSL_PF | PSL_Z | PSL_N);
|
|
|
|
error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, rflags, 8);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
emulate_or(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
|
|
mem_region_read_t memread, mem_region_write_t memwrite, void *arg)
|
|
{
|
|
int error, size;
|
|
enum vm_reg_name reg;
|
|
uint64_t result, rflags, rflags2, val1, val2;
|
|
|
|
size = vie->opsize;
|
|
error = EINVAL;
|
|
|
|
switch (vie->op.op_byte) {
|
|
case 0x0B:
|
|
/*
|
|
* OR reg (ModRM:reg) and mem (ModRM:r/m) and store the
|
|
* result in reg.
|
|
*
|
|
* 0b/r or r16, r/m16
|
|
* 0b/r or r32, r/m32
|
|
* REX.W + 0b/r or r64, r/m64
|
|
*/
|
|
|
|
/* get the first operand */
|
|
reg = gpr_map[vie->reg];
|
|
error = vie_read_register(vm, vcpuid, reg, &val1);
|
|
if (error)
|
|
break;
|
|
|
|
/* get the second operand */
|
|
error = memread(vm, vcpuid, gpa, &val2, size, arg);
|
|
if (error)
|
|
break;
|
|
|
|
/* perform the operation and write the result */
|
|
result = val1 | val2;
|
|
error = vie_update_register(vm, vcpuid, reg, result, size);
|
|
break;
|
|
case 0x81:
|
|
case 0x83:
|
|
/*
|
|
* OR mem (ModRM:r/m) with immediate and store the
|
|
* result in mem.
|
|
*
|
|
* 81 /1 or r/m16, imm16
|
|
* 81 /1 or r/m32, imm32
|
|
* REX.W + 81 /1 or r/m64, imm32 sign-extended to 64
|
|
*
|
|
* 83 /1 or r/m16, imm8 sign-extended to 16
|
|
* 83 /1 or r/m32, imm8 sign-extended to 32
|
|
* REX.W + 83/1 or r/m64, imm8 sign-extended to 64
|
|
*/
|
|
|
|
/* get the first operand */
|
|
error = memread(vm, vcpuid, gpa, &val1, size, arg);
|
|
if (error)
|
|
break;
|
|
|
|
/*
|
|
* perform the operation with the pre-fetched immediate
|
|
* operand and write the result
|
|
*/
|
|
result = val1 | vie->immediate;
|
|
error = memwrite(vm, vcpuid, gpa, result, size, arg);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if (error)
|
|
return (error);
|
|
|
|
error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
|
|
if (error)
|
|
return (error);
|
|
|
|
/*
|
|
* OF and CF are cleared; the SF, ZF and PF flags are set according
|
|
* to the result; AF is undefined.
|
|
*
|
|
* The updated status flags are obtained by subtracting 0 from 'result'.
|
|
*/
|
|
rflags2 = getcc(size, result, 0);
|
|
rflags &= ~RFLAGS_STATUS_BITS;
|
|
rflags |= rflags2 & (PSL_PF | PSL_Z | PSL_N);
|
|
|
|
error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, rflags, 8);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
emulate_cmp(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
|
|
mem_region_read_t memread, mem_region_write_t memwrite, void *arg)
|
|
{
|
|
int error, size;
|
|
uint64_t regop, memop, op1, op2, rflags, rflags2;
|
|
enum vm_reg_name reg;
|
|
|
|
size = vie->opsize;
|
|
switch (vie->op.op_byte) {
|
|
case 0x39:
|
|
case 0x3B:
|
|
/*
|
|
* 39/r CMP r/m16, r16
|
|
* 39/r CMP r/m32, r32
|
|
* REX.W 39/r CMP r/m64, r64
|
|
*
|
|
* 3B/r CMP r16, r/m16
|
|
* 3B/r CMP r32, r/m32
|
|
* REX.W + 3B/r CMP r64, r/m64
|
|
*
|
|
* Compare the first operand with the second operand and
|
|
* set status flags in EFLAGS register. The comparison is
|
|
* performed by subtracting the second operand from the first
|
|
* operand and then setting the status flags.
|
|
*/
|
|
|
|
/* Get the register operand */
|
|
reg = gpr_map[vie->reg];
|
|
error = vie_read_register(vm, vcpuid, reg, ®op);
|
|
if (error)
|
|
return (error);
|
|
|
|
/* Get the memory operand */
|
|
error = memread(vm, vcpuid, gpa, &memop, size, arg);
|
|
if (error)
|
|
return (error);
|
|
|
|
if (vie->op.op_byte == 0x3B) {
|
|
op1 = regop;
|
|
op2 = memop;
|
|
} else {
|
|
op1 = memop;
|
|
op2 = regop;
|
|
}
|
|
rflags2 = getcc(size, op1, op2);
|
|
break;
|
|
case 0x80:
|
|
case 0x81:
|
|
case 0x83:
|
|
/*
|
|
* 80 /7 cmp r/m8, imm8
|
|
* REX + 80 /7 cmp r/m8, imm8
|
|
*
|
|
* 81 /7 cmp r/m16, imm16
|
|
* 81 /7 cmp r/m32, imm32
|
|
* REX.W + 81 /7 cmp r/m64, imm32 sign-extended to 64
|
|
*
|
|
* 83 /7 cmp r/m16, imm8 sign-extended to 16
|
|
* 83 /7 cmp r/m32, imm8 sign-extended to 32
|
|
* REX.W + 83 /7 cmp r/m64, imm8 sign-extended to 64
|
|
*
|
|
* Compare mem (ModRM:r/m) with immediate and set
|
|
* status flags according to the results. The
|
|
* comparison is performed by subtracting the
|
|
* immediate from the first operand and then setting
|
|
* the status flags.
|
|
*
|
|
*/
|
|
if (vie->op.op_byte == 0x80)
|
|
size = 1;
|
|
|
|
/* get the first operand */
|
|
error = memread(vm, vcpuid, gpa, &op1, size, arg);
|
|
if (error)
|
|
return (error);
|
|
|
|
rflags2 = getcc(size, op1, vie->immediate);
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
|
|
if (error)
|
|
return (error);
|
|
rflags &= ~RFLAGS_STATUS_BITS;
|
|
rflags |= rflags2 & RFLAGS_STATUS_BITS;
|
|
|
|
error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, rflags, 8);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
emulate_test(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
|
|
mem_region_read_t memread, mem_region_write_t memwrite, void *arg)
|
|
{
|
|
int error, size;
|
|
uint64_t op1, rflags, rflags2;
|
|
|
|
size = vie->opsize;
|
|
error = EINVAL;
|
|
|
|
switch (vie->op.op_byte) {
|
|
case 0xF7:
|
|
/*
|
|
* F7 /0 test r/m16, imm16
|
|
* F7 /0 test r/m32, imm32
|
|
* REX.W + F7 /0 test r/m64, imm32 sign-extended to 64
|
|
*
|
|
* Test mem (ModRM:r/m) with immediate and set status
|
|
* flags according to the results. The comparison is
|
|
* performed by anding the immediate from the first
|
|
* operand and then setting the status flags.
|
|
*/
|
|
if ((vie->reg & 7) != 0)
|
|
return (EINVAL);
|
|
|
|
error = memread(vm, vcpuid, gpa, &op1, size, arg);
|
|
if (error)
|
|
return (error);
|
|
|
|
rflags2 = getandflags(size, op1, vie->immediate);
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
|
|
if (error)
|
|
return (error);
|
|
|
|
/*
|
|
* OF and CF are cleared; the SF, ZF and PF flags are set according
|
|
* to the result; AF is undefined.
|
|
*/
|
|
rflags &= ~RFLAGS_STATUS_BITS;
|
|
rflags |= rflags2 & (PSL_PF | PSL_Z | PSL_N);
|
|
|
|
error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, rflags, 8);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
emulate_bextr(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
|
|
struct vm_guest_paging *paging, mem_region_read_t memread,
|
|
mem_region_write_t memwrite, void *arg)
|
|
{
|
|
uint64_t src1, src2, dst, rflags;
|
|
unsigned start, len;
|
|
int error, size;
|
|
|
|
size = vie->opsize;
|
|
error = EINVAL;
|
|
|
|
/*
|
|
* VEX.LZ.0F38.W0 F7 /r BEXTR r32a, r/m32, r32b
|
|
* VEX.LZ.0F38.W1 F7 /r BEXTR r64a, r/m64, r64b
|
|
*
|
|
* Destination operand is ModRM:reg. Source operands are ModRM:r/m and
|
|
* Vex.vvvv.
|
|
*
|
|
* Operand size is always 32-bit if not in 64-bit mode (W1 is ignored).
|
|
*/
|
|
if (size != 4 && paging->cpu_mode != CPU_MODE_64BIT)
|
|
size = 4;
|
|
|
|
/*
|
|
* Extracts contiguous bits from the first /source/ operand (second
|
|
* operand) using an index and length specified in the second /source/
|
|
* operand (third operand).
|
|
*/
|
|
error = memread(vm, vcpuid, gpa, &src1, size, arg);
|
|
if (error)
|
|
return (error);
|
|
error = vie_read_register(vm, vcpuid, gpr_map[vie->vex_reg], &src2);
|
|
if (error)
|
|
return (error);
|
|
error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
|
|
if (error)
|
|
return (error);
|
|
|
|
start = (src2 & 0xff);
|
|
len = (src2 & 0xff00) >> 8;
|
|
|
|
/* If no bits are extracted, the destination register is cleared. */
|
|
dst = 0;
|
|
|
|
/* If START exceeds the operand size, no bits are extracted. */
|
|
if (start > size * 8)
|
|
goto done;
|
|
/* Length is bounded by both the destination size and start offset. */
|
|
if (start + len > size * 8)
|
|
len = (size * 8) - start;
|
|
if (len == 0)
|
|
goto done;
|
|
|
|
if (start > 0)
|
|
src1 = (src1 >> start);
|
|
if (len < 64)
|
|
src1 = src1 & ((1ull << len) - 1);
|
|
dst = src1;
|
|
|
|
done:
|
|
error = vie_update_register(vm, vcpuid, gpr_map[vie->reg], dst, size);
|
|
if (error)
|
|
return (error);
|
|
|
|
/*
|
|
* AMD: OF, CF cleared; SF/AF/PF undefined; ZF set by result.
|
|
* Intel: ZF is set by result; AF/SF/PF undefined; all others cleared.
|
|
*/
|
|
rflags &= ~RFLAGS_STATUS_BITS;
|
|
if (dst == 0)
|
|
rflags |= PSL_Z;
|
|
error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, rflags,
|
|
8);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
emulate_add(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
|
|
mem_region_read_t memread, mem_region_write_t memwrite, void *arg)
|
|
{
|
|
int error, size;
|
|
uint64_t nval, rflags, rflags2, val1, val2;
|
|
enum vm_reg_name reg;
|
|
|
|
size = vie->opsize;
|
|
error = EINVAL;
|
|
|
|
switch (vie->op.op_byte) {
|
|
case 0x03:
|
|
/*
|
|
* ADD r/m to r and store the result in r
|
|
*
|
|
* 03/r ADD r16, r/m16
|
|
* 03/r ADD r32, r/m32
|
|
* REX.W + 03/r ADD r64, r/m64
|
|
*/
|
|
|
|
/* get the first operand */
|
|
reg = gpr_map[vie->reg];
|
|
error = vie_read_register(vm, vcpuid, reg, &val1);
|
|
if (error)
|
|
break;
|
|
|
|
/* get the second operand */
|
|
error = memread(vm, vcpuid, gpa, &val2, size, arg);
|
|
if (error)
|
|
break;
|
|
|
|
/* perform the operation and write the result */
|
|
nval = val1 + val2;
|
|
error = vie_update_register(vm, vcpuid, reg, nval, size);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (!error) {
|
|
rflags2 = getaddflags(size, val1, val2);
|
|
error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS,
|
|
&rflags);
|
|
if (error)
|
|
return (error);
|
|
|
|
rflags &= ~RFLAGS_STATUS_BITS;
|
|
rflags |= rflags2 & RFLAGS_STATUS_BITS;
|
|
error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RFLAGS,
|
|
rflags, 8);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
emulate_sub(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
|
|
mem_region_read_t memread, mem_region_write_t memwrite, void *arg)
|
|
{
|
|
int error, size;
|
|
uint64_t nval, rflags, rflags2, val1, val2;
|
|
enum vm_reg_name reg;
|
|
|
|
size = vie->opsize;
|
|
error = EINVAL;
|
|
|
|
switch (vie->op.op_byte) {
|
|
case 0x2B:
|
|
/*
|
|
* SUB r/m from r and store the result in r
|
|
*
|
|
* 2B/r SUB r16, r/m16
|
|
* 2B/r SUB r32, r/m32
|
|
* REX.W + 2B/r SUB r64, r/m64
|
|
*/
|
|
|
|
/* get the first operand */
|
|
reg = gpr_map[vie->reg];
|
|
error = vie_read_register(vm, vcpuid, reg, &val1);
|
|
if (error)
|
|
break;
|
|
|
|
/* get the second operand */
|
|
error = memread(vm, vcpuid, gpa, &val2, size, arg);
|
|
if (error)
|
|
break;
|
|
|
|
/* perform the operation and write the result */
|
|
nval = val1 - val2;
|
|
error = vie_update_register(vm, vcpuid, reg, nval, size);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (!error) {
|
|
rflags2 = getcc(size, val1, val2);
|
|
error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS,
|
|
&rflags);
|
|
if (error)
|
|
return (error);
|
|
|
|
rflags &= ~RFLAGS_STATUS_BITS;
|
|
rflags |= rflags2 & RFLAGS_STATUS_BITS;
|
|
error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RFLAGS,
|
|
rflags, 8);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
emulate_stack_op(void *vm, int vcpuid, uint64_t mmio_gpa, struct vie *vie,
|
|
struct vm_guest_paging *paging, mem_region_read_t memread,
|
|
mem_region_write_t memwrite, void *arg)
|
|
{
|
|
#ifdef _KERNEL
|
|
struct vm_copyinfo copyinfo[2];
|
|
#else
|
|
struct iovec copyinfo[2];
|
|
#endif
|
|
struct seg_desc ss_desc;
|
|
uint64_t cr0, rflags, rsp, stack_gla, val;
|
|
int error, fault, size, stackaddrsize, pushop;
|
|
|
|
val = 0;
|
|
size = vie->opsize;
|
|
pushop = (vie->op.op_type == VIE_OP_TYPE_PUSH) ? 1 : 0;
|
|
|
|
/*
|
|
* From "Address-Size Attributes for Stack Accesses", Intel SDL, Vol 1
|
|
*/
|
|
if (paging->cpu_mode == CPU_MODE_REAL) {
|
|
stackaddrsize = 2;
|
|
} else if (paging->cpu_mode == CPU_MODE_64BIT) {
|
|
/*
|
|
* "Stack Manipulation Instructions in 64-bit Mode", SDM, Vol 3
|
|
* - Stack pointer size is always 64-bits.
|
|
* - PUSH/POP of 32-bit values is not possible in 64-bit mode.
|
|
* - 16-bit PUSH/POP is supported by using the operand size
|
|
* override prefix (66H).
|
|
*/
|
|
stackaddrsize = 8;
|
|
size = vie->opsize_override ? 2 : 8;
|
|
} else {
|
|
/*
|
|
* In protected or compatibility mode the 'B' flag in the
|
|
* stack-segment descriptor determines the size of the
|
|
* stack pointer.
|
|
*/
|
|
error = vm_get_seg_desc(vm, vcpuid, VM_REG_GUEST_SS, &ss_desc);
|
|
KASSERT(error == 0, ("%s: error %d getting SS descriptor",
|
|
__func__, error));
|
|
if (SEG_DESC_DEF32(ss_desc.access))
|
|
stackaddrsize = 4;
|
|
else
|
|
stackaddrsize = 2;
|
|
}
|
|
|
|
error = vie_read_register(vm, vcpuid, VM_REG_GUEST_CR0, &cr0);
|
|
KASSERT(error == 0, ("%s: error %d getting cr0", __func__, error));
|
|
|
|
error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
|
|
KASSERT(error == 0, ("%s: error %d getting rflags", __func__, error));
|
|
|
|
error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RSP, &rsp);
|
|
KASSERT(error == 0, ("%s: error %d getting rsp", __func__, error));
|
|
if (pushop) {
|
|
rsp -= size;
|
|
}
|
|
|
|
if (vie_calculate_gla(paging->cpu_mode, VM_REG_GUEST_SS, &ss_desc,
|
|
rsp, size, stackaddrsize, pushop ? PROT_WRITE : PROT_READ,
|
|
&stack_gla)) {
|
|
vm_inject_ss(vm, vcpuid, 0);
|
|
return (0);
|
|
}
|
|
|
|
if (vie_canonical_check(paging->cpu_mode, stack_gla)) {
|
|
vm_inject_ss(vm, vcpuid, 0);
|
|
return (0);
|
|
}
|
|
|
|
if (vie_alignment_check(paging->cpl, size, cr0, rflags, stack_gla)) {
|
|
vm_inject_ac(vm, vcpuid, 0);
|
|
return (0);
|
|
}
|
|
|
|
error = vm_copy_setup(vm, vcpuid, paging, stack_gla, size,
|
|
pushop ? PROT_WRITE : PROT_READ, copyinfo, nitems(copyinfo),
|
|
&fault);
|
|
if (error || fault)
|
|
return (error);
|
|
|
|
if (pushop) {
|
|
error = memread(vm, vcpuid, mmio_gpa, &val, size, arg);
|
|
if (error == 0)
|
|
vm_copyout(vm, vcpuid, &val, copyinfo, size);
|
|
} else {
|
|
vm_copyin(vm, vcpuid, copyinfo, &val, size);
|
|
error = memwrite(vm, vcpuid, mmio_gpa, val, size, arg);
|
|
rsp += size;
|
|
}
|
|
vm_copy_teardown(vm, vcpuid, copyinfo, nitems(copyinfo));
|
|
|
|
if (error == 0) {
|
|
error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RSP, rsp,
|
|
stackaddrsize);
|
|
KASSERT(error == 0, ("error %d updating rsp", error));
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
emulate_push(void *vm, int vcpuid, uint64_t mmio_gpa, struct vie *vie,
|
|
struct vm_guest_paging *paging, mem_region_read_t memread,
|
|
mem_region_write_t memwrite, void *arg)
|
|
{
|
|
int error;
|
|
|
|
/*
|
|
* Table A-6, "Opcode Extensions", Intel SDM, Vol 2.
|
|
*
|
|
* PUSH is part of the group 5 extended opcodes and is identified
|
|
* by ModRM:reg = b110.
|
|
*/
|
|
if ((vie->reg & 7) != 6)
|
|
return (EINVAL);
|
|
|
|
error = emulate_stack_op(vm, vcpuid, mmio_gpa, vie, paging, memread,
|
|
memwrite, arg);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
emulate_pop(void *vm, int vcpuid, uint64_t mmio_gpa, struct vie *vie,
|
|
struct vm_guest_paging *paging, mem_region_read_t memread,
|
|
mem_region_write_t memwrite, void *arg)
|
|
{
|
|
int error;
|
|
|
|
/*
|
|
* Table A-6, "Opcode Extensions", Intel SDM, Vol 2.
|
|
*
|
|
* POP is part of the group 1A extended opcodes and is identified
|
|
* by ModRM:reg = b000.
|
|
*/
|
|
if ((vie->reg & 7) != 0)
|
|
return (EINVAL);
|
|
|
|
error = emulate_stack_op(vm, vcpuid, mmio_gpa, vie, paging, memread,
|
|
memwrite, arg);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
emulate_group1(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
|
|
struct vm_guest_paging *paging, mem_region_read_t memread,
|
|
mem_region_write_t memwrite, void *memarg)
|
|
{
|
|
int error;
|
|
|
|
switch (vie->reg & 7) {
|
|
case 0x1: /* OR */
|
|
error = emulate_or(vm, vcpuid, gpa, vie,
|
|
memread, memwrite, memarg);
|
|
break;
|
|
case 0x4: /* AND */
|
|
error = emulate_and(vm, vcpuid, gpa, vie,
|
|
memread, memwrite, memarg);
|
|
break;
|
|
case 0x7: /* CMP */
|
|
error = emulate_cmp(vm, vcpuid, gpa, vie,
|
|
memread, memwrite, memarg);
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
emulate_bittest(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
|
|
mem_region_read_t memread, mem_region_write_t memwrite, void *memarg)
|
|
{
|
|
uint64_t val, rflags;
|
|
int error, bitmask, bitoff;
|
|
|
|
/*
|
|
* 0F BA is a Group 8 extended opcode.
|
|
*
|
|
* Currently we only emulate the 'Bit Test' instruction which is
|
|
* identified by a ModR/M:reg encoding of 100b.
|
|
*/
|
|
if ((vie->reg & 7) != 4)
|
|
return (EINVAL);
|
|
|
|
error = vie_read_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, &rflags);
|
|
KASSERT(error == 0, ("%s: error %d getting rflags", __func__, error));
|
|
|
|
error = memread(vm, vcpuid, gpa, &val, vie->opsize, memarg);
|
|
if (error)
|
|
return (error);
|
|
|
|
/*
|
|
* Intel SDM, Vol 2, Table 3-2:
|
|
* "Range of Bit Positions Specified by Bit Offset Operands"
|
|
*/
|
|
bitmask = vie->opsize * 8 - 1;
|
|
bitoff = vie->immediate & bitmask;
|
|
|
|
/* Copy the bit into the Carry flag in %rflags */
|
|
if (val & (1UL << bitoff))
|
|
rflags |= PSL_C;
|
|
else
|
|
rflags &= ~PSL_C;
|
|
|
|
error = vie_update_register(vm, vcpuid, VM_REG_GUEST_RFLAGS, rflags, 8);
|
|
KASSERT(error == 0, ("%s: error %d updating rflags", __func__, error));
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
emulate_twob_group15(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
|
|
mem_region_read_t memread, mem_region_write_t memwrite, void *memarg)
|
|
{
|
|
int error;
|
|
uint64_t buf;
|
|
|
|
switch (vie->reg & 7) {
|
|
case 0x7: /* CLFLUSH, CLFLUSHOPT, and SFENCE */
|
|
if (vie->mod == 0x3) {
|
|
/*
|
|
* SFENCE. Ignore it, VM exit provides enough
|
|
* barriers on its own.
|
|
*/
|
|
error = 0;
|
|
} else {
|
|
/*
|
|
* CLFLUSH, CLFLUSHOPT. Only check for access
|
|
* rights.
|
|
*/
|
|
error = memread(vm, vcpuid, gpa, &buf, 1, memarg);
|
|
}
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
vmm_emulate_instruction(void *vm, int vcpuid, uint64_t gpa, struct vie *vie,
|
|
struct vm_guest_paging *paging, mem_region_read_t memread,
|
|
mem_region_write_t memwrite, void *memarg)
|
|
{
|
|
int error;
|
|
|
|
if (!vie->decoded)
|
|
return (EINVAL);
|
|
|
|
switch (vie->op.op_type) {
|
|
case VIE_OP_TYPE_GROUP1:
|
|
error = emulate_group1(vm, vcpuid, gpa, vie, paging, memread,
|
|
memwrite, memarg);
|
|
break;
|
|
case VIE_OP_TYPE_POP:
|
|
error = emulate_pop(vm, vcpuid, gpa, vie, paging, memread,
|
|
memwrite, memarg);
|
|
break;
|
|
case VIE_OP_TYPE_PUSH:
|
|
error = emulate_push(vm, vcpuid, gpa, vie, paging, memread,
|
|
memwrite, memarg);
|
|
break;
|
|
case VIE_OP_TYPE_CMP:
|
|
error = emulate_cmp(vm, vcpuid, gpa, vie,
|
|
memread, memwrite, memarg);
|
|
break;
|
|
case VIE_OP_TYPE_MOV:
|
|
error = emulate_mov(vm, vcpuid, gpa, vie,
|
|
memread, memwrite, memarg);
|
|
break;
|
|
case VIE_OP_TYPE_MOVSX:
|
|
case VIE_OP_TYPE_MOVZX:
|
|
error = emulate_movx(vm, vcpuid, gpa, vie,
|
|
memread, memwrite, memarg);
|
|
break;
|
|
case VIE_OP_TYPE_MOVS:
|
|
error = emulate_movs(vm, vcpuid, gpa, vie, paging, memread,
|
|
memwrite, memarg);
|
|
break;
|
|
case VIE_OP_TYPE_STOS:
|
|
error = emulate_stos(vm, vcpuid, gpa, vie, paging, memread,
|
|
memwrite, memarg);
|
|
break;
|
|
case VIE_OP_TYPE_AND:
|
|
error = emulate_and(vm, vcpuid, gpa, vie,
|
|
memread, memwrite, memarg);
|
|
break;
|
|
case VIE_OP_TYPE_OR:
|
|
error = emulate_or(vm, vcpuid, gpa, vie,
|
|
memread, memwrite, memarg);
|
|
break;
|
|
case VIE_OP_TYPE_SUB:
|
|
error = emulate_sub(vm, vcpuid, gpa, vie,
|
|
memread, memwrite, memarg);
|
|
break;
|
|
case VIE_OP_TYPE_BITTEST:
|
|
error = emulate_bittest(vm, vcpuid, gpa, vie,
|
|
memread, memwrite, memarg);
|
|
break;
|
|
case VIE_OP_TYPE_TWOB_GRP15:
|
|
error = emulate_twob_group15(vm, vcpuid, gpa, vie,
|
|
memread, memwrite, memarg);
|
|
break;
|
|
case VIE_OP_TYPE_ADD:
|
|
error = emulate_add(vm, vcpuid, gpa, vie, memread,
|
|
memwrite, memarg);
|
|
break;
|
|
case VIE_OP_TYPE_TEST:
|
|
error = emulate_test(vm, vcpuid, gpa, vie,
|
|
memread, memwrite, memarg);
|
|
break;
|
|
case VIE_OP_TYPE_BEXTR:
|
|
error = emulate_bextr(vm, vcpuid, gpa, vie, paging,
|
|
memread, memwrite, memarg);
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
vie_alignment_check(int cpl, int size, uint64_t cr0, uint64_t rf, uint64_t gla)
|
|
{
|
|
KASSERT(size == 1 || size == 2 || size == 4 || size == 8,
|
|
("%s: invalid size %d", __func__, size));
|
|
KASSERT(cpl >= 0 && cpl <= 3, ("%s: invalid cpl %d", __func__, cpl));
|
|
|
|
if (cpl != 3 || (cr0 & CR0_AM) == 0 || (rf & PSL_AC) == 0)
|
|
return (0);
|
|
|
|
return ((gla & (size - 1)) ? 1 : 0);
|
|
}
|
|
|
|
int
|
|
vie_canonical_check(enum vm_cpu_mode cpu_mode, uint64_t gla)
|
|
{
|
|
uint64_t mask;
|
|
|
|
if (cpu_mode != CPU_MODE_64BIT)
|
|
return (0);
|
|
|
|
/*
|
|
* The value of the bit 47 in the 'gla' should be replicated in the
|
|
* most significant 16 bits.
|
|
*/
|
|
mask = ~((1UL << 48) - 1);
|
|
if (gla & (1UL << 47))
|
|
return ((gla & mask) != mask);
|
|
else
|
|
return ((gla & mask) != 0);
|
|
}
|
|
|
|
uint64_t
|
|
vie_size2mask(int size)
|
|
{
|
|
KASSERT(size == 1 || size == 2 || size == 4 || size == 8,
|
|
("vie_size2mask: invalid size %d", size));
|
|
return (size2mask[size]);
|
|
}
|
|
|
|
int
|
|
vie_calculate_gla(enum vm_cpu_mode cpu_mode, enum vm_reg_name seg,
|
|
struct seg_desc *desc, uint64_t offset, int length, int addrsize,
|
|
int prot, uint64_t *gla)
|
|
{
|
|
uint64_t firstoff, low_limit, high_limit, segbase;
|
|
int glasize, type;
|
|
|
|
KASSERT(seg >= VM_REG_GUEST_ES && seg <= VM_REG_GUEST_GS,
|
|
("%s: invalid segment %d", __func__, seg));
|
|
KASSERT(length == 1 || length == 2 || length == 4 || length == 8,
|
|
("%s: invalid operand size %d", __func__, length));
|
|
KASSERT((prot & ~(PROT_READ | PROT_WRITE)) == 0,
|
|
("%s: invalid prot %#x", __func__, prot));
|
|
|
|
firstoff = offset;
|
|
if (cpu_mode == CPU_MODE_64BIT) {
|
|
KASSERT(addrsize == 4 || addrsize == 8, ("%s: invalid address "
|
|
"size %d for cpu_mode %d", __func__, addrsize, cpu_mode));
|
|
glasize = 8;
|
|
} else {
|
|
KASSERT(addrsize == 2 || addrsize == 4, ("%s: invalid address "
|
|
"size %d for cpu mode %d", __func__, addrsize, cpu_mode));
|
|
glasize = 4;
|
|
/*
|
|
* If the segment selector is loaded with a NULL selector
|
|
* then the descriptor is unusable and attempting to use
|
|
* it results in a #GP(0).
|
|
*/
|
|
if (SEG_DESC_UNUSABLE(desc->access))
|
|
return (-1);
|
|
|
|
/*
|
|
* The processor generates a #NP exception when a segment
|
|
* register is loaded with a selector that points to a
|
|
* descriptor that is not present. If this was the case then
|
|
* it would have been checked before the VM-exit.
|
|
*/
|
|
KASSERT(SEG_DESC_PRESENT(desc->access),
|
|
("segment %d not present: %#x", seg, desc->access));
|
|
|
|
/*
|
|
* The descriptor type must indicate a code/data segment.
|
|
*/
|
|
type = SEG_DESC_TYPE(desc->access);
|
|
KASSERT(type >= 16 && type <= 31, ("segment %d has invalid "
|
|
"descriptor type %#x", seg, type));
|
|
|
|
if (prot & PROT_READ) {
|
|
/* #GP on a read access to a exec-only code segment */
|
|
if ((type & 0xA) == 0x8)
|
|
return (-1);
|
|
}
|
|
|
|
if (prot & PROT_WRITE) {
|
|
/*
|
|
* #GP on a write access to a code segment or a
|
|
* read-only data segment.
|
|
*/
|
|
if (type & 0x8) /* code segment */
|
|
return (-1);
|
|
|
|
if ((type & 0xA) == 0) /* read-only data seg */
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* 'desc->limit' is fully expanded taking granularity into
|
|
* account.
|
|
*/
|
|
if ((type & 0xC) == 0x4) {
|
|
/* expand-down data segment */
|
|
low_limit = desc->limit + 1;
|
|
high_limit = SEG_DESC_DEF32(desc->access) ?
|
|
0xffffffff : 0xffff;
|
|
} else {
|
|
/* code segment or expand-up data segment */
|
|
low_limit = 0;
|
|
high_limit = desc->limit;
|
|
}
|
|
|
|
while (length > 0) {
|
|
offset &= vie_size2mask(addrsize);
|
|
if (offset < low_limit || offset > high_limit)
|
|
return (-1);
|
|
offset++;
|
|
length--;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* In 64-bit mode all segments except %fs and %gs have a segment
|
|
* base address of 0.
|
|
*/
|
|
if (cpu_mode == CPU_MODE_64BIT && seg != VM_REG_GUEST_FS &&
|
|
seg != VM_REG_GUEST_GS) {
|
|
segbase = 0;
|
|
} else {
|
|
segbase = desc->base;
|
|
}
|
|
|
|
/*
|
|
* Truncate 'firstoff' to the effective address size before adding
|
|
* it to the segment base.
|
|
*/
|
|
firstoff &= vie_size2mask(addrsize);
|
|
*gla = (segbase + firstoff) & vie_size2mask(glasize);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Prepare a partially decoded vie for a 2nd attempt.
|
|
*/
|
|
void
|
|
vie_restart(struct vie *vie)
|
|
{
|
|
_Static_assert(
|
|
offsetof(struct vie, inst) < offsetof(struct vie, vie_startzero) &&
|
|
offsetof(struct vie, num_valid) < offsetof(struct vie, vie_startzero),
|
|
"restart should not erase instruction length or contents");
|
|
|
|
memset((char *)vie + offsetof(struct vie, vie_startzero), 0,
|
|
sizeof(*vie) - offsetof(struct vie, vie_startzero));
|
|
|
|
vie->base_register = VM_REG_LAST;
|
|
vie->index_register = VM_REG_LAST;
|
|
vie->segment_register = VM_REG_LAST;
|
|
}
|
|
|
|
void
|
|
vie_init(struct vie *vie, const char *inst_bytes, int inst_length)
|
|
{
|
|
KASSERT(inst_length >= 0 && inst_length <= VIE_INST_SIZE,
|
|
("%s: invalid instruction length (%d)", __func__, inst_length));
|
|
|
|
vie_restart(vie);
|
|
memset(vie->inst, 0, sizeof(vie->inst));
|
|
if (inst_length != 0)
|
|
memcpy(vie->inst, inst_bytes, inst_length);
|
|
vie->num_valid = inst_length;
|
|
}
|
|
|
|
#ifdef _KERNEL
|
|
static int
|
|
pf_error_code(int usermode, int prot, int rsvd, uint64_t pte)
|
|
{
|
|
int error_code = 0;
|
|
|
|
if (pte & PG_V)
|
|
error_code |= PGEX_P;
|
|
if (prot & VM_PROT_WRITE)
|
|
error_code |= PGEX_W;
|
|
if (usermode)
|
|
error_code |= PGEX_U;
|
|
if (rsvd)
|
|
error_code |= PGEX_RSV;
|
|
if (prot & VM_PROT_EXECUTE)
|
|
error_code |= PGEX_I;
|
|
|
|
return (error_code);
|
|
}
|
|
|
|
static void
|
|
ptp_release(void **cookie)
|
|
{
|
|
if (*cookie != NULL) {
|
|
vm_gpa_release(*cookie);
|
|
*cookie = NULL;
|
|
}
|
|
}
|
|
|
|
static void *
|
|
ptp_hold(struct vm *vm, int vcpu, vm_paddr_t ptpphys, size_t len, void **cookie)
|
|
{
|
|
void *ptr;
|
|
|
|
ptp_release(cookie);
|
|
ptr = vm_gpa_hold(vm, vcpu, ptpphys, len, VM_PROT_RW, cookie);
|
|
return (ptr);
|
|
}
|
|
|
|
static int
|
|
_vm_gla2gpa(struct vm *vm, int vcpuid, struct vm_guest_paging *paging,
|
|
uint64_t gla, int prot, uint64_t *gpa, int *guest_fault, bool check_only)
|
|
{
|
|
int nlevels, pfcode, ptpshift, ptpindex, retval, usermode, writable;
|
|
u_int retries;
|
|
uint64_t *ptpbase, ptpphys, pte, pgsize;
|
|
uint32_t *ptpbase32, pte32;
|
|
void *cookie;
|
|
|
|
*guest_fault = 0;
|
|
|
|
usermode = (paging->cpl == 3 ? 1 : 0);
|
|
writable = prot & VM_PROT_WRITE;
|
|
cookie = NULL;
|
|
retval = 0;
|
|
retries = 0;
|
|
restart:
|
|
ptpphys = paging->cr3; /* root of the page tables */
|
|
ptp_release(&cookie);
|
|
if (retries++ > 0)
|
|
maybe_yield();
|
|
|
|
if (vie_canonical_check(paging->cpu_mode, gla)) {
|
|
/*
|
|
* XXX assuming a non-stack reference otherwise a stack fault
|
|
* should be generated.
|
|
*/
|
|
if (!check_only)
|
|
vm_inject_gp(vm, vcpuid);
|
|
goto fault;
|
|
}
|
|
|
|
if (paging->paging_mode == PAGING_MODE_FLAT) {
|
|
*gpa = gla;
|
|
goto done;
|
|
}
|
|
|
|
if (paging->paging_mode == PAGING_MODE_32) {
|
|
nlevels = 2;
|
|
while (--nlevels >= 0) {
|
|
/* Zero out the lower 12 bits. */
|
|
ptpphys &= ~0xfff;
|
|
|
|
ptpbase32 = ptp_hold(vm, vcpuid, ptpphys, PAGE_SIZE,
|
|
&cookie);
|
|
|
|
if (ptpbase32 == NULL)
|
|
goto error;
|
|
|
|
ptpshift = PAGE_SHIFT + nlevels * 10;
|
|
ptpindex = (gla >> ptpshift) & 0x3FF;
|
|
pgsize = 1UL << ptpshift;
|
|
|
|
pte32 = ptpbase32[ptpindex];
|
|
|
|
if ((pte32 & PG_V) == 0 ||
|
|
(usermode && (pte32 & PG_U) == 0) ||
|
|
(writable && (pte32 & PG_RW) == 0)) {
|
|
if (!check_only) {
|
|
pfcode = pf_error_code(usermode, prot, 0,
|
|
pte32);
|
|
vm_inject_pf(vm, vcpuid, pfcode, gla);
|
|
}
|
|
goto fault;
|
|
}
|
|
|
|
/*
|
|
* Emulate the x86 MMU's management of the accessed
|
|
* and dirty flags. While the accessed flag is set
|
|
* at every level of the page table, the dirty flag
|
|
* is only set at the last level providing the guest
|
|
* physical address.
|
|
*/
|
|
if (!check_only && (pte32 & PG_A) == 0) {
|
|
if (atomic_cmpset_32(&ptpbase32[ptpindex],
|
|
pte32, pte32 | PG_A) == 0) {
|
|
goto restart;
|
|
}
|
|
}
|
|
|
|
/* XXX must be ignored if CR4.PSE=0 */
|
|
if (nlevels > 0 && (pte32 & PG_PS) != 0)
|
|
break;
|
|
|
|
ptpphys = pte32;
|
|
}
|
|
|
|
/* Set the dirty bit in the page table entry if necessary */
|
|
if (!check_only && writable && (pte32 & PG_M) == 0) {
|
|
if (atomic_cmpset_32(&ptpbase32[ptpindex],
|
|
pte32, pte32 | PG_M) == 0) {
|
|
goto restart;
|
|
}
|
|
}
|
|
|
|
/* Zero out the lower 'ptpshift' bits */
|
|
pte32 >>= ptpshift; pte32 <<= ptpshift;
|
|
*gpa = pte32 | (gla & (pgsize - 1));
|
|
goto done;
|
|
}
|
|
|
|
if (paging->paging_mode == PAGING_MODE_PAE) {
|
|
/* Zero out the lower 5 bits and the upper 32 bits */
|
|
ptpphys &= 0xffffffe0UL;
|
|
|
|
ptpbase = ptp_hold(vm, vcpuid, ptpphys, sizeof(*ptpbase) * 4,
|
|
&cookie);
|
|
if (ptpbase == NULL)
|
|
goto error;
|
|
|
|
ptpindex = (gla >> 30) & 0x3;
|
|
|
|
pte = ptpbase[ptpindex];
|
|
|
|
if ((pte & PG_V) == 0) {
|
|
if (!check_only) {
|
|
pfcode = pf_error_code(usermode, prot, 0, pte);
|
|
vm_inject_pf(vm, vcpuid, pfcode, gla);
|
|
}
|
|
goto fault;
|
|
}
|
|
|
|
ptpphys = pte;
|
|
|
|
nlevels = 2;
|
|
} else if (paging->paging_mode == PAGING_MODE_64_LA57) {
|
|
nlevels = 5;
|
|
} else {
|
|
nlevels = 4;
|
|
}
|
|
|
|
while (--nlevels >= 0) {
|
|
/* Zero out the lower 12 bits and the upper 12 bits */
|
|
ptpphys >>= 12; ptpphys <<= 24; ptpphys >>= 12;
|
|
|
|
ptpbase = ptp_hold(vm, vcpuid, ptpphys, PAGE_SIZE, &cookie);
|
|
if (ptpbase == NULL)
|
|
goto error;
|
|
|
|
ptpshift = PAGE_SHIFT + nlevels * 9;
|
|
ptpindex = (gla >> ptpshift) & 0x1FF;
|
|
pgsize = 1UL << ptpshift;
|
|
|
|
pte = ptpbase[ptpindex];
|
|
|
|
if ((pte & PG_V) == 0 ||
|
|
(usermode && (pte & PG_U) == 0) ||
|
|
(writable && (pte & PG_RW) == 0)) {
|
|
if (!check_only) {
|
|
pfcode = pf_error_code(usermode, prot, 0, pte);
|
|
vm_inject_pf(vm, vcpuid, pfcode, gla);
|
|
}
|
|
goto fault;
|
|
}
|
|
|
|
/* Set the accessed bit in the page table entry */
|
|
if (!check_only && (pte & PG_A) == 0) {
|
|
if (atomic_cmpset_64(&ptpbase[ptpindex],
|
|
pte, pte | PG_A) == 0) {
|
|
goto restart;
|
|
}
|
|
}
|
|
|
|
if (nlevels > 0 && (pte & PG_PS) != 0) {
|
|
if (pgsize > 1 * GB) {
|
|
if (!check_only) {
|
|
pfcode = pf_error_code(usermode, prot, 1,
|
|
pte);
|
|
vm_inject_pf(vm, vcpuid, pfcode, gla);
|
|
}
|
|
goto fault;
|
|
}
|
|
break;
|
|
}
|
|
|
|
ptpphys = pte;
|
|
}
|
|
|
|
/* Set the dirty bit in the page table entry if necessary */
|
|
if (!check_only && writable && (pte & PG_M) == 0) {
|
|
if (atomic_cmpset_64(&ptpbase[ptpindex], pte, pte | PG_M) == 0)
|
|
goto restart;
|
|
}
|
|
|
|
/* Zero out the lower 'ptpshift' bits and the upper 12 bits */
|
|
pte >>= ptpshift; pte <<= (ptpshift + 12); pte >>= 12;
|
|
*gpa = pte | (gla & (pgsize - 1));
|
|
done:
|
|
ptp_release(&cookie);
|
|
KASSERT(retval == 0 || retval == EFAULT, ("%s: unexpected retval %d",
|
|
__func__, retval));
|
|
return (retval);
|
|
error:
|
|
retval = EFAULT;
|
|
goto done;
|
|
fault:
|
|
*guest_fault = 1;
|
|
goto done;
|
|
}
|
|
|
|
int
|
|
vm_gla2gpa(struct vm *vm, int vcpuid, struct vm_guest_paging *paging,
|
|
uint64_t gla, int prot, uint64_t *gpa, int *guest_fault)
|
|
{
|
|
|
|
return (_vm_gla2gpa(vm, vcpuid, paging, gla, prot, gpa, guest_fault,
|
|
false));
|
|
}
|
|
|
|
int
|
|
vm_gla2gpa_nofault(struct vm *vm, int vcpuid, struct vm_guest_paging *paging,
|
|
uint64_t gla, int prot, uint64_t *gpa, int *guest_fault)
|
|
{
|
|
|
|
return (_vm_gla2gpa(vm, vcpuid, paging, gla, prot, gpa, guest_fault,
|
|
true));
|
|
}
|
|
|
|
int
|
|
vmm_fetch_instruction(struct vm *vm, int vcpuid, struct vm_guest_paging *paging,
|
|
uint64_t rip, int inst_length, struct vie *vie, int *faultptr)
|
|
{
|
|
struct vm_copyinfo copyinfo[2];
|
|
int error, prot;
|
|
|
|
if (inst_length > VIE_INST_SIZE)
|
|
panic("vmm_fetch_instruction: invalid length %d", inst_length);
|
|
|
|
prot = PROT_READ | PROT_EXEC;
|
|
error = vm_copy_setup(vm, vcpuid, paging, rip, inst_length, prot,
|
|
copyinfo, nitems(copyinfo), faultptr);
|
|
if (error || *faultptr)
|
|
return (error);
|
|
|
|
vm_copyin(vm, vcpuid, copyinfo, vie->inst, inst_length);
|
|
vm_copy_teardown(vm, vcpuid, copyinfo, nitems(copyinfo));
|
|
vie->num_valid = inst_length;
|
|
return (0);
|
|
}
|
|
#endif /* _KERNEL */
|
|
|
|
static int
|
|
vie_peek(struct vie *vie, uint8_t *x)
|
|
{
|
|
|
|
if (vie->num_processed < vie->num_valid) {
|
|
*x = vie->inst[vie->num_processed];
|
|
return (0);
|
|
} else
|
|
return (-1);
|
|
}
|
|
|
|
static void
|
|
vie_advance(struct vie *vie)
|
|
{
|
|
|
|
vie->num_processed++;
|
|
}
|
|
|
|
static bool
|
|
segment_override(uint8_t x, int *seg)
|
|
{
|
|
|
|
switch (x) {
|
|
case 0x2E:
|
|
*seg = VM_REG_GUEST_CS;
|
|
break;
|
|
case 0x36:
|
|
*seg = VM_REG_GUEST_SS;
|
|
break;
|
|
case 0x3E:
|
|
*seg = VM_REG_GUEST_DS;
|
|
break;
|
|
case 0x26:
|
|
*seg = VM_REG_GUEST_ES;
|
|
break;
|
|
case 0x64:
|
|
*seg = VM_REG_GUEST_FS;
|
|
break;
|
|
case 0x65:
|
|
*seg = VM_REG_GUEST_GS;
|
|
break;
|
|
default:
|
|
return (false);
|
|
}
|
|
return (true);
|
|
}
|
|
|
|
static int
|
|
decode_prefixes(struct vie *vie, enum vm_cpu_mode cpu_mode, int cs_d)
|
|
{
|
|
uint8_t x;
|
|
|
|
while (1) {
|
|
if (vie_peek(vie, &x))
|
|
return (-1);
|
|
|
|
if (x == 0x66)
|
|
vie->opsize_override = 1;
|
|
else if (x == 0x67)
|
|
vie->addrsize_override = 1;
|
|
else if (x == 0xF3)
|
|
vie->repz_present = 1;
|
|
else if (x == 0xF2)
|
|
vie->repnz_present = 1;
|
|
else if (segment_override(x, &vie->segment_register))
|
|
vie->segment_override = 1;
|
|
else
|
|
break;
|
|
|
|
vie_advance(vie);
|
|
}
|
|
|
|
/*
|
|
* From section 2.2.1, "REX Prefixes", Intel SDM Vol 2:
|
|
* - Only one REX prefix is allowed per instruction.
|
|
* - The REX prefix must immediately precede the opcode byte or the
|
|
* escape opcode byte.
|
|
* - If an instruction has a mandatory prefix (0x66, 0xF2 or 0xF3)
|
|
* the mandatory prefix must come before the REX prefix.
|
|
*/
|
|
if (cpu_mode == CPU_MODE_64BIT && x >= 0x40 && x <= 0x4F) {
|
|
vie->rex_present = 1;
|
|
vie->rex_w = x & 0x8 ? 1 : 0;
|
|
vie->rex_r = x & 0x4 ? 1 : 0;
|
|
vie->rex_x = x & 0x2 ? 1 : 0;
|
|
vie->rex_b = x & 0x1 ? 1 : 0;
|
|
vie_advance(vie);
|
|
}
|
|
|
|
/*
|
|
* § 2.3.5, "The VEX Prefix", SDM Vol 2.
|
|
*/
|
|
if ((cpu_mode == CPU_MODE_64BIT || cpu_mode == CPU_MODE_COMPATIBILITY)
|
|
&& x == 0xC4) {
|
|
const struct vie_op *optab;
|
|
|
|
/* 3-byte VEX prefix. */
|
|
vie->vex_present = 1;
|
|
|
|
vie_advance(vie);
|
|
if (vie_peek(vie, &x))
|
|
return (-1);
|
|
|
|
/*
|
|
* 2nd byte: [R', X', B', mmmmm[4:0]]. Bits are inverted
|
|
* relative to REX encoding.
|
|
*/
|
|
vie->rex_r = x & 0x80 ? 0 : 1;
|
|
vie->rex_x = x & 0x40 ? 0 : 1;
|
|
vie->rex_b = x & 0x20 ? 0 : 1;
|
|
|
|
switch (x & 0x1F) {
|
|
case 0x2:
|
|
/* 0F 38. */
|
|
optab = three_byte_opcodes_0f38;
|
|
break;
|
|
case 0x1:
|
|
/* 0F class - nothing handled here yet. */
|
|
/* FALLTHROUGH */
|
|
case 0x3:
|
|
/* 0F 3A class - nothing handled here yet. */
|
|
/* FALLTHROUGH */
|
|
default:
|
|
/* Reserved (#UD). */
|
|
return (-1);
|
|
}
|
|
|
|
vie_advance(vie);
|
|
if (vie_peek(vie, &x))
|
|
return (-1);
|
|
|
|
/* 3rd byte: [W, vvvv[6:3], L, pp[1:0]]. */
|
|
vie->rex_w = x & 0x80 ? 1 : 0;
|
|
|
|
vie->vex_reg = ((~(unsigned)x & 0x78u) >> 3);
|
|
vie->vex_l = !!(x & 0x4);
|
|
vie->vex_pp = (x & 0x3);
|
|
|
|
/* PP: 1=66 2=F3 3=F2 prefixes. */
|
|
switch (vie->vex_pp) {
|
|
case 0x1:
|
|
vie->opsize_override = 1;
|
|
break;
|
|
case 0x2:
|
|
vie->repz_present = 1;
|
|
break;
|
|
case 0x3:
|
|
vie->repnz_present = 1;
|
|
break;
|
|
}
|
|
|
|
vie_advance(vie);
|
|
|
|
/* Opcode, sans literal prefix prefix. */
|
|
if (vie_peek(vie, &x))
|
|
return (-1);
|
|
|
|
vie->op = optab[x];
|
|
if (vie->op.op_type == VIE_OP_TYPE_NONE)
|
|
return (-1);
|
|
|
|
vie_advance(vie);
|
|
}
|
|
|
|
/*
|
|
* Section "Operand-Size And Address-Size Attributes", Intel SDM, Vol 1
|
|
*/
|
|
if (cpu_mode == CPU_MODE_64BIT) {
|
|
/*
|
|
* Default address size is 64-bits and default operand size
|
|
* is 32-bits.
|
|
*/
|
|
vie->addrsize = vie->addrsize_override ? 4 : 8;
|
|
if (vie->rex_w)
|
|
vie->opsize = 8;
|
|
else if (vie->opsize_override)
|
|
vie->opsize = 2;
|
|
else
|
|
vie->opsize = 4;
|
|
} else if (cs_d) {
|
|
/* Default address and operand sizes are 32-bits */
|
|
vie->addrsize = vie->addrsize_override ? 2 : 4;
|
|
vie->opsize = vie->opsize_override ? 2 : 4;
|
|
} else {
|
|
/* Default address and operand sizes are 16-bits */
|
|
vie->addrsize = vie->addrsize_override ? 4 : 2;
|
|
vie->opsize = vie->opsize_override ? 4 : 2;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
decode_two_byte_opcode(struct vie *vie)
|
|
{
|
|
uint8_t x;
|
|
|
|
if (vie_peek(vie, &x))
|
|
return (-1);
|
|
|
|
vie->op = two_byte_opcodes[x];
|
|
|
|
if (vie->op.op_type == VIE_OP_TYPE_NONE)
|
|
return (-1);
|
|
|
|
vie_advance(vie);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
decode_opcode(struct vie *vie)
|
|
{
|
|
uint8_t x;
|
|
|
|
if (vie_peek(vie, &x))
|
|
return (-1);
|
|
|
|
/* Already did this via VEX prefix. */
|
|
if (vie->op.op_type != VIE_OP_TYPE_NONE)
|
|
return (0);
|
|
|
|
vie->op = one_byte_opcodes[x];
|
|
|
|
if (vie->op.op_type == VIE_OP_TYPE_NONE)
|
|
return (-1);
|
|
|
|
vie_advance(vie);
|
|
|
|
if (vie->op.op_type == VIE_OP_TYPE_TWO_BYTE)
|
|
return (decode_two_byte_opcode(vie));
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
decode_modrm(struct vie *vie, enum vm_cpu_mode cpu_mode)
|
|
{
|
|
uint8_t x;
|
|
|
|
if (vie->op.op_flags & VIE_OP_F_NO_MODRM)
|
|
return (0);
|
|
|
|
if (cpu_mode == CPU_MODE_REAL)
|
|
return (-1);
|
|
|
|
if (vie_peek(vie, &x))
|
|
return (-1);
|
|
|
|
vie->mod = (x >> 6) & 0x3;
|
|
vie->rm = (x >> 0) & 0x7;
|
|
vie->reg = (x >> 3) & 0x7;
|
|
|
|
/*
|
|
* A direct addressing mode makes no sense in the context of an EPT
|
|
* fault. There has to be a memory access involved to cause the
|
|
* EPT fault.
|
|
*/
|
|
if (vie->mod == VIE_MOD_DIRECT)
|
|
return (-1);
|
|
|
|
if ((vie->mod == VIE_MOD_INDIRECT && vie->rm == VIE_RM_DISP32) ||
|
|
(vie->mod != VIE_MOD_DIRECT && vie->rm == VIE_RM_SIB)) {
|
|
/*
|
|
* Table 2-5: Special Cases of REX Encodings
|
|
*
|
|
* mod=0, r/m=5 is used in the compatibility mode to
|
|
* indicate a disp32 without a base register.
|
|
*
|
|
* mod!=3, r/m=4 is used in the compatibility mode to
|
|
* indicate that the SIB byte is present.
|
|
*
|
|
* The 'b' bit in the REX prefix is don't care in
|
|
* this case.
|
|
*/
|
|
} else {
|
|
vie->rm |= (vie->rex_b << 3);
|
|
}
|
|
|
|
vie->reg |= (vie->rex_r << 3);
|
|
|
|
/* SIB */
|
|
if (vie->mod != VIE_MOD_DIRECT && vie->rm == VIE_RM_SIB)
|
|
goto done;
|
|
|
|
vie->base_register = gpr_map[vie->rm];
|
|
|
|
switch (vie->mod) {
|
|
case VIE_MOD_INDIRECT_DISP8:
|
|
vie->disp_bytes = 1;
|
|
break;
|
|
case VIE_MOD_INDIRECT_DISP32:
|
|
vie->disp_bytes = 4;
|
|
break;
|
|
case VIE_MOD_INDIRECT:
|
|
if (vie->rm == VIE_RM_DISP32) {
|
|
vie->disp_bytes = 4;
|
|
/*
|
|
* Table 2-7. RIP-Relative Addressing
|
|
*
|
|
* In 64-bit mode mod=00 r/m=101 implies [rip] + disp32
|
|
* whereas in compatibility mode it just implies disp32.
|
|
*/
|
|
|
|
if (cpu_mode == CPU_MODE_64BIT)
|
|
vie->base_register = VM_REG_GUEST_RIP;
|
|
else
|
|
vie->base_register = VM_REG_LAST;
|
|
}
|
|
break;
|
|
}
|
|
|
|
done:
|
|
vie_advance(vie);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
decode_sib(struct vie *vie)
|
|
{
|
|
uint8_t x;
|
|
|
|
/* Proceed only if SIB byte is present */
|
|
if (vie->mod == VIE_MOD_DIRECT || vie->rm != VIE_RM_SIB)
|
|
return (0);
|
|
|
|
if (vie_peek(vie, &x))
|
|
return (-1);
|
|
|
|
/* De-construct the SIB byte */
|
|
vie->ss = (x >> 6) & 0x3;
|
|
vie->index = (x >> 3) & 0x7;
|
|
vie->base = (x >> 0) & 0x7;
|
|
|
|
/* Apply the REX prefix modifiers */
|
|
vie->index |= vie->rex_x << 3;
|
|
vie->base |= vie->rex_b << 3;
|
|
|
|
switch (vie->mod) {
|
|
case VIE_MOD_INDIRECT_DISP8:
|
|
vie->disp_bytes = 1;
|
|
break;
|
|
case VIE_MOD_INDIRECT_DISP32:
|
|
vie->disp_bytes = 4;
|
|
break;
|
|
}
|
|
|
|
if (vie->mod == VIE_MOD_INDIRECT &&
|
|
(vie->base == 5 || vie->base == 13)) {
|
|
/*
|
|
* Special case when base register is unused if mod = 0
|
|
* and base = %rbp or %r13.
|
|
*
|
|
* Documented in:
|
|
* Table 2-3: 32-bit Addressing Forms with the SIB Byte
|
|
* Table 2-5: Special Cases of REX Encodings
|
|
*/
|
|
vie->disp_bytes = 4;
|
|
} else {
|
|
vie->base_register = gpr_map[vie->base];
|
|
}
|
|
|
|
/*
|
|
* All encodings of 'index' are valid except for %rsp (4).
|
|
*
|
|
* Documented in:
|
|
* Table 2-3: 32-bit Addressing Forms with the SIB Byte
|
|
* Table 2-5: Special Cases of REX Encodings
|
|
*/
|
|
if (vie->index != 4)
|
|
vie->index_register = gpr_map[vie->index];
|
|
|
|
/* 'scale' makes sense only in the context of an index register */
|
|
if (vie->index_register < VM_REG_LAST)
|
|
vie->scale = 1 << vie->ss;
|
|
|
|
vie_advance(vie);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
decode_displacement(struct vie *vie)
|
|
{
|
|
int n, i;
|
|
uint8_t x;
|
|
|
|
union {
|
|
char buf[4];
|
|
int8_t signed8;
|
|
int32_t signed32;
|
|
} u;
|
|
|
|
if ((n = vie->disp_bytes) == 0)
|
|
return (0);
|
|
|
|
if (n != 1 && n != 4)
|
|
panic("decode_displacement: invalid disp_bytes %d", n);
|
|
|
|
for (i = 0; i < n; i++) {
|
|
if (vie_peek(vie, &x))
|
|
return (-1);
|
|
|
|
u.buf[i] = x;
|
|
vie_advance(vie);
|
|
}
|
|
|
|
if (n == 1)
|
|
vie->displacement = u.signed8; /* sign-extended */
|
|
else
|
|
vie->displacement = u.signed32; /* sign-extended */
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
decode_immediate(struct vie *vie)
|
|
{
|
|
int i, n;
|
|
uint8_t x;
|
|
union {
|
|
char buf[4];
|
|
int8_t signed8;
|
|
int16_t signed16;
|
|
int32_t signed32;
|
|
} u;
|
|
|
|
/* Figure out immediate operand size (if any) */
|
|
if (vie->op.op_flags & VIE_OP_F_IMM) {
|
|
/*
|
|
* Section 2.2.1.5 "Immediates", Intel SDM:
|
|
* In 64-bit mode the typical size of immediate operands
|
|
* remains 32-bits. When the operand size if 64-bits, the
|
|
* processor sign-extends all immediates to 64-bits prior
|
|
* to their use.
|
|
*/
|
|
if (vie->opsize == 4 || vie->opsize == 8)
|
|
vie->imm_bytes = 4;
|
|
else
|
|
vie->imm_bytes = 2;
|
|
} else if (vie->op.op_flags & VIE_OP_F_IMM8) {
|
|
vie->imm_bytes = 1;
|
|
}
|
|
|
|
if ((n = vie->imm_bytes) == 0)
|
|
return (0);
|
|
|
|
KASSERT(n == 1 || n == 2 || n == 4,
|
|
("%s: invalid number of immediate bytes: %d", __func__, n));
|
|
|
|
for (i = 0; i < n; i++) {
|
|
if (vie_peek(vie, &x))
|
|
return (-1);
|
|
|
|
u.buf[i] = x;
|
|
vie_advance(vie);
|
|
}
|
|
|
|
/* sign-extend the immediate value before use */
|
|
if (n == 1)
|
|
vie->immediate = u.signed8;
|
|
else if (n == 2)
|
|
vie->immediate = u.signed16;
|
|
else
|
|
vie->immediate = u.signed32;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
decode_moffset(struct vie *vie)
|
|
{
|
|
int i, n;
|
|
uint8_t x;
|
|
union {
|
|
char buf[8];
|
|
uint64_t u64;
|
|
} u;
|
|
|
|
if ((vie->op.op_flags & VIE_OP_F_MOFFSET) == 0)
|
|
return (0);
|
|
|
|
/*
|
|
* Section 2.2.1.4, "Direct Memory-Offset MOVs", Intel SDM:
|
|
* The memory offset size follows the address-size of the instruction.
|
|
*/
|
|
n = vie->addrsize;
|
|
KASSERT(n == 2 || n == 4 || n == 8, ("invalid moffset bytes: %d", n));
|
|
|
|
u.u64 = 0;
|
|
for (i = 0; i < n; i++) {
|
|
if (vie_peek(vie, &x))
|
|
return (-1);
|
|
|
|
u.buf[i] = x;
|
|
vie_advance(vie);
|
|
}
|
|
vie->displacement = u.u64;
|
|
return (0);
|
|
}
|
|
|
|
#ifdef _KERNEL
|
|
/*
|
|
* Verify that the 'guest linear address' provided as collateral of the nested
|
|
* page table fault matches with our instruction decoding.
|
|
*/
|
|
static int
|
|
verify_gla(struct vm *vm, int cpuid, uint64_t gla, struct vie *vie,
|
|
enum vm_cpu_mode cpu_mode)
|
|
{
|
|
int error;
|
|
uint64_t base, segbase, idx, gla2;
|
|
enum vm_reg_name seg;
|
|
struct seg_desc desc;
|
|
|
|
/* Skip 'gla' verification */
|
|
if (gla == VIE_INVALID_GLA)
|
|
return (0);
|
|
|
|
base = 0;
|
|
if (vie->base_register != VM_REG_LAST) {
|
|
error = vm_get_register(vm, cpuid, vie->base_register, &base);
|
|
if (error) {
|
|
printf("verify_gla: error %d getting base reg %d\n",
|
|
error, vie->base_register);
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* RIP-relative addressing starts from the following
|
|
* instruction
|
|
*/
|
|
if (vie->base_register == VM_REG_GUEST_RIP)
|
|
base += vie->num_processed;
|
|
}
|
|
|
|
idx = 0;
|
|
if (vie->index_register != VM_REG_LAST) {
|
|
error = vm_get_register(vm, cpuid, vie->index_register, &idx);
|
|
if (error) {
|
|
printf("verify_gla: error %d getting index reg %d\n",
|
|
error, vie->index_register);
|
|
return (-1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* From "Specifying a Segment Selector", Intel SDM, Vol 1
|
|
*
|
|
* In 64-bit mode, segmentation is generally (but not
|
|
* completely) disabled. The exceptions are the FS and GS
|
|
* segments.
|
|
*
|
|
* In legacy IA-32 mode, when the ESP or EBP register is used
|
|
* as the base, the SS segment is the default segment. For
|
|
* other data references, except when relative to stack or
|
|
* string destination the DS segment is the default. These
|
|
* can be overridden to allow other segments to be accessed.
|
|
*/
|
|
if (vie->segment_override)
|
|
seg = vie->segment_register;
|
|
else if (vie->base_register == VM_REG_GUEST_RSP ||
|
|
vie->base_register == VM_REG_GUEST_RBP)
|
|
seg = VM_REG_GUEST_SS;
|
|
else
|
|
seg = VM_REG_GUEST_DS;
|
|
if (cpu_mode == CPU_MODE_64BIT && seg != VM_REG_GUEST_FS &&
|
|
seg != VM_REG_GUEST_GS) {
|
|
segbase = 0;
|
|
} else {
|
|
error = vm_get_seg_desc(vm, cpuid, seg, &desc);
|
|
if (error) {
|
|
printf("verify_gla: error %d getting segment"
|
|
" descriptor %d", error,
|
|
vie->segment_register);
|
|
return (-1);
|
|
}
|
|
segbase = desc.base;
|
|
}
|
|
|
|
gla2 = segbase + base + vie->scale * idx + vie->displacement;
|
|
gla2 &= size2mask[vie->addrsize];
|
|
if (gla != gla2) {
|
|
printf("verify_gla mismatch: segbase(0x%0lx)"
|
|
"base(0x%0lx), scale(%d), index(0x%0lx), "
|
|
"disp(0x%0lx), gla(0x%0lx), gla2(0x%0lx)\n",
|
|
segbase, base, vie->scale, idx, vie->displacement,
|
|
gla, gla2);
|
|
return (-1);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
#endif /* _KERNEL */
|
|
|
|
int
|
|
#ifdef _KERNEL
|
|
vmm_decode_instruction(struct vm *vm, int cpuid, uint64_t gla,
|
|
enum vm_cpu_mode cpu_mode, int cs_d, struct vie *vie)
|
|
#else
|
|
vmm_decode_instruction(enum vm_cpu_mode cpu_mode, int cs_d, struct vie *vie)
|
|
#endif
|
|
{
|
|
|
|
if (decode_prefixes(vie, cpu_mode, cs_d))
|
|
return (-1);
|
|
|
|
if (decode_opcode(vie))
|
|
return (-1);
|
|
|
|
if (decode_modrm(vie, cpu_mode))
|
|
return (-1);
|
|
|
|
if (decode_sib(vie))
|
|
return (-1);
|
|
|
|
if (decode_displacement(vie))
|
|
return (-1);
|
|
|
|
if (decode_immediate(vie))
|
|
return (-1);
|
|
|
|
if (decode_moffset(vie))
|
|
return (-1);
|
|
|
|
#ifdef _KERNEL
|
|
if ((vie->op.op_flags & VIE_OP_F_NO_GLA_VERIFICATION) == 0) {
|
|
if (verify_gla(vm, cpuid, gla, vie, cpu_mode))
|
|
return (-1);
|
|
}
|
|
#endif
|
|
|
|
vie->decoded = 1; /* success */
|
|
|
|
return (0);
|
|
}
|