Rui Paulo 12fefae25c Revert part of the 9285 support because it breaks the 9280 support. I'll
try to do the 9285 support without interfering with any other chipset
revisions support.
2010-02-14 16:26:32 +00:00

362 lines
10 KiB
C

/*
* Copyright (c) 2008-2009 Sam Leffler, Errno Consulting
* Copyright (c) 2008 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* $FreeBSD$
*/
#include "opt_ah.h"
/*
* NB: Merlin and later have a simpler RF backend.
*/
#include "ah.h"
#include "ah_internal.h"
#include "ah_eeprom_v14.h"
#include "ar5416/ar9280.h"
#include "ar5416/ar5416reg.h"
#include "ar5416/ar5416phy.h"
#define N(a) (sizeof(a)/sizeof(a[0]))
struct ar9280State {
RF_HAL_FUNCS base; /* public state, must be first */
uint16_t pcdacTable[1]; /* XXX */
};
#define AR9280(ah) ((struct ar9280State *) AH5212(ah)->ah_rfHal)
static HAL_BOOL ar9280GetChannelMaxMinPower(struct ath_hal *,
const struct ieee80211_channel *, int16_t *maxPow,int16_t *minPow);
int16_t ar9280GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c);
static void
ar9280WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
int writes)
{
(void) ath_hal_ini_write(ah, &AH5416(ah)->ah_ini_bb_rfgain,
freqIndex, writes);
}
/*
* Take the MHz channel value and set the Channel value
*
* ASSUMES: Writes enabled to analog bus
*
* Actual Expression,
*
* For 2GHz channel,
* Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
* (freq_ref = 40MHz)
*
* For 5GHz channel,
* Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
* (freq_ref = 40MHz/(24>>amodeRefSel))
*
* For 5GHz channels which are 5MHz spaced,
* Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
* (freq_ref = 40MHz)
*/
static HAL_BOOL
ar9280SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
uint16_t bMode, fracMode, aModeRefSel = 0;
uint32_t freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
CHAN_CENTERS centers;
uint32_t refDivA = 24;
OS_MARK(ah, AH_MARK_SETCHANNEL, chan->ic_freq);
ar5416GetChannelCenters(ah, chan, &centers);
freq = centers.synth_center;
reg32 = OS_REG_READ(ah, AR_PHY_SYNTH_CONTROL);
reg32 &= 0xc0000000;
if (freq < 4800) { /* 2 GHz, fractional mode */
uint32_t txctl;
bMode = 1;
fracMode = 1;
aModeRefSel = 0;
channelSel = (freq * 0x10000)/15;
txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
if (freq == 2484) {
/* Enable channel spreading for channel 14 */
OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
} else {
OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
}
} else {
bMode = 0;
fracMode = 0;
if ((freq % 20) == 0) {
aModeRefSel = 3;
} else if ((freq % 10) == 0) {
aModeRefSel = 2;
} else {
aModeRefSel = 0;
/* Enable 2G (fractional) mode for channels which are 5MHz spaced */
fracMode = 1;
refDivA = 1;
channelSel = (freq * 0x8000)/15;
/* RefDivA setting */
OS_REG_RMW_FIELD(ah, AR_AN_SYNTH9,
AR_AN_SYNTH9_REFDIVA, refDivA);
}
if (!fracMode) {
ndiv = (freq * (refDivA >> aModeRefSel))/60;
channelSel = ndiv & 0x1ff;
channelFrac = (ndiv & 0xfffffe00) * 2;
channelSel = (channelSel << 17) | channelFrac;
}
}
reg32 = reg32 | (bMode << 29) | (fracMode << 28) |
(aModeRefSel << 26) | (channelSel);
OS_REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
AH_PRIVATE(ah)->ah_curchan = chan;
return AH_TRUE;
}
/*
* Return a reference to the requested RF Bank.
*/
static uint32_t *
ar9280GetRfBank(struct ath_hal *ah, int bank)
{
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
__func__, bank);
return AH_NULL;
}
/*
* Reads EEPROM header info from device structure and programs
* all rf registers
*/
static HAL_BOOL
ar9280SetRfRegs(struct ath_hal *ah, const struct ieee80211_channel *chan,
uint16_t modesIndex, uint16_t *rfXpdGain)
{
return AH_TRUE; /* nothing to do */
}
/*
* Read the transmit power levels from the structures taken from EEPROM
* Interpolate read transmit power values for this channel
* Organize the transmit power values into a table for writing into the hardware
*/
static HAL_BOOL
ar9280SetPowerTable(struct ath_hal *ah, int16_t *pPowerMin, int16_t *pPowerMax,
const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
{
return AH_TRUE;
}
#if 0
static int16_t
ar9280GetMinPower(struct ath_hal *ah, EXPN_DATA_PER_CHANNEL_5112 *data)
{
int i, minIndex;
int16_t minGain,minPwr,minPcdac,retVal;
/* Assume NUM_POINTS_XPD0 > 0 */
minGain = data->pDataPerXPD[0].xpd_gain;
for (minIndex=0,i=1; i<NUM_XPD_PER_CHANNEL; i++) {
if (data->pDataPerXPD[i].xpd_gain < minGain) {
minIndex = i;
minGain = data->pDataPerXPD[i].xpd_gain;
}
}
minPwr = data->pDataPerXPD[minIndex].pwr_t4[0];
minPcdac = data->pDataPerXPD[minIndex].pcdac[0];
for (i=1; i<NUM_POINTS_XPD0; i++) {
if (data->pDataPerXPD[minIndex].pwr_t4[i] < minPwr) {
minPwr = data->pDataPerXPD[minIndex].pwr_t4[i];
minPcdac = data->pDataPerXPD[minIndex].pcdac[i];
}
}
retVal = minPwr - (minPcdac*2);
return(retVal);
}
#endif
static HAL_BOOL
ar9280GetChannelMaxMinPower(struct ath_hal *ah,
const struct ieee80211_channel *chan,
int16_t *maxPow, int16_t *minPow)
{
#if 0
struct ath_hal_5212 *ahp = AH5212(ah);
int numChannels=0,i,last;
int totalD, totalF,totalMin;
EXPN_DATA_PER_CHANNEL_5112 *data=AH_NULL;
EEPROM_POWER_EXPN_5112 *powerArray=AH_NULL;
*maxPow = 0;
if (IS_CHAN_A(chan)) {
powerArray = ahp->ah_modePowerArray5112;
data = powerArray[headerInfo11A].pDataPerChannel;
numChannels = powerArray[headerInfo11A].numChannels;
} else if (IS_CHAN_G(chan) || IS_CHAN_108G(chan)) {
/* XXX - is this correct? Should we also use the same power for turbo G? */
powerArray = ahp->ah_modePowerArray5112;
data = powerArray[headerInfo11G].pDataPerChannel;
numChannels = powerArray[headerInfo11G].numChannels;
} else if (IS_CHAN_B(chan)) {
powerArray = ahp->ah_modePowerArray5112;
data = powerArray[headerInfo11B].pDataPerChannel;
numChannels = powerArray[headerInfo11B].numChannels;
} else {
return (AH_TRUE);
}
/* Make sure the channel is in the range of the TP values
* (freq piers)
*/
if ((numChannels < 1) ||
(chan->channel < data[0].channelValue) ||
(chan->channel > data[numChannels-1].channelValue))
return(AH_FALSE);
/* Linearly interpolate the power value now */
for (last=0,i=0;
(i<numChannels) && (chan->channel > data[i].channelValue);
last=i++);
totalD = data[i].channelValue - data[last].channelValue;
if (totalD > 0) {
totalF = data[i].maxPower_t4 - data[last].maxPower_t4;
*maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) + data[last].maxPower_t4*totalD)/totalD);
totalMin = ar9280GetMinPower(ah,&data[i]) - ar9280GetMinPower(ah, &data[last]);
*minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) + ar9280GetMinPower(ah, &data[last])*totalD)/totalD);
return (AH_TRUE);
} else {
if (chan->channel == data[i].channelValue) {
*maxPow = data[i].maxPower_t4;
*minPow = ar9280GetMinPower(ah, &data[i]);
return(AH_TRUE);
} else
return(AH_FALSE);
}
#else
*maxPow = *minPow = 0;
return AH_FALSE;
#endif
}
static void
ar9280GetNoiseFloor(struct ath_hal *ah, int16_t nfarray[])
{
int16_t nf;
nf = MS(OS_REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR);
if (nf & 0x100)
nf = 0 - ((nf ^ 0x1ff) + 1);
HALDEBUG(ah, HAL_DEBUG_NFCAL,
"NF calibrated [ctl] [chain 0] is %d\n", nf);
nfarray[0] = nf;
nf = MS(OS_REG_READ(ah, AR_PHY_CH1_CCA), AR9280_PHY_CH1_MINCCA_PWR);
if (nf & 0x100)
nf = 0 - ((nf ^ 0x1ff) + 1);
HALDEBUG(ah, HAL_DEBUG_NFCAL,
"NF calibrated [ctl] [chain 1] is %d\n", nf);
nfarray[1] = nf;
nf = MS(OS_REG_READ(ah, AR_PHY_EXT_CCA), AR9280_PHY_EXT_MINCCA_PWR);
if (nf & 0x100)
nf = 0 - ((nf ^ 0x1ff) + 1);
HALDEBUG(ah, HAL_DEBUG_NFCAL,
"NF calibrated [ext] [chain 0] is %d\n", nf);
nfarray[3] = nf;
nf = MS(OS_REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR9280_PHY_CH1_EXT_MINCCA_PWR);
if (nf & 0x100)
nf = 0 - ((nf ^ 0x1ff) + 1);
HALDEBUG(ah, HAL_DEBUG_NFCAL,
"NF calibrated [ext] [chain 1] is %d\n", nf);
nfarray[4] = nf;
}
/*
* Adjust NF based on statistical values for 5GHz frequencies.
* Stubbed:Not used by Fowl
*/
int16_t
ar9280GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
{
return 0;
}
/*
* Free memory for analog bank scratch buffers
*/
static void
ar9280RfDetach(struct ath_hal *ah)
{
struct ath_hal_5212 *ahp = AH5212(ah);
HALASSERT(ahp->ah_rfHal != AH_NULL);
ath_hal_free(ahp->ah_rfHal);
ahp->ah_rfHal = AH_NULL;
}
HAL_BOOL
ar9280RfAttach(struct ath_hal *ah, HAL_STATUS *status)
{
struct ath_hal_5212 *ahp = AH5212(ah);
struct ar9280State *priv;
HALDEBUG(ah, HAL_DEBUG_ATTACH, "%s: attach AR9280 radio\n", __func__);
HALASSERT(ahp->ah_rfHal == AH_NULL);
priv = ath_hal_malloc(sizeof(struct ar9280State));
if (priv == AH_NULL) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: cannot allocate private state\n", __func__);
*status = HAL_ENOMEM; /* XXX */
return AH_FALSE;
}
priv->base.rfDetach = ar9280RfDetach;
priv->base.writeRegs = ar9280WriteRegs;
priv->base.getRfBank = ar9280GetRfBank;
priv->base.setChannel = ar9280SetChannel;
priv->base.setRfRegs = ar9280SetRfRegs;
priv->base.setPowerTable = ar9280SetPowerTable;
priv->base.getChannelMaxMinPower = ar9280GetChannelMaxMinPower;
priv->base.getNfAdjust = ar9280GetNfAdjust;
ahp->ah_pcdacTable = priv->pcdacTable;
ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
ahp->ah_rfHal = &priv->base;
/*
* Set noise floor adjust method; we arrange a
* direct call instead of thunking.
*/
AH_PRIVATE(ah)->ah_getNfAdjust = priv->base.getNfAdjust;
AH_PRIVATE(ah)->ah_getNoiseFloor = ar9280GetNoiseFloor;
return AH_TRUE;
}