3e9c59558d
No functional change.
286 lines
8.9 KiB
C
286 lines
8.9 KiB
C
/*
|
|
* Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
|
|
* Copyright (c) 2002-2008 Atheros Communications, Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
#include "opt_ah.h"
|
|
|
|
#include "ah.h"
|
|
#include "ah_internal.h"
|
|
|
|
#include "ar5212/ar5212.h"
|
|
#include "ar5212/ar5212reg.h"
|
|
#include "ar5212/ar5212desc.h"
|
|
|
|
/*
|
|
* Note: The key cache hardware requires that each double-word
|
|
* pair be written in even/odd order (since the destination is
|
|
* a 64-bit register). Don't reorder the writes in this code
|
|
* w/o considering this!
|
|
*/
|
|
#define KEY_XOR 0xaa
|
|
|
|
#define IS_MIC_ENABLED(ah) \
|
|
(AH5212(ah)->ah_staId1Defaults & AR_STA_ID1_CRPT_MIC_ENABLE)
|
|
|
|
/*
|
|
* Return the size of the hardware key cache.
|
|
*/
|
|
uint32_t
|
|
ar5212GetKeyCacheSize(struct ath_hal *ah)
|
|
{
|
|
return AH_PRIVATE(ah)->ah_caps.halKeyCacheSize;
|
|
}
|
|
|
|
/*
|
|
* Return true if the specific key cache entry is valid.
|
|
*/
|
|
HAL_BOOL
|
|
ar5212IsKeyCacheEntryValid(struct ath_hal *ah, uint16_t entry)
|
|
{
|
|
if (entry < AH_PRIVATE(ah)->ah_caps.halKeyCacheSize) {
|
|
uint32_t val = OS_REG_READ(ah, AR_KEYTABLE_MAC1(entry));
|
|
if (val & AR_KEYTABLE_VALID)
|
|
return AH_TRUE;
|
|
}
|
|
return AH_FALSE;
|
|
}
|
|
|
|
/*
|
|
* Clear the specified key cache entry and any associated MIC entry.
|
|
*/
|
|
HAL_BOOL
|
|
ar5212ResetKeyCacheEntry(struct ath_hal *ah, uint16_t entry)
|
|
{
|
|
uint32_t keyType;
|
|
|
|
if (entry >= AH_PRIVATE(ah)->ah_caps.halKeyCacheSize) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: entry %u out of range\n",
|
|
__func__, entry);
|
|
return AH_FALSE;
|
|
}
|
|
keyType = OS_REG_READ(ah, AR_KEYTABLE_TYPE(entry));
|
|
|
|
/* XXX why not clear key type/valid bit first? */
|
|
OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
|
|
OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
|
|
OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
|
|
OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
|
|
OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
|
|
OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
|
|
OS_REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
|
|
OS_REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
|
|
if (keyType == AR_KEYTABLE_TYPE_TKIP && IS_MIC_ENABLED(ah)) {
|
|
uint16_t micentry = entry+64; /* MIC goes at slot+64 */
|
|
|
|
HALASSERT(micentry < AH_PRIVATE(ah)->ah_caps.halKeyCacheSize);
|
|
OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
|
|
OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
|
|
OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
|
|
OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
|
|
/* NB: key type and MAC are known to be ok */
|
|
}
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Sets the mac part of the specified key cache entry (and any
|
|
* associated MIC entry) and mark them valid.
|
|
*/
|
|
HAL_BOOL
|
|
ar5212SetKeyCacheEntryMac(struct ath_hal *ah, uint16_t entry, const uint8_t *mac)
|
|
{
|
|
uint32_t macHi, macLo;
|
|
|
|
if (entry >= AH_PRIVATE(ah)->ah_caps.halKeyCacheSize) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: entry %u out of range\n",
|
|
__func__, entry);
|
|
return AH_FALSE;
|
|
}
|
|
/*
|
|
* Set MAC address -- shifted right by 1. MacLo is
|
|
* the 4 MSBs, and MacHi is the 2 LSBs.
|
|
*/
|
|
if (mac != AH_NULL) {
|
|
macHi = (mac[5] << 8) | mac[4];
|
|
macLo = (mac[3] << 24)| (mac[2] << 16)
|
|
| (mac[1] << 8) | mac[0];
|
|
macLo >>= 1;
|
|
macLo |= (macHi & 1) << 31; /* carry */
|
|
macHi >>= 1;
|
|
} else {
|
|
macLo = macHi = 0;
|
|
}
|
|
OS_REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
|
|
OS_REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
|
|
return AH_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Sets the contents of the specified key cache entry
|
|
* and any associated MIC entry.
|
|
*/
|
|
HAL_BOOL
|
|
ar5212SetKeyCacheEntry(struct ath_hal *ah, uint16_t entry,
|
|
const HAL_KEYVAL *k, const uint8_t *mac,
|
|
int xorKey)
|
|
{
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
|
|
uint32_t key0, key1, key2, key3, key4;
|
|
uint32_t keyType;
|
|
uint32_t xorMask = xorKey ?
|
|
(KEY_XOR << 24 | KEY_XOR << 16 | KEY_XOR << 8 | KEY_XOR) : 0;
|
|
|
|
if (entry >= pCap->halKeyCacheSize) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: entry %u out of range\n",
|
|
__func__, entry);
|
|
return AH_FALSE;
|
|
}
|
|
switch (k->kv_type) {
|
|
case HAL_CIPHER_AES_OCB:
|
|
keyType = AR_KEYTABLE_TYPE_AES;
|
|
break;
|
|
case HAL_CIPHER_AES_CCM:
|
|
if (!pCap->halCipherAesCcmSupport) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: AES-CCM not supported by mac rev 0x%x\n",
|
|
__func__, AH_PRIVATE(ah)->ah_macRev);
|
|
return AH_FALSE;
|
|
}
|
|
keyType = AR_KEYTABLE_TYPE_CCM;
|
|
break;
|
|
case HAL_CIPHER_TKIP:
|
|
keyType = AR_KEYTABLE_TYPE_TKIP;
|
|
if (IS_MIC_ENABLED(ah) && entry+64 >= pCap->halKeyCacheSize) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: entry %u inappropriate for TKIP\n",
|
|
__func__, entry);
|
|
return AH_FALSE;
|
|
}
|
|
break;
|
|
case HAL_CIPHER_WEP:
|
|
if (k->kv_len < 40 / NBBY) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: WEP key length %u too small\n",
|
|
__func__, k->kv_len);
|
|
return AH_FALSE;
|
|
}
|
|
if (k->kv_len <= 40 / NBBY)
|
|
keyType = AR_KEYTABLE_TYPE_40;
|
|
else if (k->kv_len <= 104 / NBBY)
|
|
keyType = AR_KEYTABLE_TYPE_104;
|
|
else
|
|
keyType = AR_KEYTABLE_TYPE_128;
|
|
break;
|
|
case HAL_CIPHER_CLR:
|
|
keyType = AR_KEYTABLE_TYPE_CLR;
|
|
break;
|
|
default:
|
|
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: cipher %u not supported\n",
|
|
__func__, k->kv_type);
|
|
return AH_FALSE;
|
|
}
|
|
|
|
key0 = LE_READ_4(k->kv_val+0) ^ xorMask;
|
|
key1 = (LE_READ_2(k->kv_val+4) ^ xorMask) & 0xffff;
|
|
key2 = LE_READ_4(k->kv_val+6) ^ xorMask;
|
|
key3 = (LE_READ_2(k->kv_val+10) ^ xorMask) & 0xffff;
|
|
key4 = LE_READ_4(k->kv_val+12) ^ xorMask;
|
|
if (k->kv_len <= 104 / NBBY)
|
|
key4 &= 0xff;
|
|
|
|
/*
|
|
* Note: key cache hardware requires that each double-word
|
|
* pair be written in even/odd order (since the destination is
|
|
* a 64-bit register). Don't reorder these writes w/o
|
|
* considering this!
|
|
*/
|
|
if (keyType == AR_KEYTABLE_TYPE_TKIP && IS_MIC_ENABLED(ah)) {
|
|
uint16_t micentry = entry+64; /* MIC goes at slot+64 */
|
|
uint32_t mic0, mic1, mic2, mic3, mic4;
|
|
|
|
/*
|
|
* Invalidate the encrypt/decrypt key until the MIC
|
|
* key is installed so pending rx frames will fail
|
|
* with decrypt errors rather than a MIC error.
|
|
*/
|
|
OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
|
|
OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
|
|
OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
|
|
OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
|
|
OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
|
|
OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
|
|
(void) ar5212SetKeyCacheEntryMac(ah, entry, mac);
|
|
|
|
|
|
/*
|
|
* Write MIC entry according to new or old key layout.
|
|
* The MISC_MODE register is assumed already set so
|
|
* these writes will be handled properly (happens on
|
|
* attach and at every reset).
|
|
*/
|
|
/* RX mic */
|
|
mic0 = LE_READ_4(k->kv_mic+0);
|
|
mic2 = LE_READ_4(k->kv_mic+4);
|
|
if (ahp->ah_miscMode & AR_MISC_MODE_MIC_NEW_LOC_ENABLE) {
|
|
/*
|
|
* Both RX and TX mic values can be combined into
|
|
* one cache slot entry:
|
|
* 8*N + 800 31:0 RX Michael key 0
|
|
* 8*N + 804 15:0 TX Michael key 0 [31:16]
|
|
* 8*N + 808 31:0 RX Michael key 1
|
|
* 8*N + 80C 15:0 TX Michael key 0 [15:0]
|
|
* 8*N + 810 31:0 TX Michael key 1
|
|
* 8*N + 814 15:0 reserved
|
|
* 8*N + 818 31:0 reserved
|
|
* 8*N + 81C 14:0 reserved
|
|
* 15 key valid == 0
|
|
*/
|
|
/* TX mic */
|
|
mic1 = LE_READ_2(k->kv_txmic+2) & 0xffff;
|
|
mic3 = LE_READ_2(k->kv_txmic+0) & 0xffff;
|
|
mic4 = LE_READ_4(k->kv_txmic+4);
|
|
} else {
|
|
mic1 = mic3 = mic4 = 0;
|
|
}
|
|
OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
|
|
OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
|
|
OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
|
|
OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
|
|
OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
|
|
OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
|
|
AR_KEYTABLE_TYPE_CLR);
|
|
/* NB: MIC key is not marked valid and has no MAC address */
|
|
OS_REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
|
|
OS_REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
|
|
|
|
/* correct intentionally corrupted key */
|
|
OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
|
|
OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
|
|
} else {
|
|
OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
|
|
OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
|
|
OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
|
|
OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
|
|
OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
|
|
OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
|
|
|
|
(void) ar5212SetKeyCacheEntryMac(ah, entry, mac);
|
|
}
|
|
return AH_TRUE;
|
|
}
|